JP2006147833A - 半導体レーザモジュール及びラマン増幅器 - Google Patents

半導体レーザモジュール及びラマン増幅器 Download PDF

Info

Publication number
JP2006147833A
JP2006147833A JP2004335695A JP2004335695A JP2006147833A JP 2006147833 A JP2006147833 A JP 2006147833A JP 2004335695 A JP2004335695 A JP 2004335695A JP 2004335695 A JP2004335695 A JP 2004335695A JP 2006147833 A JP2006147833 A JP 2006147833A
Authority
JP
Japan
Prior art keywords
semiconductor laser
phase plate
light
laser module
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004335695A
Other languages
English (en)
Other versions
JP4715171B2 (ja
Inventor
Tomonobu Senoo
具展 妹尾
Koichi Murata
浩一 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2004335695A priority Critical patent/JP4715171B2/ja
Publication of JP2006147833A publication Critical patent/JP2006147833A/ja
Application granted granted Critical
Publication of JP4715171B2 publication Critical patent/JP4715171B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】 小型で偏光度の小さい半導体レーザモジュール、およびそれを励起用光源に用いた、小型で利得の偏光依存性の小さいラマン増幅器を得る。
【解決手段】 光源である半導体レーザ1と、この半導体レーザ1から出力される光を伝送する光ファイバ5とを有する半導体レーザモジュールにおいて、半導体レーザ1と光ファイバ5との間に、半導体レーザ1から出力される光の偏光状態を変化させる位相板3を備えるとともに、位相板3は、屈折率の高い遅相軸方向とリタデーション値とのうち少なくとも一方について、位相板3面内での分布状態に偏りを持たせて光ビーム内の場所による偏光方向の分布を発生させ、光ビーム全体として偏光を解消させる。
【選択図】 図1

