JP7357504B2 - Seismic isolation structure of buildings - Google Patents
Seismic isolation structure of buildings Download PDFInfo
- Publication number
- JP7357504B2 JP7357504B2 JP2019183695A JP2019183695A JP7357504B2 JP 7357504 B2 JP7357504 B2 JP 7357504B2 JP 2019183695 A JP2019183695 A JP 2019183695A JP 2019183695 A JP2019183695 A JP 2019183695A JP 7357504 B2 JP7357504 B2 JP 7357504B2
- Authority
- JP
- Japan
- Prior art keywords
- seismic isolation
- horizontal rigidity
- rubber
- rubber bearing
- bearing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Vibration Prevention Devices (AREA)
Description
本発明は、多層階の建物が、上部構造物と下部構造物とに区分けされ、その上部構造物がTMDの錘として機能するように、前記上部構造物と下部構造物との間の中間階に免震支承が設置される建物の免震構造に関する。 The present invention provides an intermediate floor between the upper structure and the lower structure so that a multi-story building is divided into an upper structure and a lower structure, and the upper structure functions as a weight of TMD. Regarding the seismic isolation structure of buildings in which seismic isolation bearings are installed.
このような建物の免震構造としては、従来、免震支承として積層ゴムからなる免震ゴム支承を使用したものが知られており、その場合、積層ゴムとして、通常負担すべき軸力に見合う通常の水平剛性を有する積層ゴムを選択して使用していたのが実情である。しかしながら、その場合、上部構造物の震動は抑制できるが、逆に、下部構造物の震動が大きくなり、この点に改良の余地があった。
そこで、従来、免震支承である積層ゴムとして、特異な数式により算出される水平剛性を有する積層ゴムを使用し、更に、特異な数式により算出される減衰定数を備えた減衰力発生手段(オイルダンパ)を使用することで、上部構造物の震動に加えて下部構造物の震動も抑制するように構成したものが提案された(例えば、特許文献1参照)。
As a seismic isolation structure for such a building, it is known that a seismic isolation rubber bearing made of laminated rubber is used as the seismic isolation bearing. The reality is that laminated rubber with normal horizontal rigidity has been selected and used. However, in that case, although the vibrations of the upper structure can be suppressed, the vibrations of the lower structure become larger, and there is room for improvement in this respect.
Therefore, conventionally, as the laminated rubber for seismic isolation bearings, laminated rubber having horizontal rigidity calculated by a unique mathematical formula is used, and furthermore, a damping force generating means (oil A structure has been proposed in which the vibration of the lower structure is suppressed in addition to the vibration of the upper structure by using a damper (for example, see Patent Document 1).
しかしながら、上記特許文献1に記載の従来技術では、特殊な水平剛性を有する積層ゴムを必要とするため、必ずしも市販の免震用の積層ゴムをそのまま使用し得るとは限らず、場合によっては、特注する必要があり、材料費の高騰を招く可能性がある。その上、減衰力発生手段も必要不可欠で、かつ、その減衰力発生手段に関しても、市販のものがそのまま使用し得るとは限らず、特注の可能性もある。
However, the conventional technology described in
本発明は、このような従来の問題点に着目したもので、その目的は、特殊な免震ゴム支承を必要とせず、市販の免震ゴム支承を使用し得るのもかかわらず、上部構造物と下部構造物の震動に伴う変形を効果的に抑制することが可能な建物の免震構造を提供することにある。 The present invention has focused on such conventional problems, and its purpose is to improve the structure of superstructures even though commercially available seismic isolation rubber bearings can be used without requiring special seismic isolation rubber bearings. The object of the present invention is to provide a base isolation structure for a building that can effectively suppress the deformation of a substructure due to vibration.
本発明の第1特徴構成は、多層階の建物が、上部構造物と下部構造物とに区分けされ、その上部構造物がTMDの錘として機能するように、前記上部構造物と下部構造物との間の中間階に免震支承が設置される建物の免震構造であって、
前記免震支承が、製品において軸力が大きいほど水平剛性が高く且つ積層ゴムとは別に減衰力発生手段を有さない天然ゴム系積層ゴムのシリーズの免震ゴム支承であって、その免震ゴム支承として、前記上部構造物の重量から算出される軸力に対応して使用される製品の水平剛性に対して、2.0~4.0倍の高い水平剛性を有する製品が使用される点にある。
A first characteristic configuration of the present invention is that a multi-story building is divided into an upper structure and a lower structure, and the upper structure and the lower structure are separated so that the upper structure functions as a weight of TMD. A seismic isolation structure for a building in which seismic isolation bearings are installed on the intermediate floor between
The seismic isolation bearing is a seismic isolation rubber bearing of a series of natural rubber-based laminated rubber that has a higher horizontal rigidity as the axial force is larger in the product and does not have a damping force generating means separate from the laminated rubber , As the rubber bearing, a product is used that has a horizontal rigidity that is 2.0 to 4.0 times higher than the horizontal rigidity of the product used in response to the axial force calculated from the weight of the superstructure. At the point.
本構成によれば、建物の中間階に設置される免震支承が、免震ゴム支承であって、通常負担すべき軸力に見合う通常の水平剛性に対して、2.0~4.0倍の高い水平剛性を有するので、例えば、市販の免震ゴム支承を使用しても、上部構造物の震動に伴う変形はもちろんのこと、下部構造物の変形も効果的に抑制することができる。
すなわち、後に詳しく説明するように、本発明者らが各種のシミュレーションを繰り返して解析を試みた結果、免震ゴム支承が、通常負担すべき軸力に見合う通常の水平剛性に対して、2.0~4.0倍の高い水平剛性を有する場合、特にオイルダンパなどの減衰力発生手段を使用しなくても、上部構造物の震動に加えて、下部構造物の震動をも抑制し得る事実を知見するに至った。
本発明は、このような新知見に基づくものであり、特殊な免震ゴム支承を必要とせず、市販の免震ゴム支承を使用し得るのもかかわらず、上部構造物と下部構造物の震動に伴う変形を効果的に抑制することが可能となる。
According to this configuration, the seismic isolation bearing installed on the intermediate floor of the building is a seismic isolation rubber bearing, and the normal horizontal rigidity corresponding to the axial force that should normally be borne is 2.0 to 4.0. Because it has twice as high horizontal rigidity, for example, even if commercially available seismic isolation rubber bearings are used, it is possible to effectively suppress not only the deformation caused by vibrations of the upper structure, but also the deformation of the lower structure. .
That is, as will be explained in detail later, as a result of repeated various simulations and analyzes by the present inventors, it was found that the seismic isolation rubber bearing has 2. The fact that when the horizontal rigidity is as high as 0 to 4.0 times, it is possible to suppress the vibrations of the lower structure in addition to the vibrations of the upper structure, even without using damping force generating means such as oil dampers. I came to the conclusion that
The present invention is based on such new knowledge, and although a commercially available seismic isolation rubber bearing can be used without the need for a special seismic isolation rubber bearing, it is possible to prevent vibrations in the upper and lower structures. This makes it possible to effectively suppress the deformation caused by this.
本発明の第2特徴構成は、前記免震ゴム支承として、前記上部構造物の重量から算出される軸力に対応して使用される製品の水平剛性に対して、2.5~3.0倍の高い水平剛性を有する製品が使用される点にある。 A second feature of the present invention is that the horizontal rigidity of the product used as the seismic isolation rubber support is 2.5 to 3.0 in accordance with the axial force calculated from the weight of the upper structure. The point is that products with twice as high horizontal rigidity are used .
本構成によれば、免震ゴム支承が、通常の水平剛性に対して、2.5~3.0倍の高い水平剛性を有するので、後述するシミュレーション結果から明らかなように、たとえオイルダンパなどの減衰力発生手段を設けなくても、上部構造物と下部構造物の震動を確実に抑制することができる。 According to this configuration, the seismic isolation rubber bearing has a horizontal rigidity that is 2.5 to 3.0 times higher than that of a normal horizontal rigidity. The vibrations of the upper structure and the lower structure can be reliably suppressed without providing any damping force generating means.
本発明の第3特徴構成は、前記中間階が、前記多層階の建物の上から1/2~1/4の高さ階に設定される点にある。 A third feature of the present invention is that the intermediate floor is set at a height of 1/2 to 1/4 from the top of the multi-story building.
本構成によれば、免震ゴム支承を設置する中間階が、多層階の建物の上から1/2~1/4の高さ階に設定されるので、建物の上部構造物と下部構造物との質量上の関係、つまり、TMDの錘として機能する上部構造物の質量が、下部構造物の質量に対して理想に近い状態となり、上部構造物、下部構造物、および、免震ゴム支承で構成される震動系が、所望どおりに機能して確実な制震が可能となる。 According to this configuration, the intermediate floor where the seismic isolation rubber bearing is installed is set at a height of 1/2 to 1/4 from the top of the multi-story building, so the upper and lower structures of the building are In other words, the mass of the upper structure, which functions as the weight of the TMD, is close to ideal with respect to the mass of the lower structure, and the upper structure, lower structure, and seismic isolation rubber bearing The vibration system made up of these functions as desired and enables reliable vibration control.
本発明の第4特徴構成は、前記中間階が、前記多層階の建物の上から1/3程度の高さ階に設定される点にある。 A fourth characteristic configuration of the present invention is that the intermediate floor is set at a height of about ⅓ from the top of the multi-story building.
本構成によれば、免震ゴム支承を設置する中間階が、多層階の建物の上から1/3程度の高さ階に設定されるので、上部構造物、下部構造物、および、免震ゴム支承で構成される震動系は、更に理想に近い状態となり、より一層確実な制震が可能となる。
特に、免震ゴム支承が、通常の水平剛性に対して、2.5~3.0倍の高い水平剛性を有する場合には、理想に近い震動系との協働作用によって更に顕著な制震効果を期待することができる。
本発明の第5特徴構成は、前記免震ゴム支承が、(株)ブリヂストン製の天然ゴム系積層ゴムのNHシリーズである点にある。
According to this configuration, the intermediate floor where the seismic isolation rubber bearing is installed is set at a height of about 1/3 from the top of the multi-story building, so the upper structure, the lower structure, and the seismic isolation The vibration system made up of rubber bearings will be in a state closer to the ideal, making even more reliable vibration control possible.
In particular, if the seismic isolation rubber bearing has a horizontal rigidity that is 2.5 to 3.0 times higher than normal horizontal rigidity, the seismic isolation rubber bearing will have even more significant vibration control due to the cooperation with the ideal seismic system. You can expect good results.
A fifth characteristic configuration of the present invention is that the seismic isolation rubber bearing is a natural rubber-based laminated rubber NH series manufactured by Bridgestone Corporation.
本発明による建物の免震構造の実施形態を図面に基づいて説明する。
本発明の建物の免震構造は、図1に示すように、例えば、22階建ての多層階の建物1が、15階以上の上部構造物2と14階以下の下部構造物3とに区分けされ、その上部構造物2がTMD(チューンドマスダンパー)の錘として機能するように、上部構造物2と下部構造物3との間の中間階4に免震支承としての免震ゴム支承5が設置される。つまり、14階と15階との間の中間階4において、複数の柱6のそれぞれに免震ゴム支承5が介装されて設置される。
そして、各免震ゴム支承5としては、通常負担すべき軸力に見合う通常の水平剛性に対して、2.0~4.0倍の高い水平剛性を有する市販の免震ゴム支承5が使用される。
Embodiments of a seismic isolation structure for a building according to the present invention will be described based on the drawings.
As shown in FIG. 1, the seismic isolation structure of a building of the present invention is such that, for example, a 22-story
As each seismic isolation rubber bearing 5, a commercially available seismic isolation rubber bearing 5 is used, which has a horizontal rigidity 2.0 to 4.0 times higher than the normal horizontal rigidity corresponding to the axial force that should normally be borne. be done.
本発明者らが各種のシミュレーションを繰り返して解析を試みた結果、上述したように、免震ゴム支承5として、通常負担すべき軸力に見合う通常の水平剛性に対して、2.0~4.0倍の高い水平剛性を有する免震ゴム支承5を使用することにより、多層階の建物1の上部構造物2と下部構造物3の震動を効果的に抑制し得ることを知見するに至った。
そのシミュレーションの一例について説明すると、22階建ての多層階ビルを対象として、免震ゴム支承5を設置しない場合と設置した場合における各層の層間変形角について解析した。その結果が図2~図4のグラフであり、各グラフにおいて、縦軸はビルの階層、横軸は層間変形角(×1/1000rad)を示し、〇と●は日本において過去に発生した2つの地震の具体的な振動を付与したときの結果を示す。なお、免震ゴム支承5は、14階と15階の間に設置するものとし、その場合、15階以上の上部構造物2の重量は、13.256(t)×9.8(N/kg)で、19本の柱6にそれぞれ免震ゴム支承5を介装して設置するとすれば、免震ゴム支承5ひとつ当たりにかかる重量は、13.256(t)×9.8(N/kg)/19≒6837(kN)となる。
As a result of repeated analysis by the inventors of various simulations, it was found that, as mentioned above, the seismic isolation rubber bearing 5 has a normal horizontal rigidity of 2.0 to 4. It has been found that vibrations of the
To explain an example of the simulation, the interstory deformation angle of each floor was analyzed for a 22-story multi-story building with and without seismic
図3のグラフは、免震ゴム支承5を設置しない普通の多層階ビルの場合であり、〇も●も共に、15階付近の階において12/1000radに設定した基準線を上回る大きな変形が確認され、特に、〇について顕著な変形が確認される。
図4のグラフは、通常負担すべき軸力に見合う通常の水平剛性を有する免震ゴム支承5を設置した場合である。例えば、(株)ブリヂストン製の天然ゴム系積層ゴムのNHシリーズを使用するとすれば、ひとつの免震ゴム支承5の負担軸力が6837(kN)であるから、安全を見込んで軸力7630(kN)のNH090G4(製品呼称)の免震ゴム支承5を使用することになり、その免震ゴム支承5は1.26(×1000kN/m)の水平剛性を備えている。そのNH090G4を設置した場合には、図4のグラフから明らかなように、15階付近の階を含む上部階において顕著な制震効果が確認される反面、5階より下の下部階において基準線を上回る非常に大きな変形が認められる。
なお、この図4のグラフと後述する図2のグラフにおいて、グラフの線が分断している部分は、免震ゴム支承5を設置した中間階近辺の階層である。
The graph in Figure 3 shows the case of an ordinary multi-story building that does not have seismic
The graph in FIG. 4 shows a case where a seismic isolation rubber bearing 5 having normal horizontal rigidity commensurate with the axial force that should normally be borne is installed. For example, if we use the NH series of natural rubber laminated rubber manufactured by Bridgestone Corporation, the axial force borne by one seismic isolation rubber bearing 5 is 6837 (kN), so the axial force is 7630 (kN) in consideration of safety. A seismic isolation rubber bearing 5 of NH090 G 4 (product name) of kN) will be used, and the seismic isolation rubber bearing 5 has a horizontal rigidity of 1.26 (×1000 kN/m). When NH090
In addition, in the graph of this FIG. 4 and the graph of FIG. 2 mentioned later, the part where the line of a graph divides is the floor near the intermediate floor where the seismic
それに対して、図2のグラフは、通常負担すべき軸力に見合う通常の水平剛性に対して、約2.7倍の水平剛性を有する免震ゴム支承5を設置した場合、つまり、本発明の場合である。すなわち、(株)ブリヂストン製の天然ゴム系積層ゴムのNHシリーズを使用するとすれば、ひとつの免震ゴム支承の負担軸力が6837(kN)であり、通常、軸力7630(kN)で水平剛性1.26(×1000kN/m)のNH090G4を使用すべきところ、水平剛性が3.46(×1000kN/m)で、通常の水平剛性に対して、3.46÷1.26≒2.7倍の水平剛性を有するNH150G4(製品呼称)の免震ゴム支承5を使用することになり、26500(kN)の軸力を備えている。
本発明の場合には、図2のグラフから明らかなように、オイルダンパなどの減衰力発生手段を併用していないにもかかわらず、下部階における大きな変形も認められず、ほぼ全階にわたって基準線を下回る良好な制震効果が確認される。
On the other hand, the graph in FIG. 2 shows the case where the seismic isolation rubber bearing 5 is installed, which has a horizontal rigidity approximately 2.7 times higher than the normal horizontal rigidity corresponding to the axial force that should normally be borne. This is the case. In other words, if the NH series of natural rubber laminated rubber manufactured by Bridgestone Corporation is used, the axial force borne by one seismic isolation rubber bearing is 6837 (kN), and normally the axial force is 7630 (kN) and the horizontal NH090
In the case of the present invention, as is clear from the graph in Figure 2, even though damping force generating means such as oil dampers are not used together, no major deformation is observed on the lower floors, and almost all floors meet the standards. Good seismic damping effects below the line are confirmed.
その他にも種々のシミュレーションを試みた結果、免震ゴム支承5の水平剛性に関しては、通常負担すべき軸力に見合う通常の水平剛性に対して、2.0~4.0倍の高い水平剛性を有するものが適用可能であり、特に、通常の水平剛性に対して、2.5~3.0倍の高い水平剛性を有するものが好ましいことが判明した。
同様に、免震ゴム支承5を設置する中間階4に関しては、多層階の建物1の上から1/2~1/4の高さ階に設定するのがよく、特に、多層階の建物1の上から1/3程度の高さ階に設定するのが好ましいことが判明した。
なお、本発明の実施に際しては、必ずしもオイルダンパなどの減衰力発生手段を併用する必要はないが、制震効果を更に向上させるために減衰力発生手段を併用することは可能である。
As a result of trying various other simulations, we found that the horizontal rigidity of the seismic isolation rubber bearing 5 is 2.0 to 4.0 times higher than the normal horizontal rigidity that is commensurate with the axial force that should normally be borne. It has been found that those having a horizontal rigidity 2.5 to 3.0 times higher than normal horizontal rigidity are particularly preferable.
Similarly, the
Note that when implementing the present invention, it is not necessarily necessary to use a damping force generating means such as an oil damper, but it is possible to use a damping force generating means in combination to further improve the damping effect.
1 多層階の建物
2 上部構造物
3 下部構造物
4 中間階
5 免震ゴム支承
1
Claims (5)
前記免震支承が、製品において軸力が大きいほど水平剛性が高く且つ積層ゴムとは別に減衰力発生手段を有さない天然ゴム系積層ゴムのシリーズの免震ゴム支承であって、その免震ゴム支承として、前記上部構造物の重量から算出される軸力に対応して使用される製品の水平剛性に対して、2.0~4.0倍の高い水平剛性を有する製品が使用される建物の免震構造。 A multi-story building is divided into an upper structure and a lower structure, and seismic isolation bearings are installed on the intermediate floor between the upper structure and the lower structure so that the upper structure functions as the weight of TMD. A seismic isolation structure for buildings in which
The seismic isolation bearing is a seismic isolation rubber bearing of a series of natural rubber-based laminated rubber that has a higher horizontal rigidity as the axial force is larger in the product and does not have a damping force generating means separate from the laminated rubber , As the rubber bearing, a product is used that has a horizontal rigidity that is 2.0 to 4.0 times higher than the horizontal rigidity of the product used in response to the axial force calculated from the weight of the superstructure. Seismic isolation structure for buildings.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019183695A JP7357504B2 (en) | 2019-10-04 | 2019-10-04 | Seismic isolation structure of buildings |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019183695A JP7357504B2 (en) | 2019-10-04 | 2019-10-04 | Seismic isolation structure of buildings |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021059868A JP2021059868A (en) | 2021-04-15 |
JP7357504B2 true JP7357504B2 (en) | 2023-10-06 |
Family
ID=75381293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019183695A Active JP7357504B2 (en) | 2019-10-04 | 2019-10-04 | Seismic isolation structure of buildings |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7357504B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007002455A (en) | 2005-06-22 | 2007-01-11 | Fujita Corp | Vibration control device |
JP2007278340A (en) | 2006-04-04 | 2007-10-25 | Takenaka Komuten Co Ltd | Method for installing damper for seismically isolated structure and damping structure |
-
2019
- 2019-10-04 JP JP2019183695A patent/JP7357504B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007002455A (en) | 2005-06-22 | 2007-01-11 | Fujita Corp | Vibration control device |
JP2007278340A (en) | 2006-04-04 | 2007-10-25 | Takenaka Komuten Co Ltd | Method for installing damper for seismically isolated structure and damping structure |
Also Published As
Publication number | Publication date |
---|---|
JP2021059868A (en) | 2021-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5567094B2 (en) | Long-period building | |
Etedali et al. | A proposed approach to mitigate the torsional amplifications of asymmetric base-isolated buildings during earthquakes | |
JP2009007916A (en) | Vibration damping structure and its specification setting method | |
JP7357504B2 (en) | Seismic isolation structure of buildings | |
Padol et al. | Review paper on seismic responses of Multistored rcc building with mass irregularity | |
JP2001193311A (en) | Base isolation building | |
JP5403331B2 (en) | Seismic control frame | |
JP2002266517A (en) | Base isolation structure using connecting earthquake- damping device | |
JP2007002455A (en) | Vibration control device | |
JP2014101749A (en) | Period-prolonged architectural structure | |
JP2017071908A (en) | Multistoried base-isolated structure | |
JP6383585B2 (en) | How to change the horizontal stiffness of seismic isolation members that support buildings | |
JP6298402B2 (en) | Partial seismic isolation structure | |
KR102015561B1 (en) | Vibration control system for lateral force reduction of apartment building | |
JP2006144476A (en) | Base-isolating device and building structure | |
JP5586566B2 (en) | Damping structure | |
JP5609000B2 (en) | Damping method, damping structure, and seismic reinforcement method | |
JP2005090101A (en) | Seismic response control structure | |
JP6951860B2 (en) | Seismic isolation structure | |
JP7107759B2 (en) | Damping structure | |
JP2020094390A (en) | Base isolation structure | |
JP2020109235A (en) | building | |
JP7097204B2 (en) | Vibration control system | |
JP4888697B2 (en) | Damping structure | |
JP7112918B2 (en) | Seismic damping reinforcement method for existing buildings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220623 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230419 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230616 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230817 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230906 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230926 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7357504 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |