JPH10328995A - Curved surface grinding method - Google Patents

Curved surface grinding method

Info

Publication number
JPH10328995A
JPH10328995A JP13419697A JP13419697A JPH10328995A JP H10328995 A JPH10328995 A JP H10328995A JP 13419697 A JP13419697 A JP 13419697A JP 13419697 A JP13419697 A JP 13419697A JP H10328995 A JPH10328995 A JP H10328995A
Authority
JP
Japan
Prior art keywords
grinding
axis
grinding wheel
processing
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13419697A
Other languages
Japanese (ja)
Inventor
Shunji Chiaki
俊司 千明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP13419697A priority Critical patent/JPH10328995A/en
Publication of JPH10328995A publication Critical patent/JPH10328995A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a curved surface grinding method that can grind even an axially asymmetric curved lens with two orthogonal faces formed in axially asymmetric noncircular curved faces, with high accuracy. SOLUTION: A rotatable grinding tool 6 provided with a spherical grinding wheel with the specified radius of curvature is used, and the center of the radius of curvature of the grinding wheel is positioned on the rotating center axis of the grinding tool 6. In the state of the rotating locus of the grinding wheel being made completely spherical with the above-mentioned specified radius of curvature, the grinding wheel 6 is moved relatively to the machined surface of an axially asymmetric curved lens 1 to grind the machined surface of the axially asymmetric curved lens 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学素子の光学機
能面あるいは光学素子を成形する成形用型の光学機能面
等を、曲面の中でも特に軸非対称曲面に研削加工する曲
面研削加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a curved surface grinding method for grinding an optically functional surface of an optical element or an optically functional surface of a mold for molding an optical element into a curved surface, particularly an asymmetrical curved surface.

【0002】[0002]

【従来の技術】従来、光学素子または成形用型等の被加
工物の光学機能面を軸非対称曲面に加工する方法とし
て、NC平面研削盤による外周面がR形状の砥石を用い
る方法あるいはNCフライス盤等によるボールエンドミ
ル工具(以下、単に工具と称する)を用いる方法があ
る。
2. Description of the Related Art Conventionally, as a method for processing an optically functional surface of an object to be processed such as an optical element or a molding die into an axially asymmetric curved surface, a method using an NC surface grinder using an R-shaped outer peripheral surface or an NC milling machine There is a method using a ball end mill tool (hereinafter, simply referred to as a tool) according to the method described above.

【0003】上記方法は、両者とも被加工物と砥石(あ
るいは工具)との相対位置を制御して加工を行うもので
あるが、それぞれ砥石の形状誤差あるいは工具の真球精
度や摩耗等により形状精度的に限界があるといわれ、更
なる高精度化へ対応するための技術として以下の提案が
なされている。
[0003] In both of the above methods, machining is performed by controlling the relative position between a workpiece and a grindstone (or tool). It is said that there is a limit in accuracy, and the following proposals have been made as techniques for responding to further higher accuracy.

【0004】その一例として、特開平8−257886
号公報に開示された技術(以下、従来技術1と称する)
がある。この従来技術1は、X軸テーブルとY軸テーブ
ルをそれぞれ直交するX軸とY軸の向きに移動制御自在
に配置するとともに、このX軸とY軸に直交するZ軸方
向の向きに回転スピンドルを配置する。そして、回転ス
ピンドルの下端に砥石を取り付け、加工する被加工物の
接線と砥石とが常に直角に接するように回転スピンドル
をX軸テーブルの上に取り付ける。
As one example, Japanese Patent Application Laid-Open No. Hei 8-257886 is disclosed.
(Hereinafter referred to as “prior art 1”)
There is. According to the prior art 1, an X-axis table and a Y-axis table are arranged so as to be movable and controllable in directions of X-axis and Y-axis orthogonal to each other, and a rotary spindle is rotated in a direction of Z-axis orthogonal to X-axis and Y-axis. Place. Then, a grindstone is attached to the lower end of the rotary spindle, and the rotary spindle is mounted on the X-axis table so that the tangent line of the workpiece to be processed and the grindstone always contact at right angles.

【0005】一方、Y軸テーブルの上には、回転割り出
し可能な回転軸を配置するとともに、この回転軸の回転
中心から所望の距離のところに被加工物を保持する保持
具を取り付け固定する。この保持具に保持させた被加工
物の先端と砥石の加工点を一致させ、回転スピンドルを
回転させるとともに回転軸を旋回させることにより、被
加工物を円弧形状に加工する。
On the other hand, on the Y-axis table, a rotatable rotary shaft is arranged, and a holder for holding the workpiece at a desired distance from the center of rotation of the rotary shaft is mounted and fixed. The work piece is machined into an arc shape by matching the tip of the work piece held by the holder with the processing point of the grindstone, rotating the rotating spindle and rotating the rotating shaft.

【0006】そして、X軸テーブルとY軸テーブルの同
時2軸NC制御により、回転軸とともに保持具に保持さ
せた被加工物をY軸方向に駆動制御して被加工物を非球
面形状に高精度に加工するものである。
[0006] By simultaneous two-axis NC control of the X-axis table and the Y-axis table, the workpiece held by the holder together with the rotating shaft is drive-controlled in the Y-axis direction to raise the workpiece into an aspherical shape. It is to be processed with precision.

【0007】また、他の例として、特開平7−2997
46号公報に開示された技術(以下、従来技術2と称す
る)がある。この従来技術2は、被加工物に三次元の非
回転対称非球面を、外周面が球面状である円盤状砥石に
より加工する非球面加工装置であって、非球面加工装置
のベッド上に、被加工物をワーク支持台の前面に設けら
れた真空チャックで保持しつつX軸方向に移動するワー
ク用スライドテーブルと、このワーク用スライドテーブ
ルに対して直交するZ軸方向に砥石を水平移動する砥石
スライドテーブルと、砥石スライドテーブルに取り付け
られており前記X軸とZ軸に直交するY軸方向(上下方
向)に移動可能に円盤状砥石を砥石のシャンク部に装着
した砥石ヘッドとを有する。
Another example is disclosed in Japanese Patent Application Laid-Open No. 7-2997.
There is a technique disclosed in Japanese Patent Publication No. 46 (hereinafter, referred to as Conventional Technique 2). This prior art 2 is an aspherical surface processing apparatus for processing a three-dimensional non-rotationally symmetric aspherical surface on a workpiece using a disk-shaped grindstone having a spherical outer peripheral surface. A work slide table that moves in the X-axis direction while holding the workpiece by a vacuum chuck provided on the front surface of the work support table, and a grindstone is horizontally moved in the Z-axis direction perpendicular to the work slide table. It has a whetstone slide table and a whetstone head mounted on the whetstone slide table and having a disk-shaped whetstone mounted on a shank part of the whetstone so as to be movable in a Y-axis direction (vertical direction) orthogonal to the X-axis and the Z-axis.

【0008】上記被加工物を保持するワーク用スライド
テーブル上に、ツルアを固定したツルーイング装置を設
け、またベッド上のZ軸方向に、ストロボ装置と顕微鏡
を対向して設置し、両者の間に砥石スライドテーブルに
て支持される砥石を位置決めすることによって、砥石の
各端部の映像を検知して砥石の径を測定する。そして、
被加工物を保持するワーク用スライドテーブル上に、ワ
ーク支持台と並列的にツルアを固定したツルーイング装
置を固定する。
A truing device to which a truer is fixed is provided on a work slide table for holding the workpiece, and a strobe device and a microscope are installed facing each other in the Z-axis direction on the bed. By positioning the grindstone supported by the grindstone slide table, the image of each end of the grindstone is detected and the diameter of the grindstone is measured. And
A truing device having a truer fixed in parallel with a work support is fixed on a work slide table for holding a workpiece.

【0009】上記ツルーイング装置によって、砥石外周
面は砥石中心から均一な半径を持った球面状に高精度に
ツルーイングされる。次に、前記砥石の径を測定し、得
られた砥石半径Rを補正データとして形状データが再計
算され、この新しい形状データに基づいて、加工機のX
軸,Y軸,Z軸の3軸制御をし、軸非対称曲面の加工を
高精度に行うものである。
By the above-mentioned truing device, the outer peripheral surface of the grinding wheel is trued with high precision into a spherical shape having a uniform radius from the center of the grinding wheel. Next, the diameter of the grinding wheel is measured, and the shape data is recalculated using the obtained grinding wheel radius R as correction data. Based on the new shape data, the X
The axis, the Y-axis, and the Z-axis are controlled, and machining of an asymmetrical curved surface is performed with high accuracy.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記従
来技術1では、前記加工によって得られた成形用型の軸
非対称加工面の互いに直交する断面形状が、一方の断面
形状は任意の曲面に加工可能であるものの、他方の断面
形状は回転軸の回転中心からの距離で決定されるもので
ある。従って、従来技術1は、同一面上の一方が円弧
で、直交する他方が非円弧である軸非対称曲面のみしか
対応できないといった問題が生じてしまう。
However, in the above-mentioned prior art 1, the cross-sectional shapes orthogonal to each other of the axially asymmetric processing surfaces of the forming die obtained by the above-mentioned processing can be processed into an arbitrary curved surface. However, the other cross-sectional shape is determined by the distance from the rotation center of the rotation shaft. Therefore, the prior art 1 has a problem that only one axially asymmetric curved surface having one circular arc on the same surface and the other orthogonal non-circular surface can be used.

【0011】上記従来技術2では、円盤状砥石を用いて
加工することから、被加工物の所望の軸非対称曲面が半
球になるほど円盤状砥石を保持するシャンク部の外周面
と被加工物の外縁部とが接触しやすくなり、特に深くて
小さい凹形状なものに対して制約を受けることとなる。
これを回避するためにシャンク部の径を小さくすると、
シャンク部に剛性がなくなり被加工物の加工面における
加工精度の劣化につながる。従って、従来技術2は、軸
非対称曲面が深くて小さい半球のものに対して加工が困
難といった問題が生じてしまう。
In the above prior art 2, since processing is performed using a disk-shaped grindstone, the outer peripheral surface of the shank portion holding the disk-shaped whetstone and the outer edge of the workpiece as the desired axially asymmetric curved surface of the workpiece becomes hemispherical. This makes it easier for the parts to come into contact with each other, and is particularly restricted by a deep and small concave shape.
If the diameter of the shank is reduced to avoid this,
The rigidity of the shank is lost, leading to a deterioration in processing accuracy on the processing surface of the workpiece. Therefore, the prior art 2 has a problem that it is difficult to machine a hemisphere having a deep axially asymmetric curved surface and a small diameter.

【0012】本発明は、上記問題点に鑑みてなされたも
のであり、互いに直交する2方向の面が非円弧の軸非対
称曲面であっても、さらには曲率の大小に係わらず研削
工具と被加工物との干渉がない、高精度に軸非対称曲面
等の研削加工が可能な曲面研削加工方法を提供すること
を目的とする。
The present invention has been made in view of the above problems, and even if the surfaces in two directions perpendicular to each other are non-circular, axially asymmetrical curved surfaces, the grinding tool and the grinding tool can be used regardless of the curvature. It is an object of the present invention to provide a curved surface grinding method capable of performing highly accurate grinding of an axially asymmetric curved surface or the like without interference with a workpiece.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明に係る曲面研削加工方法は、所定の曲率
半径を有する球形の砥石を備える回転可能な研削工具を
用い、前記砥石の曲率半径中心を前記研削工具の回転中
心軸上に位置させるとともに前記砥石の回転軌跡を前記
所定の曲率半径を有する真球とさせた状態で、研削工具
を被加工物の加工面に対して相対的に移動させて、被加
工物の加工面を研削加工する。
In order to achieve the above object, a curved surface grinding method according to a first aspect of the present invention uses a rotatable grinding tool provided with a spherical grinding wheel having a predetermined radius of curvature, wherein With the center of curvature radius of the grinding tool positioned on the rotation center axis of the grinding tool and the rotation trajectory of the grinding wheel being a true sphere having the predetermined radius of curvature, the grinding tool is moved relative to the processing surface of the workpiece. By relatively moving the workpiece, the processing surface of the workpiece is ground.

