JP2006146024A - 電気光学装置および電子機器 - Google Patents

電気光学装置および電子機器 Download PDF

Info

Publication number
JP2006146024A
JP2006146024A JP2004338519A JP2004338519A JP2006146024A JP 2006146024 A JP2006146024 A JP 2006146024A JP 2004338519 A JP2004338519 A JP 2004338519A JP 2004338519 A JP2004338519 A JP 2004338519A JP 2006146024 A JP2006146024 A JP 2006146024A
Authority
JP
Japan
Prior art keywords
self
light
power supply
supply line
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004338519A
Other languages
English (en)
Inventor
Eiji Kanda
栄二 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004338519A priority Critical patent/JP2006146024A/ja
Publication of JP2006146024A publication Critical patent/JP2006146024A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

【課題】 各自発光素子の電圧−輝度特性の相違に起因した輝度ムラを抑制する。
【解決手段】 電気光学装置1は、発光色が赤色である複数のOLED素子420と、発光色が緑色である複数のOLED素子420とを有する。副電源線105rは赤色のOLED素子420に接続されて各々に電源電位Vddrを供給する。副電源線105gは緑色のOLED素子420に接続されて各々に電源電位Vddgを供給する。赤色のOLED素子420と緑色のOLED素子とは電圧−輝度特性が相違する。第1行目の赤色のOLED素子420の最大輝度と第n行目の赤色のOLED素子420の最大輝度との差分値と、第1行目の緑色のOLED素子420の最大輝度と第n行目の緑色のOLED素子の最大輝度との差分値とが略等しくなるように、副電源線105rおよび105gの各々の抵抗値が選定されている。
【選択図】 図1