Description

本発明は、光通信に使用する半導体レーザモジュール及びこの半導体レーザモジュールを励起光源として使用するラマン増幅器に関する。
現在の光ファイバ通信システムでは、希土類添加ファイバ増幅器が多く使用されており、特にエルビウム(Er)を添加したエルビウム添加光ファイバ増幅器が良く用いられている。しかし、このエルビウム添加光ファイバ増幅器では、実用的な利得波長帯域が1530〜1610nm程度と限られており、利得に波長依存性があるため、波長分割多重光に用いる場合、信号光波長によって利得に差がでる。
高密度波長多重についての技術が進展する中、更に広帯域の増幅方式として、ラマン増幅器に対する期待が高まっている。このラマン増幅は、光ファイバに強い励起光(通常、半導体レーザを用いる)を入射すると、誘導ラマン散乱により励起光波長から約100nm程度長波長側に利得のピークが現われる。この励起された光ファイバに上記利得が得られる波長帯域の信号光を入れると、その信号光が増幅される。また、励起光の波長を変更することにより、利得が得られる波長を任意に選ぶことができるため、波長の異なる複数の励起光を最適な波長及び光出力に制御して用いることで、広帯域特性が実現される。
しかしこのラマン増幅では、励起光と信号光の偏光状態の相対関係に強く依存した利得の偏光依存性(PDRG;Polarization Dependence of Raman Gain)がある。例えば、直線偏光の励起光に対して、信号光が励起光の偏光に平行な直線偏光ではラマン利得は増大し、励起光の偏光方向に垂直な直線偏光であればラマン利得は減少する。このため、ラマン増幅で安定した利得を得るためには、ラマン利得の偏光依存性を解消する必要がある。そのためには、ラマン増幅に用いる励起光の偏光度(DOP;Degree of Polarization)を小さくすることが必要となる。ここでDOPは、全光パワーに対する偏光成分パワーの割合であり、
DOP(%)=(偏光成分のパワー/全光パワー)×100
で記述される。
そこで、励起光である半導体レーザ光のDOPを小さくする手段として、半導体レーザの出力端に非偏光化装置(デポラライザ、Depolarizer)を備える方法がある。このデポラライザの一つとして、例えば長さがLとL(L:L=1:2)からなる2本の偏波保持光ファイバ(PMF:Polarization Maintaining Fiber)の光学主軸(偏光方向を保持する方向)の相対的角度が45°になるように融着した、光ファイバ型デポラライザが特許文献1に記載されている。
このとき、DOPをほぼ零にするために必要となる偏波保持光ファイバの長さLは、半導体レーザのコヒーレント長Lと偏波保持光ファイバの複屈折量Bから次式(1)で求められる。
B・L>L ・・・(1)
また、光学主軸の相対的角度の誤差は、DOPの値に影響し、例えばDOP値を5%以下にするためには、光学主軸の相対的角度誤差を±2°以下になるよう、一対の偏波保持ファイバを融着する必要があることが特許文献2に記載されている。そこで、この特許文献2では、DOP値を測定しながら、DOP値が最小になるよう一対の偏波保持光ファイバの光学主軸角度を調整し融着接続することで、DOP値の低いデポラライザを得ている。
特開2002−31735公報 特開2003−185852公報
しかしながら、デポラライザとして従来の偏波保持光ファイバを用いた場合、その偏波保持光ファイバ長が長くなることから、収納スペースが大きくなり、小型化ができない問題がある。また、特許文献1に記載の光ファイバ型デポラライザにおいても、半値全幅Δλが1nmの半導体レーザ(L;2.19mm、発振波長1480nm帯)と、複屈折値Bが、B=4×10-4の偏波保持光ファイバを用いた場合、DOP<5%を得るために必要な偏波保持光ファイバの長さは、12m(L;4m、L;8m)となる。ところがファイバの許容曲げ半径の制約から、この偏波保持光ファイバの半径はどうしても大きなものとなり、偏波保持光ファイバ型デポラライザの小型化が難しい。その結果、励起用半導体レーザモジュールの小型化、およびラマン増幅器の小型化が困難となる問題がある。
また、偏波保持光ファイバでデポラライザを製造する場合、光学主軸の相対的角度の誤差がDOPの値に影響するため、前述したように、特許文献2において、DOP値を測定しながら、DOP値が最小になるよう一対の偏波保持光ファイバの光学主軸角度を調整し、融着接続する製造方法が示されている。ところが、この製造方法では、融着前後でDOP値が劣化し、その劣化量もばらつくため、安定したDOP性能の励起用半導体レーザモジュール、および利得の偏光依存性(PDRG)が低いラマン増幅器について、安定した品質のものの製造が難しくなる問題がある。
本発明は、上記事情に鑑みてなされたもので、小型でDOPの小さい励起用の半導体レーザモジュール、およびそれを用いた小型でPDRGの低いラマン増幅器を提供することを目的とする。
本発明は、光源である半導体レーザと、この半導体レーザから出力される光を伝送する光ファイバとを有する半導体レーザモジュールにおいて、前記半導体レーザと前記光ファイバとの間に、前記半導体レーザから出力される光の偏光状態を変化させる位相板を備えるとともに、前記位相板は、遅相軸方向とリタデーション値とのうち少なくとも一方について、前記位相板面内での分布状態に偏りを有することを特徴とする半導体レーザモジュールを提供する。
また、前記位相板の前記遅相軸方向は、前記半導体レーザからの光の光軸を中心にした同心円の半径方向または接線方向に一致した、前記位相板面内での分布状態を有し、前記位相板のリタデーション値は、前記位相板面内において均一であるとともに、前記半導体レーザから出射の光の波長の(m/2)倍(但し、mは1以上の奇数)にほぼ等しい上記の半導体レーザモジュールを提供する。
また、前記位相板は、複屈折媒質で形成されている上記の半導体レーザモジュールを提供する。
また、前記位相板の複屈折媒質は、液晶を高分子化した高分子液晶である上記の半導体レーザモジュールを提供する。
また、前記高分子液晶は、透明な基板上に形成されているとともに、前記基板の表面には前記光軸を中心とする同心円状または放射状の溝が形成されている上記の半導体レーザモジュールを提供する。
また、前記高分子液晶は、透明な基板上に形成されているとともに、前記基板表面は、前記光軸を中心とする同心円状または放射状の溝が形成され、かつ、前記溝が形成された前記基板の屈折率naと前記高分子複晶の常光方向屈折率noまたは異常光方向屈折率neとの差と、溝の深さdとの積、|no−na|・dまたは|ne−na|・dは、前記半導体レーザから出射の光の波長の10分の1以下である上記の半導体レーザモジュールを提供する。
また、前記位相板は、複屈折媒質で形成されているとともに前記同心円状または放射状の溝を設けた複屈折媒質層を有し、前記複屈折媒質層の前記溝の窪みは、前記複屈折媒質の常光屈折率noと異常光屈折率neのいずれか一方の値と等しいか、または前記2つの屈折率値の中間の屈折率を有する充填剤で充填されて前記溝を埋めてある上記の半導体レーザモジュールを提供する。
また、本発明は、光源である半導体レーザ素子と、この半導体レーザ素子から出力される光を伝送する光ファイバとを有する半導体レーザモジュールにおいて、前記光ファイバの出射側に光の偏光状態を変える位相板を備えるとともに、前記位相板は、遅相軸方向とリタデーション値とのうち少なくとも一方について、前記位相板面内での分布状態に偏りがあることを特徴とする半導体レーザモジュールを提供する。
本発明は、励起光源として、上記のいずれかに記載の半導体レーザモジュールを備えたことを特徴とするラマン増幅器を提供する。
本発明によれば、光源である半導体レーザと、この半導体レーザから出力される光を伝送する光ファイバとを有する半導体レーザモジュールとして、半導体レーザと前記光ファイバとの間に、前記半導体レーザから出力される光の偏光状態を変える位相板を備えるとともに、位相板は、遅相軸方向とリタデーション値とのうち少なくとも一方について、前記位相板面内での分布状態に偏りがあるものを用いており、半導体レーザモジュールの偏光度(DOP)低減と小型化に効果があり、さらにこれをラマン増幅器の励起用光源として用いることで、小型でラマン利得の偏光依存性(PDRG)の低いラマン増幅器を提供できる。
以下、本発明の実施形態について、添付図面を参照しながら説明する。
[第1の実施形態]
図1は、本発明の第1の実施形態に係る半導体レーザモジュール10を示すものであり、この半導体レーザモジュール10は、光源である半導体レーザ1からの光を光ファイバ5から出力するようになっており、半導体レーザ1と、この半導体レーザ1から出射される光を平行光にする第1レンズ2と、この第1レンズ2から出射される平行光の偏光をデポラライズ(非偏光化)する位相板3と、位相板3から出射される光を集光する第2レンズ4と、この第2レンズ4で集光された光を伝送する光ファイバ5とを備えている。
半導体レーザ1は、単一縦モードを発振するものでも、マルチモード発振するものでも良い。出射波長は、ラマン増幅用としては、通常、1450〜1550nmを用いるが、それ以外の波長を発振するものであっても良い。また、図示しないが半導体レーザ1に付属して、半導体レーザ1の温度を調整する温調モジュールを備えても良い。また、第1レンズ2や第2レンズ4には、非球面レンズを用いても良いし、屈折率分布型レンズや球レンズを用いても良い。
次に、位相板3について説明する。なお、この位相板3の遅相軸方向とリタデーション値(複屈折量Δnとその複屈折媒質の厚さdの積)の具体例を、図2と図3に模式的に示す。
この位相板3では、図2、3において、矢印の方向が遅相軸βの方向に対応する。例えば、図2の例では、遅相軸βの方向は、光軸αを中心とする同心円の半径方向に平行である。一方、図3の例では、遅相軸βの方向は、光軸αを中心とする同心円の接線方向に平行である。また、図2、図3では、位相板3のリタデーション値は面内均一であり、その値は半導体レーザ1の発振波長(λ)の(m/2)倍(mは1以上の奇数)にほぼ等しいが、特にm=1、すなわちリタデーション値がλ/2の場合が、複屈折媒質の厚さdが薄くできるので製造上好ましい。
次に、位相板3の作用について、図2の位相板3Aを用いて説明する。
前述したように、位相板3のリタデーション値は面内均一で(λ/2)であり、遅相軸βの方向は光軸αを中心とする同心円の半径方向に平行であることから、位相板3Aはリタデーション値が遅相軸βの方向と回転対称性を有する。
ここで、図2に示すように、位相板3Aの横軸をX軸、縦軸をY軸とし、X軸からの反時計回りの角度をθとする。また、この位相板3Aに、X軸方向(θ=0°)に偏光した直線偏光が入射する場合を考える。位相板3Aは回転対称性を有するため、直線偏光の偏光方向は自由に選ぶことができ、例えばθ=0°とすることに問題はない。
ここで、位相板3Aにおいて、X軸から角度θ(これを、「θA」とする)に位置する微小領域部分(図示せず)について考える。この部分の遅相軸βの方向は同心円の半径方向に平行であるため、遅相軸βの方向もθAとなる。遅相軸βの方向は実際には連続的に変化しているが、ここでは説明を簡単にするために、光軸αからの半径が等しい0°、15°、30°、45°、60°、75°の第一象限における6ヶ所の微小領域部分(図示せず)について考える。
位相板3Aは、リタデーション値がλ/2であることから1/2波長板となる。1/2波長板は、界面反射や内部の吸収や散乱がない場合、光パワーを維持しながら、光の偏光方向を遅相軸βを中心として線対称の方向に変換する機能がある。
例えば、θ=0°の直線偏光が入射した場合、X軸から角度θAに位置する部分においては、遅相軸βの方向もθAであることから、透過後の偏光方向は2×θAとなる。具体的には、上記の6ヶ所の微小領域部分を透過した後の偏光方向は各々、0°、30°、60°、90°、120°、150°となり、光ビーム面内において均一な直線偏光の入射光が、光ビーム面内の角度θに応じて偏光方向が変化する出射光となる。さらに6ヶ所の微小領域部分の各々の偏光方向は、光パワーの等しい直交する偏光方向の組合せ(0°と90°、30°と120°、60°と150°)になるので、微小領域全体として偏光度(DOP)を低く抑えることができる。第一象限以外も同様に機能し、また、位相板3Aの遅相軸βの方向は実際には連続的に変化していることから、位相板3Aを透過した光は、光ビーム面内において偏光方向が動径方向に0°から180°まで連続的に変化する。このとき、全ての領域で光パワーの等しい直交する偏光方向の組合せが存在し、光ビーム全体として偏光度がキャンセルされ、入射光の偏光方向に関係なくデポラライズされる。このデポラライズされた光を第2レンズ4で光ファイバ5に集光することで、光ファイバ5内をデポラライズされた状態で伝播し、DOPの低い半導体レーザモジュール10が得られる。
なお、上述の説明は入射光が直線偏光である場合の説明であるが、入射光が円偏光や楕円偏光の場合でもデポラライズされる。また、上述の説明は位相板3Aの説明であるが、図3の位相板3Bでも同様の結果となる。
また、位相板3の遅相軸β方向の面内分布は、図2や図3に示すように滑らかに変化させてもよいし、図4に示すように、複数の領域に分割して、同一領域内は均一な遅相軸方向とリタデーション値分布として、領域ごとに遅相軸の方向やリタデーション値を変化させてもよい。この場合、分割数が多いほど光ビーム面内に多くの直交する偏光方向が存在することになり、より好ましい。
なお、位相板3は、複屈折媒質として、水晶やLiNbO3(ニオブ酸リチウム)のような複屈折のある単結晶を加工したり、複屈折性のある樹脂フィルムを加工したり、樹脂の射出成型品により作成してもよい。また、液晶を高分子化した高分子液晶を用いれば、液晶の配向方向を制御することで遅相軸方向を自由に設定できるのでより好ましい。
次に、この位相板3において、リタデーション値や遅相軸β方向の面内分布作成法の具体例を、複屈折媒質として高分子液晶を用いる場合について説明する。このリタデーション値分布の作成方法としては、高分子液晶層の厚さに分布をつける方法や、高分子液晶層の厚さを等しくしてリタデーション値を変える方法がある。
初めに、図5に示す模式的断面図を用いて、位相板3の構成について説明する。なお、図5(A)は高分子液晶層に厚さ分布がある場合、図5(B)は高分子液晶層に厚さ分布がない場合である。
図5(A)の位相板3は、透明な第1の基板31と、厚さ分布をつけて形成した複屈折媒質層である高分子液晶層32と、充填媒質層33と、第2の基板34とを積層させた構成となっている。
高分子液晶層32の厚さは、この高分子液晶層32を成膜後、フォトリソグラフィーおよびエッチング工程で所望の分布に形成することもでき、第1の基板31に所定の凹凸をつけることで厚さを変えることも可能である。ここで、第1、第2の基板31、34は、ガラスやプラスティックを用いることができる。
複屈折媒質層である高分子液晶層32の凹凸部分の窪みには、この高分子液晶層32の常光屈折率noと異常光屈折率neのいずれか一方の値と等しいか、またはこの2つの屈折率の中間屈折率を有する充填剤である充填媒質層33が充填されている。このため、高分子液晶層32の外面は、高低差のないフラット面を形成している。
この充填媒質層33の屈折率nには、高分子液晶層32の常光屈折率noと異常光屈折率neの中間の屈折率値を選択することにより、透過した光の波面の乱れを抑えることができるので好ましい。特に、この充填媒質層33の屈折率nは、neまたはnoと一致させるか、neとnoの平均値にあわせることが一層好ましい。
また、高分子液晶層32の厚さに分布をつける上記のような方法の他に、上述したように面内均一な厚さの高分子液晶層32にリタデーション分布を作成する方法もあり、高分子液晶層32にチルト角の面内分布を作ることでもできる。ここで、チルト角とは、図5(B)に示す位相板3の断面図において、高分子液晶層32内の液晶分子と第1の基板32のなす角であり、例えば、リタデーション値を小さくするにはチルト角を90度近くに、つまり液晶分子を第1の基板32に対して垂直近くにすることで、リタデーション値を小さくすることができる。なお、高分子液晶層32に厚さ分布がない図5(B)の場合、充填媒質層33をなくして、均一厚さの高分子液晶層32を第1の基板31と第2の基板34で挟んだ構造にしても良い。さらに第2の基板34をなくして、第1の基板31と高分子液晶層32の構成にすれば、位相板3の光軸方向の厚さを薄くすることができて好ましい。
一方、遅相軸β方向の制御方法としては、液晶の配向方向を決める配向膜を所望の方向(例えば同心円状)にラビングする方式や、光配向する材料を配向膜として用いて配向方向を制御する方法が使用できる。
また、図5(B)において、高分子液晶層32と接する第1の基板31の面に、図6のような微小な凹凸溝31Aを作成し、その凹凸溝31Aの長手方向に液晶分子が配向しやすい性質を用いることで、配向方向を制御することもできる。このような凹凸溝31Aを多数放射状に作成することで、図2のような放射状の遅相軸分布を実現できる。また、多数の同心円状の溝を作成することで、図3のような同心円状の遅相軸分布を実現することもできる。
この配向を制御する凹凸溝31Aの深さd(図6参照)は、大きくなると光が散乱や回折をおこし迷光の発生や透過率の低下を招くために好ましくない。この散乱や回折を抑制するために、凹凸溝31Aを形成した第1の基板31の屈折率naと高分子液晶の常光方向屈折率n。または異常光方向屈折率neとの差と、溝の深さdとの積、つまり
|no−na|・dおよび|ne−na|・d
は、前述の半導体レーザ1からの出射光の波長λの10分の1以下であることが好ましく、特に20分の1以下、すなわち
|no−na|・d≦(1/20)λ
および
|ne−na|・d≦(1/20)λ
であることが好ましい。
また、凹凸溝31Aを形成した第1の基板31の屈折率naと高分子液晶層32の屈折率差は、高分子液晶層32と第1の基板31との界面での反射、散乱、回折の影響を抑えるために、小さいほうが好ましい。例えば、0.25以下が好ましく、さらに0.2以下が特に好ましい。すなわち、
|no−na|≦0.2および|ne−na|≦0.2
であることが、特に好ましい。
[第2の実施形態]
次に、本発明の第2の実施形態に係る半導体レーザモジュール20の構成例を、図7に示す。なお、同図において、図1と同一部分には同じ符号を付与して重複説明を避ける。
第2の実施形態の半導体レーザモジュール20は、図7に示すように、光源である半導体レーザ1(1B)と、この半導体レーザ1から出力される光を伝送する光ファイバ5を有する半導体レーザモジュールにおいて、光ファイバ11を半導体レーザ1の出射側に備えたところが、主として、第1の実施形態と異なる。