【0014】また、第2の発明に係る曲面研削加工方法
は、第1の発明に係る曲面研削加工方法において、前記
研削工具の回転中心軸が、被加工物の加工面内に位置し
ないように、前記研削工具を保持する研削スピンドルを
一定角度傾ける。
The curved surface grinding method according to a second aspect of the present invention is the curved surface grinding method according to the first aspect of the present invention, wherein the rotation center axis of the grinding tool is not positioned within the processing surface of the workpiece. The grinding spindle holding the grinding tool is tilted at a certain angle.

【0015】さらに、第3の発明に係る曲面研削加工方
法は、第1または第2の発明に係る曲面研削加工方法に
おいて、前記研削工具は、砥石の曲率半径中心を基準と
して研削工具の回転中心軸から外周方向に向かって90
°以上の範囲が砥石であるものを用いた。
Further, a curved surface grinding method according to a third aspect of the present invention is the curved surface grinding method according to the first or second aspect, wherein the grinding tool has a rotation center of the grinding tool based on a radius of curvature of the grinding wheel. 90 from the shaft toward the outer circumference
The one in which the range of not less than ° is a grindstone was used.

【0016】すなわち、第1の発明に係る曲面研削加工
方法は、砥石の曲率半径中心を前記研削工具の回転中心
軸上に位置させるとともに前記砥石の回転軌跡を前記所
定の曲率半径を有する真球とさせた状態で、研削工具を
被加工物の加工面に対して相対的に移動させて、被加工
物の加工面を研削加工する。
That is, in the curved surface grinding method according to the first invention, the center of the radius of curvature of the grinding wheel is located on the rotation center axis of the grinding tool, and the rotation trajectory of the grinding wheel is changed to a true sphere having the predetermined radius of curvature. In this state, the grinding tool is moved relative to the processing surface of the workpiece to grind the processing surface of the workpiece.

【0017】また、第2の発明に係る曲面研削加工方法
は、前記研削工具の回転中心軸が、被加工物の加工面内
に位置しないように、前記研削工具を保持する研削スピ
ンドルを一定角度傾ける。
Further, in the curved surface grinding method according to the second invention, the grinding spindle holding the grinding tool is fixed at a predetermined angle so that the rotation center axis of the grinding tool is not located within the processing surface of the workpiece. Tilt.

【0018】さらに、第3の発明に係る曲面研削加工方
法は、砥石の曲率半径中心を基準として研削工具の回転
中心軸から外周方向に向かって90°以上の範囲が砥石
である研削工具を回転させる。
Further, the curved surface grinding method according to a third aspect of the present invention is a method of rotating a grinding tool having a range of 90 ° or more from the rotation center axis of the grinding tool toward the outer periphery with respect to the center of the radius of curvature of the grinding wheel. Let it.

【0019】[0019]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(発明の第1の実施の形態)本発明の第1の実施の形態
における軸非対称曲面レンズの斜視図を図1に示し、そ
の正面図を図2に、A−A断面図を図3に、B−B断面
図を図4に示す。そして、軸非対称曲面レンズを研削工
具で研削加工する加工機の説明図を図5に示し、この研
削工具の拡大図を図6に、研削工具を回転させた状態の
説明図を図7に示す。また、図1のB−B断面図である
軸非対称曲面レンズの光軸中心上で研削工具が作用する
状態を図8に示し、図1のA−A断面図である軸非対称
曲面レンズの光軸中心上で研削工具が作用する状態を図
9に示す。そして、軸非対称曲面レンズの加工順序およ
び加工時の砥石の軌跡を図10に示す。
(First Embodiment of the Invention) FIG. 1 is a perspective view of an axially asymmetric curved lens according to a first embodiment of the present invention, FIG. 2 is a front view thereof, and FIG. , BB is shown in FIG. FIG. 5 is an explanatory view of a processing machine for grinding an axially asymmetric curved lens with a grinding tool, FIG. 6 is an enlarged view of the grinding tool, and FIG. 7 is an explanatory view of a state in which the grinding tool is rotated. . Further, FIG. 8 shows a state in which the grinding tool acts on the center of the optical axis of the axially asymmetric curved lens which is a sectional view taken along the line BB of FIG. FIG. 9 shows a state in which the grinding tool operates on the axis center. FIG. 10 shows the processing order of the axially asymmetric curved lens and the trajectory of the grindstone during the processing.

【0020】なお、本実施の形態では、図4に示す軸非
対称曲面レンズ1(ガラスレンズ)の最外周と曲率中心
とを結ぶ線と軸非対称曲面レンズ1の光軸とがなす角θ
1 とθ2 の和が90°以下になるように凹形状の軸非対
称曲面レンズ1をダイヤモンド砥粒を持つ研削砥石8で
加工する。
In this embodiment, the angle θ between the line connecting the outermost periphery of the axially asymmetric curved lens 1 (glass lens) and the center of curvature shown in FIG.
The concave axially asymmetric curved lens 1 is processed with a grinding wheel 8 having diamond abrasive grains so that the sum of 1 and θ 2 is 90 ° or less.

【0021】図5において、加工機は、超精密CNC加
工機であり、X軸,Y軸,Z軸の3軸方向にスライド可
能なX軸スライドテーブル2、Y軸スライドテーブル3
およびZ軸スライドテーブル4を有し、3軸同時制御で
運転可能で、Z軸スライドテーブル4上に回転可能な主
軸5を備えたものである。
In FIG. 5, the processing machine is an ultra-precision CNC processing machine, and an X-axis slide table 2 and a Y-axis slide table 3 slidable in three directions of X-axis, Y-axis and Z-axis.
And a Z-axis slide table 4, which can be operated by simultaneous control of three axes, and has a main shaft 5 rotatable on the Z-axis slide table 4.

【0022】この主軸5の先端には、軸非対称曲面レン
ズ1の素材が保持されている。一方、研削工具6は、そ
の回転中心軸10bが精密に回転するスピンドル(以
下、研削スピンドル7と称する)の回転中心軸10aと
同軸となるようにして研削スピンドル7に保持されてい
る。また、研削スピンドル7はY軸スライドテーブル3
に対してY軸平面上でθ方向(円周方向)へ回動可能で
任意に傾けられるように取り付けられている。
The material of the axially asymmetric curved lens 1 is held at the tip of the main shaft 5. On the other hand, the grinding tool 6 is held by the grinding spindle 7 so that its rotation center axis 10b is coaxial with the rotation center axis 10a of a spindle (hereinafter, referred to as the grinding spindle 7) that rotates precisely. Also, the grinding spindle 7 is a Y-axis slide table 3
Is mounted so as to be rotatable in the θ direction (circumferential direction) on the Y-axis plane and tilted arbitrarily.

【0023】図6において、研削工具6の先端に備えら
れているダイヤモンド砥粒を有する所定の曲率半径R1
の研削砥石8は、その曲率半径中心9が研削工具6の回
転中心軸10bの軸上に位置している。また、研削砥石
8は、砥石8の曲率半径中心9を基準として研削工具6
の回転中心軸10bから外周方向へ向かって90°以上
の砥石有効部12を持っており、図7に点線で示す研削
砥石8の回転軌跡11が曲率半径R1 の球面になるよう
に構成されている。
In FIG. 6, a predetermined radius of curvature R 1 having diamond abrasive grains provided at the tip of the grinding tool 6 is shown.
The center of curvature radius 9 of the grinding wheel 8 is located on the rotation center axis 10 b of the grinding tool 6. In addition, the grinding wheel 8 is provided with a grinding tool 6 based on the radius of curvature 9 of the grinding wheel 8 as a reference.
It has a central axis of rotation more than 90 ° of the grinding wheel the effective portion 12 toward the 10b toward the outer circumference, is arranged to the rotation locus 11 of the grinding wheel 8 shown by dotted lines in FIG. 7 is a spherical surface of radius of curvature R 1 ing.

【0024】上記研削工具6のシャンク部(研削砥石8
から研削スピンドル7に至る部分)6aの径は、研削砥
石8の回転軌跡11よりも小さくなっている。これによ
り、軸非対称曲面レンズ1の加工面とシャンク部6aと
の干渉をなくなり、半球状の曲面の加工を可能としてい
る。
The shank portion of the grinding tool 6 (the grinding wheel 8
Of the grinding wheel 8) is smaller than the rotation locus 11 of the grinding wheel 8. This eliminates interference between the processing surface of the axially asymmetric curved lens 1 and the shank 6a, and enables processing of a hemispherical curved surface.

【0025】本実施の形態の研削スピンドル7の傾き角
度θは、以下のように設定される。図4において、 傾き角度θ=研削砥石の有効範囲(°)/2−(θ1
θ2 )/2 となる。
The inclination angle θ of the grinding spindle 7 of this embodiment is set as follows. In FIG. 4, the inclination angle θ = the effective range of the grinding wheel (°) / 2− (θ 1
θ 2 ) / 2.

【0026】従って、角度θ1 =θ2 のときは、 傾き角度θ=研削砥石の有効範囲(°)/2 となる。Therefore, when the angle θ 1 = θ 2 , the inclination angle θ = the effective range (°) / 2 of the grinding wheel.

【0027】次に、上記加工機によって軸非対称曲面レ
ンズを研削加工する方法を図8乃至図10を用いて説明
する。まず、研削工具6の研削砥石8の回転中心9と軸
非対称曲面レンズ1の光軸中心13とが一致し且つ研削
砥石8が軸非対称曲面レンズ1に接した位置をNC座標
値のX,Yを0とし、曲率半径R1 の数値に書き換える
(NCプログラムが研削砥石8の回転中心9を基準にし
て、各テーブル2,3,4を動かす)。これにより、X
軸,Y軸,Z軸の基準位置が設定される。
Next, a method of grinding an axially asymmetric curved lens by the above-described processing machine will be described with reference to FIGS. First, the position where the rotation center 9 of the grinding wheel 8 of the grinding tool 6 coincides with the optical axis center 13 of the axially asymmetric curved lens 1 and where the grinding wheel 8 is in contact with the axially asymmetric curved lens 1 is defined by the X and Y of the NC coordinate values. to 0, and rewrites the value of the radius of curvature R 1 (with respect to the rotation center 9 of the NC program grinding wheel 8, moving each table 2, 3 and 4). This gives X
The reference positions of the axis, Y axis, and Z axis are set.

【0028】研削加工は、図10に示す加工開始ライン
L101から行うが、研削工具6の研削砥石8の当接点
8aが加工開始ラインL101を通過するように加工ラ
インに対し研削砥石8の当接点8aの変化を考慮に入れ
て、研削砥石8の回転中心9の軌跡(図8に示すY方向
移動ラインYL及び図9に示すX方向移動ラインXLの
交点)の各加工点の位置データを計算してNCプログラ
ムを作成する。
Grinding is performed from the processing start line L101 shown in FIG. 10, but the contact point 8a of the grinding wheel 8 of the grinding tool 6 is moved to the processing line so that the contact point 8a of the grinding wheel 8 passes through the processing start line L101. 8a, the position data of each processing point of the locus of the rotation center 9 of the grinding wheel 8 (the intersection of the Y direction movement line YL shown in FIG. 8 and the X direction movement line XL shown in FIG. 9) is calculated. To create an NC program.

