JP2006145426A - 電流センサ - Google Patents

電流センサ Download PDF

Info

Publication number
JP2006145426A
JP2006145426A JP2004337534A JP2004337534A JP2006145426A JP 2006145426 A JP2006145426 A JP 2006145426A JP 2004337534 A JP2004337534 A JP 2004337534A JP 2004337534 A JP2004337534 A JP 2004337534A JP 2006145426 A JP2006145426 A JP 2006145426A
Authority
JP
Japan
Prior art keywords
current
magnetic flux
coil
failure
primary conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004337534A
Other languages
English (en)
Other versions
JP2006145426A5 (ja
Inventor
Kenji Tsukamoto
謙二 塚本
Tetsuya Hasebe
哲也 長谷部
Junya Fujisawa
純也 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004337534A priority Critical patent/JP2006145426A/ja
Publication of JP2006145426A publication Critical patent/JP2006145426A/ja
Publication of JP2006145426A5 publication Critical patent/JP2006145426A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

【課題】 故障を判別しつつコストの低減を図ることができるとともに、磁性体コアを小型化することができる電流センサを提供する。
【解決手段】 コア3のエアギャップ2にホール素子4を配置しコア3を貫通する導線6の電流値を測定する電流センサにおいて、コア3に磁束発生用のコイル5を巻装し、制御装置9から制御可能な電流源を前記コイル5に接続し、導線6への通電停止時に、制御装置9を介して前記コイル5に検査電流を流し、この時に前記ホール素子4により検出された電流値に基づいて故障を判定することを特徴とする。
【選択図】 図1

