JP2006147609A - Manufacturing method of aluminum foil for electrolytic capacitor - Google Patents
Manufacturing method of aluminum foil for electrolytic capacitor Download PDFInfo
- Publication number
- JP2006147609A JP2006147609A JP2004331418A JP2004331418A JP2006147609A JP 2006147609 A JP2006147609 A JP 2006147609A JP 2004331418 A JP2004331418 A JP 2004331418A JP 2004331418 A JP2004331418 A JP 2004331418A JP 2006147609 A JP2006147609 A JP 2006147609A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- aluminum foil
- annealing
- pressure
- annealing furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Abstract
Description
本発明は、電解コンデンサ用アルミニウム箔の製造方法に関するものであり、特に陽極用のアルミニウム箔に好適な製造方法である。 The present invention relates to a method for producing an aluminum foil for electrolytic capacitors, and is particularly suitable for an aluminum foil for an anode.
一般に電解コンデンサ用アルミニウム箔の製造では、純度99.9%以上の純アルミニウムを熱間、冷間圧延して100μm程度の厚さのアルミニウム箔とし、これを最終焼鈍し、さらに表面の粗面化処理、陽極酸化を行っている。前記粗面化処理は、アルミニウム箔の表面積を増やし、静電容量を高めることを目的としており、一般に塩酸を主成分とした電解液でエッチング処理をして多くのピットを形成させている。このような粗面化処理により表面積を大きくとるほど単位面積当たりの静電容量を大きくすることができ、コンデンサの電極に用いるアルミニウム箔の量が低減され、小型化、及び省資源とすることができる。このように粗面化処理はコンデンサの性能に大きく関わるため、メーカによる種々の研究がなされている。 In general, in the manufacture of aluminum foil for electrolytic capacitors, pure aluminum with a purity of 99.9% or more is hot and cold rolled to obtain an aluminum foil having a thickness of about 100 μm, which is finally annealed and further roughened. Processing and anodizing are performed. The surface roughening treatment is intended to increase the surface area of the aluminum foil and increase the capacitance. Generally, etching treatment is performed with an electrolytic solution mainly composed of hydrochloric acid to form many pits. Capacitance per unit area can be increased as the surface area is increased by such surface roughening treatment, the amount of aluminum foil used for capacitor electrodes is reduced, and miniaturization and resource saving can be achieved. it can. As described above, since the roughening treatment is greatly related to the performance of the capacitor, various studies have been made by manufacturers.
例えば、粗面化の拡大率すなわち粗面化率が高度に得られるアルミニウム箔を提供することを目的として、最終焼鈍における雰囲気を従来の真空下または不活性ガス雰囲気から還元性雰囲気に変えて前記粗面化率を改善する方法を提案している(特許文献1参照)。この方法によれば、粗面化処理に先立ってアルミニウム箔に形成される酸化皮膜が適切な厚さになり、酸化皮膜の結晶化率(酸化皮膜中の結晶質皮膜の占有割合)が調整され、よって、粗面化処理に際し均一なピットが多数形成されて粗面化率が向上することが期待される。 For example, for the purpose of providing an aluminum foil with a high roughening rate, that is, a roughening rate, the atmosphere in the final annealing is changed from a conventional vacuum or an inert gas atmosphere to a reducing atmosphere. A method for improving the roughening rate has been proposed (see Patent Document 1). According to this method, the oxide film formed on the aluminum foil has an appropriate thickness prior to the roughening treatment, and the crystallization rate of the oxide film (occupation ratio of the crystalline film in the oxide film) is adjusted. Therefore, it is expected that a large number of uniform pits are formed during the roughening process and the roughening rate is improved.
上記特許文献1では、焼鈍炉内に微量の含酸素含有物が存在していると、アルミニウム箔表面の酸化皮膜を成長させて粗面化に悪影響を与えることを前提としてなされたものである。すなわち、焼鈍炉内で真空排気することで含酸素含有物を除去して酸化皮膜の成長を抑制するというものである。 In the said patent document 1, when a trace amount oxygen-containing material exists in an annealing furnace, it was made | formed on the assumption that the oxide film on the surface of aluminum foil will be grown and a roughening will be adversely affected. That is, the oxygen-containing material is removed by evacuation in an annealing furnace to suppress the growth of the oxide film.
