JP2006144476A - Base-isolating device and building structure - Google Patents

Base-isolating device and building structure Download PDF

Info

Publication number
JP2006144476A
JP2006144476A JP2004338793A JP2004338793A JP2006144476A JP 2006144476 A JP2006144476 A JP 2006144476A JP 2004338793 A JP2004338793 A JP 2004338793A JP 2004338793 A JP2004338793 A JP 2004338793A JP 2006144476 A JP2006144476 A JP 2006144476A
Authority
JP
Japan
Prior art keywords
seismic isolation
damping
building structure
damping material
isolation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004338793A
Other languages
Japanese (ja)
Inventor
Hidekazu Nishimura
秀和 西村
Hisashi Miyahara
悠 宮原
Naoe Iwata
直衛 岩田
Namihiko Inoue
波彦 井上
Hiroyuki Osanawa
裕行 長縄
Atsushi Nakasone
淳 仲宗根
Morimasa Watakabe
守正 渡壁
Koji Takahashi
孝二 高橋
Yoshiaki Ito
嘉朗 伊藤
Yoshiya Nakamura
佳也 中村
Hiroaki Tatsugami
弘明 龍神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Building Research Institute
Fujita Corp
Chiba University NUC
Nishimatsu Construction Co Ltd
Maeda Corp
Kumagai Gumi Co Ltd
Sato Kogyo Co Ltd
Toda Corp
Hazama Ando Corp
Original Assignee
Building Research Institute
Hazama Gumi Ltd
Fujita Corp
Hazama Corp
Chiba University NUC
Nishimatsu Construction Co Ltd
Maeda Corp
Kumagai Gumi Co Ltd
Sato Kogyo Co Ltd
Toda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Building Research Institute, Hazama Gumi Ltd, Fujita Corp, Hazama Corp, Chiba University NUC, Nishimatsu Construction Co Ltd, Maeda Corp, Kumagai Gumi Co Ltd, Sato Kogyo Co Ltd, Toda Corp filed Critical Building Research Institute
Priority to JP2004338793A priority Critical patent/JP2006144476A/en
Publication of JP2006144476A publication Critical patent/JP2006144476A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a base-isolating device by which the load on a damping material of the base-isolating device and the cost are reduced, and the control over the optimum input in relation to the external force is materialized. <P>SOLUTION: The base-isolating device 1 comprises a connecting member 2 arranged to be substantially horizontal, a restoration material 3 and the damping material 4 which are connected to each other and are arranged on the upper layer of the connecting member 2, and the restoration material 5 and the damping material 6 which are connected to each other and are arranged on the lower layer of the connecting member 2 in a manner that the connecting member 2 is sandwiched. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば、建築構造物における免震装置と、それを適用した建築構造物に関するものである。   The present invention relates to a seismic isolation device in a building structure and a building structure to which the seismic isolation device is applied, for example.

従来、建築構造物が地震等の揺れに対する対策として、その構造物の剛性を高めることが一般に行われていたが、やがて、振動そのものに対して対応する受動型制振、若しくは、能動型制振、これらを組み合わせたハイブリッド型制振等の制振装置が使用されるようになる。これに対して、振動そのものを建築構造物に伝達されないように地盤と建築構造物とを絶縁する免震装置が提案されている。   Conventionally, it has been common practice to increase the rigidity of a building structure as a countermeasure against shaking such as an earthquake, but eventually, passive vibration control or active vibration control corresponding to the vibration itself will occur. Therefore, a vibration damping device such as a hybrid type vibration damping device that combines these is used. On the other hand, seismic isolation devices that insulate the ground from the building structure so that the vibration itself is not transmitted to the building structure have been proposed.

前記免震装置20は、図9に示すように、薄い鋼板とゴムシートを幾層にも積層した復元材21と、減衰材22とでなり、これにより地震等の揺れを受け流すものである。この免震装置においては、通常時に風等の影響により長期的な揺れが生じて構造物内部の人に違和感を与える場合があるので、風等の影響を受けないように、ダンパ等の減衰(制振)材22を設けている。   As shown in FIG. 9, the seismic isolation device 20 is composed of a restoring material 21 in which thin steel plates and rubber sheets are laminated in layers, and a damping material 22, thereby receiving a shake such as an earthquake. In this seismic isolation device, long-term vibration may occur due to the influence of wind and the like during normal times, which may cause strangeness to the people inside the structure. A vibration damping material 22 is provided.

このように、免震装置又は制振装置若しくはこれらの組み合わせたものが知られるようになったが、これらの装置において、振動に対する高い応答加速度抑制効果を発揮させて中層構造物から高層構造物にまで対応できるように、例えば、地面と構造物の間に免震装置を配設し、制御装置により開閉弁でオン・オフ制御される制振ダンパー等の制振装置を構造物の各階に配設したもの、または、高層構造物における下層部の複数層の水平剛性を低剛性にして免震構造に近い構造体にするとともに減衰装置を当該低層階の各階に配設したものが知られている(特許文献1乃至2参照)。
特開2000−240318号公報 特開平11−324392号公報
As described above, seismic isolation devices or vibration control devices or combinations thereof have been known, but in these devices, a high response acceleration suppression effect against vibration is exhibited to change from a middle layer structure to a higher layer structure. For example, a seismic isolation device is installed between the ground and the structure, and a vibration control device such as a vibration damper that is controlled on and off by an on-off valve by the control device is arranged on each floor of the structure. It is known that the horizontal rigidity of the lower layers of the lower layer in a high-rise structure is made low, making it a structure close to a seismic isolation structure, and a damping device is arranged on each lower floor (See Patent Documents 1 and 2).
JP 2000-240318 A JP 11-324392 A

しかし、上記の免震装置では、ダンパ等の減衰装置に要求される負荷が大きく、コストが嵩むという課題がある。また、制振ダンパーをコンピュータによるオン・オフ制御によって応答加速を抑制するには、制御システムの全体構成が複雑となり、免震装置として単独での使用が困難で、建物の振動特性を考慮して設計する必要があり、設計の自由度が少ない。   However, the above-described seismic isolation device has a problem that the load required for the damping device such as a damper is large and the cost increases. Also, in order to suppress response acceleration by controlling the damping damper with a computer, the overall configuration of the control system becomes complicated, making it difficult to use alone as a seismic isolation device, and considering the vibration characteristics of the building. It is necessary to design and there is little freedom of design.

更に、建築構造物の下層部を、その剛性を意図的に弱くし、免震構造に近い構造にして減衰装置を配設するのは、構造物自体の設計にも水平剛性を弱くするための特殊構造が必要となり、種々の設計上の制約が多く建築部材のコストも嵩むことになる。また、構造物と別に独立して免震装置としての設計ができないので、設計上の自由度が少ない。
本発明に係る免震装置と建築構造物とは、このような課題を解決するために提案されたものである。
Furthermore, the lower part of the building structure is intentionally weakened in its rigidity, and the damping device is arranged in a structure close to a seismic isolation structure in order to reduce the horizontal rigidity in the design of the structure itself. A special structure is required, and there are many design restrictions and the cost of building members increases. Moreover, since the design as a seismic isolation device cannot be performed independently of the structure, the degree of freedom in design is small.
The seismic isolation device and the building structure according to the present invention have been proposed in order to solve such problems.

本発明に係る免震装置の上記課題を解決して目的を達成するための要旨は、略水平に配設される連結部材と、該連結部材を挟んでその上層に連結して配設される復元材及び減衰材と、前記連結部材の下層に連結して配設される復元材及び減衰材とからなることである。
また、
前記上層の復元材及び減衰材の上面に上連結部材を設け、下層の復元材及び減衰材の下面に下連結部材を設けて、交換可能なユニットに形成されていること、;
前記上層の減衰材と下層の減衰材とは、それぞれが制御装置に接続されていて、若しくは、いずれか一方の減衰材が制御装置に接続されていて、上下連結部材の振動情報がフィードバックされる前記制御装置によって前記減衰材の減衰係数値が制御されること、;
を含むものである。
The gist for solving the above-mentioned problems of the seismic isolation device according to the present invention is to achieve a connection member disposed substantially horizontally and connected to the upper layer with the connection member interposed therebetween. It consists of a restoring material and a damping material, and a restoring material and a damping material that are connected to the lower layer of the connecting member.
Also,
An upper connecting member is provided on the upper surface of the upper restoring material and the damping material, and a lower connecting member is provided on the lower surface of the lower restoring material and the damping material, thereby forming a replaceable unit;
The upper damping material and the lower damping material are each connected to a control device, or one of the damping materials is connected to the control device, and vibration information of the upper and lower connecting members is fed back. A damping coefficient value of the damping material is controlled by the control device;
Is included.

本発明に係る建築構造物の上記課題を解決して目的を達成するための要旨は、前記本発明の免震装置を、建築構造物の基礎部と地盤との間に配設したこと、又は、建築構造物の基礎部と地盤との間と、一又は二以上の途中階層とに配設したことである。
更に、前記建築構造物の途中階層に免震装置を配設する際に、該建築構造物の地震応答における振動モードの節となる位置に配設したことを含むものである。
The gist for solving the above-mentioned problems of the building structure according to the present invention and achieving the object is that the seismic isolation device of the present invention is disposed between the foundation of the building structure and the ground, or It is that it was arrange | positioned between the foundation part of the building structure and the ground, and one or two or more intermediate layers.
Furthermore, when the seismic isolation device is disposed in the middle layer of the building structure, the seismic isolation device is disposed at a position that becomes a node of the vibration mode in the earthquake response of the building structure.

本発明の免震装置とそれを適用した建築構造物とによれば、前記連結部材の上下に設けられた復元部材と減衰材とに分割して当該免震装置を多層化することで、従来の免震装置よりも剛性を低くすることが容易であり、その役割が分担されることになる。即ち、大きな地震等による振動に対しては、下層の復元材と減衰材とが効き、風等の微笑な揺れに対しては、上層の減衰材が効くようになる。よって、上下層の減衰材を調整する自由度が増し、前記減衰部材の負荷を軽減させたり、高周波数成分の応答を任意に低減させたりすることが容易となる。
前記免震装置をユニット化することで、運搬や施工作業、及び、交換作業等が容易となると共に、設計において建築構造物側の制振設計と免震装置側の免震設計とを連関させる必要が無く、自由度が増大するものである。
更に、上下連結部材の振動情報、例えば、加速度等がフィードバックされる前記制御装置によって前記減衰材の減衰係数値が制御されるようにすることで、地震や風等の外部入力に対して、より適切な減衰能力に変更することが可能となり、免震性能が向上する。
建築構造物の中間層にも前記免震装置を配設することで、構造物の上部と下部との振動の絶縁が可能となって、制振に大きな効果を奏する。また、前記建築構造物の、主として地震応答における振動モードの節となる位置に配設すれば、地震等の揺れが大幅に減衰されて、振動の絶縁が確実なものとなる。
According to the seismic isolation device of the present invention and the building structure to which the seismic isolation device is applied, by dividing the seismic isolation device into multiple layers by dividing the restoration member and the damping material provided above and below the connecting member, It is easy to make the rigidity lower than that of the seismic isolation device, and its role is shared. That is, the lower-layer restoring material and the damping material are effective for vibration caused by a large earthquake and the like, and the upper-layer damping material is effective for a smile such as a wind. Accordingly, the degree of freedom for adjusting the upper and lower layers of the damping material is increased, and it becomes easy to reduce the load on the damping member and arbitrarily reduce the response of the high frequency component.
Unitizing the seismic isolation device facilitates transportation, construction work, replacement work, etc., and links the vibration control design on the building structure side with the seismic isolation design side on the seismic isolation device side in the design. There is no need, and the degree of freedom increases.
Furthermore, by controlling the damping coefficient value of the damping material by the control device that feeds back vibration information of the upper and lower connecting members, for example, acceleration and the like, it is more effective against external inputs such as earthquakes and winds. It becomes possible to change to an appropriate damping capacity, improving seismic isolation performance.
By disposing the seismic isolation device also in the intermediate layer of the building structure, it becomes possible to insulate vibrations between the upper part and the lower part of the structure, which has a great effect on damping. Further, if the building structure is disposed at a position that is mainly a node of a vibration mode in an earthquake response, a vibration such as an earthquake is greatly attenuated, and the insulation of the vibration is ensured.

本発明に係る免震装置1は、図1に示すように、略水平に配設される連結部材2と、該連結部材2を上下に挟んでその上層に連結して配設される復元材3及び減衰材4と、前記連結部材2の下層に連結して配設される復元材5及び減衰材6とからなる。この免震装置1は、建築構造物7と地盤8との間に設けられる。   As shown in FIG. 1, a seismic isolation device 1 according to the present invention includes a connecting member 2 arranged substantially horizontally, and a restoration material arranged by connecting the upper and lower layers of the connecting member 2 up and down. 3 and the damping material 4, and the restoring material 5 and the damping material 6 that are connected to the lower layer of the connecting member 2. The seismic isolation device 1 is provided between the building structure 7 and the ground 8.

前記連結部材2は、上下の復元材3,5と減衰材4,6とをそれぞれ連結するものであり、例えば、鋼製の平板体である。その質量は、建築構造物の上階の質量と同じか小さくして、適宜調整される。   The connecting member 2 connects the upper and lower restoring members 3 and 5 and the damping members 4 and 6, respectively, and is a flat plate made of steel, for example. The mass is adjusted as appropriate by making it the same as or smaller than the mass of the upper floor of the building structure.