Description

この発明は、導線に流れる電流を検出する電流センサに関するものである。
従来から、導線の通電電流を非接触状態で検出することができる電流センサが知られている。この種の電流センサの中には、環状の磁性体コアに形成されたエアギャップに磁束検出素子を配置して磁性体コアの内側の空間を貫通する電流を検出するものがある。前記電流センサでは、一般に、1つの磁性体コアに対して検出回路が一系統しか設けられていないため、前記電流センサの上位システムで電流センサが故障したのか実際の電流が変化したのかを判別することができないという問題があった。そこで近年、前記エアギャップに2つ以上の磁束検出素子を配置し、これらの検出信号を比較して前記電流センサの故障を判別するものが提案されている(例えば、特許文献1参照)。
特開2000−275279号公報
しかしながら、上記電流センサでは、磁束検出素子を2つ以上設けているため、コストが増大するという問題がある。
また、前記エアギャップにおいて、磁束検出素子を2つ以上配置しているため、この磁束検出素子の設置スペースが個数分必要となり、前記電流センサが大型化してしまうという問題がある。
そこで、この発明は、故障を判別しつつコストの低減を図ることが可能になるとともに、磁性体コアを小型化することができる電流センサを提供するものである。
上記の課題を解決するために、請求項1に記載した発明は、集磁コア(例えば、実施の形態におけるコア3)のエアギャップ(例えば、実施の形態におけるエアギャップ2)に磁束検出素子(例えば、実施の形態におけるホール素子4)を配置し集磁コアを貫通する1次導体(例えば、実施の形態における導線6)の電流値を測定する電流センサにおいて、集磁コアに磁束発生用のコイル(例えば、実施の形態におけるコイル5)を巻装し、制御装置(例えば、実施の形態における制御装置9)から制御可能な電流源(例えば、実施の形態における電流源8)を前記コイルに接続し、1次導体への通電停止時に、制御装置を介して前記コイルに検査電流を流し、この時に前記磁束検出素子により検出された電流値に基づいて故障を判定することを特徴とする。
このように構成することで、集磁コアのエアギャップに1つの磁束検出素子を配置するだけで故障の判定を行うことができ、集磁コアを小型化することができる。
請求項2に記載した発明は、前記1次導体は車両用のモータ(例えば、実施の形態におけるモータM)の駆動電流を通電する導線であって、エンジン始動前又はアイドルストップ時に故障の判定を行うことを特徴とする。
このように構成することで、車両用のモータの通電電流を監視する電流センサの故障を車両の走行前に判定することができる。
請求項3に記載した発明は、前記モータと該モータへ電力供給するバッテリ(例えば、実施の形態におけるバッテリB)との間に設けられた開閉器(例えば、実施の形態におけるコンタクタC)が開放状態の時に故障の判定を行うことを特徴とする。
このように構成することで、前記モータとバッテリとが接続されていない状態で故障を判定することができる。
請求項4に記載した発明は、1次導体近傍に磁束検出素子を配置して1次導体の電流値を測定する電流センサにおいて、1次導体に監視用のコイルを巻装し、前記1次導体の電流の変化を監視用のコイル(例えば、実施の形態におけるコイル5)で検出した際に、磁束検出素子の検出電流に変化がない場合に故障と判定することを特徴とする。
このように構成することで、1次導体の近傍に磁束検出素子を1つだけ配置した状態で磁束検出素子の故障判定を行うことができる。
請求項5に記載した発明は、集磁コアのエアギャップに磁束検出素子を配置し集磁コアを貫通する1次導体の電流値を測定する電流センサにおいて、集磁コアに監視用のコイルを巻装し、前記1次導体の電流の変化を監視用のコイルで検出した際に、磁束検出素子の検出電流に変化がない場合に故障と判定することを特徴とする。
このように構成することで、複数の磁束検出素子を用いずに、前記磁束検出素子にいわゆる固着状態や無信号状態等の故障が発生しているか否かを判定することができる。
請求項6に記載した発明は、監視電流の変化量と磁束検出素子による電流変化量の差が所定値以上の時に故障と判定することを特徴とする。
このように構成することで、前記電流変化量の差が所定値以上である場合に磁束検出素子の検出値が、例えば、出力低下などの異常値であることを検出することができる。
請求項7に記載した発明は、1次導体に監視用のコイルを巻装し、前記1次導体の電流の変化を監視用のコイルで検出した際に、磁束検出素子の検出電流に変化がない場合に故障と判定することを特徴とする。
このように構成することで、1次導体が通電状態であっても、前記監視用のコイルを用いて故障の判定を行うことができるため、1次導体の通電の有無に関わらず故障判別することができる。
請求項8に記載した発明は、前記集磁コアに監視用のコイルを巻装し、前記1次導体の電流の変化を監視用のコイルで検出した際に、磁束検出素子の検出電流に変化がない場合に故障と判定することを特徴とする。
このように構成することで、1次導体が通電状態であっても、前記監視用のコイルを用いて故障の判定を行うことができるため、1次導体の通電の有無に関わらず故障判別することができる。
請求項1に記載した発明によれば、集磁コアのエアギャップに1つの磁束検出素子を配置するだけで故障の判定を行うことができ、集磁コアを小型化することができるため、設置自由度が向上するとともに、コストの低減を図ることができる効果がある。
請求項2に記載した発明によれば、車両用モータの通電電流を監視する電流センサの故障を車両の走行前に判定することができるため、車両用モータへ通電する前に故障を判定することができ、したがって、モータ制御の信頼性を向上させることができる効果がある。
請求項3に記載した発明によれば、前記モータとバッテリとが接続されていない状態で故障を判定することができるため、確実、且つ、正確に前記故障判定を行うことができる効果がある。
請求項4に記載した発明によれば、1次導体の近傍に磁束検出素子を1つだけ配置した状態で磁束検出素子の故障判定を行うことができるため、磁束検出素子2つ用いて故障判定を行う場合よりもコストの低減を図ることができる。
請求項5に記載した発明によれば、複数の磁束検出素子を用いずに、前記磁束検出素子にいわゆる固着状態や無信号状態等の故障が発生しているか否かを判定することができるため、磁束検出素子の個数を低減してコストを低減することができる効果がある。
また、前記1次導体の電流が変化している時であればいつでも故障判定を行うことができるため、瞬時に正確な故障判定を行うことができる効果がある。
請求項6に記載した発明によれば、前記電流変化量の差が所定値以上である場合に磁束検出素子の検出値が、例えば、出力低下などの異常値であることを検出することができるため、確実に故障の判断を行うことができる効果がある。
請求項7に記載した発明によれば、請求項1の効果に加え、1次導体が通電状態であっても、前記監視用のコイルを用いて故障の判定を行うことができるため、1次導体の通電の有無に関わらず故障判別することができ、したがって、信頼性を向上することが出来る効果がある。
請求項8に記載した発明によれば、請求項1の効果に加え、1次導体が通電状態であっても、前記監視用のコイルを用いて故障の判定を行うことができるため、1次導体の通電の有無に関わらず故障判別することができ、したがって、信頼性を向上することが出来る効果がある。
この発明の第一の実施の形態を図面に基づいて説明する。以下、各実施の形態は駆動源としてエンジンとモータとを備えたハイブリッド車両に本発明の電流センサを適用したものである。
図1はモータMの駆動・回生電流を検出する電流センサの全体構成を示すものである。同図において1はセンサ部を示しており、前記センサ部1はエアギャップ2を備えた略C字状のコア(集磁コア)3と、このエアギャップ2に配置されたホール素子(磁束検出素子)4と、前記ホール素子4と対称位置の前記コア3に巻装されたコイル5とで構成されている。
前記コア3は磁性体で形成されたものであり、このコア3の内側の空間に電流が貫通するとコア3の内部とエアギャップ2とに磁束が発生することとなる。具体的には、モータMの駆動・回生電流(被測定電流)が流れる導線(1次導体)6が前記コア3の内側の空間を貫通するような位置にコア3が配置されている。前記モータMには前記導線6を介して前記モータMのPWM(Pulse Width Modulation)制御を行うインバータ(INV)7が接続され、さらに、このインバータ7には後述する制御装置9によって開閉動作が制御されるコンタクタ(開閉器)Cを介して電源であるバッテリBが接続されている。
前記コイル5は前記コア3の内部とエアギャップ2とに磁束を発生させるためのものである。このコイル5には電流源8が接続され、この電流源8は制御装置(ECU)9の制御信号(図中、信号1で示す)に基づいて前記コイル5に通電(図中、信号2で示す)を行う。一方、前記ホール素子4は前記エアギャップ2に発生した磁束に比例する電圧(図中信号3で示す)を出力するものであり、前記電流源8と同様に、制御装置9に接続されている。つまり、前記ホール素子4によって前記コア3の内部の空間に貫通した電流の大きさを検出することが可能となる。ここで、前記電流源8の周波数は、前記コイル5がnターンの時、電流センサの測定レンジIrに対してIr/n以上流すことができれば適宜選択して用いても良い。
前記制御装置9は、前記導線6の通電停止状態において、前記ホール素子4の検出信号に基づいて故障判定処理を行うものである。ここで、前記停止状態とは、ハイブリッド車両(エンジンとモータとが直結しているような形式)におけるモータ停止モードであればエンジン始動前やアイドル停止時、バッテリ制御モードであればバッテリとインバータとの間に設けられたコンタクタCが解放の時である。すなわち、モータMを駆動・回生動作させる前に、前記コイル5に前記導線6に流れる電流に相当する電流を流して前記センサ部1の故障を検出しているのである。
次に、図2、図3に基づいて各信号の波形が正常状態と異常状態の場合の一例を説明する。まず、図2は縦軸を電圧、横軸を時間とした場合の図1の回路中の信号1〜信号3を示し、前記センサ部1が正常状態の場合である。制御装置9から信号1が出力されると、電流源8は正弦波である信号2を出力する。そして、前記ホール素子は信号2に応じた正弦波である信号3を出力することとなる。一方、図3は前記図2と同様の縦軸、横軸とした場合のセンサ部1が異常状態の場合を示している。図2と同様に制御装置9から信号1が出力されると電流源は正弦波の信号2を出力する。しかしながら、ホール素子4の検出信号はピーク値に達することなく一定の値となる異常(サチュレーション)状態になっている。
上記故障判定処理を図4のフローチャートに基づいて説明する。このフローチャートではモータMが停止している状態の一例としてモータ停止モード時に故障の判定を行っている。
まず、ステップS1ではモータ(MOT)停止モードか否かを判定する。判定結果が「YES」(モータ停止モード)である場合はステップS2に進み、判定結果が「NO」(モータ停止モードではない)である場合は処理を終了する。ここで、モータ停止モードではインバータとバッテリとの間に設けられたコンタクタが解放状態となる。
次に、ステップS2では初期化のためにセンサ故障フラグを「0」に設定する。ステップS3ではタイマー値Tを「0」に設定する。ステップS4では制御装置から電流源に対してON信号を出力する(信号1=ON)。ステップS5ではタイマー値Tが設定値tsと等しいか否かを判定する。判定結果が「YES」(等しい)である場合はステップS8に進み、判定結果が「NO」(等しくない)である場合はステップS6に進む。ここで、前記センサ故障フラグは、「0」が非故障状態、「1」が故障状態を示している。
ステップS6ではホール素子の出力信号(信号3)と想定値とを減算した絶対値が所定の閾値よりも大きいか否かを判定する。判定結果が「YES」(大きい)である場合はステップS7に進み、判定結果が「NO」(閾値を含み小さい)である場合はステップS9に進む。ステップS9ではタイマー値Tに加算処理を行いステップS5に戻り上述の処理を繰り返す。一方、ステップS7ではセンサ故障フラグを「1」に設定し、ステップS8で電流源に対してOFF信号(信号1=OFF)を出力して処理を終了する。ここで、前記想定値とは、電流源を用いてコイルに通電した時に、故障していないホール素子から出力される信号のレベルを予め制御装置で記憶したものである。