ところで、電解コンデンサ用アルミニウム箔には、巻取品のように重ねあわされたアルミニウム箔とアルミニウム箔の間に、酸素、水分などの酸化性ガスや、洗浄で除去しきれなかった圧延油の残留分などが存在する。これらの酸化性ガスや残留油分は、最終焼鈍時にアルミニウム箔表面の酸化皮膜を厚く成長させたり、炭化物として残留したりするため、その後の粗面化率を阻害する。
しかし、前記特許文献1で示す方法では、前記巻取品の重ね合わせ部、特に幅方向中央部に残留する酸化性ガスや油分が十分に除去されないという問題がある。また、真空排気の際の到達真空度を高めたり、真空排気時間を延長したりする方法も考えられるが、真空度を高めるためには高性能の排気ポンプや炉の密閉性を高める必要がある。よって、生産性において設備費や製造時間でのコストに負担がかかり、現実的ではない。
By the way, in aluminum foil for electrolytic capacitors, between the aluminum foil stacked like a wound product and the aluminum foil, there remains an oxidizing gas such as oxygen and moisture, and the rolling oil that cannot be removed by washing. Minutes exist. Since these oxidizing gas and residual oil cause the oxide film on the surface of the aluminum foil to grow thick or remain as carbides during the final annealing, the subsequent roughening rate is hindered.
However, the method disclosed in Patent Document 1 has a problem that the oxidizing gas and oil remaining in the overlapped portion of the wound product, particularly the central portion in the width direction, are not sufficiently removed. In addition, it is possible to increase the ultimate vacuum at the time of evacuation or to extend the evacuation time, but in order to increase the vacuum, it is necessary to improve the sealing performance of a high-performance exhaust pump or furnace. . Therefore, a burden is imposed on the cost of equipment and the manufacturing time in productivity, which is not realistic.
本発明は、上記事情を背景としてなされたものであり、アルミニウム箔表面に付着した酸化性ガスや油分を確実に除去して、最終焼鈍時におけるアルミニウム箔の酸化皮膜厚を適切に制御し、粗面化処理に際し、高い粗面化率を得ることができる電解コンデンサ用アルミニウム箔の製造方法を提供することを目的とする。 The present invention has been made against the background of the above circumstances, and reliably removes oxidizing gas and oil adhering to the surface of the aluminum foil, appropriately controls the oxide film thickness of the aluminum foil during final annealing, It is an object of the present invention to provide a method for producing an aluminum foil for electrolytic capacitors, which can obtain a high roughening rate during the surface treatment.
すなわち本発明の電解コンデンサ用アルミニウム箔の製造方法のうち、請求項1記載の発明は、粗面化処理に先立って最終焼鈍を焼鈍炉内で行う電解コンデンサ用アルミニウム箔の製造方法であって、焼鈍炉内雰囲気ガスを真空排気して100Pa以下の圧力とする排気処理工程と、前記排気処理工程後に前記焼鈍炉内へ不活性ガスを導入して10kPa以上の圧力にする復圧処理工程とを2回以上繰り返して行い、その後、前記焼鈍炉内に、焼鈍雰囲気ガスとして不活性ガスと還元性ガスの一方または両方を導入し、前記焼鈍炉内を加熱昇温させて焼鈍を行うことを特徴とする。 That is, among the methods for producing an aluminum foil for electrolytic capacitors of the present invention, the invention according to claim 1 is a method for producing an aluminum foil for electrolytic capacitors in which final annealing is performed in an annealing furnace prior to the surface roughening treatment, An exhaust treatment step of evacuating the atmosphere gas in the annealing furnace to a pressure of 100 Pa or less, and a re-pressure treatment step of introducing an inert gas into the annealing furnace after the exhaust treatment step to a pressure of 10 kPa or more. Repeated twice or more, and then introduces one or both of an inert gas and a reducing gas as an annealing atmosphere gas into the annealing furnace, and heats the inside of the annealing furnace to perform annealing. And
請求項2記載の電解コンデンサ用アルミニウム箔の製造方法の発明は、請求項1記載の発明において、最後の排気処理における圧力が20Pa以下であることを特徴とする。 The invention of the method for producing an aluminum foil for electrolytic capacitors according to claim 2 is characterized in that, in the invention according to claim 1, the pressure in the final exhaust treatment is 20 Pa or less.