【0029】この作成されたNCプログラムにより、N
C加工機のX軸,Y軸,Z軸の各方向の移動をNC制御
し、1つのラインの加工を行う。この1つのラインの加
工が終了するとY軸をNC制御し、次のラインL102
へ移動して同様の加工を行う。
With the NC program created, N
The movement of the C processing machine in each of the X-axis, Y-axis, and Z-axis directions is NC-controlled to process one line. When the processing of this one line is completed, the Y axis is NC-controlled, and the next line L102
To perform the same processing.

【0030】このように加工開始ラインL101からラ
インL102、L103、…とY軸方向に細分化した全
てのラインの加工を行うことにより、軸非対称曲面レン
ズ1を形成することができる。
By processing all the lines subdivided in the Y-axis direction from the processing start line L101 to the lines L102, L103,..., The axially asymmetric curved lens 1 can be formed.

【0031】本実施の形態によれば、研削工具の研削砥
石を球状として加工することにより、複雑な軸非対称曲
面レンズであってもNCプログラムを容易に作成でき、
常に周速を持つ研削砥石にて連続した研削加工が可能と
なり、軸非対称曲面レンズにおいて高精度な光学面が得
られる。また、研削砥石にダイヤモンド砥粒を用いてい
るため、研削加工のみで良好な光学面が得られる。
According to the present embodiment, by forming a grinding wheel of a grinding tool into a spherical shape, an NC program can be easily created even with a complicated axially asymmetric curved lens.
Continuous grinding can be performed with a grinding wheel having a constant peripheral speed, and a highly accurate optical surface can be obtained with an axially asymmetric curved lens. In addition, since diamond abrasive grains are used for the grinding wheel, a good optical surface can be obtained only by grinding.

【0032】なお、本実施の形態では、加工順序におい
てX軸,Y軸,Z軸で制御される横方向の加工ラインを
被加工物である軸非対称曲面レンズに対してY軸制御に
て下から上に移動させ研削加工を行っているが、逆に上
から下に移動させて研削加工を行うことができ、さらに
は、X軸,Y軸,Z軸で制御される縦方向の加工ライン
を軸非対称曲面レンズに対してX軸制御にて横方向に移
動させても研削加工が可能となる。
In the present embodiment, the horizontal processing line controlled by the X, Y, and Z axes in the processing order is controlled by the Y-axis control with respect to the axially asymmetric curved lens as the workpiece. Grinding is performed by moving from top to bottom, but it is also possible to perform grinding by moving from top to bottom, and furthermore, a vertical processing line controlled by X-axis, Y-axis, and Z-axis. Grinding can be performed by moving the lens in the lateral direction with respect to the axially asymmetric curved lens by X-axis control.

【0033】また、被加工物の材質は、研削加工が可能
なものであれば、ガラスに限らず、アクリル樹脂等の光
学用樹脂を用いても良く、また、成形用型の材質は、超
硬、セラミックス等を用いても良い。
The material of the workpiece is not limited to glass as long as it can be ground, and an optical resin such as an acrylic resin may be used. Hardness, ceramics, etc. may be used.

【0034】さらに、研削工具の研削砥石にc−BN
(立方晶窒化ホウ素)を用いることで、ダイヤモンドと
親和性の良い鉄系の材料からなる被加工物についても、
高精度に加工が行える。
Further, c-BN is used for the grinding wheel of the grinding tool.
By using (cubic boron nitride), even for workpieces made of iron-based material with good affinity for diamond,
Processing can be performed with high precision.

【0035】(発明の第2の実施の形態)本発明の第2
の実施の形態における軸非対称曲面レンズの斜視図を図
11に示し、その正面図を図12に、C−C断面図を図
13に、D−D断面図を図14に示す。そして、図12
のD−D断面図である軸非対称曲面レンズの光軸中心上
あるいは最外周16上で研削工具が作用する状態を図1
5に示す。そして、軸非対称曲面レンズの加工順序およ
び加工時の砥石の軌跡を図16および図17に示す。
(Second Embodiment of the Invention) The second embodiment of the present invention
FIG. 11 is a perspective view of the axially asymmetric curved lens according to the embodiment, FIG. 12 is a front view thereof, FIG. 13 is a cross-sectional view taken along line CC, and FIG. 14 is a cross-sectional view taken along line DD. And FIG.
FIG. 1 shows a state in which a grinding tool acts on the center of the optical axis or on the outermost periphery 16 of the axially asymmetric curved lens, which is a DD sectional view of FIG.
It is shown in FIG. FIGS. 16 and 17 show the processing order of the axially asymmetric curved lens and the trajectory of the grindstone during the processing.

【0036】なお、本実施の形態では、図14に示す軸
非対称曲面レンズ14の最外周と曲率中心とを結ぶ線と
軸非対称曲面レンズ14の光軸とがなす角θ3 とθ4
それぞれ90°になるようにすなわち半球の凹形状の軸
非対称曲面レンズ14をダイヤモンド砥粒を持つ研削砥
石8で加工した。
In the present embodiment, the angles θ 3 and θ 4 between the line connecting the outermost periphery of the axially asymmetric curved lens 14 and the center of curvature shown in FIG. The concave axisymmetric curved lens 14 having a hemispherical concave shape was machined by a grinding wheel 8 having diamond abrasive grains so as to be 90 °.

【0037】本実施の形態の加工機の構成は、第1の実
施の形態で用いたものと同様であり、図5に示す研削ス
ピンドル7の傾き角θを水平(0°)に近い状態とし、
図12に示すC−Cラインの上の面と下の面の2つに分
けて加工する。なお、研削スピンドル7の傾き角θは、
1°以上で砥石有効範囲−90°未満としている。
The configuration of the processing machine of this embodiment is the same as that used in the first embodiment, and the inclination angle θ of the grinding spindle 7 shown in FIG. 5 is set to a state close to horizontal (0 °). ,
Processing is performed by dividing the upper surface and the lower surface of the line CC shown in FIG. The inclination angle θ of the grinding spindle 7 is
The grinding wheel effective range is less than -90 ° at 1 ° or more.