したがって、上述した第一の実施の形態によれば、前記コア3のエアギャップ2に1つのホール素子4を配置するだけで故障の判定を行うことができ、前記コア3を小型化することができるため、設置自由度を向上させるとともに、コストの低減を図ることができる。
さらに、センサ部1の故障を車両の走行前に判定することができるため、モータ制御の信頼性を向上させることができる。
そして、コンタクタCがOFF状態、つまり、前記モータMとインバータ7とが接続されていない無通電状態で故障を判定することができるため、確実、且つ、正確に前記故障判定を行うことができる。
次に、第二の実施の形態を図面に基づいて説明する。尚、この第二の実施の形態は、前述した第一の実施の形態の電流源8を制御装置9と一体的に形成したものであるため、同一部分に同一符号を付して説明する。
図5に示すように、センサ部1にはこれを制御する制御装置(ECU)9が接続されている。前記センサ部1は、前述した第一の実施の形態と同様に、磁性体で形成されエアギャップ2を備えた略C字状のコア3と、前記エアギャップ2に配置されたホール素子4と、前記コア3に巻回されたコイル5とで構成されている。前記コア3の内側の空間には被測定電流Iaが貫通するように導線6が配置されている。
前記制御装置9は種々の処理を行う演算装置(CPU)10を備えている。この演算装置10にはローパスフィルタ(LPF)11が接続され、さらに、このローパスフィルタ11には増幅回路12が接続されている。前記増幅回路12には前記コイル5の入力端13が接続され、さらに、前記コイル5の出力端14には抵抗Rと減算器15とが分岐して接続されている。そして、前記抵抗RにはアースEが接続されている。
ところで、前述したホール素子4には前記減算器15が接続されている。この減算器には閾値判定回路16が接続され、さらに、前記閾値判定回路16には前述した演算装置10が接続されている。ここで、前記減算器15は前記ホール素子4からの出力信号と、抵抗Rのコイル5側の電圧信号との差分を演算して出力するものである。また、前記閾値判定回路16は予め設定されている閾値と入力信号とを比較して入力信号が閾値よりも大きい時に演算装置に向けてON信号を出力するようになっている。
すなわち、前記コイル5に通電するために前記演算装置10からローパスフィルタ11に対してPWM信号が出力されると、ローパスフィルタ11でPWM信号の高周波成分がカットされたものが前記増幅回路12で増幅され、増幅回路12から前記コイル5に向けて電流I2が出力されることとなり、この電流I2がコイル5に流れて前記コア3とエアギャップ2とに磁束が発生する。さらに、前記電流I2が抵抗Rを流れることで抵抗Rの端子間に電圧が発生し、この電圧信号が前記減算器15のマイナス端子に入力される。
一方、前記ホール素子4はコア3の磁束に応じた検出信号を出力し、この検出信号が前記減算器15のプラス端子に入力される。この減算器15ではホール素子4の検出信号から前記電圧信号分を減算し、この演算結果を前記閾値判定回路16に対して出力する。そして、閾値判定回路16で所定の閾値を超えたか否かを判定し、演算結果が閾値を超えている場合には前記演算装置10に対してON信号を出力し、これにより前記演算装置10で前記センサ部が故障状態であることを判定する。尚、前記ホール素子4の検出信号は電圧信号である。
ここで、前記ホール素子4で決まる係数をk、前記コイル5に通電する電流をI2、前記電流I2をコイル5に生じさせる導線6の電流をIa、前記コイル5のターン数をnとすると、前記ホール素子4からの検出信号である電圧信号V3はV3=k×Ia=k×n×I2となる。そして、抵抗Rの抵抗値をrとすると前記減算器15のマイナス端子に入力される電圧信号V2はV2=r×I2となる。ここで、抵抗Rの抵抗値rはr=n×kに設定されている。つまり、前記コイル5とホール素子4とが正常状態であれば、電流Iaが変化しているときにV2=V3となり、前記減算器15からの出力は常に「0」となる。
次に、図6のフローチャートに基づいて第二の実施の形態における故障判定処理を説明する。尚、図6のフローチャートは前述した図4のフローチャートのステップS4とステップS6とステップS8とをステップS10とステップS11とステップS12に置き換えたものであるため、同一ステップに同一符号を付して説明する。
まず、ステップS1〜ステップS3では、第一の実施の形態と同じ処理を行う。次に、ステップS10では比較信号であるPWM信号をONにして前記コイルに通電を行う。
ステップS5ではタイマー値Tが設定値tsと等しいか否かを判定する。判定結果が「YES」(等しい)である場合はステップS12に進み、判定結果が「NO」(等しくない)である場合はステップS11に進む。ステップS11では閾値判定回路の出力がONか否かを判定する。判定結果が「YES」(ON)である場合はステップS7に進み、判定結果が「NO」(ONではない)である場合はステップS9に進む。ステップS9ではタイマー値Tを加算処理してステップS5に戻り上述の処理を繰り返す。ステップS7ではセンサ故障フラグに「1」を設定してステップS12に進む。ステップS12では比較信号をOFFつまり前記コイルへの通電を終了してこの処理を終了する。
したがって、上述した第二の実施の形態によれば、とりわけ、コイル5に通電するための電流源を必要としないため、部品点数を削減してコストの低減を図ることができる点で有利となる。また、前記コイル5の電流I2を直接的に電圧信号として検出して、前記ホール素子4の検出信号と比較することができるため、故障の検出精度を向上させることができる。
次に、第三の実施の形態を図面に基づいて説明する。この第三の実施の形態は、第一の実施の形態で用いたコイル5を前記コア3の内側空間に貫通する被測定電流の変化量を検出する検出用コイルとして用いたものである。尚、第一の実施の形態と同一部分に同一符号を付して説明する。
図7に示すように、センサ部1は磁性体でエアギャップ2を有した略C字状に形成されたコア3と、前記エアギャップ3の磁束を検出するホール素子4と、前記コア3の内側の空間を貫通する電流の変化量を検出するコイル5とで構成されている。前記ホール素子4と前記コイル5とは、様々な入力信号に基づいて各種判定を行う信号処理回路17に接続されている。前記コア3の内側の空間には被測定電流が貫通するようにインバータ(図示略)7とモータ(図示略)Mとを接続する導線6が配置されている。
図8に示すように、前記信号処理回路17はセンサ基板18を有しており、このセンサ基板18上には第一入力回路19と第二入力回路20と、これら第一、第二入力回路19,20に接続された比較回路21とが実装されている。そして、前記第一入力回路19にはホール素子4が接続され、第二入力回路20にはコイル5が接続されている。前記比較回路21は第一入力回路19と第二入力回路20の出力信号を比較して故障判定を行うものである。以下、具体的なコイルの検出信号とホール素子の検出信号との比較判断波形を図9、図10に示す。尚、図9、図10では被測定電流の立ち下がり時に検出可能な各異常状態を示し、立ち上がり時に正常状態を示している。
図9(a)〜(c)において各々横軸を時間とし、図9(a)は縦軸を電流とした場合の被測定電流の波形を2サイクル分示し、図9(b)と図9(c)とは縦軸を電圧とした場合のコイル5の検出信号の波形と、ホール素子4の検出信号の波形とをそれぞれ2サイクル分示している。図9(a)に示すように、前記被測定電流は電流値が0から所定の角度で上昇し、立ち上がり時間t1後に電流の上限値Im1に至り一定値となる。そして、所定時間後、立ち上がり時と前後対象の角度で下降して立ち下がり時間t2後に電流値が0となる。また、上述した被測定電流の一連の波形を1サイクル目とした場合、所定時間後に1サイクル目の波形と同様の2サイクル目の波形が立ち上がる。尚、2サイクル目の波形については後述する。
図9(b)に示すように、被測定電流の1サイクル目に対応するコイルの検出信号は、前記被測定電流が変化している立ち上がり時間t1と立ち下がり時間t2の間にだけ電圧値が上昇する矩形波となるが、ここでは立ち下がり時に前記矩形波が出力されていない異常状態となっている。この時、図9(c)に示すように、前記ホール素子4の検出信号は被測定電流に応じた波形となっており、このホール素子4の検出信号によって被測定電流が変化していることを判定することができる。すなわち、立ち下がり時間t2では前記ホール素子4の検出信号が出力されている時に、同時に出力されているはずのコイル5の検出信号が出力されていないため、センサ部1の診断異常判定がなされることとなる。
次に、図9に示す2サイクル目の波形について説明する。この2サイクル目の波形は立ち下がり時に前記ホール素子4の出力信号が固着する異常状態の一例を示している。図9(b)に示すように、被測定電流が変化する立ち上がり時間t1と立ち下がり時間t2とにおいて、前記コイル5の検出信号の波形が前記被測定電流の変化量に応じた矩形波となっている。
一方、前記ホール素子4の検出信号は、立ち上がり時間t1において前記被測定電流に応じて上昇する波形となっているが、立ち下がり時間t2では前記被測定電流が減少しているにも関わらず出力が維持されている。すなわち、前記コイル5の検出信号によって被測定電流が変化していることを検出しているにも関わらず、ホール素子4の検出信号が変化せずに一定値を示している場合には、センサ部1の固着判定がなされることとなる。
次に、この判定を行う処理を図11のフローチャートに基づいて具体的に説明する。
まず、ステップS13ではコイルの検出信号に変化が有るか否かを判定する。判定結果が「YES」(変化あり)である場合はステップS14に進み、判定結果が「NO」(変化なし)である場合はステップS17に進む。
ステップS14ではホール素子の検出信号に変化があるか否かを判定する。判定結果が「YES」(変化あり)である場合はステップS15に進み正常状態と判定し、判定結果が「NO」である場合はステップS16に進み異常状態と判定する。一方、ステップS17では、ホール素子の検出信号に変化があるか否かを判定する。判定結果が「YES」(変化あり)である場合はステップS18に進み異常状態と判定し、判定結果が「NO」(変化なし)である場合はステップS19に進み正常状態と判定する。
すなわち、上述の故障判定処理を行うことで前記コイル5又は前記ホール素子4の検出信号が固着状態又は無信号状態であることを検出することができる。
しかしながら、前記検出信号の電圧値が変化していても、この電圧値が正常値でないような故障モードでは上述の故障判定処理を用いて故障状態を判定することができず、その結果、故障判定の精度が低くなってしまう。そこで、上述の故障判定処理に加え、前記コイル5と前記ホール素子4との各々の検出信号から被測定電流の電流変化量を算出し、これらの変化量を比較することで検出信号の異常状態を判定する故障判定処理を行っている。これを図10と図12に基づいて具体的に説明する。
前述した図9と同様に、図10(a)〜(c)はそれぞれ横軸を時間とし、図10(a)は縦軸を電流とした場合の被測定電流の波形を2サイクル分示し、図10(b)と図10(c)とは縦軸を電圧とした場合のコイルの検出信号の波形とホール素子4の検出信号の波形とを2サイクル分示している。図10(a)に示すように、被測定電流は電流値が0から徐々に時間変化量が大きくなるように立ち上がり、時間t3経過後に被測定電流の上限値Im2に至る。そして、所定時間経過するまで前記上限値Im2で一定となり、所定時間が経過すると、前記立ち上がり時と前後対称の傾斜で減少し、立ち下がり時間t4後に前記被測定電流の電流値が0に至る。前述した図9と同様に、この一連の電流値の変化を1サイクルとすると、所定時間経過後に1サイクル目と同様の2サイクル目の波形が立ち上がる。尚、2サイクル目の波形については後述する。
図10(b)に示すように、被測定電流の1サイクル目に対応するコイルの検出信号は、前記被測定電流が変化している立ち上がり時間t3と立ち下がり時間t4の時にだけ電圧値が上昇する。このコイルの検出信号は、被測定電流の立ち上がり時間t3での電流変化量によって決まる角度で上昇し、前記被測定電流が上限値Im2に達して電流の変化がなくなる時点、つまり、上昇開始から時間t3が経過した時点で電圧値はピーク値Vpに至ると同時に0となり、この時の電圧波形は直角三角形状を呈することとなる。
一方、被測定電流の立ち下がり時には、立ち下がり時間t4での電流変化量によって決まる角度、すなわち前記立ち上がり時の電圧波形と前後対象となる角度で電圧値が減少する直角三角形状の電圧波形となるが、ここでは前記直角三角形状の電圧波形のピーク値Vp2が正常時のピーク値Vp1よりも低く異常状態となっている。
図10(c)に示すように、前記ホール素子4の検出信号は被測定電流に応じた電圧波形となっている。ここで、前記コイル5の検出信号に基づいて前記被測定電流の電流変化量を算出し、さらに、前記ホール素子4の検出信号に基づいて被測定電流の電流変化量を算出して各電流変化量の算出結果を比較している。ここでは、前記コイル5の検出信号に基づいて算出した電流変化量がホール素子4の検出信号に基づいて算出した電流変化量よりも低い値となるため、センサ部1の診断異常と判定することができる。
次に、図10に示す2サイクル目の波形について説明する。この2サイクル目の波形はこの波形の立ち下がり時に前記ホール素子4の検出信号が0に戻らない出力異常状態の一例を示している。図10(b)に示すように、被測定電流が変化する立ち上がり時間t3と立ち下がり時間t4において、前記被測定電流の変化量に応じて前記コイル5の検出信号は直角三角形状の波形となる。ここで、前述した1サイクル目の波形では立ち下がり時のピーク値が低下した状態の直角三角形状の波形であったが、2サイクル目の波形では立ち上がり、立ち下がり時ともに正常なピーク値Vp1の直角三角形状の波形となっている。
一方、図10(c)に示すように、ホール素子4の検出信号は、前記被測定電流の立ち上がり時間t3ではこの被測定電流に応じた立ち上がりとなっているが、立ち下がり時間t4では前記被測定電流の電流値が0になってもホール素子4の検出信号が0とならず一定の電圧値を示している。この場合、前記ホール素子4の検出信号に基づいて算出する被測定電流の変化量は、前記コイル5の検出信号に基づいて算出する被測定電流の変化量よりも低くなるため、センサ部1の出力異常と判定することができる。
次に、この判定処理を図12のフローチャートに基づいて具体的に説明する。
まず、ステップS20ではコイルの検出信号に基づいて被測定電流の電流変化量を算出する。ステップS21ではホール素子の検出信号に基づいて被測定電流の電流変化量を算出する。ステップS22では算出された各電流変化量が等しいか否かを判定する。判定結果が「YES」(等しい)である場合はステップS23に進み正常状態と判定し処理を終了する。一方、判定結果が「NO」(等しくない)である場合はステップS24に進み異常状態と判定し処理を終了する。
したがって、上述した第三の実施の形態によれば、複数のホール素子4を用いることなしに、センサ部1における固着状態や無信号状態等の異常状態を判定してセンサ部1の故障判定を行うことができるため、前記ホール素子4の数量を低減してコストの低減を図ることが可能となる。
さらに、前記導体6の被測定電流が変化している時であればいつでも故障判定を行うことができるため、瞬時に正確な故障の判別を行うことができる。
また、コイル5の検出信号に基づいて算出された電流変化量とホール素子4の検出信号に基づいて算出された電流変化量との差が所定値以上である場合に異常状態であることを判定することができるため、各検出信号は変化しているが、この値が異常であるような状態であっても、確実に故障と判定することができる。
尚、この発明は上述した各実施の形態に限られるものではない。例えば、図13に示すように信号処理回路から制御装置に対して故障判断信号を出力するようにして電流センサ22の故障判定を行っても良い。
また、上記第一、第二の実施の形態ではモータ制御モード時に故障判定を行っているが、電流が流れていないモードであればモータ制御モード以外のモードで故障判定を行ってもよい。また、ハイブリッド車両のモータに限られるものではなく、例えば、電気自動車のモータ等、種々のモータに用いることができる。
さらに、上述した各実施の形態のコアを省略して、ホール素子を直接1次導体近傍に配置するタイプの電流センサに用いてもよく、被測定電流の変化量を検出する検出用のコイルを1次導体に巻装してもよい。また、第一、第二の実施の形態のコア又は1次導体に第三の実施の形態の被測定電流の変化量を検出する検出用のコイルを巻装して故障を判定しても良い。
本発明の第一の実施の形態における電流センサのシステム構成図である。 本発明の第一の実施の形態における正常状態のホール素子の検出信号を示すグラフである。 本発明の第一の実施の形態における異常状態のホール素子の検出信号を示すグラフである。 本発明の第一の実施の形態における故障判定処理のフローチャートである。 本発明の第二の実施の形態における図1に相当するシステム構成図である。 本発明の第二の実施の形態における図2に相当するフローチャートである。 本発明の第三の実施の形態における図1に相当するシステム構成図である。 本発明の第三の実施の形態における図5の部分詳細図である。 本発明の第三の実施の形態における各検出信号のグラフである。 本発明の第三の実施の形態における各検出信号のグラフである。 本発明の第三の実施の形態における故障判定処理のフローチャートである。 本発明の第三の実施の形態における故障判定処理のフローチャートである。 本発明の第三の実施の形態における他の態様のシステム構成図である。
符号の説明
2 エアギャップ
3 コア(集磁コア)
4 ホール素子(磁束検出素子)
5 コイル
6 導線(1次導体)
8 電流源
9 制御装置
M モータ
B バッテリ
C コンタクタ(開閉器)

Claims (8)

  1. 集磁コアのエアギャップに磁束検出素子を配置し集磁コアを貫通する1次導体の電流値を測定する電流センサにおいて、集磁コアに磁束発生用のコイルを巻装し、制御装置から制御可能な電流源を前記コイルに接続し、1次導体への通電停止時に、制御装置を介して前記コイルに検査電流を流し、この時に前記磁束検出素子により検出された電流値に基づいて故障を判定することを特徴とする電流センサ。
  2. 前記1次導体は車両用のモータの駆動電流を通電する導線であって、エンジン始動前又はアイドルストップ時に故障の判定を行うことを特徴とする請求項1に記載の電流センサ。
  3. 前記モータと該モータへ電力供給するバッテリとの間に設けられた開閉器が開放状態の時に故障の判定を行うことを特徴とする請求項1に記載の電流センサ。
  4. 1次導体近傍に磁束検出素子を配置して1次導体の電流値を測定する電流センサにおいて、1次導体に監視用のコイルを巻装し、前記1次導体の電流の変化を監視用のコイルで検出した際に、磁束検出素子の検出電流に変化がない場合に故障と判定することを特徴とする電流センサ。
  5. 集磁コアのエアギャップに磁束検出素子を配置し集磁コアを貫通する1次導体の電流値を測定する電流センサにおいて、集磁コアに監視用のコイルを巻装し、前記1次導体の電流の変化を監視用のコイルで検出した際に、磁束検出素子の検出電流に変化がない場合に故障と判定することを特徴とする電流センサ。
  6. 監視電流の変化量と磁束検出素子による電流変化量の差が所定値以上の時に故障と判定することを特徴とする請求項4または請求項5に記載の電流センサ。
  7. 1次導体に監視用のコイルを巻装し、前記1次導体の電流の変化を監視用のコイルで検出した際に、磁束検出素子の検出電流に変化がない場合に故障と判定することを特徴とする請求項1記載の電流センサ。
  8. 前記集磁コアに監視用のコイルを巻装し、前記1次導体の電流の変化を監視用のコイルで検出した際に、磁束検出素子の検出電流に変化がない場合に故障と判定することを特徴とする請求項1記載の電流センサ。
JP2004337534A 2004-11-22 2004-11-22 電流センサ Pending JP2006145426A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004337534A JP2006145426A (ja) 2004-11-22 2004-11-22 電流センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004337534A JP2006145426A (ja) 2004-11-22 2004-11-22 電流センサ

Publications (2)

Publication Number Publication Date
JP2006145426A true JP2006145426A (ja) 2006-06-08
JP2006145426A5 JP2006145426A5 (ja) 2006-12-07

Family

ID=36625288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004337534A Pending JP2006145426A (ja) 2004-11-22 2004-11-22 電流センサ

Country Status (1)

Country Link
JP (1) JP2006145426A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180693A (ja) * 2008-02-01 2009-08-13 Tdk Corp 電流センサと電子制御ユニットとの間の断線検知システム
KR101886250B1 (ko) * 2017-03-23 2018-08-07 한밭대학교 산학협력단 에너지 미터링 기기 및 그 동작방법
JP2020112387A (ja) * 2019-01-09 2020-07-27 住友電気工業株式会社 センサ異常検出装置、分散型電源ユニット、及びセンサ異常判定方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180693A (ja) * 2008-02-01 2009-08-13 Tdk Corp 電流センサと電子制御ユニットとの間の断線検知システム
KR101886250B1 (ko) * 2017-03-23 2018-08-07 한밭대학교 산학협력단 에너지 미터링 기기 및 그 동작방법
JP2020112387A (ja) * 2019-01-09 2020-07-27 住友電気工業株式会社 センサ異常検出装置、分散型電源ユニット、及びセンサ異常判定方法
JP7215175B2 (ja) 2019-01-09 2023-01-31 住友電気工業株式会社 センサ異常検出装置、分散型電源システム、及びセンサ異常判定方法

Similar Documents

Publication Publication Date Title
JP4848216B2 (ja) 昇圧回路、モータ駆動回路及び電動パワーステアリング制御装置
US8164298B2 (en) System and method for detecting loss of isolation while an AC motor is operating
JP5882691B2 (ja) インバータシステムの故障検知装置
KR101818916B1 (ko) 영구자석 모터 고장진단장치, 시스템 및 방법
JP6649509B2 (ja) 車載制御装置
JP6516878B2 (ja) 電動機制御装置
KR20070021573A (ko) 모터 제어 장치, 그 제어방법 및 인버터부의 고장검출장치
JP2013088284A (ja) 電流センサの故障診断装置、センサシステム、電流センサの故障診断方法
JP2007068249A (ja) 電気自動車用リーク検出装置
CN105445525B (zh) 在具有霍尔传感器的电流传感器中的过电流识别
JP2010175276A (ja) 磁気比例式電流センサ
JP2005521058A (ja) 電流回路を検査するための回路装置および方法
JP4556918B2 (ja) 回生エネルギー消費回路を備える電源装置
JP2006145426A (ja) 電流センサ
KR101348543B1 (ko) 영구자석 모터의 권선 고장 판단 장치 및 그 방법
JP5678287B2 (ja) 電流センサ
JP2008263763A (ja) 車両用半導体リレー診断装置及び診断方法
US20100156432A1 (en) Method for Checking an Inductive Load
JP2011007542A (ja) 温度センサ異常判定装置
JP4534612B2 (ja) モータ駆動制御装置
JP2010522531A (ja) 制御装置におけるエラー検出
JP2006345683A (ja) 電流検出装置
JP5537360B2 (ja) 電気車制御装置
JP2006313135A (ja) ソレノイド故障検出装置
JP2006271159A (ja) 電動機巻線の絶縁破壊検出装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090908