Description

本発明は、自発光素子を備えた電気光学装置およびこれを用いた電子機器に関する。
有機発光ダイオード素子(以下「OLED素子」という)を備えた装置が液晶表示装置に替わる画像表示装置として注目されている。OLED(Organic Light Emitting Diode)素子は、光の透過率を変化させる液晶素子とは異なり、それ自身に流れる電流に応じた輝度にて発光する電流駆動型の自発光素子である。各々が発光色の異なる材料からなる複数の自発光素子を面状に配列した構成とすればカラー画像の表示も可能である。この構成においては、各色の自発光素子が別個の電源線に接続され、この電源線に流れる電流に応じた輝度にて発光する。
この構成のもとで各電源線に流れる電流が相違すると各々に接続された自発光素子の輝度がばらついて輝度ムラが発生するという問題がある。この問題を解消するために、例えば特許文献1には、各自発光素子を最大の輝度にて発光させるために必要となる電流値に応じて各電源線の抵抗値を決定した構成が開示されている。
特開2002−151276号公報(段落0027および図1)
ところで、各自発光素子に与えられる電流や電圧とそのときの輝度との関係は各々の材料(あるいは発光色)に応じて相違する場合がある。例えばいま、ある材料Aからなる自発光素子と別の材料Bからなる自発光素子とが配列された電気光学装置を想定する。図3に示されるように、自発光素子に流れる電流とそのときの輝度との関係(以下「電流−輝度特性」という)は、材料Aからなる自発光素子と材料Bからなる自発光素子とで共通の特性ILとなる。しかしながら、図5に示されるように、自発光素子に印加される電圧とそのときの輝度との関係(以下「電圧−輝度特性」という)は、材料Aからなる自発光素子(特性VL1)と材料Bからなる自発光素子(特性VL2)とで相違する場合がある。したがって、特許文献1のように各自発光素子の電流値のみに応じて電源線の抵抗値を選定したとしても、各電源線から自発光素子に印加される電圧値が電源線ごとに相違する場合には、各自発光素子の実際の輝度にばらつきが生じ得る。すなわち、特許文献1の構成によっては、各自発光素子の電圧−輝度特性の相違に起因した輝度ムラを完全に防止することはできない。
本発明は、このような事情に鑑みてなされたものであり、各自発光素子の電圧−輝度特性の相違に起因した輝度ムラを抑制することを解決課題とする。
この課題を解決するために、本発明に係る電気光学装置は、複数の第1自発光素子と、複数の第2自発光素子と、複数の第1自発光素子に接続されて各々に電源電位を供給する第1電源線と、複数の第2自発光素子に接続されて各々に電源電位を供給する第2電源線とを具備し、第1自発光素子と第2自発光素子とは、各々に等しい電圧が印加されたときに異なる輝度にて発光し、複数の第1自発光素子のうち第1電源線から供給される電位が最大となる第1自発光素子(例えば第1行目の自発光素子)の輝度の最大値と第1電源線から供給される電位が当該第1電源線における電圧降下によって最小となる第1自発光素子(例えば第n行目の自発光素子)の輝度の最大値との差分値と、複数の第2自発光素子のうち第2電源線から供給される電位が最大となる第2自発光素子の輝度の最大値と第2電源線から供給される電位が当該第2電源線における電圧降下によって最小となる第2自発光素子の輝度の最大値との差分値とが略等しくなるように、第1電源線および第2電源線の各々の抵抗値が選定されていることを特徴とする。
この構成によれば、第1電源線での電圧降下に起因した各第1自発光素子の最大輝度のばらつきの範囲と、第2電源線での電圧降下に起因した各第2自発光素子の最大輝度のばらつきの範囲とが略一致するように第1電源線および第2電源線の各々の抵抗値が選定されているから、第1自発光素子と第2自発光素子との電圧−輝度特性の相違に起因した輝度ムラを抑制することができる。
別の観点において、本発明に係る電気光学装置は、複数の第1自発光素子と、複数の第2自発光素子と、複数の第1自発光素子に接続されて各々に電源電位を供給する第1電源線と、複数の第2自発光素子に接続されて各々に電源電位を供給する第2電源線とを具備し、第1自発光素子と第2自発光素子とは、各々に等しい電圧が印加されたときに異なる輝度にて発光し、複数の第1自発光素子のうち第1電源線から供給される電位が最大となる第1自発光素子の輝度の最大値と、複数の第2自発光素子のうち第2電源線から供給される電位が最大となる第2自発光素子の輝度の最大値とが最大輝度の許容範囲(例えば図5に示されるΔL)の上限値に略一致し、かつ、第1電源線から供給される電位が当該第1電源線における電圧降下によって最小となる第1自発光素子の輝度の最大値と、第2電源線から供給される電位が当該第2電源線における電圧降下によって最小となる第2自発光素子の輝度の最大値とが当該許容範囲の下限値に略一致するように、第1電源線および第2電源線の各々の抵抗値が選定されていることを特徴とする。
各電源線のうち電源電位が供給される端子(例えば図1の端子T)と各自発光素子との関係に着目すると、本発明に係る電気光学装置は、電源電位が供給される端子を有する第1電源線と、電源電位が供給される端子を有する第2電源線と、第1電源線に接続された複数の第1自発光素子と、第2電源線に接続された複数の第2自発光素子とを具備し、第1自発光素子と第2自発光素子とは、各々に等しい電圧が印加されたときに異なる輝度にて発光し、複数の第1自発光素子のうち第1電源線の端子に最も近い第1自発光素子(例えば第1行目の自発光素子)の輝度の最大値と当該端子から最も遠い第1自発光素子(例えば第n行目の自発光素子)の輝度の最大値との差分値と、複数の第2自発光素子のうち第2電源線の端子に最も近い第2自発光素子の輝度の最大値と当該端子から最も遠い第2自発光素子の輝度の最大値との差分値とが略等しくなるように、第1電源線および第2電源線の各々の抵抗値が選定されていることを特徴とする。
また、各自発光素子の最大輝度の許容範囲に着目すると、本発明に係る電気光学装置は、複数の第1自発光素子と、複数の第2自発光素子と、複数の第1自発光素子に接続されて各々に電源電位を供給する第1電源線と、複数の第2自発光素子に接続されて各々に電源電位を供給する第2電源線とを具備し、第1自発光素子と第2自発光素子とは、各々に等しい電圧が印加されたときに異なる輝度にて発光し、複数の第1自発光素子のうち第1電源線から供給される電位が最大となる第1自発光素子の輝度の最大値と第1電源線から供給される電位が当該第1電源線における電圧降下によって最小となる第1自発光素子の輝度の最大値とがともに許容範囲内の輝度となり、かつ、複数の第2自発光素子のうち第2電源線から供給される電位が最大となる第2自発光素子の輝度の最大値と第2電源線から供給される電位が当該第2電源線における電圧降下によって最小となる第2自発光素子の輝度の最大値とがともに許容範囲内の輝度となるように、第1電源線および第2電源線の各々の抵抗値が選定されていることを特徴とする。
ここで、本発明における第1自発光素子と第2自発光素子とは、各々に等しい電流が流れたときに略同じ輝度にて発光することを特徴とすることが好ましい。なお、「略同じ」とは、一方の輝度を基準としたとき他方の輝度が90%から110%までの範囲にあることが含まれる。また、第1自発光素子と第2自発光素子とは、各々に等しい電圧が印加されたときに異なる輝度にて発光する素子(すなわち電圧−輝度特性が互いに相違する素子)として区別されるが、このような構成が利用される典型例としては、第1自発光素子の発光色と第2自発光素子の発光色とが相違する(すなわち第1自発光素子と第2自発光素子とが別個の材料によって形成される)構成が挙げられる。また、第1電源線の抵抗値と第2電源線の抵抗値とを相違させるための構成としては、例えば、各々の配線幅や膜厚を相違させる構成が採用され得る。
本発明に係る電気光学装置は各種の電子機器に利用される。このような電子機器としては、例えば、パーソナルコンピュータや携帯電話機がある。本発明に係る電気光学装置は、典型的には画像を表示する表示装置として使用されるが、このほかにも例えば光書込み型の画像形成装置(例えばプリンタ)におけるラインヘッドとしても使用され得る。
<A:電気光学装置の構成>
図1は、本発明の実施形態に係る電気光学装置の構成を示すブロック図である。同図に示されるように、電気光学装置1は、電気光学パネルAAと電源回路600とを備える。電気光学パネルAAには、画素領域Aと走査線駆動回路100とデータ線駆動回路200とが形成される。このうち画素領域Aには、X方向(行方向)に延在するm本の走査線101と、各走査線101に対をなしてX方向に延在するm本の発光制御線102とが形成される。また、X方向と直交するY方向(列方向)と平行にn本のデータ線103が形成される。そして、走査線101および発光制御線102の対とデータ線103との各交差に対応して画素回路400が配置される。画素回路400は自発光素子たるOLED素子を含んでいる。同図に示す「R」、「G」および「B」の符号は、OLED素子の発光色を示している。本実施形態においては、データ線103に沿って各色の画素回路400が配列(いわゆるストライプ配列)された構成を例示する。
電気光学パネルAAには、各発光色に対応する主電源線L(Lr,Lg,Lb)が形成されている。各主電源線Lは、その一端に形成された端子Tを介して電源回路600に接続されている。電源回路600は、発光色ごとに電源電位Vdd(Vddr,Vddg,Vddb)を生成して各主電源線Lに供給する回路である。さらに詳述すると、赤色に対応する主電源線Lrには電源電位Vddrが、緑色に対応する主電源線Lgには電源電位Vddgが、青色に対応する主電源線Lbには電源電位Vddbが、それぞれ電源回路600から端子Tを介して供給される。なお、図1においては画素領域Aのひとつの縁辺に沿うように各主電源線Lを形成した構成が例示されているが、各主電源線Lが画素領域Aを取り囲むように形成された構成としてもよい。また、電源回路600が電気光学パネルAAに形成された構成も採用される。
さらに、画素領域Aには、画素回路400の総列数に相当するn本の副電源線105(105r,105g、105b)が形成されている。各列に属するm個の画素回路400は1本の副電源線105に対して共通に接続される。より具体的には、赤色の各画素回路400は副電源線105rに接続され、緑色の各画素回路400は副電源線105gに接続され、青色の各画素回路400は副電源線105bに接続される。そして、各副電源線105は3本の主電源線Lの何れかに接続される。すなわち、各副電源線105rは赤色に対応する主電源線Lrに対して共通に接続され、各副電源線105gは主電源線Lgに接続され、各副電源線105bは主電源線Lbに接続される。したがって、赤色の各画素回路400には主電源線Lrおよび副電源線105rを介して電源電位Vddrが供給され、緑色の各画素回路400には主電源線Lgおよび副電源線105gを介して電源電位Vddgが供給され、青色の各画素回路400には主電源線Lbおよび副電源線105bを介して電源電位Vddbが供給される。
走査線駆動回路100は、m本の走査線101の各々を順次に選択するための回路である。より具体的には、走査線駆動回路100は、水平走査期間ごとに順番にアクティブレベル(Hレベル)となる走査信号Ya1、Ya2、……、Yamを各走査線101に対して出力するとともに、これらの論理レベルを反転した発光制御信号Yb1、Yb2、……、Ybmを各発光制御線102に出力する。走査信号Yai(iは1≦i≦mを満たす整数)がアクティブレベルになると第i行が選択されたことを意味する。
一方、データ線駆動回路200は、走査線駆動回路100が選択した走査線101に接続された各画素回路400に対してデータ信号X1、X2、……、Xnを供給する。データ信号Xj(jは1≦j≦nを満たす整数)は第j列目の画素回路400の輝度(階調)を指定する電流信号である。なお、走査線駆動回路100やデータ線駆動回路200が電気光学パネルAAの外部(例えば電気光学パネルAAに実装された配線基板上)に配置された構成としてもよい。
次に、図2を参照して画素回路400の構成を説明する。同図に示される画素回路400は、i行目に属する画素回路400のうち赤色に対応するものであり、上述したように主電源線Lrおよび副電源線105rを介して電源電位Vddrが供給される。緑色および青色に対応する画素回路400は、電源電位Vddrの替わりに電源電位Vddg(緑色の画素回路400)または電源電位Vddb(青色の画素回路400)が供給される点を除いて同様の構成である。
本実施形態における画素回路400は、データ信号Xjの電流に応じた階調となるようにOLED素子420を制御する電流駆動型(いわゆる電流プログラミング方式)の回路であり、図2に示されるように、4個のトランジスタTr1ないしTr4と、キャパシタCと、OLED素子420(ここでは発光色が赤色であるOLED素子420)とを有する。pチャネル型のトランジスタTr1のソース電極は接続点Nにて副電源線105rに接続され、そのドレイン電極は、トランジスタTr2のソース電極と、トランジスタTr3のドレイン電極と、トランジスタTr4のドレイン電極とに接続されている。トランジスタTr1ないしTr4は薄膜トランジスタであり、このうちトランジスタTr2ないしTr4の導電型はnチャネル型である。
キャパシタCは、一端がトランジスタTr1のソース電極に接続されるとともに、他端がトランジスタTr1のゲート電極とトランジスタTr2のドレイン電極とに接続されている。トランジスタTr3は、そのゲート電極がトランジスタTr2のゲート電極とともに走査線101に接続され、そのソース電極はデータ線103に接続されている。一方、トランジスタTr4のゲート電極は発光制御線102に接続され、そのソース電極はOLED素子420の陽極に接続されている。OLED素子420の陰極は接地(Gnd)されている。
各垂直走査期間のうち第i番目の水平走査期間にて走査信号Yaiがアクティブレベルになると、トランジスタTr2がオン状態となってトランジスタTr1はダイオード接続されるとともに、トランジスタTr3もオン状態となる。したがって、データ信号Xjに応じた電流が、副電源線105r→トランジスタTr1→トランジスタTr3→データ線103という経路で流れ、このときにトランジスタTr1のゲート電極の電位に応じた電荷がキャパシタCに蓄積される。
次いで、水平走査期間が終了して走査信号Yaiが非アクティブレベル(Lレベル)になると、トランジスタTr2およびTr3はともにオフ状態となる。このとき、トランジスタTr1のゲート・ソース間の電圧はその直前の水平走査期間における電圧に保持される。そして、発光制御信号Ybiがアクティブレベルに遷移すると、トランジスタTr4がオン状態となり、トランジスタTr1のソース・ドレイン間にはそのゲート電圧に応じた電流I(すなわちデータ信号Xjに応じた電流)が副電源線105rから流れ込み、この電流の供給によってOLED素子420が発光する。
図3は、各色のOLED素子420の電流−輝度特性を示すグラフである。同図に特性ILとして示されるように、OLED素子420の輝度はこれに供給される電流Iに比例する。さらに、本実施形態における各色のOLED素子420は略同一の電流−輝度特性を有する。すなわち、赤色、緑色および青色の各発光色のOLED素子420は、各々に等しい電流が流れたときに略同じ輝度にて発光する。例えば、同図に示されるように、電流I0が供給されると、各OLED素子420はその発光色に拘わらず略同一の輝度L0にて発光する。
次に、図4は、各色の画素回路400と主電源線Lおよび副電源線105との関係を示すブロック図である。同図に示される接続点Nは、図2に示したように、各画素回路400とこれに対応する副電源線105とが電気的に接続される部位である。図4に等価的に示されるように各副電源線105には抵抗Rが付随するから、各副電源線105においてはその延在方向に沿って電源電位Vddに電圧降下が発生する。したがって、Y方向に配列するn個の画素回路400のうち主電源線Lとは反対側の端部に位置する第n行目の画素回路400(すなわち主電源線Lの端子Tから最も遠い画素回路400)の接続点Nの電圧Vは、主電源線L側の端部に位置する第1行目の画素回路400(すなわち主電源線Lの端子Tに最も近い画素回路400)の接続点Nの電圧Vよりも副電源線105における電圧降下分(ΔV)だけ低い電圧となる。
一方、図5は、各色のOLED素子420の電圧−輝度特性を示すグラフである。同図においては、各画素回路400と副電源線105との接続点Nの電圧Vが横軸に示されている。また、特性VL1は赤色のOLED素子420の電圧−輝度特性を示し、特性VL2は緑色および青色のOLED素子420の電圧−輝度特性を示している。この図に示されるように、緑色のOLED素子420と青色のOLED素子420とは略同一の電圧−輝度特性を有する。したがって、互いに等しい電圧Vが印加された場合(すなわち接続点Nの電圧Vが等しい場合)、緑色のOLED素子420と青色のOLED素子420とは略同一の輝度にて発光する。一方、赤色のOLED素子420は緑色および青色のOLED素子420とは異なる電圧−輝度特性を有する。したがって、互いに等しい電圧Vが印加された場合であっても(すなわち接続点Nの電圧Vが等しい場合であっても)、赤色のOLED素子420の輝度と緑色または青色のOLED素子420の輝度とは相違する。より具体的には、赤色の画素回路400と副電源線105rとの接続点Nにおける電圧Vが所定値だけ変動したときのOLED素子420の輝度の変化量は、緑色の画素回路400と副電源線105gとの接続点N(または青色の画素回路400と副電源線105bとの接続点N)における電圧Vがこの所定値だけ変動したときのOLED素子420の輝度の変化量よりも大きい。したがって、副電源線105における電圧降下ΔVが赤色と緑色または青色とで等しいとすれば、赤色のOLED素子420の輝度の最大値の範囲(すなわち第1行目のOLED素子420の輝度の最大値を上限値とし第n行目のOLED素子420の輝度の最大値を下限値とした範囲)が緑色または青色のOLED素子420の輝度の範囲よりも広くなり、この結果として各色の発光量のバランス(特にホワイトバランス)が崩れて表示品位の低下を招きかねない。
このような問題を解決するために、本実施形態においては、各色のOLED素子420の輝度の最大値(すなわちデータ信号Xjによって最も淡い階調が指定されたときの輝度である。以下「最大輝度」という)の範囲が略同一となるように副電源線105における電圧降下ΔVが定められ、各副電源線105においてこの電圧降下ΔVが発生するように副電源線105の抵抗値が各色ごとに選定される。本実施形態においては、各色のOLED素子420の最大輝度のばらつきを所定の範囲(以下「許容輝度範囲」という)ΔLに収める場合を想定する。許容輝度範囲ΔLは、例えば第1行目のOLED素子420の最大輝度に対して30%程度の範囲である。
この場合、図5に示されるように、副電源線105rにおける電圧降下ΔV(すなわち第1行目に属する赤色の画素回路400の接続点Nと第n行目に属する赤色の画素回路400の接続点Nとの電位差)が「ΔV1」となり、副電源線105gおよび105bにおける電圧降下ΔVが「ΔV1」よりも大きい「ΔV2」となるように各副電源線105の抵抗値を選定すれば、各OLED素子420の最大輝度は総ての発光色について許容輝度範囲ΔL内に収まることになる。
さらに詳述すると、Y方向に配列する赤色のOLED素子420のうち副電源線105rから供給される電位が最大となるOLED素子420(すなわち第1行目に属するOLED素子420)の最大輝度(図5の点Pr1に相当する輝度)と、副電源線105rから供給される電位が電圧降下ΔV1によって最小となるOLED素子420(すなわち第n行目に属するOLED素子420)の最大輝度(図5の点Prnに相当する輝度との差分値が「ΔL」となるように、副電源線105rの抵抗値が選定される。さらに、緑色(または青色)のOLED素子420のうち副電源線105gから供給される電位が最大となるOLED素子420の最大輝度(図5の点Pg1に相当する輝度)と、副電源線105gから供給される電位が電圧降下ΔV2によって最小となるOLED素子420の最大輝度(図5の点Pgnに相当する輝度)との差分値が赤色と同じ「ΔL」となるように、副電源線105gの抵抗値が選定される。
換言すれば、第1行目に属する赤色のOLED素子420の最大輝度と第1行目に属する緑色または青色のOLED素子420の最大輝度とが許容輝度範囲ΔLの上限値に略一致し、かつ、第n行目に属する赤色のOLED素子420の最大輝度と第n行目に属する緑色または青色のOLED素子420の最大輝度とが許容輝度範囲ΔLの下限値に略一致するように、各副電源線105の抵抗値が選定される。
本実施形態においては、各色ごとの電圧降下ΔVが以上の条件を満たすように各色の副電源線105の配線幅が選定されている。図5の例では副電源線105rにおける電圧降下ΔV1を副電源線105gまたは105bにおける電圧降下ΔV2よりも低く抑える必要がある。そこで、図6に示されるように、赤色に対応する副電源線105rの配線幅W1は、この副電源線105rにおける電圧降下ΔVが「ΔV1」となるように、副電源線105gの配線幅W2や副電源線105bの配線幅W3よりも広い寸法に選定される。一方、緑色のOLED素子420と青色のOLED素子420とは電圧−輝度特性が略同一であるから、副電源線105gおよび105bにおける電圧降下ΔVは「ΔV2」に一致させる必要がある。したがって、副電源線105gの配線幅W2と副電源線105bの配線幅W3とは略等しい寸法に選定される。
このように、本実施形態においては、各色のOLED素子420の最大輝度の範囲が略同一となるように各副電源線105の抵抗値が選定されるから、各色の発光量のバランスを維持することができる。したがって、各色の発光量の相違に起因した表示品位の低下が有効に抑制されるという利点がある。
ところで、図2に例示した電流プログラミング方式の画素回路400においては、データ信号Xjに応じた電流が副電源線105から画素回路400に流れ込めば足りるため、トランジスタTr1やTr4が理想的なスイッチング特性を持った素子であれば、副電源線105での電圧降下に起因した各接続点Nの電圧の相違は問題とならない。しかしながら、実際の画素回路400におけるトランジスタTr1やトランジスタTr4はMOSトランジスタよりも特性(特に電子移動度)が劣る薄膜トランジスタによって構成されるため、上述したように副電源線105における電圧降下ΔVを考慮する必要がある。すなわち、図7に破線VI0によって示されるように、MOSトランジスタにおいては、動作点が飽和領域に到達すればそのドレイン・ソース間の電圧Vdsに拘わらず電流Idsは略一定を維持する。これに対し、図7に特性VI1として示されるように、薄膜トランジスタにおいては、動作点が飽和領域に到達してもそのドレイン・ソース間の電圧Vdsに応じて電流Idsが変動していく。したがって、トランジスタTr1やTr4として薄膜トランジスタを使用した画素回路400においては、接続点Nの電圧(換言すればトランジスタTr1やTr4のドレイン・ソース間の電圧Vds)に応じて電流I(さらにはOLED素子420の輝度)が変動することになる。このような事情に鑑みて、本実施形態においては、副電源線105から画素回路400に流れ込む電流Iだけでなく副電源線105における電圧降下ΔVや接続点Nの電圧をも考慮して各副電源線105の抵抗値を選定しているのである。
<B:変形例>
この実施形態に対しては種々の変形が加えられ得る。具体的な変形の態様を挙げれば以下の通りである。なお、以下の各態様を適宜に組み合わせた構成も採用される。
(1)実施形態においては副電源線105の配線幅を各色ごとに選定することによって輝度ムラを解消する構成を例示したが、各副電源線105の抵抗値を調整するための構成はこれに限られない。例えば、各副電源線105の膜厚を各色ごとに調整してもよい。例えば、各色のOLED素子420が図5に示す特性を有する場合には、赤色に対応する副電源線105rの膜厚を他色に対応する副電源線105gおよび105bの膜厚よりも大きくすれば、実施形態と同様の効果が得られる。また、各副電源線105を構成する材料を各色ごとに選定してもよい。例えば、赤色に対応する副電源線105rを、他色に対応する副電源線105gおよび105bの材料よりも抵抗率が低い導電性材料によって形成するといった具合である。このように、本発明においては、各色のOLED素子420の最大輝度の範囲が略同一となるように各副電源線105の抵抗値が選定されていれば足り、その抵抗値を調整するための方法の如何は不問である。
(2)実施形態においては各色ごとに副電源線105の抵抗値を調整する構成を例示したが、発光色とは別個の要素に応じて副電源線105の抵抗値を調整する構成としてもよい。すなわち、例えば、電圧−輝度特性が相違する材料によって各々が形成された複数のOLED素子420(発光色の異同は不問)を画素領域Aに配列した電気光学装置1においては、このうちのひとつの材料からなるOLED素子420に接続された副電源線105と他の材料からなるOLED素子420に接続された副電源線105とで抵抗値を相違させる構成が採用される。
(3)実施形態においては電流プログラミング方式の画素回路400を例示したが、画素回路400の構成は任意に変更される。例えば、水平走査期間におけるデータ信号Xjの電圧を保持してOLED素子420の駆動に利用する電圧プログラミング方式の画素回路400を採用してもよい。また、OLED素子420を駆動するためのスイッチング素子(図2におけるトランジスタTr1ないしTr4)が画素領域Aに形成されないパッシブマトリクス方式の電気光学装置にも本発明は適用される。
(4)実施形態においては副電源線105の抵抗値を各色ごとに選定する構成を例示したが、この構成に代えて、またはこの構成とともに、主電源線L(Lr,Lg,Lb)の抵抗値を各色ごとに選定してもよい。このように主電源線Lの配線幅を各色ごとに選定する構成によれば、3本の主電源線Lの配線幅を、輝度ムラを抑制して所期の表示特性を得るために最低限必要な限度に抑えることができるから、電気光学パネルAAのうち画素領域Aの外側の領域(いわゆる額縁領域)を低減することができる。このように、本発明における「電源線」とは、実施形態における主電源線Lおよび副電源線105のうち少なくとも一方に相当する配線である。
(5)実施形態においてはOLED素子420を利用した電気光学装置1を例示したが、無機EL素子、フィールド・エミッション(FE)素子、表面導電型エミッション(SE)素子、弾道電子放出(BS)素子、LED(Light Emitting Diode)素子など他の自発光素子を利用した電気光学装置にも本発明は適用される。また、光書込み型のプリンタや電子複写機の書込みヘッド(ラインヘッド)など表示装置以外の電気光学装置にも実施形態と同様に本発明が適用される。
(6)主電源線Lや副電源線105が形成された基板を、OLED素子420の材料が相違する複数の型式の電気光学装置1に流用する場合にも実施形態と同様の方法が採用される。例えば、電圧−輝度特性が図5の特性VL1によって示される材料Aによって基板にOLED素子420を形成した電気光学装置1と、電圧−輝度特性が図5の特性VL2によって示される材料Bによって基板にOLED素子420を形成した電気光学装置1とで、主電源線Lおよび副電源線105が既に形成された基板を流用する場合を想定する。この場合、基板に形成された主電源線Lおよび副電源線105における電圧降下ΔVが図5のΔV1となるように主電源線Lおよび副電源線105の抵抗値を選定しておけば、この基板に材料AによってOLED素子420を形成する場合および材料BによってOLED素子420を形成する場合の双方において、各OLED素子420の輝度の最大値のばらつきを許容輝度範囲ΔL内に収めることができる。したがって、材料Aの特性に対応した基板と材料Bの特性に対応した基板とを別個に作成する必要がなくなり、製造工程の簡素化や製造コストの低減を図ることができる。
<C:応用例>
次に、本発明に係る電気光学装置を適用した電子機器について説明する。図8は、実施形態に係る電気光学装置1を表示装置として採用したモバイル型のパーソナルコンピュータの構成を示す斜視図である。パーソナルコンピュータ2000は、表示装置としての電気光学装置1と本体部2010とを備える。本体部2010には、電源スイッチ2001およびキーボード2002が設けられている。この電気光学装置1はOLED素子420を用いるので、視野角が広く見易い画面を表示できる。
図9に、実施形態に係る電気光学装置1を適用した携帯電話機の構成を示す。携帯電話機3000は、複数の操作ボタン3001およびスクロールボタン3002、ならびに表示装置としての電気光学装置1を備える。スクロールボタン3002を操作することによって、電気光学装置1に表示される画面がスクロールされる。
図10に、実施形態に係る電気光学装置1を適用した情報携帯端末(PDA:Personal Digital Assistants)の構成を示す。情報携帯端末4000は、複数の操作ボタン4001および電源スイッチ4002、ならびに表示装置としての電気光学装置1を備える。電源スイッチ4002を操作すると、住所録やスケジュール帳といった各種の情報が電気光学装置1に表示される。
なお、本発明に係る電気光学装置が適用される電子機器としては、図8から図10に示したもののほか、デジタルスチルカメラ、テレビ、ビデオカメラ、カーナビゲーション装置、ページャ、電子手帳、電子ペーパー、電卓、ワードプロセッサ、ワークステーション、テレビ電話、POS端末、プリンタ、スキャナ、複写機、ビデオプレーヤ、タッチパネルを備えた機器等などが挙げられる。
本発明の実施形態に係る電気光学装置の構成を示すブロック図である。 ひとつの画素回路の構成を示す回路図である。 各OLED素子の電流−輝度特性を示すグラフである。 各画素回路と主電源線および副電源線との電気的な関係を示すブロック図である。 各OLED素子の電圧−輝度特性を示すグラフである。 各副電源線の形状を示す平面図である。 画素回路を構成するトランジスタの特性を示すグラフである。 本発明を適用したパーソナルコンピュータの構成を示す斜視図である。 本発明を適用した携帯電話機の構成を示す斜視図である。 本発明を適用した携帯型情報端末の構成を示す斜視図である。
符号の説明
1…電気光学装置、AA…電気光学パネル、A…画素領域、L(Lr,Lg,Lb)…主電源線、100…走査線駆動回路、200…データ線駆動回路、101…走査線、102…発光制御線、103…データ線、105(105r,105g,105b)…副電源線、400…画素回路、420…OLED素子、600…電源回路。

Claims (9)

  1. 複数の第1自発光素子と、
    複数の第2自発光素子と、
    前記複数の第1自発光素子に接続されて各々に電源電位を供給する第1電源線と、
    前記複数の第2自発光素子に接続されて各々に電源電位を供給する第2電源線と
    を具備し、
    前記第1自発光素子と前記第2自発光素子とは、各々に等しい電圧が印加されたときに異なる輝度にて発光し、
    前記複数の第1自発光素子のうち前記第1電源線から供給される電位が最大となる第1自発光素子の輝度の最大値と前記第1電源線から供給される電位が当該第1電源線における電圧降下によって最小となる第1自発光素子の輝度の最大値との差分値と、前記複数の第2自発光素子のうち前記第2電源線から供給される電位が最大となる第2自発光素子の輝度の最大値と前記第2電源線から供給される電位が当該第2電源線における電圧降下によって最小となる第2自発光素子の輝度の最大値との差分値とが略等しくなるように、前記第1電源線および前記第2電源線の各々の抵抗値が選定されている
    ことを特徴とする電気光学装置。
  2. 複数の第1自発光素子と、
    複数の第2自発光素子と、
    前記複数の第1自発光素子に接続されて各々に電源電位を供給する第1電源線と、
    前記複数の第2自発光素子に接続されて各々に電源電位を供給する第2電源線と
    を具備し、
    前記第1自発光素子と前記第2自発光素子とは、各々に等しい電圧が印加されたときに異なる輝度にて発光し、
    前記複数の第1自発光素子のうち前記第1電源線から供給される電位が最大となる第1自発光素子の輝度の最大値と、前記複数の第2自発光素子のうち前記第2電源線から供給される電位が最大となる第2自発光素子の輝度の最大値とが最大輝度の許容範囲の上限値に略一致し、かつ、前記第1電源線から供給される電位が当該第1電源線における電圧降下によって最小となる第1自発光素子の輝度の最大値と、前記第2電源線から供給される電位が当該第2電源線における電圧降下によって最小となる第2自発光素子の輝度の最大値とが前記許容範囲の下限値に略一致するように、前記第1電源線および前記第2電源線の各々の抵抗値が選定されている
    ことを特徴とする電気光学装置。
  3. 電源電位が供給される端子を有する第1電源線と、
    電源電位が供給される端子を有する第2電源線と、
    前記第1電源線に接続された複数の第1自発光素子と、
    前記第2電源線に接続された複数の第2自発光素子と
    を具備し、
    前記第1自発光素子と前記第2自発光素子とは、各々に等しい電圧が印加されたときに異なる輝度にて発光し、
    前記複数の第1自発光素子のうち前記第1電源線の端子に最も近い第1自発光素子の輝度の最大値と当該端子から最も遠い第1自発光素子の輝度の最大値との差分値と、前記複数の第2自発光素子のうち前記第2電源線の端子に最も近い第2自発光素子の輝度の最大値と当該端子から最も遠い第2自発光素子の輝度の最大値との差分値とが略等しくなるように、前記第1電源線および前記第2電源線の各々の抵抗値が選定されている
    ことを特徴とする電気光学装置。
  4. 複数の第1自発光素子と、
    複数の第2自発光素子と、
    前記複数の第1自発光素子に接続されて各々に電源電位を供給する第1電源線と、
    前記複数の第2自発光素子に接続されて各々に電源電位を供給する第2電源線と
    を具備し、
    前記第1自発光素子と前記第2自発光素子とは、各々に等しい電圧が印加されたときに異なる輝度にて発光し、
    前記複数の第1自発光素子のうち前記第1電源線から供給される電位が最大となる第1自発光素子の輝度の最大値と前記第1電源線から供給される電位が当該第1電源線における電圧降下によって最小となる第1自発光素子の輝度の最大値とがともに許容範囲内の輝度となり、かつ、前記複数の第2自発光素子のうち前記第2電源線から供給される電位が最大となる第2自発光素子の輝度の最大値と前記第2電源線から供給される電位が当該第2電源線における電圧降下によって最小となる第2自発光素子の輝度の最大値とがともに前記許容範囲内の輝度となるように、前記第1電源線および前記第2電源線の各々の抵抗値が選定されている
    ことを特徴とする電気光学装置。
  5. 前記第1自発光素子と前記第2自発光素子とは、各々に等しい電流が流れたときに略同じ輝度にて発光することを特徴とする請求項1から請求項5の何れかに記載の電気光学装置。
  6. 前記第1自発光素子と前記第2自発光素子とは発光色が相違する
    ことを特徴とする請求項1から請求項5の何れかに記載の電気光学装置。
  7. 前記第1電源線と前記第2電源線とは配線幅が相違する
    ことを特徴とする請求項1から請求項5の何れかに記載の電気光学装置。
  8. 前記第1電源線と前記第2電源線とは厚さが相違する
    ことを特徴とする請求項1から請求項5の何れかに記載の電気光学装置。
  9. 請求項1から請求項8の何れかに記載の電気光学装置を備えた電子機器。

JP2004338519A 2004-11-24 2004-11-24 電気光学装置および電子機器 Withdrawn JP2006146024A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004338519A JP2006146024A (ja) 2004-11-24 2004-11-24 電気光学装置および電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004338519A JP2006146024A (ja) 2004-11-24 2004-11-24 電気光学装置および電子機器

Publications (1)

Publication Number Publication Date
JP2006146024A true JP2006146024A (ja) 2006-06-08

Family

ID=36625777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004338519A Withdrawn JP2006146024A (ja) 2004-11-24 2004-11-24 電気光学装置および電子機器

Country Status (1)

Country Link
JP (1) JP2006146024A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008310014A (ja) * 2007-06-14 2008-12-25 Eastman Kodak Co アクティブマトリクス型表示装置
JP2010156962A (ja) * 2008-12-04 2010-07-15 Semiconductor Energy Lab Co Ltd 表示装置及びその駆動方法並びにそれらを用いた電子機器
JP2011118341A (ja) * 2009-12-01 2011-06-16 Samsung Mobile Display Co Ltd 有機電界発光表示装置
CN103971634A (zh) * 2014-04-18 2014-08-06 京东方科技集团股份有限公司 像素单元驱动电路、显示基板、显示面板及显示装置
KR101787974B1 (ko) * 2010-12-14 2017-10-20 엘지디스플레이 주식회사 유기발광다이오드 표시장치
JP2020158073A (ja) * 2019-03-28 2020-10-01 国立研究開発法人 海上・港湾・航空技術研究所 模型船の試験方法、試験プログラム、及び試験システム
WO2024067026A1 (zh) * 2022-09-29 2024-04-04 荣耀终端有限公司 电压调节方法、终端设备、芯片及存储介质

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008310014A (ja) * 2007-06-14 2008-12-25 Eastman Kodak Co アクティブマトリクス型表示装置
JP2010156962A (ja) * 2008-12-04 2010-07-15 Semiconductor Energy Lab Co Ltd 表示装置及びその駆動方法並びにそれらを用いた電子機器
JP2011118341A (ja) * 2009-12-01 2011-06-16 Samsung Mobile Display Co Ltd 有機電界発光表示装置
US9449547B2 (en) 2009-12-01 2016-09-20 Samsung Display Co., Ltd. Organic light emitting display
KR101787974B1 (ko) * 2010-12-14 2017-10-20 엘지디스플레이 주식회사 유기발광다이오드 표시장치
CN103971634A (zh) * 2014-04-18 2014-08-06 京东方科技集团股份有限公司 像素单元驱动电路、显示基板、显示面板及显示装置
US9613569B2 (en) 2014-04-18 2017-04-04 Boe Technology Group Co., Ltd. Pixel unit driving circuit, display substrate, display panel and display device
JP2020158073A (ja) * 2019-03-28 2020-10-01 国立研究開発法人 海上・港湾・航空技術研究所 模型船の試験方法、試験プログラム、及び試験システム
JP7274732B2 (ja) 2019-03-28 2023-05-17 国立研究開発法人 海上・港湾・航空技術研究所 模型船の試験方法、試験プログラム、及び試験システム
WO2024067026A1 (zh) * 2022-09-29 2024-04-04 荣耀终端有限公司 电压调节方法、终端设备、芯片及存储介质

Similar Documents

Publication Publication Date Title
US7329849B2 (en) Electronic circuit, method of driving electronic circuit, electro-optical device, and electronic apparatus
JP3772889B2 (ja) 電気光学装置およびその駆動装置
US7755617B2 (en) Electronic circuit, method for driving the same, electronic device, and electronic apparatus
US8274499B2 (en) Method for driving pixel circuit, electro-optic device, and electronic apparatus
KR101769499B1 (ko) 유기 전계 발광 표시 장치
TWI457899B (zh) 顯示裝置
JP4655800B2 (ja) 電気光学装置および電子機器
JP5018869B2 (ja) 電気光学装置および電子機器
US20100277449A1 (en) Electro-Optical Device and Electronic Apparatus
KR20080024439A (ko) 전기 광학 장치 및 그것을 구비하는 전자 기기
JP4039441B2 (ja) 電気光学装置および電子機器
JP5392963B2 (ja) 電気光学装置及び電子機器
CN111354315B (zh) 显示面板及显示装置、像素驱动方法
JP5412770B2 (ja) 画素回路の駆動方法、発光装置および電子機器
JP2010019950A (ja) 電気光学装置および電子機器
JP4736614B2 (ja) 信号伝送回路及び電気光学装置並びに電子機器
JP2005326754A (ja) 電気光学装置、その駆動方法および電子機器
JP2006146024A (ja) 電気光学装置および電子機器
JP2012233950A (ja) 電気光学装置、電気光学装置の駆動方法および電子機器
JP2006313189A (ja) 発光装置、その駆動方法および電子機器
JP4997867B2 (ja) 電気光学装置および電子機器
JP5151198B2 (ja) 画素回路、電気光学装置および電子機器
JP2006011251A (ja) 電気光学装置、その駆動方法および電子機器
JP5332109B2 (ja) 電気光学装置および電子機器
JP2005235496A (ja) 電気光学装置及び電子機器

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070404

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205