【0038】軸非対称曲面レンズ14を加工するための
X軸,Y軸,Z軸の基準位置の設定を第1の実施の形態
と同様に行い、研削加工は非対称曲面レンズ14の光軸
中心15上のC−Cライン(ラインL201)を加工開
始ラインとし、第1の実施の形態と同様にNCプログラ
ムを作成する。そして、図16に示すように加工開始ラ
インL201からラインL202、ラインL203、…
とY軸方向に細分化した全てのラインの加工を行うこと
により、軸非対称曲面レンズ14の半分の面が形成され
る。
The X-axis, Y-axis, and Z-axis reference positions for processing the axially asymmetric curved lens 14 are set in the same manner as in the first embodiment, and the grinding is performed on the optical axis center 15 of the asymmetric curved lens 14. An NC program is created in the same manner as in the first embodiment, with the upper CC line (line L201) as the machining start line. Then, as shown in FIG. 16, the processing start line L201 to line L202, line L203,.
By processing all the lines subdivided in the Y-axis direction, a half surface of the axially asymmetric curved lens 14 is formed.

【0039】次に、図17に示すように光軸中心15を
中心に軸非対称曲面レンズ14を180°反転させ、上
記工程と同様に加工開始ラインL201、ラインL20
2、ラインL203、…とY軸方向に細分化した全ての
ラインの加工を行うことにより、もう半分の面が形成さ
れ、軸非対称曲面レンズ14が形成される。
Next, as shown in FIG. 17, the axially asymmetric curved lens 14 is inverted by 180 ° about the optical axis center 15, and the processing start line L201 and line L20
By processing all the lines subdivided in the Y-axis direction with the line L203, the other half surface is formed, and the axially asymmetric curved lens 14 is formed.

【0040】本実施の形態によれば、研削スピンドルを
傾けることにより半球あるいは半球に近い曲面レンズで
あっても研削加工が可能となり、高精度な光学面を得る
ことができる。
According to the present embodiment, by inclining the grinding spindle, grinding can be performed even on a hemisphere or a curved lens close to the hemisphere, and a highly accurate optical surface can be obtained.

【0041】(発明の第3の実施の形態)本発明の第3
の実施の形態における軸外し非曲面成形用型の斜視図を
図18に示し、この軸外し非球面成形用型の光軸との位
置関係を図19に示す。軸外し非曲面成形用型の加工順
序および加工時の砥石の軌跡を図20に示す。そして、
軸外し非曲面成形用型の成形面上の研削工具が作用する
状態の側面図を図21に示す。
(Third Embodiment of the Invention) The third embodiment of the present invention
FIG. 18 is a perspective view of the off-axis non-curved surface molding die in the embodiment, and FIG. 19 shows the positional relationship between the off-axis aspheric surface molding die and the optical axis. FIG. 20 shows the processing sequence of the off-axis non-curved surface forming die and the trajectory of the grindstone during the processing. And
FIG. 21 is a side view showing a state where the grinding tool on the forming surface of the off-axis non-curved surface forming die acts.

【0042】なお、本実施の形態では、図18に示す軸
外し非球面成形用型17を第1の実施の形態と同様な方
法で加工した。本実施の形態の加工機の構成は、第1の
実施の形態で用いたものと同様であり、図19に示すよ
うに成形面17aには光軸18が含まれないので、図5
に示す研削スピンドル7の傾き角θを水平(0°)に近
い状態とし、第1の実施の形態と同様な方法で加工す
る。
In this embodiment, the off-axis aspherical molding die 17 shown in FIG. 18 is processed in the same manner as in the first embodiment. The configuration of the processing machine of the present embodiment is the same as that used in the first embodiment, and since the molding surface 17a does not include the optical axis 18 as shown in FIG.
The inclination angle θ of the grinding spindle 7 shown in FIG. 7 is set to a state close to horizontal (0 °), and processing is performed in the same manner as in the first embodiment.

【0043】軸外し非曲面成形用型17を加工するため
のプログラムは、前記成形面17aの範囲の中の非球面
データを、第1の実施の形態と同様に図21に示すライ
ンL301を研削工具6の研削砥石8の当接点8aが通
過するように書き換え作成する。そして、図21に示す
ようにラインL301を加工開始ラインとし、ラインL
302、ラインL303、…とY軸方向に細分化した全
てのラインの加工を行う。これにより、軸外し非球面成
形用型17が形成される。
The program for processing the off-axis non-curved surface forming die 17 is obtained by grinding the aspherical data within the range of the forming surface 17a to the line L301 shown in FIG. 21 as in the first embodiment. Rewriting is performed so that the contact point 8a of the grinding wheel 8 of the tool 6 passes. Then, as shown in FIG.
Processing is performed on all lines subdivided in the Y-axis direction, such as 302, line L303,. Thus, the off-axis aspherical molding die 17 is formed.

【0044】本実施の形態によれば、軸外し非球面成形
用型においても特別な治具を用いずに研削加工が可能と
なり、高精度な光学面を得ることができる。なお、本実
施の形態では、軸外し非球面成形用型を研削加工した
が、軸外し非球面ミラーやレンズ等も研削加工できる。
According to the present embodiment, even in an off-axis aspherical mold, grinding can be performed without using a special jig, and a highly accurate optical surface can be obtained. In the present embodiment, the off-axis aspherical mold is ground, but the off-axis aspheric mirror, lens, and the like can be ground.

【0045】[0045]

【発明の効果】請求項1による本発明の曲面研削加工方
法によれば、曲率の大小に拘わらず軸非対称曲面あるい
は軸外し非球面等の曲面に加工できる効果を奏する。ま
た、研削砥石を真球としているのでプログラム作成時の
補正が容易である利点がある。
According to the curved surface grinding method of the present invention according to the first aspect, there is an effect that a curved surface such as an axially asymmetric curved surface or an off-axis aspherical surface can be machined regardless of the degree of curvature. Further, since the grinding wheel is a true sphere, there is an advantage that correction at the time of creating a program is easy.

【0046】請求項2による本発明の曲面研削加工方法
によれば、請求項1の効果に加えて、曲面全面を良好に
加工できる効果を奏する。請求項3による本発明の曲面
研削加工方法によれば、請求項1または請求項2の効果
に加えて、半球状であっても高精度で加工できる効果を
奏する。
According to the curved surface grinding method of the present invention according to the second aspect, in addition to the effect of the first aspect, there is an effect that the entire curved surface can be favorably machined. According to the curved surface grinding method of the present invention according to the third aspect, in addition to the effect of the first or second aspect, there is an effect that the processing can be performed with high accuracy even in the case of a hemispherical shape.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態における軸非対称曲
面レンズを示す斜視図である。
FIG. 1 is a perspective view showing an axially asymmetric curved lens according to a first embodiment of the present invention.

【図2】第1の実施の形態における軸非対称曲面レンズ
を示す正面図である。
FIG. 2 is a front view showing an axially asymmetric curved lens according to the first embodiment.

【図3】図2のA−A断面図である。FIG. 3 is a sectional view taken along line AA of FIG. 2;

【図4】図2のB−B断面図である。FIG. 4 is a sectional view taken along line BB of FIG. 2;

【図5】第1の実施の形態の加工機を示す側面図であ
る。
FIG. 5 is a side view showing the processing machine according to the first embodiment.

【図6】第1の実施の形態の研削工具を示す正面図であ
る。
FIG. 6 is a front view showing the grinding tool according to the first embodiment.

【図7】第1の実施の形態の研削工具を示す平面図であ
る。
FIG. 7 is a plan view showing the grinding tool according to the first embodiment.

【図8】軸非対称曲面レンズの光軸中心上で研削工具が
作用する状態の側面図である。
FIG. 8 is a side view of a state in which a grinding tool acts on the center of the optical axis of the axially asymmetric curved lens.

【図9】軸非対称曲面レンズの光軸中心上で研削工具が
作用する状態の平面図である。
FIG. 9 is a plan view showing a state where a grinding tool acts on the center of the optical axis of the axially asymmetric curved lens.

【図10】加工時の研削砥石の軌跡および加工順序を示
す説明図である。
FIG. 10 is an explanatory diagram showing a locus of a grinding wheel and a processing order during processing.

【図11】第2の実施の形態における軸非対称曲面レン
ズを示す斜視図である。
FIG. 11 is a perspective view showing an axially asymmetric curved lens according to a second embodiment.

【図12】第2の実施の形態における軸非対称曲面レン
ズを示す正面図である。
FIG. 12 is a front view showing an axially asymmetric curved lens according to a second embodiment.

【図13】図12のC−C断面図である。FIG. 13 is a sectional view taken along the line CC in FIG. 12;

【図14】図12のD−D断面図である。FIG. 14 is a sectional view taken along the line DD in FIG. 12;

【図15】第2の実施の形態における加工状態を示す側
面図である。
FIG. 15 is a side view showing a processing state in the second embodiment.

【図16】第2の実施の形態における一方の面の加工時
の研削砥石の軌跡を示す正面図である。
FIG. 16 is a front view showing a trajectory of a grinding wheel at the time of processing one surface in the second embodiment.

【図17】第2の実施の形態における他方の面の加工時
の研削砥石の軌跡を示す正面図である。
FIG. 17 is a front view showing a trajectory of a grinding wheel during processing of the other surface in the second embodiment.

【図18】第3の実施の形態における軸外し非曲面成形
用型を示す斜視図である。
FIG. 18 is a perspective view showing an off-axis non-curved surface forming die according to a third embodiment.

【図19】第3の実施の形態における軸外し非曲面成形
用型の光軸との位置関係を示す平面図である。
FIG. 19 is a plan view showing the positional relationship between the off-axis non-curved surface forming die and the optical axis in the third embodiment.

【図20】第3の実施の形態における研削加工時の研削
砥石の軌跡および加工順序を示す説明図である。
FIG. 20 is an explanatory diagram showing a trajectory and a processing order of a grinding wheel during grinding according to the third embodiment.

【図21】第3の実施の形態における軸外し非曲面成形
用型の成形面上の研削工具の作用状態を示す側面図であ
る。
FIG. 21 is a side view showing an operation state of a grinding tool on a forming surface of an off-axis non-curved surface forming die according to a third embodiment.

【符号の説明】[Explanation of symbols]

1 軸非対称曲面レンズ 2 X軸スライドテーブル 3 Y軸スライドテーブル 4 Z軸スライドテーブル 5 主軸 6 研削工具 7 研削スピンドル 8 研削砥石 14 軸非対称曲面レンズ 17 軸外し非球面成形用型 Reference Signs List 1 axis asymmetric curved lens 2 X axis slide table 3 Y axis slide table 4 Z axis slide table 5 spindle 6 grinding tool 7 grinding spindle 8 grinding wheel 14 axis asymmetric curved lens 17 off axis aspherical mold

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 所定の曲率半径を有する球形の砥石を備
える回転可能な研削工具を用い、前記砥石の曲率半径中
心を前記研削工具の回転中心軸上に位置させるとともに
前記砥石の回転軌跡を前記所定の曲率半径を有する真球
とさせた状態で、研削工具を被加工物の加工面に対して
相対的に移動させて、被加工物の加工面を研削加工する
ことを特徴とする曲面研削加工方法。
A rotatable grinding tool provided with a spherical grinding wheel having a predetermined radius of curvature, wherein the center of the radius of curvature of the grinding wheel is located on the rotation center axis of the grinding tool, and the rotation locus of the grinding wheel is adjusted Curved surface grinding characterized by moving a grinding tool relative to a processing surface of a workpiece in a state of a true sphere having a predetermined radius of curvature and grinding the processing surface of the workpiece. Processing method.
【請求項2】 前記研削工具の回転中心軸が、被加工物
の加工面内に位置しないように、前記研削工具を保持す
る研削スピンドルを一定角度傾けることを特徴とする請
求項1に記載の曲面研削加工方法。
2. The grinding spindle according to claim 1, wherein the grinding spindle holding the grinding tool is inclined at a predetermined angle so that the rotation center axis of the grinding tool is not located within the processing surface of the workpiece. Curved surface grinding method.
【請求項3】 前記研削工具の砥石は、砥石の曲率半径
中心を基準として研削工具の回転中心軸から外周方向に
向かって90°以上の範囲の砥石有効部を特徴とする請
求項1または請求項2に記載の曲面研削加工方法。
3. The grinding wheel of the grinding tool according to claim 1, wherein the grinding wheel has an effective portion in a range of 90 ° or more from a rotation center axis of the grinding tool toward an outer peripheral direction with respect to a center of a radius of curvature of the grinding wheel. Item 3. A curved surface grinding method according to Item 2.
JP13419697A 1997-05-26 1997-05-26 Curved surface grinding method Pending JPH10328995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13419697A JPH10328995A (en) 1997-05-26 1997-05-26 Curved surface grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13419697A JPH10328995A (en) 1997-05-26 1997-05-26 Curved surface grinding method

Publications (1)

Publication Number Publication Date
JPH10328995A true JPH10328995A (en) 1998-12-15

Family

ID=15122686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13419697A Pending JPH10328995A (en) 1997-05-26 1997-05-26 Curved surface grinding method

Country Status (1)

Country Link
JP (1) JPH10328995A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6537138B2 (en) 2000-03-03 2003-03-25 Riken Method of grinding an axially asymmetric aspherical mirror
WO2016120985A1 (en) * 2015-01-27 2016-08-04 日立マクセル株式会社 Method for manufacturing rotationally asymmetric lens, method for manufacturing rotationally asymmetric lens molding die, method for manufacturing rotationally asymmetric mirror, and method for manufacturing rotationally asymmetric mirror molding die
KR20210081993A (en) * 2019-12-24 2021-07-02 (주)코멕스카본 Jig for curvature forming

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6537138B2 (en) 2000-03-03 2003-03-25 Riken Method of grinding an axially asymmetric aspherical mirror
KR100720275B1 (en) * 2000-03-03 2007-05-22 리켄 Method of grinding an axially asymmetric aspherical mirror
WO2016120985A1 (en) * 2015-01-27 2016-08-04 日立マクセル株式会社 Method for manufacturing rotationally asymmetric lens, method for manufacturing rotationally asymmetric lens molding die, method for manufacturing rotationally asymmetric mirror, and method for manufacturing rotationally asymmetric mirror molding die
CN107003431A (en) * 2015-01-27 2017-08-01 日立麦克赛尔株式会社 The manufacture method of non-rotationally-symmetric lens, the manufacture method of non-rotationally-symmetric forming lens mould, the manufacture method of the manufacture method of rotation asymmetry speculum and rotation asymmetry speculum shaping dies
JPWO2016120985A1 (en) * 2015-01-27 2017-09-14 日立マクセル株式会社 Rotation non-axisymmetric lens manufacturing method, rotation non-axisymmetric lens molding die manufacturing method, rotation non-axisymmetric surface mirror manufacturing method, and rotation non-axisymmetric surface mirror molding die manufacturing method
CN107003431B (en) * 2015-01-27 2019-03-12 麦克赛尔株式会社 The manufacturing method of non-rotational symmetry lens/reflecting mirror and its shaping dies
US10265831B2 (en) 2015-01-27 2019-04-23 Maxell, Ltd. Method for manufacturing lens, method for manufacturing molding die for lens, method for manufacturing mirror, method for manufacturing molding die for mirror, lens and molding die for lens
KR20210081993A (en) * 2019-12-24 2021-07-02 (주)코멕스카본 Jig for curvature forming

Similar Documents

Publication Publication Date Title
EP1773528B1 (en) Raster cutting technology for ophthalmic lenses
US4928435A (en) Apparatus for working curved surfaces on a workpiece
US6733369B1 (en) Method and apparatus for polishing or lapping an aspherical surface of a work piece
JPH02109672A (en) Device and method for grinding and polishing
JP4668872B2 (en) Grinding method and grinding apparatus
JP2006289566A (en) Grinding processing method and grinding processing device of forming die of micro lens array
JP4662018B2 (en) Curved surface processing apparatus and parallel link mechanism calibration method
JP2006320970A (en) Machining device
JP2011036974A (en) Polishing method and polishing device
JPH10328995A (en) Curved surface grinding method
JP2007253306A (en) Nc machine tool
JP2009095973A (en) Grinding wheel molding device and method
JP2000024898A (en) Grinding device and grinding method
WO2006132126A1 (en) Method of producing optical element, and optical element
JP4519618B2 (en) Grinding wheel molding method and molding apparatus
JPH08229792A (en) Grinding device and grinding method
JPS6133665B2 (en)
JP3839326B2 (en) Axisymmetric aspheric grinding method
JP2001260023A (en) Forming method for grinding wheel
JP2006055961A (en) Method and apparatus for machining axially symmetric aspheric surface by surface grinding machine
JPH11123645A (en) Manufacture of spherical surface lens
JP2002254280A (en) Grinding method and its device for optical member
JPH04189458A (en) Curved surface polishing machine
JP2004202667A (en) Method of generating shape of grindstone for grinding
JP2002346893A (en) Grinding method

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050516

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050525

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051101