前記復元材3と復元材5とは、薄い鋼板とゴムシートを積層したもので形成され、その剛性は、両者とも同じである。   The restoration material 3 and the restoration material 5 are formed by laminating thin steel plates and rubber sheets, and both have the same rigidity.

前記減衰材4と減衰材6とは、パッシブ型の減衰装置として、例えば、オイルダンパ、弾塑性部材、磁気粘性流体(Magnetorheological fluid)ダンパ、等である。この減衰材の減衰係数の設定に関しては、上層の減衰材4の減衰係数を、下層の減衰材6の減衰係数よりも小さくする。また、下層の減衰材6の減衰係数を、従来例の減衰材22の減衰係数(βとする)に対して、小さくしたり大きくしたり、適宜に設計目的に応じて設定する、若しくは制御装置で可変させるものである。   The damping material 4 and the damping material 6 are, for example, an oil damper, an elasto-plastic member, a magnetorheological fluid damper, etc. as passive damping devices. Regarding the setting of the damping coefficient of the damping material, the damping coefficient of the upper damping material 4 is made smaller than the damping coefficient of the lower damping material 6. Further, the damping coefficient of the lower-layer damping material 6 is made smaller or larger than the damping coefficient (β) of the conventional damping material 22, or appropriately set according to the design purpose, or a control device Is variable.

このような免震装置1を、建築構造物7と地盤8との間に設けた場合には、図2に示すような、地震が入力された場合に絶対座標系で示す水平方向の変形モードとなる。前記上層の減衰材4の減衰係数を、下層の減衰材6の減衰係数寄りも小さくすることで、風等の影響による揺れを十分に抑制することができるものである。   When such a seismic isolation device 1 is provided between the building structure 7 and the ground 8, a horizontal deformation mode indicated by an absolute coordinate system when an earthquake is input as shown in FIG. It becomes. By making the damping coefficient of the upper damping material 4 smaller than the damping coefficient of the lower damping material 6, it is possible to sufficiently suppress fluctuation due to the influence of wind or the like.

また、図3に示すように、他の実施例として、前記上層の減衰材4と下層の減衰材6とは、それぞれが制御装置(図では制御器)9に接続されていて、連結部材2の加速度が振動情報としてフィードバックされる前記制御装置9によって前記減衰材4,6の減衰係数値が制御されるようにする。   As shown in FIG. 3, as another embodiment, the upper layer damping material 4 and the lower layer damping material 6 are each connected to a control device (controller in the figure) 9, and the connecting member 2. The damping coefficient values of the damping materials 4 and 6 are controlled by the control device 9 that feeds back the acceleration as vibration information.

このセミアクティブダンパである前記減衰材4,6によって、減衰係数を大にしたり小にしたり制御することで、地震波や風等の外力に対して最も有効に制振するように、設定できるものである。例えば、風等の影響を抑えるには、前記上層の減衰材4の減衰係数を「大」にしたり、地震時には、「小」にしたり、下層の減衰材6の減衰係数を、構造物周囲の擁壁との間隙が十分ある場合には「小」にして加速度を抑え、逆に擁壁との間隙が少ない場合には、「大」にして、変位を抑えて、上層の減衰材4で加速度を抑えるようにその減衰係数を「小」にしたりするものである。   The damping members 4 and 6 that are semi-active dampers can be set so as to most effectively suppress external forces such as seismic waves and winds by controlling the damping coefficient to be larger or smaller. is there. For example, in order to suppress the influence of wind or the like, the damping coefficient of the upper damping material 4 is set to “large”, or is set to “small” during an earthquake, or the damping coefficient of the lower damping material 6 is set to around the structure. If there is a sufficient gap with the retaining wall, set it to “small” to suppress acceleration, and conversely, if the gap with the retaining wall is small, set it to “large” to suppress displacement, and use the upper damping material 4 The attenuation coefficient is made "small" so as to suppress the acceleration.

なお、場合によっては、上記減衰材4,6のうち、いずれか一方の減衰材が制御装置9に接続されて、制御できるようにしても良い。この場合には、例えば、上層の減衰材4をセミアクティブにして、風の影響があるときには、減衰係数を「大」にし、大地震等においては、減衰係数を「小」にして、入力を減衰させるものである。このように、前記減衰材4,6を、従来の免震装置の減衰材22の減衰係数よりも小さくしてそのコストを軽減させることができる。なお、下層の減衰材6の減衰係数を前記減衰材22の減衰係数よりも大きくすることがあってコストが嵩むことがあるが、それにより擁壁との間隙が狭い等の建築構造物周囲の厳しい環境に応じた設計が可能となるものである。   In some cases, one of the damping materials 4 and 6 may be connected to the control device 9 so as to be controlled. In this case, for example, the upper damping material 4 is made semi-active, and when there is a wind effect, the attenuation coefficient is set to “large”. Attenuate. In this way, the cost of the damping materials 4 and 6 can be reduced by making the damping materials 4 and 6 smaller than the damping coefficient of the damping material 22 of the conventional seismic isolation device. In addition, although the attenuation coefficient of the lower damping material 6 may be larger than the attenuation coefficient of the attenuation material 22, the cost may be increased, so that the gap between the retaining wall and the surrounding of the building structure is narrow. The design according to the severe environment is possible.

更に、他の実施例として、図4に示すように、前記免震装置1を建築構造物の基礎部と地盤との間と、一又は二以上の途中階層とに配設するものである。そして、前記免震装置1を中間層に設ける場合には、前記建築構造物7の地震応答における振動モードの節10となる位置に配設する。   Furthermore, as another embodiment, as shown in FIG. 4, the seismic isolation device 1 is disposed between the base portion of the building structure and the ground and at one or more intermediate levels. And when providing the said seismic isolation apparatus 1 in an intermediate | middle layer, it arrange | positions in the position used as the node 10 of the vibration mode in the earthquake response of the said building structure 7. FIG.

これにより、例えば、高層建築構造物7である場合に、前記免震装置1が節となる中間層に配設されることで、上層と下層との振動の絶縁が確実になされて、大きな制振効果が発揮されるものである。図5に免震装置1を中間層に配設した場合の水平変形モードの概略イメージを示す。なお、このようにして、途中階に免震装置1を配設することで、高層建築構造物7の任意の階層位置に節を設けることもできるのである。   As a result, for example, in the case of a high-rise building structure 7, the seismic isolation device 1 is disposed in an intermediate layer serving as a node, so that the vibration between the upper layer and the lower layer can be reliably insulated, and a large amount of control can be achieved. The vibration effect is demonstrated. FIG. 5 shows a schematic image of the horizontal deformation mode when the seismic isolation device 1 is disposed in the intermediate layer. In addition, by arranging the seismic isolation device 1 on the intermediate floor in this way, a node can be provided at an arbitrary hierarchical position of the high-rise building structure 7.

他の実施例として、図6に示すように、上層の復元材3及び減衰材4の上面に上連結蓋部材11を設け、下層の復元材5及び減衰材6の下面に下連結蓋部材12を設けて、交換可能なユニットに形成された免震装置1aとするものである。このユニット型の免震装置1aの平面形状は、矩形状でも円形状でも良い。前記上・下連結蓋部材11,12は、例えば、鋼製である。   As another embodiment, as shown in FIG. 6, an upper connection lid member 11 is provided on the upper surfaces of the upper restoration material 3 and the attenuation material 4, and the lower connection lid member 12 is provided on the lower surfaces of the lower restoration material 5 and the attenuation material 6. To provide a seismic isolation device 1a formed in a replaceable unit. The planar shape of the unit-type seismic isolation device 1a may be rectangular or circular. The upper and lower connecting lid members 11 and 12 are made of steel, for example.

このようなユニット型の免震装置1aであれば、免震適用対象の建築構造物7に対して、地震の入力に対してどの程度に制振させるかにおいて必要な個数を算出するなど、自由な設計が可能であり、予め地震の規模に対応した標準型の免震装置1aを複数種類用意しておくことで、建築設計に迅速な対応が可能となる。また、ユニット化することで、免震装置の輸送・運搬にも便宜となり、現場での免震装置の設置作業も効率的となる。   With such a unit-type seismic isolation device 1a, it is possible to freely calculate the number of units required to control the seismic isolation target building structure 7 with respect to the earthquake input. Design is possible, and by preparing a plurality of types of standard seismic isolation devices 1a corresponding to the magnitude of earthquakes in advance, it is possible to respond quickly to architectural design. The unitization also facilitates the transportation and transportation of the seismic isolation device, and the installation work of the seismic isolation device at the site becomes efficient.

本発明に係る免震装置1と従来の免震装置との比較した実施例における結果を示す。図7は、本発明の免震装置1を適用した建築構造物7を、モデル化したものである。
図中において、
符号Cg0は、下層の減衰材6の減衰係数、
符号Cg1は、上層の減衰材4の減衰係数、
符号Kg0は、下層の復元材5の剛性係数、
符号Kg1は上層の復元材3の剛性係数、
符号mgは、連結部材2の質量、
符号m1…m12は、各階の質量、
をそれぞれ示すものである。
The result in the Example compared with the seismic isolation apparatus 1 which concerns on this invention, and the conventional seismic isolation apparatus is shown. FIG. 7 shows a model of a building structure 7 to which the seismic isolation device 1 of the present invention is applied.
In the figure,
The symbol Cg0 is a damping coefficient of the lower damping material 6,
Reference sign Cg1 is an attenuation coefficient of the upper damping material 4,
The symbol Kg0 is the stiffness coefficient of the lower restoration material 5,
The symbol Kg1 is the stiffness coefficient of the restoring material 3 in the upper layer,
The symbol mg is the mass of the connecting member 2,
The symbols m1 to m12 are the masses of each floor,
Respectively.

この実験モデルに、例えば、阪神・淡路大震災の神戸の地震を入力した場合の屋根の加速度を従来例と比較した結果が、図8に示す特性曲線である。図9に示す従来例における免震装置20の、復元材21の剛性係数Kgと同じにして、その減衰材22の減衰係数をβとして、
図9(A)では、Cg0=β×1.4,Cg1=β×0.4,Kg1=Kg0=Kg(従来例),mg=m1/6とした例であり、
同図(B)では、Cg0=β×1.6,Cg1=β×0.4,Kg1=Kg0=Kg(従来例),mg=m1/6とした例であり、
同図(C)では、Cg0=β×2.0,Cg1=β×0.4,Kg1=Kg0=Kg(従来例),mg=m1/6とした例である。従来例の免震装置20(図中の破線)と比較して、本発明の免震装置1(実線)の加速度が顕著に抑制されているのが判る。
For example, the result of comparing the acceleration of the roof with the conventional example when a Kobe earthquake of the Great Hanshin-Awaji Earthquake was input to this experimental model is the characteristic curve shown in FIG. In the conventional seismic isolation device 20 shown in FIG. 9, the same as the stiffness coefficient Kg of the restoring material 21, and the damping coefficient of the damping material 22 is β,
9A shows an example in which Cg0 = β × 1.4, Cg1 = β × 0.4, Kg1 = Kg0 = Kg (conventional example), and mg = m1 / 6.
FIG. 5B shows an example in which Cg0 = β × 1.6, Cg1 = β × 0.4, Kg1 = Kg0 = Kg (conventional example), and mg = m1 / 6.
FIG. 6C shows an example in which Cg0 = β × 2.0, Cg1 = β × 0.4, Kg1 = Kg0 = Kg (conventional example), and mg = m1 / 6. It can be seen that the acceleration of the seismic isolation device 1 (solid line) of the present invention is significantly suppressed as compared with the conventional seismic isolation device 20 (broken line in the figure).

本発明に係る免震装置1の構成概略図である。1 is a schematic configuration diagram of a seismic isolation device 1 according to the present invention. 同本発明の免震装置1を使用した場合の建築構造物7の揺れを表したものである。This shows the shaking of the building structure 7 when the seismic isolation device 1 of the present invention is used. 本発明に係る他の実施例を示す概略構成図である。It is a schematic block diagram which shows the other Example which concerns on this invention. 本発明の他の実施例に係り、中間層に免震装置1を配設した場合の概略構成図である。It is related with the other Example of this invention, and is a schematic block diagram at the time of arrange | positioning the seismic isolation apparatus 1 in an intermediate | middle layer. 同他の実施例の概略構成図である。It is a schematic block diagram of the other Example. 同他の実施例に係る免震装置1aの縦断面図である。It is a longitudinal cross-sectional view of the seismic isolation apparatus 1a which concerns on the other Example. 本発明に係る免震装置1の実験モデルの概略構成図である。It is a schematic block diagram of the experimental model of the seismic isolation apparatus 1 which concerns on this invention. 実験データを図に表したも特性曲線図(A),(B),(C)である。Although the experimental data are shown in the figure, they are characteristic curve diagrams (A), (B), and (C). 従来例に係る免震装置20を使用した例の概略構成図である。It is a schematic block diagram of the example which uses the seismic isolation apparatus 20 which concerns on a prior art example.

符号の説明Explanation of symbols

1,1a 免震装置、
2 連結部材、
3 上層の復元材、
4 上層の減衰材、
5 下層の復元材、
6 下層の減衰材、
7 建築構造物、
8 地盤、
9 制御装置(制御器)
10 節。
11 上連結蓋部材、
12 下連結蓋部材、
20 従来の免震装置、
21 復元材、
22 減衰材。
1,1a Seismic isolation device,
2 connecting members,
3 Upper layer restoration material,
4 Upper damping material,
5 Underlying restoration material,
6 Lower damping material,
7 Building structures,
8 Ground,
9 Control device (controller)
Tenth verse.
11 Upper connecting lid member,
12 Lower connecting lid member,
20 Conventional seismic isolation device,
21 Restoration material,
22 Damping material.

Claims (5)

略水平に配設される連結部材と、該連結部材を挟んでその上層に連結して配設される復元材及び減衰材と、前記連結部材の下層に連結して配設される復元材及び減衰材とからなること、
を特徴とする免震装置。
A connecting member disposed substantially horizontally; a restoring material and a damping material disposed by being connected to an upper layer of the connecting member; a restoring material disposed to be connected to a lower layer of the connecting member; Consisting of damping material,
A seismic isolation device.
上層の復元材及び減衰材の上面に上連結部材を設け、下層の復元材及び減衰材の下面に下連結部材を設けて、交換可能なユニットに形成されていること、
を特徴とする請求項1に記載の免震装置。
An upper connecting member is provided on the upper surface of the upper layer restoring material and the damping material, and a lower connecting member is provided on the lower surface of the lower layer restoring material and the damping material, and is formed in a replaceable unit.
The seismic isolation device according to claim 1.
上層の減衰材と下層の減衰材とは、それぞれが制御装置に接続されていて、若しくは、いずれか一方の減衰材が制御装置に接続されていて、連結部材の振動情報がフィードバックされる前記制御装置によって前記減衰材の減衰係数値が制御されること、
を特徴とする請求項1または2に記載の免震装置。
The upper damping material and the lower damping material are connected to the control device, respectively, or one of the damping materials is connected to the control device, and the vibration information of the connecting member is fed back. A damping coefficient value of the damping material is controlled by a device;
The seismic isolation device according to claim 1 or 2.
請求項1乃至請求項3に記載の免震装置を、建築構造物の基礎部と地盤との間に配設したこと、又は、建築構造物の基礎部と地盤との間と、一又は二以上の途中階層とに配設したこと、
を特徴とする建築構造物。
The seismic isolation device according to any one of claims 1 to 3 is disposed between the foundation portion of the building structure and the ground, or between the foundation portion and the ground of the building structure, or one or two. Arranged in the middle of the above,
A building structure characterized by
建築構造物の途中階層に免震装置を配設する際に、該建築構造物の地震応答における振動モードの節となる位置に配設したこと、
を特徴とする請求項4に記載の建築構造物。
When the seismic isolation device is arranged in the middle of the building structure, it is arranged at a position that becomes a node of the vibration mode in the earthquake response of the building structure,
The building structure according to claim 4.
JP2004338793A 2004-11-24 2004-11-24 Base-isolating device and building structure Pending JP2006144476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004338793A JP2006144476A (en) 2004-11-24 2004-11-24 Base-isolating device and building structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004338793A JP2006144476A (en) 2004-11-24 2004-11-24 Base-isolating device and building structure

Publications (1)

Publication Number Publication Date
JP2006144476A true JP2006144476A (en) 2006-06-08

Family

ID=36624485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004338793A Pending JP2006144476A (en) 2004-11-24 2004-11-24 Base-isolating device and building structure

Country Status (1)

Country Link
JP (1) JP2006144476A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007793A (en) * 2008-06-27 2010-01-14 Ohbayashi Corp Base isolation structure
JP2010070909A (en) * 2008-09-16 2010-04-02 Shimizu Corp Base-isolated structure
JP2010077726A (en) * 2008-09-26 2010-04-08 Shimizu Corp Seismic control structure
JP2011116468A (en) * 2009-11-30 2011-06-16 Mitsui Eng & Shipbuild Co Ltd Quay crane and method of controlling the same
JP2011144044A (en) * 2010-07-14 2011-07-28 Jfe Engineering Corp Base isolation structure for travelling crane
WO2013105480A1 (en) * 2012-01-10 2013-07-18 オイレス工業株式会社 Seismic isolation mechanism
JP2013234425A (en) * 2012-05-02 2013-11-21 Hayashi Bussan Hatsumei Kenkyusho:Kk Method for base isolation of building
JP2018009442A (en) * 2016-07-01 2018-01-18 清水建設株式会社 Base-isolated structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02209567A (en) * 1989-02-07 1990-08-21 Kajima Corp Variable damping and variable rigidity structure
JPH04277273A (en) * 1991-03-01 1992-10-02 Kajima Corp Damping structure
JPH0518439A (en) * 1991-07-09 1993-01-26 Fujita Corp Base isolation supporting device
JPH0559840A (en) * 1991-08-30 1993-03-09 Kajima Corp High damping structure
JPH08326841A (en) * 1995-05-31 1996-12-10 Bridgestone Corp Base isolation support device
JPH09235910A (en) * 1996-02-29 1997-09-09 Ishikawajima Harima Heavy Ind Co Ltd Damper of building
JP2000291733A (en) * 1999-04-05 2000-10-20 Taisei Corp Compound base isolation unit and base isolation structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02209567A (en) * 1989-02-07 1990-08-21 Kajima Corp Variable damping and variable rigidity structure
JPH04277273A (en) * 1991-03-01 1992-10-02 Kajima Corp Damping structure
JPH0518439A (en) * 1991-07-09 1993-01-26 Fujita Corp Base isolation supporting device
JPH0559840A (en) * 1991-08-30 1993-03-09 Kajima Corp High damping structure
JPH08326841A (en) * 1995-05-31 1996-12-10 Bridgestone Corp Base isolation support device
JPH09235910A (en) * 1996-02-29 1997-09-09 Ishikawajima Harima Heavy Ind Co Ltd Damper of building
JP2000291733A (en) * 1999-04-05 2000-10-20 Taisei Corp Compound base isolation unit and base isolation structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007793A (en) * 2008-06-27 2010-01-14 Ohbayashi Corp Base isolation structure
JP2010070909A (en) * 2008-09-16 2010-04-02 Shimizu Corp Base-isolated structure
JP2010077726A (en) * 2008-09-26 2010-04-08 Shimizu Corp Seismic control structure
JP2011116468A (en) * 2009-11-30 2011-06-16 Mitsui Eng & Shipbuild Co Ltd Quay crane and method of controlling the same
JP2011144044A (en) * 2010-07-14 2011-07-28 Jfe Engineering Corp Base isolation structure for travelling crane
WO2013105480A1 (en) * 2012-01-10 2013-07-18 オイレス工業株式会社 Seismic isolation mechanism
JP2013142429A (en) * 2012-01-10 2013-07-22 Oiles Corp Mechanism for seismic base isolation
US9097309B2 (en) 2012-01-10 2015-08-04 Oiles Corporation Seismic isolation mechanism
US9238919B2 (en) 2012-01-10 2016-01-19 Oiles Corporation Seismic isolation mechanism
JP2013234425A (en) * 2012-05-02 2013-11-21 Hayashi Bussan Hatsumei Kenkyusho:Kk Method for base isolation of building
JP2018009442A (en) * 2016-07-01 2018-01-18 清水建設株式会社 Base-isolated structure

Similar Documents

Publication Publication Date Title
JP5316850B2 (en) Seismic isolation structure
JP2010007793A (en) Base isolation structure
JP2006144476A (en) Base-isolating device and building structure
JP2010070908A (en) Seismic control structure
JP2010203150A (en) Seismic response control frame
JP2005240839A (en) Multilayered vibration insulation connection mechanism
JP2017071908A (en) Multistoried base-isolated structure
JP2006077395A (en) Supporting device for bridge
JP6441090B2 (en) Seismic isolation structure
JP3671317B2 (en) Seismic isolation mechanism
JP7502144B2 (en) Vibration-damping structure
JP3749818B2 (en) Seismic isolation devices, buildings with seismic isolation devices
JP2000054506A (en) Uplift prevention device for base isolated building and base isolated construction for light-weight building provided therewith
JP2003254384A (en) Hybrid type base isolation device
JP2002047828A (en) Highly damping frame for building
JP4828951B2 (en) Laminated rubber bearing and seismic isolation system
US20020166295A1 (en) Earthquake-protective building buffer
JP6951860B2 (en) Seismic isolation structure
JP7351732B2 (en) Building vibration damping mechanism
JP7357504B2 (en) Seismic isolation structure of buildings
JP2022116682A (en) Coupling vibration control structure
JPH08326812A (en) Layered rubber body using high damping rubber
JPH02157326A (en) Low vibration ground
JP2000074137A (en) Base isolation device
JP6327447B2 (en) Seismic isolation structure with fail-safe mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

RD03 Notification of appointment of power of attorney

Effective date: 20091020

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A131 Notification of reasons for refusal

Effective date: 20100520

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100930