この半導体レーザモジュール20は、光ファイバ付き半導体レーザ1Bからの出射される光をデポラライズして光ファイバ5から出力するものであり、光ファイバ付き半導体レーザ1Bと、光ファイバ付き半導体レーザ1Bから出射される光を平行光にする第1レンズ2と、出射される平行光の偏光をデポラライズする位相板3と、平行光を集光する第2レンズ4と、第2レンズ4で集光された光を伝送する光ファイバ5を備えている。
このような構成にすることで、第1の実施形態と同じ作用により、デポラライズされていない光ファイバ付半導体レーザの出射光を、デポラライズすることができる。
[第3の実施形態]
次に、図1に示す半導体レーザモジュール10を励起用光源として用いたラマン増幅器100の構成例について、図8に示す。ここでは、半導体レーザモジュール10の位相板3として、第1の実施形態で述べた図2の位相板3Aを用いて説明するが、図3の位相板3B、図4の位相板3Cを用いても良い。
図8に示す前方励起型のラマン増幅器は、ラマン増幅の励起用光源として異なる波長の光を出力する複数のデポラライズされた半導体レーザモジュール10と、各半導体レーザモジュール10から出力された光を、光ファイバ5を経て波長合成するWDMカプラ60と、波長合成された光を伝送する光ファイバ70と、光ファイバ70に内蔵された偏波無依存型の光アイソレータ80とを有する。
光アイソレータ80は、WDMカプラ60から出力されたレーザ光を通過させるとともに、半導体レーザモジュール10への戻り光をカットしている。ただし、半導体レーザモジュール10内に光アイソレータを内蔵する場合には、光アイソレータ80は不要である。
このようなラマン増幅器100において、各半導体レーザモジュール10から出力された波長の異なる励起光は、WDMカプラ60で合波され、光ファイバ70から、別のWDMカプラ200によって、信号光γが伝送される光ファイバ300内に入射される。この入射された励起光によって、光ファイバ300内の信号光γはラマン増幅されながら伝送される。
ここでDOPの低い半導体レーザモジュール10からの励起光は、第1の実施形態と同様に、光ファイバ300内をデポラライズされた状態、すなわち、どの偏光方向の光パワーも等しい状態で伝播する。信号光γは、ラマン増幅器100までに伝送されてきた光ファイバの環境温度や歪み等の影響で、信号光γの偏光方向は変動するが、上記のように励起光がデポラライズされているため、ラマン増幅器100の利得の偏光依存性を抑えることができる。
また、この本実施形態のラマン増幅器100では、第1の実施形態に係る半導体レーザモジュール10において、デポラライズの方法として従来の偏波保持光ファイバでなく、位相板3を使用しているため、半導体レーザモジュール10が小型化されており、その結果、ラマン増幅器100も小型化される。
本実施形態では、第1の実施形態における半導体レーザモジュール10を用いた構成のラマン増幅器100について説明したが、第2の実施形態における半導体レーザモジュール20を用いた構成のラマン増幅器についても、同様の作用、効果が得られる。
「例1」
次に、本発明の半導体レーザモジュール10の具体的な実施例について、図1に示す模式図を参照しながら詳細に説明する。
本例1では、光源1として、波長1480nmで単一縦モード発振する半導体レーザ1Aを用いる。この半導体レーザ1Aから出た光は、第1レンズ2、位相板3、第2レンズ4を透過し、光ファイバ5に集光される。なお、半導体レーザ1Aから出た光を平行にする第1レンズ2や光ファイバ5に集光する第2レンズ4には非球面レンズを用いる。
位相板3には、図4に示すもの(位相板3C)を用いている。この位相板3Cは、具体的には、同図に示すように、全体の領域を8分割して各領域内は均一な遅相軸方向とリタデーション値分布とし、隣りあう領域ごとに遅相軸βの方向が、光軸αを中心とする同心円の接線方向に45°で変化させている。一方、リタデーション値は、8分割領域すべてにおいて均一であり、半導体レーザ1Aの発振波長(1480nm)の(1/2)倍、すなわち740nmある。
この位相板3Cは、図5(B)の構成を有しており、厚さ0.2mmの透明なガラス基板である第1の基板31に、所望の均一厚さに形成した高分子液晶層32を有し、この上に充填媒質層33を介して厚さ0.2mmのガラス基板である第2の基板34を積層している。位相板3Cの厚さは、約0.42mmである。高分子液晶層32の常光屈折率noは1.50、異常光屈折率neは1.58、複屈折量Δnは0.08である。また、高分子液晶層32の厚さdは、Δn・d(=740nm)となるよう、9.25μmとする。なお、充填媒質層33の屈折率は1.52であり、ガラス基板である第1、第2の基板31、34の屈折率は1.52である。
ここで、ガラス基板である第1の基板31の高分子液晶層32と接する面には、図6のような微小な凹凸溝31Aを作成することで、その凹凸溝31Aの長手方向に液晶が配向しやすい性質を用いて、液晶分子を配向させ、その状態で高分子化する。なお、凹凸溝31Aを、8分割した領域に多数放射状に作成することで、高分子液晶層32に、図4のような放射状の遅相軸分布を実現できる。
この図6において、本実施例では基板31上に屈折率1.47の薄膜を形成し、この薄膜をフオトリソグラフーおよびエッチングの技術により液晶分子の配向を制御する凹凸溝31Aを作成する。この凹凸溝31Aの深さdは80nmとする。この凹凸溝31Aの屈折率naは1.47である。
凹凸溝31Aの屈折率naと高分子液晶層32の屈折率差は、
|n。−na|=|1.50−1.47|
=0.03
および、
|ne−na|=|1.58−1.47|
=0.11
であり、十分に小さい。
また、凹凸溝部31Aを形成している第1の基板31の屈折率naと、高分子液晶32の常光方向屈折率noおよび異常光方向屈折率neとの差と、溝の深さdとの積、
|n。−na|・dおよび|ne−na|・d
は、それぞれ、3.2nm(約(1/450)・λ)および8.8nm(約(1/150)・λ)と十分に小さく、界面の反射や散乱、回折が小さく抑えられている。
以上のようにして作られる位相板3をダイシングにより1mmサイズ角に切断して、半導体レーザモジュール10を構成する。
図4の位相板3Cは、領域を8分割しているが、リタデーション値はどの領域も全て面内均一で740nm(半導体レーザ1の波長1480の1/2)であり、遅相軸βに関しては、となりあう領域ごとに遅相軸βの方向が、光軸αを中心とする放射状方向に45°で変化させている。ここで8分割された領域の任意のとなり合う領域とは、例えば、図4における30Aと30Bの部分である。
ここで、図4に示すように、位相板3Cの横軸をX軸、縦軸をY軸とするとともに、X軸からの反時計方向の角度をθとし、この位相板3Cに、X軸方向(θ=0°)の直線偏光が入射するよう半導体レーザ1Aを半導体レーザモジュール10内に固定する。このとき、位相板3Cの領域31における遅相軸β方向は0°であり、領域32における遅相軸β方向は45°である。
位相板3Cの領域30A、30Bはともにリタデーション値がλ/2であることから、1/2波長板となる。この1/2波長板は、界面反射や内部の吸収や散乱がない場合、光パワーを維持しながら、光の偏光方向を遅相軸βを中心として線対称の方向に変換する機能がある。このため、位相板3Cの領域30Aを透過した光の偏光方向は0°、位相板3Cの領域30Bを透過した光の偏光方向は90°となり、領域30Aの透過光と領域30Bの透過光は、出力が等しく直交した偏光方向となるため、この2領域(30Aと30B)における偏光は解消される。他の6領域についても同様な作用により、位相板3Cを透過した光のビーム面内おける偏光方向は、各々4分割からなる0°偏光方向と90°偏光方向となり、光ビーム全体としてみれば偏光は解消され、デポラライズされる。入射光の偏光方向がX軸方向(θ=0°)でない場合であっても、となり合う2領域を透過したあとの偏光方向は直交するため、光ビーム全体としてみれば偏光は解消される。このデポラライズされた光を第2レンズ4で光ファイバ5に集光することで、DOPが3%の半導体レーザモジュール10が得られる。また、位相板3Cは約1mm×1mm×0.42mmと小さいので、DOPを低減した半導体レーザモジュール10を小型化することが容易である。
「例2」
次に、「例1」で述べた半導体レーザモジュール10を励起用光源として用いたラマン増幅器100の具体的な構成例について、図8に示す。
図8は、異なる波長の光を出力する複数の半導体レーザモジュール10と、半導体レーザモジュール10から出力された光を波長合成するWDMカプラ60と、波長合成された光を伝送する光ファイバ70と、光ファイバ70に内蔵された偏波無依存型の光アイソレータ80とを有する前方励起型のラマン増幅器である。
光アイソレータ80は、WDMカプラ60から出力されたレーザ光を通過させるとともに、半導体レーザモジュール10への戻り光をカットしている。
このようなラマン増幅器100において、各半導体レーザモジュール10から出力された波長の異なる励起光は、WDMカプラ60で合波され、光ファイバ70から、別のWDMカプラ200によって、信号光γが伝送される光ファイバ300内に入射される。この入射された励起光によって、光ファイバ300内の信号光γはラマン増幅されながら伝送される。
ここで、ラマン増幅に用いられる励起光の光ファイバ300内における偏光は、「例1」で述べたように、光ファイバ300中の伝送断面内では、各々4分割からなる0°偏光方向と90°偏光方向となり、各々の偏光方向の光パワーも等しい状態で光ファイバ300内を伝播する。ラマン増幅器100まで伝播してきた伝送光ファイバの環境温度や歪み等により、信号光γの偏光方向は変動するが、励起光は、偏光が直交する各々4部分の光ビームからなり、光ビーム全体としてデポラライズされており、ラマン増幅器100の利得の偏光依存性を抑えることができる。なお、「例1」の半導体レーザモジュール10を用いたこの「例2」のラマン増幅器100の利得の偏光依存性は、0.05dB以下となる。
また、この本実施形態例のラマン増幅器100では、第1の実施形態に係る半導体レーザモジュール10において、デポラライズの方法として従来の偏波保持光ファイバでなく、位相板3Cを使用しているため、半導体レーザモジュール10が小型化されており、その結果、半導体レーザモジュール10を励起光とするラマン増幅器100も小型化される。
本発明は、これら実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の実施が可能である。また上記の実施例では、前方励起型のラマン増幅器について説明したが、後方励起型又は双方向励起型のラマン増幅器にも用いることが可能である。
本発明の半導体レーザモジュールは、位相板の遅相軸方向とリタデーション値とのうち少なくとも一方が位相板の面内において分布が一様でなく、例えば位相板での遅相軸方向が光軸を中心に放射状もしくは同心円方向により異なり、リタデーション値が面内均一の1/2波長板相当である位相板を半導体レーザモジュールに組込むことにより、小型でDOPの低い半導体レーザモジュールを得ることができ、光通信用に用いられるラマン増幅器の励起用光源として利用することにより、小型でラマン利得の偏光依存性(PDRG)の低いラマン増幅器などとして利用でき有用である。
本発明の第1の実施形態に係る半導体レーザモジュールの一例を示す模式的図。 本発明の第1の実施形態に係る位相板の遅相軸分布の一例を示す模式図。 本発明の第1の実施形態に係る位相板の遅相軸分布の一例を示す模式図。 本発明の第1の実施形態に係る位相板の遅相軸分布の一例を示す模式図。 本発明の第1の実施形態に係る位相板の一例を示す模式的断面図。 本発明の第1の実施形態に係る位相板に用いる基板形状の一例を示す模式図。 本発明の第2の実施形態に係る半導体レーザモジュールを示す模式図。 本発明の第3の実施形態に係るラマン増幅器の一例を示す模式的図。
符号の説明
1、1A、1B 半導体レーザ(光源)
2 第1レンズ
3 位相板
4 第2レンズ
5 光ファイバ
10、20 半導体レーザモジュール
1、1B 光ファイバ付半導体レーザ
30A、30B 分割領域
31 第1の基板
34 第2の基板
31A 凹凸溝
32 複屈折媒質層(高分子液晶層)
33 充填媒質層(充填剤)
100 ラマン増幅器
60 WDMカップラ
70 光ファイバ
80 光アイソレータ
200 WDMカップラ
300 光ファイバ
α 光軸
β 遅相軸
γ 信号光

Claims (9)

  1. 光源である半導体レーザと、この半導体レーザから出力される光を伝送する光ファイバとを有する半導体レーザモジュールにおいて、
    前記半導体レーザと前記光ファイバとの間に、前記半導体レーザから出力される光の偏光状態を変化させる位相板を備えるとともに、
    前記位相板は、遅相軸方向とリタデーション値とのうち少なくとも一方について、前記位相板面内での分布状態に偏りを有することを特徴とする半導体レーザモジュール。
  2. 前記位相板の前記遅相軸方向は、前記半導体レーザからの光の光軸を中心にした同心円の半径方向または接線方向に一致した、前記位相板面内での分布状態を有し、
    前記位相板のリタデーション値は、前記位相板面内において均一であるとともに、前記半導体レーザから出射の光の波長の(m/2)倍(但し、mは1以上の奇数)にほぼ等しい請求項1に記載の半導体レーザモジュール。
  3. 前記位相板は、複屈折媒質で形成されている請求項1または2に記載の半導体レーザモジュール。
  4. 前記位相板の複屈折媒質は、液晶を高分子化した高分子液晶である請求項3に記載の半導体レーザモジュール。
  5. 前記高分子液晶は、透明な基板上に形成されているとともに、
    前記基板の表面には前記光軸を中心とする同心円状または放射状の溝が形成されている請求項4に記載の半導体レーザモジュール。
  6. 前記高分子液晶は、透明な基板上に形成されているとともに、
    前記基板表面は、前記光軸を中心とする同心円状または放射状の溝が形成され、かつ、
    前記溝が形成された前記基板の屈折率naと前記高分子複晶の常光方向屈折率noまたは異常光方向屈折率neとの差と、溝の深さdとの積、|no−na|・dまたは|ne−na|・dは、前記半導体レーザから出射の光の波長の10分の1以下である請求項5に記載の半導体レーザモジュール。
  7. 前記位相板は、複屈折媒質で形成されているとともに前記同心円状または放射状の溝を設けた複屈折媒質層を有し、
    前記複屈折媒質層の前記溝の窪みは、前記複屈折媒質の常光屈折率noと異常光屈折率neのいずれか一方の値と等しいか、または前記2つの屈折率値の中間の屈折率を有する充填剤で充填されて前記溝を埋めてある請求項1から6のいずれか1項に記載の半導体レーザモジュール。
  8. 光源である半導体レーザ素子と、この半導体レーザ素子から出力される光を伝送する光ファイバとを有する半導体レーザモジュールにおいて、
    前記光ファイバの出射側に光の偏光状態を変える位相板を備えるとともに、
    前記位相板は、遅相軸方向とリタデーション値とのうち少なくとも一方について、前記位相板面内での分布状態に偏りがあることを特徴とする半導体レーザモジュール。
  9. 励起光源として、請求項1から8のいずれかに記載の半導体レーザモジュールを備えたことを特徴とするラマン増幅器。
JP2004335695A 2004-11-19 2004-11-19 半導体レーザモジュール及びラマン増幅器 Active JP4715171B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004335695A JP4715171B2 (ja) 2004-11-19 2004-11-19 半導体レーザモジュール及びラマン増幅器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004335695A JP4715171B2 (ja) 2004-11-19 2004-11-19 半導体レーザモジュール及びラマン増幅器

Publications (2)

Publication Number Publication Date
JP2006147833A true JP2006147833A (ja) 2006-06-08
JP4715171B2 JP4715171B2 (ja) 2011-07-06

Family

ID=36627172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004335695A Active JP4715171B2 (ja) 2004-11-19 2004-11-19 半導体レーザモジュール及びラマン増幅器

Country Status (1)

Country Link
JP (1) JP4715171B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070870A (ja) * 2006-08-25 2008-03-27 Jds Uniphase Corp パッシブ・デポラライザ
JP2008226405A (ja) * 2007-03-15 2008-09-25 Asahi Glass Co Ltd 偏光解消素子
JP2012190053A (ja) * 2006-10-16 2012-10-04 Asahi Glass Co Ltd 投射型表示装置
WO2024158675A1 (en) * 2023-01-27 2024-08-02 Ipg Photonics Corporation High power narrow linewidth fiber laser system with single frequency depolarized source

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321424A (ja) * 1999-05-07 2000-11-24 Nippon Telegr & Teleph Corp <Ntt> 偏波解消素子及びその作製方法
JP2001237483A (ja) * 2000-02-24 2001-08-31 Oputorain:Kk 光ファイバー消光比測定用半導体レーザ光源装置
JP2002141609A (ja) * 2000-11-02 2002-05-17 Furukawa Electric Co Ltd:The 半導体レーザモジュール、レーザユニット、およびラマン増幅器
JP2003204106A (ja) * 2000-12-15 2003-07-18 Furukawa Electric Co Ltd:The 半導体レーザモジュール及びその製造方法並びに光増幅器
US20040095637A1 (en) * 2002-08-01 2004-05-20 Anguel Nikolov Precision phase retardation devices and method of making same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321424A (ja) * 1999-05-07 2000-11-24 Nippon Telegr & Teleph Corp <Ntt> 偏波解消素子及びその作製方法
JP2001237483A (ja) * 2000-02-24 2001-08-31 Oputorain:Kk 光ファイバー消光比測定用半導体レーザ光源装置
JP2002141609A (ja) * 2000-11-02 2002-05-17 Furukawa Electric Co Ltd:The 半導体レーザモジュール、レーザユニット、およびラマン増幅器
JP2003204106A (ja) * 2000-12-15 2003-07-18 Furukawa Electric Co Ltd:The 半導体レーザモジュール及びその製造方法並びに光増幅器
US20040095637A1 (en) * 2002-08-01 2004-05-20 Anguel Nikolov Precision phase retardation devices and method of making same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070870A (ja) * 2006-08-25 2008-03-27 Jds Uniphase Corp パッシブ・デポラライザ
JP2012190053A (ja) * 2006-10-16 2012-10-04 Asahi Glass Co Ltd 投射型表示装置
JP2008226405A (ja) * 2007-03-15 2008-09-25 Asahi Glass Co Ltd 偏光解消素子
WO2024158675A1 (en) * 2023-01-27 2024-08-02 Ipg Photonics Corporation High power narrow linewidth fiber laser system with single frequency depolarized source

Also Published As

Publication number Publication date
JP4715171B2 (ja) 2011-07-06

Similar Documents

Publication Publication Date Title
US6404542B1 (en) Multiple emitter semiconductor laser pump source for scaling of pump power and generation of unpolarized light for light signal amplification
US6498869B1 (en) Devices for depolarizing polarized light
US20050201656A1 (en) Optical polarization beam combiner/splitter
JPH04212111A (ja) マルチポート光デバイス
JP2565099B2 (ja) 光非相反回路
JPH08254668A (ja) レーザ・ダイオード・モジュール及びデポラライザ
JP4715171B2 (ja) 半導体レーザモジュール及びラマン増幅器
US7003182B2 (en) Embedded type optically irreversible circuit
US20040184148A1 (en) Integrated micro-optic architecture for combining and depolarizing plural polarized laser beams
US7684110B2 (en) High frequency acousto-optic frequency shifter having wide acceptance angle
JP2005070073A (ja) 光ファイバコリメータ
US20020041574A1 (en) Multiplexing and / or demultiplexing apparatus
JP2002031735A (ja) 波長合波モジュール
WO2009107748A1 (ja) 波長選択旋光子および光ヘッド装置
JP2004334169A (ja) ビーム合波素子、ビーム合波方法、ビーム分離素子、ビーム分離方法及び励起光出力装置
JP2002107579A (ja) 光合分波モジュール
JPH10325941A (ja) 半導体レーザ光源および固体レーザ装置
JP2002198612A (ja) 波長監視装置
Jain et al. Passive coherent locking of fiber lasers using volume Bragg gratings
JP2856525B2 (ja) 光導波路型偏光子
CN116565678B (zh) 一种激光器
JP2009139395A (ja) 波長変換レーザ光源
KR100562942B1 (ko) 편광도가 높은 반도체 레이저 장치
JP4161743B2 (ja) 光源モジュール
JP4112316B2 (ja) 波長管理モジュールおよび光共振器

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071024

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

R151 Written notification of patent or utility model registration

Ref document number: 4715171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250