請求項3記載の電解コンデンサ用アルミニウム箔の製造方法の発明は、請求項1または2に記載の発明において、前記不活性ガスが、純度99.9%以上の窒素ガスまたはアルゴンガスであることを特徴とする。 The invention of the method for producing an aluminum foil for electrolytic capacitors according to claim 3 is the invention according to claim 1 or 2, wherein the inert gas is nitrogen gas or argon gas having a purity of 99.9% or more. Features.
請求項4記載の電解コンデンサ用アルミニウム箔の製造方法の発明は、請求項1〜3のいずれかに記載の発明において、前記還元性ガスが、純度99.9%以上の水素ガスであることを特徴とする。 The invention of the method for producing an aluminum foil for electrolytic capacitors according to claim 4 is the invention according to any one of claims 1 to 3, wherein the reducing gas is hydrogen gas having a purity of 99.9% or more. Features.
請求項5記載の電解コンデンサ用アルミニウム箔の製造方法の発明は、請求項1〜4のいずれかに記載の発明において、前記焼鈍雰囲気ガスの導入終了後または導入しつつ行うことを特徴とする。 The invention of the method for producing an aluminum foil for electrolytic capacitors according to claim 5 is characterized in that in the invention according to any one of claims 1 to 4, it is carried out after or after the introduction of the annealing atmosphere gas.
本発明によれば、焼鈍炉内雰囲気ガスを真空排気して100Pa以下の圧力とする排気処理工程により、炉内の含酸素含有物などが効果的に除去される。ただし、この排気処理のみによっては、巻取品の重ね合わせ部に残留する酸化性ガスや油分が十分に除去されない。その後、不活性ガスを焼鈍炉内に導入すると、該不活性ガスは、巻取品の減圧された重ね合わせ部内に進入し、一部の残留ガスや油分を重ね合わせ部から押し出す。さらに引き続き減圧を行うと、押し出された残留ガスなどが除去されるとともに、不活性ガス分子の移動に伴って重ね合わせ部に残留したままの酸化性ガスや油分も取り出され、排気に伴って炉外に排出されて残留ガスなどの除去作用が大幅に向上する。上記減圧・復圧を繰り返すことで残留ガスなどが効果的に除去される。最終焼鈍が不活性ガスと還元性ガスの一方または両方の雰囲気中で行われることで、酸化皮膜の成長が抑制された状態になり、後の粗面化処理において良好な粗面化率が得られる。 According to the present invention, the oxygen-containing material in the furnace is effectively removed by the exhaust treatment process in which the atmospheric gas in the annealing furnace is evacuated to a pressure of 100 Pa or less. However, only this exhaust treatment does not sufficiently remove the oxidizing gas and oil remaining in the overlapped portion of the wound product. After that, when the inert gas is introduced into the annealing furnace, the inert gas enters the depressurized overlapping portion of the wound product and pushes out some residual gas and oil from the overlapping portion. When the pressure is further reduced, the extruded residual gas and the like are removed, and the oxidizing gas and oil remaining in the overlapped portion are taken out along with the movement of the inert gas molecules. The action of removing residual gas and the like is greatly improved by being discharged to the outside. Residual gas and the like are effectively removed by repeating the above-described decompression and decompression. The final annealing is performed in an atmosphere of one or both of an inert gas and a reducing gas, so that the growth of the oxide film is suppressed and a good roughening rate is obtained in the subsequent roughening treatment. It is done.
なお、真空排気時の圧力は100Pa以下の圧力とする。100Paより高い圧力で真空排気を終了した場合、酸化ガスや残留油分の除去が不十分となる。また、その圧力は、50Pa以下が望ましく、20Pa以下ならさらに良好な効果が期待できる。
また、最後の排気処理における圧力は、上記効果をより有効に得るために20Pa以下とするのが望ましい。
The pressure during evacuation is set to 100 Pa or less. When evacuation is completed at a pressure higher than 100 Pa, the removal of oxidizing gas and residual oil becomes insufficient. Further, the pressure is desirably 50 Pa or less, and if it is 20 Pa or less, a better effect can be expected.
The pressure in the final exhaust treatment is desirably 20 Pa or less in order to obtain the above effect more effectively.
真空排気後の不活性ガス導入時の圧力は10kPa以上とする。10kPa未満では巻き取り品の内部にまで不活性ガスが十分に進入しない。この圧力は100kPa以上であるのがさらに望ましい。 The pressure when introducing the inert gas after evacuation is 10 kPa or more. When the pressure is less than 10 kPa, the inert gas does not sufficiently enter the wound product. This pressure is more preferably 100 kPa or more.
真空排気処理工程と不活性ガス雰囲気に復圧する工程とを繰り返す回数は、2〜4回が望ましい。この繰り返し工程がなく、大気からの排気と復圧のみであると、油分等の除去が十分になされない。また、5回以上繰り返しても、油分等の除去がそれ以上顕著に進まない。 The number of times of repeating the evacuation treatment step and the step of returning to the inert gas atmosphere is preferably 2 to 4 times. If this repetitive process is not performed and only the exhaust from the atmosphere and the return pressure are performed, the oil and the like are not sufficiently removed. Moreover, even if it repeats 5 times or more, the removal of oil etc. does not advance remarkably further.
上記最終焼鈍において、昇温前または昇温中に導入されるガスは、不活性ガスであっても還元性ガスであってもよく、さらに不活性ガスと還元性ガスとの混合ガスであってもよい。不活性ガスとしては、純度99.9%以上の窒素ガスまたはアルゴンガスが望ましく、前記還元性ガスとしては、純度99.9%以上の水素ガスが望ましい。 In the final annealing, the gas introduced before or during the temperature increase may be an inert gas or a reducing gas, and is a mixed gas of an inert gas and a reducing gas. Also good. The inert gas is preferably nitrogen gas or argon gas having a purity of 99.9% or more, and the reducing gas is preferably hydrogen gas having a purity of 99.9% or more.
また、本発明に用いられるアルミニウム箔の組成は特に制限されないが、通常は純度99%〜99.99%以上の純アルミニウム系やJIS A3003等の電解コンデンサ用アルミニウム箔が用いられる。なかでも、純度99.9%以上、さらに99.96%以上のものが望ましく、その製造に際し、鋳造、圧延については通常のアルミニウム箔と同様の工程を採用することができ、最終厚みに至るまでの製造方法は特に限定されるものではないことはもちろんであるが、通常は0.1mm程度の厚さを最終厚みとしている。 Moreover, the composition of the aluminum foil used in the present invention is not particularly limited, but usually an aluminum foil for electrolytic capacitors such as a pure aluminum type having a purity of 99% to 99.99% or more or JIS A3003 is used. Among them, the purity is preferably 99.9% or more, and more preferably 99.96% or more. In the production, casting and rolling can adopt the same process as that of a normal aluminum foil until the final thickness is reached. Of course, the manufacturing method is not particularly limited, but the final thickness is usually about 0.1 mm.
以上説明したように、本発明の電解コンデンサ用アルミニウム箔の製造方法によれば、粗面化処理に先立って最終焼鈍を焼鈍炉内で行う電解コンデンサ用アルミニウム箔の製造方法であって、焼鈍炉内雰囲気ガスを真空排気して100Pa以下の圧力とする排気処理工程と、前記排気処理工程後に前記焼鈍炉内へ不活性ガスを導入して10kPa以上の圧力にする復圧処理工程とを2回以上繰り返して行い、その後、前記焼鈍炉内に、焼鈍雰囲気ガスとして不活性ガスと還元性ガスの一方または両方を導入し、前記焼鈍炉内を加熱昇温させて焼鈍を行うので、残留含酸素成分や油分を巻取品の内部に至るまで確実に取り除くことができ、粗面化処理に先立ってアルミニウム箔に形成される酸化皮膜を適切な厚さに調整することができる。よって、粗面化処理に際し均一なピットが多数形成されて高い粗面化率が得られ、単位面積当たりの静電容量に優れる電解コンデンサを製造することができる。 As described above, according to the method for producing an aluminum foil for electrolytic capacitors of the present invention, the method for producing an aluminum foil for electrolytic capacitors in which final annealing is performed in an annealing furnace prior to the surface roughening treatment, the annealing furnace An exhaust treatment process in which the internal atmospheric gas is evacuated to a pressure of 100 Pa or less, and a return pressure treatment process in which an inert gas is introduced into the annealing furnace after the exhaust treatment process to obtain a pressure of 10 kPa or more. After repeating the above, after introducing one or both of an inert gas and a reducing gas as an annealing atmosphere gas into the annealing furnace and heating the temperature inside the annealing furnace to perform annealing, residual oxygen content Ingredients and oil can be reliably removed up to the inside of the wound product, and the oxide film formed on the aluminum foil prior to the roughening treatment can be adjusted to an appropriate thickness. Therefore, a large number of uniform pits are formed during the surface roughening treatment to obtain a high surface roughening rate, and an electrolytic capacitor excellent in capacitance per unit area can be manufactured.
(実施形態1)
以下に本発明の一実施形態について説明する。
純度が99.9%以上(例えば99.99%以上)のアルミニウムを常法により鋳造、圧延し、通常は0.1mm程度の厚さのを最終厚みとしてアルミニウム箔を得る。前記アルミニウム箔は最終焼鈍を焼鈍炉で行う。
焼鈍に際しては、焼鈍炉内から大気を排気して100Pa以下、好適には50Pa以下の圧力に減圧する(排気処理工程)。その後、焼鈍炉内に純度99.9%以上の窒素ガスまたはアルゴンガスなどからなる不活性ガスを導入して炉内圧力を10kPa以上、好適には100kPa以上に昇圧する(復圧処理工程)。
上記真空排気と不活性ガスの導入工程を2回以上繰り返せば、残留した含酸素成分や油分を確実にアルミニウム箔表面から除去することができる。
(Embodiment 1)
An embodiment of the present invention will be described below.
Aluminum having a purity of 99.9% or more (for example, 99.99% or more) is cast and rolled by a conventional method, and an aluminum foil is obtained with a final thickness of usually about 0.1 mm. The aluminum foil is subjected to final annealing in an annealing furnace.
At the time of annealing, the atmosphere is exhausted from the inside of the annealing furnace, and the pressure is reduced to 100 Pa or less, preferably 50 Pa or less (exhaust treatment step). Thereafter, an inert gas such as nitrogen gas or argon gas having a purity of 99.9% or more is introduced into the annealing furnace to increase the pressure in the furnace to 10 kPa or more, preferably 100 kPa or more (return pressure treatment step).
If the evacuation process and the inert gas introduction process are repeated twice or more, the remaining oxygen-containing components and oil can be reliably removed from the aluminum foil surface.
上記排気処理と復圧処理とを2回以上繰り返した後、不活性ガスと還元性ガスの一方または両方を焼鈍雰囲気ガスとして焼鈍炉内に導入する。焼鈍雰囲気圧力は本発明としては特定のものに限定されないが、外部からの大気の侵入を防止するため、大気圧(101kPa)以上であることが望ましい。さらに望ましい範囲は105kPa以上である。
上記焼鈍雰囲気ガスによって焼鈍中の酸化皮膜の成長が抑制され、アルミニウム箔表面に適切な厚さの酸化皮膜が形成される。
最終焼鈍に際しては、炉内を昇温させて所定の温度にまで加熱する。この昇温は、上記した焼鈍雰囲気ガスの導入終了後に行ってもよく、雰囲気ガスの導入とともに行うものであっても良い。
After the exhaust treatment and the return pressure treatment are repeated twice or more, one or both of an inert gas and a reducing gas is introduced into the annealing furnace as an annealing atmosphere gas. Although the annealing atmosphere pressure is not limited to a specific one in the present invention, it is desirable to be at least atmospheric pressure (101 kPa) in order to prevent air from entering from the outside. A more desirable range is 105 kPa or more.
Growth of the oxide film during annealing is suppressed by the annealing atmosphere gas, and an oxide film having an appropriate thickness is formed on the surface of the aluminum foil.
At the time of final annealing, the temperature in the furnace is raised to a predetermined temperature. This temperature increase may be performed after the introduction of the annealing atmosphere gas described above or may be performed together with the introduction of the atmosphere gas.
なお、最終焼鈍における温度は通常、実体温度で、交流電解エッチングに用いられる陰極用及び低圧陽極用が280℃〜400℃、直流電解エッチングに用いられる中高圧陽極用が500℃〜600℃程度である。また最終焼鈍における保持時間は通常、1h〜10h程度である。さらに最終焼鈍における昇温速度、冷却速度は通常、10℃/h〜200℃/h程度である。 In addition, the temperature in the final annealing is usually an actual temperature, which is about 280 ° C. to 400 ° C. for the cathode and low pressure anode used for AC electrolytic etching, and about 500 ° C. to 600 ° C. for medium and high pressure anode used for DC electrolytic etching. is there. The holding time in the final annealing is usually about 1h to 10h. Furthermore, the temperature increase rate and the cooling rate in the final annealing are usually about 10 ° C / h to 200 ° C / h.
以下に、本発明の一実施例を説明する。常法により純度99.99%のアルミニウムを鋳造し、均質化処理、面削、熱間圧延、冷間圧延の過程を経てスリットを施し、厚さ110μmのアルミニウム箔を得た。
前記アルミニウム箔に対し、表1に示すように条件の異なる真空排気処理工程と復圧処理工程とを組み合わせてそれぞれ最終焼鈍を行った。また、2回以上の排気処理工程と復圧処理工程の条件を満たさない従来例と比較例について、最終焼鈍を行った。
An embodiment of the present invention will be described below. Aluminum having a purity of 99.99% was cast by a conventional method, slitted through the steps of homogenization treatment, chamfering, hot rolling, and cold rolling to obtain an aluminum foil having a thickness of 110 μm.
As shown in Table 1, the aluminum foil was subjected to final annealing by combining an evacuation process and a return pressure process with different conditions. Moreover, the final annealing was performed about the prior art example and comparative example which do not satisfy | fill the conditions of an exhaust_gas | exhaustion process process of 2 times or more, and a return pressure process process.
最終焼鈍では、昇温速度を約100℃/hとし、実体保持温度を560℃、保持時間を約6時間とした。昇温開始後、所定温度での保持終了までは焼鈍雰囲気ガスを平均20nm3/hで導入し、前記ガス雰囲気中の圧力が103kPa〜110kPaとなるよう適宜排気した。所定温度での保持終了後、冷却速度を約100℃/hとした冷却工程に移行した。冷却工程では基本的に前記排気を止め、炉内圧力が103kPa〜110kPaとなるように前記ガスの流入量を調節した。
冷却工程で実体温度が50℃以下になってから、焼鈍を行ったアルミニウム箔を大気中に取り出した。なお、炉内に水素ガスが存在する場合には、安全確保のため、炉内を窒素ガスで置換してからアルミニウム箔を取り出した。
得られたアルミニウム箔の幅方向中央部から供試材を採取し、以下の条件で粗面化処理と化成処理を施した後、静電容量を測定した。各測定結果を表2にまとめて示した。
In the final annealing, the temperature raising rate was about 100 ° C./h, the substance holding temperature was 560 ° C., and the holding time was about 6 hours. An annealing atmosphere gas was introduced at an average of 20 nm 3 / h after the start of the temperature increase until the end of the holding at the predetermined temperature, and was appropriately evacuated so that the pressure in the gas atmosphere was 103 kPa to 110 kPa. After holding at the predetermined temperature, the process shifted to a cooling step with a cooling rate of about 100 ° C./h. In the cooling step, the exhaust was basically stopped, and the inflow amount of the gas was adjusted so that the furnace pressure became 103 kPa to 110 kPa.
After the solid temperature became 50 ° C. or lower in the cooling step, the annealed aluminum foil was taken out into the atmosphere. When hydrogen gas was present in the furnace, the aluminum foil was taken out after replacing the inside of the furnace with nitrogen gas to ensure safety.
A specimen was collected from the center in the width direction of the obtained aluminum foil, subjected to a roughening treatment and a chemical conversion treatment under the following conditions, and then the capacitance was measured. The measurement results are summarized in Table 2.
1.粗面化処理条件
(1)第1段エッチング条件(直流電解エッチング)
電解液(混合液)
HCl 1mol/l
H2SO4 3mol/l
温 度 80℃
電流密度 0.5A/cm2
通電時間 60秒
(2)第2段エッチング条件(化学エッチング)
エッチング液 30%HNO3水溶液
温 度 75℃
時 間 240秒
1. Roughening conditions (1) First stage etching conditions (DC electrolytic etching)
Electrolytic solution (mixed solution)
HCl 1 mol / l
H 2 SO 4 3 mol / l
Temperature 80 ℃
Current density 0.5A / cm 2
Energizing time 60 seconds (2) Second stage etching conditions (chemical etching)
Etching solution 30% HNO 3 aqueous solution
Temperature 75 ° C
Time 240 seconds
2.化成処理条件
EIAJ規格により化成電圧350Vfで実施。
2. Chemical conversion treatment conditions Implemented at a chemical conversion voltage of 350 Vf according to EIAJ standards.
表2から明らかなように、最終焼鈍で、真空排気と復圧とを2回以上繰り返して行うことにより、アルミニウム箔の静電容量が明らかに増大することがわかる。また、本発明の供試材の中でも真空排気時の到達真空度が高く、復圧圧力が高いと、静電容量の増加が一層顕著になっていた。
これに対し、真空排気と不活性ガスの導入を2回以上繰り返し行わなかったものは、高い静電容量が得られなかった。
また、真空排気時の到達真空度の低い例と復圧圧力が低い例では、真空排気、不活性ガスの導入を繰り返しても僅かに静電容量が高まる程度に留まった。
As is clear from Table 2, it can be seen that the electrostatic capacity of the aluminum foil is clearly increased by repeatedly performing evacuation and return pressure twice or more in the final annealing. Further, among the test materials of the present invention, when the ultimate vacuum at the time of evacuation was high and the return pressure was high, the increase in capacitance was more remarkable.
On the other hand, when the evacuation and the introduction of the inert gas were not repeated twice or more, a high capacitance was not obtained.
Further, in the example where the degree of vacuum reached at the time of evacuation is low and the case where the return pressure is low, the capacitance is only slightly increased even if the evacuation and introduction of the inert gas are repeated.
Claims (5)
製造方法。 The said reducing gas is hydrogen gas with a purity of 99.9% or more, The manufacturing method of the aluminum foil for electrolytic capacitors in any one of Claims 1-3 characterized by the above-mentioned.
Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004331418A JP4671218B2 (en) | 2004-11-16 | 2004-11-16 | Method for producing aluminum foil for electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004331418A JP4671218B2 (en) | 2004-11-16 | 2004-11-16 | Method for producing aluminum foil for electrolytic capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006147609A true JP2006147609A (en) | 2006-06-08 |
JP4671218B2 JP4671218B2 (en) | 2011-04-13 |
Family
ID=36626978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004331418A Expired - Fee Related JP4671218B2 (en) | 2004-11-16 | 2004-11-16 | Method for producing aluminum foil for electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4671218B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012167348A (en) * | 2011-02-16 | 2012-09-06 | Mitsubishi Alum Co Ltd | Method for producing aluminum foil for electrolytic capacitor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10152763A (en) * | 1996-11-25 | 1998-06-09 | Kobe Steel Ltd | Production of aluminum foil coil for electrolytic capacitor |
JP2000260665A (en) * | 1999-03-12 | 2000-09-22 | Sumitomo Light Metal Ind Ltd | Aluminum foil for electrolytic capacitor electrode |
JP2002008953A (en) * | 2000-06-23 | 2002-01-11 | Nippon Foil Mfg Co Ltd | Method of manufacturing aluminum foil for electrolytic capacitor |
-
2004
- 2004-11-16 JP JP2004331418A patent/JP4671218B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10152763A (en) * | 1996-11-25 | 1998-06-09 | Kobe Steel Ltd | Production of aluminum foil coil for electrolytic capacitor |
JP2000260665A (en) * | 1999-03-12 | 2000-09-22 | Sumitomo Light Metal Ind Ltd | Aluminum foil for electrolytic capacitor electrode |
JP2002008953A (en) * | 2000-06-23 | 2002-01-11 | Nippon Foil Mfg Co Ltd | Method of manufacturing aluminum foil for electrolytic capacitor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012167348A (en) * | 2011-02-16 | 2012-09-06 | Mitsubishi Alum Co Ltd | Method for producing aluminum foil for electrolytic capacitor |
Also Published As
Publication number | Publication date |
---|---|
JP4671218B2 (en) | 2011-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4671218B2 (en) | Method for producing aluminum foil for electrolytic capacitor | |
JP3765077B2 (en) | Method for producing aluminum foil for electrolytic capacitor electrode | |
JP2008266746A (en) | Aluminum foil for electrolytic capacitor and its manufacturing method | |
JP2007318007A (en) | Aluminum electrode foil for electrolytic capacitor | |
JP3539631B2 (en) | Method for producing aluminum foil for electrolytic capacitor electrode | |
JP4938226B2 (en) | Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor | |
JP4498682B2 (en) | The manufacturing method of the aluminum material for electrolytic capacitor electrodes, the manufacturing method of the electrode material for electrolytic capacitors, and an aluminum electrolytic capacitor. | |
JPH07201673A (en) | Manufacture of aluminum material for electrolytic capacitor electrode | |
JP3797645B2 (en) | Method for producing aluminum foil for electrolytic capacitor electrode | |
JP4732892B2 (en) | Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor | |
JPH1136053A (en) | Production of aluminum material for electrolytic capacitor and aluminum material for electrolytic-capacitor | |
JP2008045172A (en) | Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, electrode material for electrolytic capacitor, and aluminum electrolytic capacitor | |
JP3676601B2 (en) | Method for producing aluminum foil for electrolytic capacitor electrode | |
JP4308556B2 (en) | Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor | |
JP2008081811A (en) | Method for producing aluminum foil for electrolytic capacitor | |
JPH04311550A (en) | Production of aluminum foil for electrode of electrolytic capacitor | |
JP4539912B2 (en) | Aluminum foil for electrolytic capacitor anode and manufacturing method thereof | |
JP4629312B2 (en) | Method for producing aluminum material for electrolytic capacitor electrode and method for producing electrode material for electrolytic capacitor | |
JP4690182B2 (en) | Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor | |
JP2007009318A (en) | Aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor | |
JP3930033B1 (en) | Aluminum foil for electrolytic capacitors | |
JP4105565B2 (en) | Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor | |
JPH10152763A (en) | Production of aluminum foil coil for electrolytic capacitor | |
JP4671350B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JPH07211593A (en) | Aluminum foil for electrolytic-capacitor electrode and its etching method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100409 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100420 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100616 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110112 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110112 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4671218 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140128 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |