JP6441090B2 - Seismic isolation structure - Google Patents

Seismic isolation structure Download PDF

Info

Publication number
JP6441090B2
JP6441090B2 JP2015010977A JP2015010977A JP6441090B2 JP 6441090 B2 JP6441090 B2 JP 6441090B2 JP 2015010977 A JP2015010977 A JP 2015010977A JP 2015010977 A JP2015010977 A JP 2015010977A JP 6441090 B2 JP6441090 B2 JP 6441090B2
Authority
JP
Japan
Prior art keywords
damper
seismic isolation
damping
isolation layer
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015010977A
Other languages
Japanese (ja)
Other versions
JP2016135944A (en
Inventor
藍子 新居
藍子 新居
龍大 欄木
龍大 欄木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2015010977A priority Critical patent/JP6441090B2/en
Publication of JP2016135944A publication Critical patent/JP2016135944A/en
Application granted granted Critical
Publication of JP6441090B2 publication Critical patent/JP6441090B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、免震層にダンパーを配置した免震構造に係り、より詳しくは地震発生時に減衰効果と共にねじれ振動の抑制効果が得られる免震構造に関するものである。   The present invention relates to a seismic isolation structure in which a damper is disposed in a seismic isolation layer, and more particularly to a seismic isolation structure that can obtain a damping effect and a torsional vibration suppressing effect when an earthquake occurs.

従来から、例えば下記特許文献1に見られるように、建物の上下部構造の柱間に積層ゴム支承やすべり支承を介装して免震層を形成し、地震時における建物の上部構造の揺れを低減させるとともに、上記上下部構造間にオイルダンパー等のダンパーを介装することにより、上下部構造間の相対変位を吸収して上記揺れを減衰させる免震構造が知られている。   Conventionally, as shown in, for example, Patent Document 1 below, a seismic isolation layer is formed by interposing a laminated rubber bearing or a sliding bearing between columns of the upper and lower structures of a building, and the upper structure of the building is shaken during an earthquake. In addition, a seismic isolation structure is known in which a damper such as an oil damper is interposed between the upper and lower structures to absorb relative displacement between the upper and lower structures and attenuate the shaking.

ところで、このような免震構造にあっては、免震層における剛性が小さいために、僅かな偏心でも地震時にねじれ振動が生じやすい。   By the way, in such a seismic isolation structure, since the rigidity in the seismic isolation layer is small, even a slight eccentricity tends to cause torsional vibration during an earthquake.

そこで、下記特許文献2においては、オイルダンパーを、基礎平面の外周に沿ってX方向およびY方向に夫々均等に配置することにより、基礎平面の水平方向におけるねじれ耐力を高めて、免震動作時における構造物の基礎に対するねじれを防止するようにした免震建物が提案されている。   Therefore, in the following Patent Document 2, the oil dampers are evenly arranged in the X direction and the Y direction along the outer periphery of the foundation plane, respectively, to increase the torsional resistance in the horizontal direction of the foundation plane, and during seismic isolation operation. Seismic isolation buildings have been proposed that prevent twisting of the foundations of structures.

特開2006−292155号公報JP 2006-292155 A 特開2007−332643号公報JP 2007-332643 A 特開2002−310227号公報JP 2002-310227 A 特開2007−231601号公報JP 2007-231601 A 特開2010−255662号公報JP 2010-255562 A

しかしながら、上記従来の免震建物にあっては、免震層の剛性が小さいため、そのバランスをとるためにオイルダンパーの設置位置に大きな制約が生じるとともに、設置可能なスペースにも限りがあるために、ねじれ振動を抑える効果には限りがあった。   However, in the conventional seismic isolation building described above, the rigidity of the seismic isolation layer is small, so that the installation position of the oil damper is greatly restricted in order to balance the seismic isolation layer, and the installable space is also limited. In addition, the effect of suppressing torsional vibration is limited.

本発明は、上記事情に鑑みてなされたものであり、ダンパーの設置位置に大きな制約を受けることなく、地震時に免震構造物に発生するねじれ振動を安定的かつ効果的に低減させることができる免震構造を提供することを課題とするものである。   The present invention has been made in view of the above circumstances, and can stably and effectively reduce torsional vibration generated in a base-isolated structure during an earthquake without being greatly restricted by the installation position of the damper. The issue is to provide a seismic isolation structure.

上記課題を解決するため、請求項1に記載の発明は、上下部構造間に形成した免震層に複数のダンパーを設置した免震構造において、上記複数のダンパー、上記上下部構造間の相対変位量に応じて減衰係数が変化し、当該相対変位量が閾値を超えた際に減衰係数が高い値に切り替わる可変減衰ダンパーであり、上記免震層の内側に設置した上記可変減衰ダンパーよりも上記閾値が小さい上記可変減衰ダンパーを上記免震層の外周側に設置したことにより、地震時に、上記免震層の外周側に設置された上記可変減衰ダンパーの減衰係数が上記免震層の内側に設置された上記可変減衰ダンパーの減衰係数よりも高くなることを特徴とするものである。 In order to solve the above-mentioned problem, the invention according to claim 1 is a seismic isolation structure in which a plurality of dampers are installed in a seismic isolation layer formed between upper and lower structures, wherein the plurality of dampers are arranged between the upper and lower structures. damping coefficient is changed in accordance with the relative displacement of a variable damping damper that switches the value damping coefficient is high when the relative displacement amount exceeds the threshold value, the variable attenuation installed inside said base isolation layer by the variable attenuation damper above the threshold is less than the damper installed on the outer peripheral side of the base isolation layer, during an earthquake, the damping coefficient of the variable attenuation damper disposed on the outer peripheral side of the isolation layer is the base-isolated and it is characterized in a high of Turkey than the damping coefficient of the variable attenuation damper installed in the inner layer.

請求項1に記載の発明によれば、免震層に設置した複数のダンパーのうちの少なくとも一部として、上下部構造間の相対変位量に応じて減衰係数が変化する可変減衰ダンパーを用いているために、上記相対変位量が少ない中小の地震時には、低い減衰力によって加速度を低減させることができるとともに、上記相対変位量が大きい大地震時には、高い減衰力によって上記変位を低減させることができる。 According to the first aspect of the present invention, the variable damping damper whose damping coefficient changes according to the relative displacement amount between the upper and lower structures is used as at least a part of the plurality of dampers installed in the base isolation layer. Therefore, during a small and medium-sized earthquake with a small relative displacement amount, acceleration can be reduced with a low damping force, and during a large earthquake with a large relative displacement amount, the displacement can be reduced with a high damping force. .

加えて、地震時に、構造物の外周側に位置するダンパーの減衰係数が、内側に位置するダンパーの減衰係数よりも高くなるように配置しているために、上記構造物の外周側における減衰力の負担の割合が大きくなり、よってねじれ振動を抑制することができる。この結果、ダンパーの設置位置に大きな制約を受けることなく、地震時に免震構造物に発生するねじれ振動を安定的かつ効果的に低減させることができる。   In addition, since the damper is located so that the damping coefficient of the damper located on the outer circumference side of the structure is higher than the damping coefficient of the damper located on the inner side during an earthquake, the damping force on the outer circumference side of the structure is Therefore, the torsional vibration can be suppressed. As a result, the torsional vibration generated in the seismic isolation structure during an earthquake can be stably and effectively reduced without being greatly restricted by the installation position of the damper.

ここで、請求項に記載の発明によれば、構造物の外周側に、内側に配置した可変減衰ダンパーよりも閾値が小さい可変減衰ダンパーを配置しているために、地震時に上下部構造間の相対変位が大きくなると、先ず外側の可変減衰ダンパーが内側の可変減衰ダンパーよりも高い減衰係数に切り替わることにより、上記効果を奏することができる。 According to the first aspect of the present invention, since the variable damping damper having a smaller threshold value than the variable damping damper disposed inside is disposed on the outer peripheral side of the structure, the structure between the upper and lower structures during an earthquake is arranged. When the relative displacement increases, the outer variable damping damper is first switched to a higher damping coefficient than the inner variable damping damper, so that the above effect can be obtained.

本発明の第1の実施形態における可変減衰ダンパーの配置を示す平面図である。It is a top view which shows arrangement | positioning of the variable damping damper in the 1st Embodiment of this invention. 図1の免震層の変位が10cm未満の時の可変減衰ダンパーの作動状態を示す平面図である。It is a top view which shows the operating state of a variable damping damper when the displacement of the seismic isolation layer of FIG. 1 is less than 10 cm. 図1の免震層の変位が10cm〜15cmの時の可変減衰ダンパーの作動状態を示す平面図である。It is a top view which shows the operating state of a variable damping damper when the displacement of the seismic isolation layer of FIG. 1 is 10 cm-15 cm. 図1の免震層の変位が15cm〜20cmの時の可変減衰ダンパーの作動状態を示す平面図である。It is a top view which shows the operating state of a variable damping damper when the displacement of the seismic isolation layer of FIG. 1 is 15 cm-20 cm. 図1の免震層の変位が20cm以上の時の可変減衰ダンパーの作動状態を示す平面図である。It is a top view which shows the operating state of a variable damping damper when the displacement of the seismic isolation layer of FIG. 1 is 20 cm or more. 本発明の第2の実施形態における可変減衰ダンパーの配置を示す平面図である。It is a top view which shows arrangement | positioning of the variable damping damper in the 2nd Embodiment of this invention.

(第1の実施形態)
図1〜図5は、本発明に係る免震構造の第1の実施形態を示すものである。
これらの図において、この免震構造においては、上下部構造(図では下部構造1のみを示す。)間に積層ゴム支承等の免震装置2が介装されることにより、免震層3が形成されている。そして、この免震層3に、3種類のオイルダンパー4、5、6が配置されている。
(First embodiment)
1 to 5 show a first embodiment of a seismic isolation structure according to the present invention.
In these figures, in this seismic isolation structure, the seismic isolation layer 3 is formed by interposing a base isolation device 2 such as a laminated rubber bearing between the upper and lower structures (only the lower structure 1 is shown in the figure). Is formed. And in this seismic isolation layer 3, three types of oil dampers 4, 5 and 6 are arranged.

これらのオイルダンパー4、5、6は、いずれも上下部構造1間の相対変位量が閾値を超えた際に減衰係数が高い値に切り替わる可変減衰ダンパーであり、閾値を超える前は、同じ減衰係数に設定されている。ここで、オイルダンパー4は、上記閾値が10cmに設定されている。また、オイルダンパー5は、上記閾値が15cmに設定されるとともに、オイルダンパー6は、上記閾値が20cmに設定されている。なお、この種の可変減衰ダンパーは、例えば上記特許文献3〜6に開示されているように周知のものである。   These oil dampers 4, 5, and 6 are variable damping dampers that switch to a high damping coefficient when the relative displacement between the upper and lower structures 1 exceeds a threshold value. Before the threshold value is exceeded, the same damping is applied. Set to a coefficient. Here, the threshold value of the oil damper 4 is set to 10 cm. Further, the threshold value of the oil damper 5 is set to 15 cm, and the threshold value of the oil damper 6 is set to 20 cm. In addition, this kind of variable damping damper is a well-known thing as disclosed by the said patent documents 3-6, for example.

そして、上下部構造1間の外周部に、最も閾値が小さいオイルダンパー4が配置され、その内側にオイルダンパー5が配置されている。また、最も内側に、最も閾値が大きいオイルダンパー6が配置されている。   And the oil damper 4 with the smallest threshold value is arrange | positioned in the outer peripheral part between the upper-and-lower part structure 1, and the oil damper 5 is arrange | positioned inside it. Further, the oil damper 6 having the largest threshold value is disposed on the innermost side.

上記構成からなる免震構造においては、図2に示すように、地震発生時に、上下部構造1間の相対変位量が10cm未満では、オイルダンパー4〜6は、いずれも低い減衰係数に設定されており、いずれも均等に上下部構造1間の相対変位を吸収して揺れを減衰させる。   In the seismic isolation structure having the above configuration, as shown in FIG. 2, when the relative displacement between the upper and lower structures 1 is less than 10 cm, the oil dampers 4 to 6 are all set to a low damping coefficient when an earthquake occurs. In any case, the relative displacement between the upper and lower structures 1 is equally absorbed to attenuate the shaking.

次いで、図3に示すように、上記相対変位量が10cm〜15cmの範囲になると、最も外周側に配置されているオイルダンパー4が高い減衰係数に切り替わる。一方で、他のオイルダンパー5、6は、いずれも低い減衰係数に保持される。   Next, as shown in FIG. 3, when the relative displacement is in the range of 10 cm to 15 cm, the oil damper 4 arranged on the outermost peripheral side is switched to a high damping coefficient. On the other hand, the other oil dampers 5 and 6 are both kept at a low damping coefficient.

そして、図4に示すように、上記相対変位量が15cm〜20cmの範囲になると、オイルダンパー4に加えて、その内側のオイルダンパー5も高い減衰係数に切り替わることにより、最も内側のオイルダンパー6のみが低い減衰係数に保持される。   As shown in FIG. 4, when the relative displacement is in the range of 15 cm to 20 cm, the inner oil damper 6 is switched to a high damping coefficient in addition to the oil damper 4, thereby the innermost oil damper 6. Only is kept at a low attenuation coefficient.

そしてさらに、上下部構造1間の相対変位量が増大して、20cm以上になると、図5に示すように、最も内側のオイルダンパー6も高い減衰係数に切り替わることにより、全てのオイルダンパー4〜6が高い減衰係数に切り替わる。   Further, when the relative displacement between the upper and lower structures 1 increases to 20 cm or more, as shown in FIG. 5, the innermost oil damper 6 is also switched to a high damping coefficient, so that all the oil dampers 4 to 4 are switched. 6 switches to a high attenuation coefficient.

このように、上記免震構造によれば、地震時に、上下部構造1間の相対変位が増大するにつれて、順次最も外側の可変減衰ダンパー4から内側の可変減衰ダンパー5、6へと減衰係数が高い値に切り替わることにより、構造物の外周側における減衰力の負担を大きくして上下部構造1間におけるねじれ振動を効果的に抑制することができるとともに、上記可変減衰ダンパー4、5、6によって上下部構造1間の相対変位を吸収して上記揺れを減衰させることができる。   Thus, according to the seismic isolation structure, as the relative displacement between the upper and lower structures 1 increases during the earthquake, the damping coefficient sequentially increases from the outermost variable damping damper 4 to the inner variable damping dampers 5 and 6. By switching to a high value, the load of damping force on the outer peripheral side of the structure can be increased, and torsional vibration between the upper and lower structure 1 can be effectively suppressed, and the variable damping dampers 4, 5, 6 can be used. The relative displacement between the upper and lower structures 1 can be absorbed to attenuate the shaking.

この結果、設置位置に大きな制約を受けることなく、地震時に免震構造物に発生するねじれ振動を安定的かつ効果的に低減させることができる。   As a result, the torsional vibration generated in the base-isolated structure during an earthquake can be stably and effectively reduced without being greatly restricted by the installation position.

また、これらオイルダンパー4〜6は、相対変位量が10cm未満では、いずれも低い減衰係数に設定されており、上記相対変位量が大きくなるにしたがって、順次高い減衰係数に切り替わるために、上記相対変位量が少ない中小の地震時には、低い減衰力によって加速度を低減させることができ、かつ上記相対変位量が大きい大地震時には、高い減衰力によって上記変位を低減させることができる。   Further, these oil dampers 4 to 6 are all set to a low damping coefficient when the relative displacement amount is less than 10 cm. Since the relative displacement amount is increased, the oil dampers 4 to 6 are sequentially switched to a higher damping coefficient. In a small and medium-sized earthquake with a small amount of displacement, acceleration can be reduced with a low damping force, and in a large earthquake with a large relative displacement amount, the displacement can be reduced with a high damping force.

(第2の実施形態)
図6は、本発明に係る免震構造の第2の実施形態を示すもので、図1〜図5に示したものと同一構成部分については、同一符号を付してその説明を簡略化する。
この免震構造においては、免震層3の内側に、減衰係数が変化しない通常のオイルダンパー(ダンパー)10が配置されている。
(Second Embodiment)
FIG. 6 shows a second embodiment of the seismic isolation structure according to the present invention, and the same components as those shown in FIGS. .
In this seismic isolation structure, a normal oil damper (damper) 10 whose damping coefficient does not change is disposed inside the seismic isolation layer 3.

そして、上記免震層3における構造物の外周側に、上下部構造1間の相対変位量が閾値を超えた際に上記オイルダンパー10よりも減衰係数が高い値に切り替わるオイルダンパー(可変減衰ダンパー)11が配置されている。   An oil damper (variable damping damper) that switches to a higher damping coefficient than the oil damper 10 when the relative displacement between the upper and lower structures 1 exceeds a threshold value on the outer peripheral side of the structure in the seismic isolation layer 3. ) 11 is arranged.

上記構成からなる免震構造においては、構造物の内側に、減衰係数が変化しない通常のオイルダンパー10を配置し、外周側に閾値を超えた際に内側のオイルダンパー10よりも減衰係数が高い値に切り替わるオイルダンパー11を配置しているために、地震時に外側のオイルダンパー11が内側のオイルダンパー10よりも高い減衰係数に切り替わることにより、第1の実施形態に示したものと同様の効果を奏することができる。   In the seismic isolation structure having the above configuration, a normal oil damper 10 whose damping coefficient does not change is arranged inside the structure, and the damping coefficient is higher than that of the inner oil damper 10 when the threshold value is exceeded on the outer peripheral side. Since the oil damper 11 that switches to the value is arranged, the outer oil damper 11 switches to a higher damping coefficient than the inner oil damper 10 in the event of an earthquake, so that the same effect as that shown in the first embodiment is achieved. Can be played.

なお、上記実施形態においては、閾値の前後で減衰係数が変化する可変減衰ダンパーや、減衰係数が変化しない通常のダンパーとして、いずれもオイルダンパー4、5、6、10、11を用いた場合についてのみ説明したが、本発明はこれに限定されるものではなく、様々な形態の可変減衰ダンパーや減衰係数が一定のダンパーを用いることがかのうである。   In the above embodiment, oil dampers 4, 5, 6, 10, and 11 are all used as variable damping dampers whose damping coefficient changes before and after the threshold and normal dampers whose damping coefficient does not change. However, the present invention is not limited to this, and it is possible to use various forms of variable damping dampers and dampers having a constant damping coefficient.

1 下部構造
2 免震装置
3 免震層
4、5、6、11 オイルダンパー(可変減衰ダンパー)
10 オイルダンパー(ダンパー)
1 Substructure 2 Seismic isolation device 3 Seismic isolation layer 4, 5, 6, 11 Oil damper (variable damping damper)
10 Oil damper (damper)

Claims (1)

上下部構造間に形成した免震層に複数のダンパーを設置した免震構造において、
上記複数のダンパー、上記上下部構造間の相対変位量に応じて減衰係数が変化し、当該相対変位量が閾値を超えた際に減衰係数が高い値に切り替わる可変減衰ダンパーであり、
上記免震層の内側に設置した上記可変減衰ダンパーよりも上記閾値が小さい上記可変減衰ダンパーを上記免震層の外周側に設置したことにより、地震時に、上記免震層の外周側に設置された上記可変減衰ダンパーの減衰係数が上記免震層の内側に設置された上記可変減衰ダンパーの減衰係数よりも高くなることを特徴とする免震構造。
In the seismic isolation structure where multiple dampers are installed in the seismic isolation layer formed between the upper and lower structures,
The plurality of damper, the damping coefficient in accordance with the relative displacement amount between the upper and lower structure changes, a variable damping damper that switches the value damping coefficient is high when the relative displacement amount exceeds the threshold value,
By installing the variable damping damper having a lower threshold than the variable damping damper installed inside the base isolation layer on the outer peripheral side of the base isolation layer , it is installed on the outer peripheral side of the base isolation layer during an earthquake. seismic isolation damping coefficient of the variable attenuation damper characterized by the Turkey of higher than the attenuation coefficient of the variable attenuation dampers installed inside said seismic isolation layer was.
JP2015010977A 2015-01-23 2015-01-23 Seismic isolation structure Active JP6441090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015010977A JP6441090B2 (en) 2015-01-23 2015-01-23 Seismic isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015010977A JP6441090B2 (en) 2015-01-23 2015-01-23 Seismic isolation structure

Publications (2)

Publication Number Publication Date
JP2016135944A JP2016135944A (en) 2016-07-28
JP6441090B2 true JP6441090B2 (en) 2018-12-19

Family

ID=56512509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015010977A Active JP6441090B2 (en) 2015-01-23 2015-01-23 Seismic isolation structure

Country Status (1)

Country Link
JP (1) JP6441090B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6931282B2 (en) * 2016-12-15 2021-09-01 三井住友建設株式会社 Seismic isolation layer
JP7465784B2 (en) 2020-11-02 2024-04-11 株式会社日立製作所 Train Control Device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332643A (en) * 2006-06-14 2007-12-27 Takenaka Komuten Co Ltd Base isolated building
JP5165944B2 (en) * 2007-07-11 2013-03-21 大成建設株式会社 Seismic isolation system

Also Published As

Publication number Publication date
JP2016135944A (en) 2016-07-28

Similar Documents

Publication Publication Date Title
JP4968682B2 (en) Vibration reduction mechanism and specification method thereof
JP6217181B2 (en) Floor seismic isolation system
JP6482373B2 (en) Seismic isolation structure
JP6441090B2 (en) Seismic isolation structure
JP2010007793A (en) Base isolation structure
JP6694672B2 (en) Vibration control device and building equipped with the same
JP6000099B2 (en) Isolated vibration structure
JP5049938B2 (en) Simplified dynamic vibration absorber and vibration control method
JP6177972B1 (en) Omni-directional three-sided slide support device for structures
JP5473000B2 (en) Vertical vibration control system for building floor
JP4552817B2 (en) Tower structure
JP6590201B2 (en) Multi-layer seismic isolation structure
JP5024623B2 (en) Seismic isolation mechanism
JP5252227B2 (en) Seismic isolation system
JP6384174B2 (en) Vibration control structure
JP6164473B2 (en) Seismic isolation structure of structure, seismic isolation method of structure and structure
JP6397544B2 (en) Intermediate seismic isolation structure
JP2020094389A (en) Damping structure
JP5495013B2 (en) Vibration control mechanism
JP7502144B2 (en) Vibration-damping structure
JP7284684B2 (en) seismic isolation system
JP2015010650A (en) Oil damper, and damper system
JP4953713B2 (en) Seismic isolation system
JP2004162319A (en) Earthquake damping structure having basement
JP7019487B2 (en) Seismic isolation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170926

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181121

R150 Certificate of patent or registration of utility model

Ref document number: 6441090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150