JP7019487B2 - Seismic isolation structure - Google Patents

Seismic isolation structure Download PDF

Info

Publication number
JP7019487B2
JP7019487B2 JP2018067786A JP2018067786A JP7019487B2 JP 7019487 B2 JP7019487 B2 JP 7019487B2 JP 2018067786 A JP2018067786 A JP 2018067786A JP 2018067786 A JP2018067786 A JP 2018067786A JP 7019487 B2 JP7019487 B2 JP 7019487B2
Authority
JP
Japan
Prior art keywords
seismic isolation
underground structure
hydraulic jack
building body
pit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018067786A
Other languages
Japanese (ja)
Other versions
JP2019178532A (en
Inventor
宏一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2018067786A priority Critical patent/JP7019487B2/en
Publication of JP2019178532A publication Critical patent/JP2019178532A/en
Application granted granted Critical
Publication of JP7019487B2 publication Critical patent/JP7019487B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Dampers (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、免震構造物に関する。 The present invention relates to a seismic isolation structure.

地震動などが作用して共振が生じると、構造物に大きな応答が発生する。このため、従来、マンションやオフィスビルなどの建物(構造物)では、建物内に制振ダンパーを設置し、この制振ダンパーで地震時に作用した地震エネルギー(振動エネルギー)を吸収・減衰させ、建物の応答を低減させるようにしている。また、このような制振ダンパーには、鋼材等の降伏耐力やすべり材の摩擦抵抗を利用した履歴系ダンパー、粘性体の粘性抵抗を利用したオイルダンパーなどの粘性系ダンパー、粘弾性体のせん断抵抗を利用した粘弾性系ダンパーが多用されている。 When resonance occurs due to the action of seismic motion, a large response occurs in the structure. For this reason, in the past, in buildings (structures) such as condominiums and office buildings, vibration damping dampers were installed inside the buildings, and the vibration damping dampers absorbed and attenuated the seismic energy (vibration energy) that acted during an earthquake. I am trying to reduce the response of. In addition, such vibration damping dampers include history dampers that utilize the yield resistance of steel materials and the frictional resistance of slip materials, viscous dampers such as oil dampers that utilize the viscous resistance of viscoelastic materials, and shearing of viscoelastic materials. Viscoelastic dampers that utilize resistance are often used.

また、建物の地震時応答を低減させるための他の手段として、TMD(Tuned Mass Damper)と称する制振装置を建物の頂部側(屋上など)に設置することも提案、実用化されている(例えば、特許文献1、特許文献2参照)。 In addition, as another means for reducing the earthquake response of the building, it has been proposed and put into practical use to install a vibration damping device called TMD (Tuned Mass Damper) on the top side of the building (rooftop, etc.) ( For example, see Patent Document 1 and Patent Document 2).

また、免震装置を設置し、建物などの構造物の1次固有周期を長周期側にずらすことによって応答を低減する手法も多用されている(例えば、特許文献3参照)。 Further, a method of reducing the response by installing a seismic isolation device and shifting the primary natural period of a structure such as a building to the long period side is often used (see, for example, Patent Document 3).

さらに、回転慣性質量装置や、変位に応じて剛性が変化する硬化型復元力装置(可変剛性装置)を備え、周期的な振動エネルギーの入力による共振現象を効果的に回避することを可能にしたものもある(例えば、特許文献4、特許文献5参照)。 Furthermore, it is equipped with a rotational inertia mass device and a hardening type restoring force device (variable rigidity device) whose rigidity changes according to displacement, making it possible to effectively avoid the resonance phenomenon due to the input of periodic vibration energy. Some are (see, for example, Patent Document 4 and Patent Document 5).

一方、特許文献4や特許文献5では、硬化型復元力装置と回転慣性質量装置に複雑な非線形性を想定しているが、より簡単な検討を行った例として公開論文がある(非特許文献1参照)。 On the other hand, in Patent Document 4 and Patent Document 5, complicated non-linearity is assumed in the curable restoring force device and the rotational inertia mass device, but there is a published paper as an example of a simpler study (non-patent document). 1).

ここで、一般的な地震波形の特徴として、最初の主要動では短周期成分を多く含む大きな加速度が、その後には加速度自体は小さいものの長周期成分を多く含む波形となっていることが多い。 Here, as a characteristic of a general seismic waveform, it is often the case that the first major motion has a large acceleration containing many short-period components, and then the acceleration itself is small but contains many long-period components.

例えば、図1は、2011年東北地方太平洋沖地震の東京千代田区大手町での観測記録である。最初に加速度が大きな主要動(R1)が到達し、その後に長周期成分を多く含む波が到達しているため変位成分で見ると長時間の後揺れ(R2)が確認できる。 For example, FIG. 1 is an observation record of the 2011 off the Pacific coast of Tohoku Earthquake in Otemachi, Chiyoda-ku, Tokyo. Since the main motion (R1) with large acceleration arrives first, and then the wave containing many long-period components arrives, a long-time back sway (R2) can be confirmed when looking at the displacement component.

特開2000-18323号公報Japanese Unexamined Patent Publication No. 2000-18323 特開2011-220511号公報Japanese Unexamined Patent Publication No. 2011-22511 特開2010-070909号公報Japanese Unexamined Patent Publication No. 2010-0709009 特開2017-3089号公報Japanese Unexamined Patent Publication No. 2017-3089 特開2017-3090号公報Japanese Unexamined Patent Publication No. 2017-3090

渡辺宏一、「硬化型復元力特性を用いた振動制御に関する解析的研究(http://opac.ll.chiba-u.jp/da/curator/101951/TLA_0227.pdf)」、千葉大学学位論文、2016年1月Koichi Watanabe, "Analytical Study on Vibration Control Using Curing Restoring Force Characteristics (http://opac.ll.chiba-u.jp/da/curator/101951/TLA_0227.pdf)", Chiba University Degree Thesis, January 2016

上記の特許文献4、特許文献5、非特許文献1などにおいては、a)回転慣性質量装置の付加質量効果により免震構造物をさらに長周期化して主要動の短周期成分の入力エネルギーが建物に伝わらないようにし、b)硬化型復元力装置によって後揺れ時の共振を防ぎ、c)さらに硬化型復元力装置によって変位増大を抑制して擁壁への建物の衝突を防ぐという効果が期待できる。 In the above-mentioned Patent Document 4, Patent Document 5, Non-Patent Document 1, etc., a) The seismic isolation structure is further lengthened by the additional mass effect of the rotational inertia mass device, and the input energy of the short-period component of the main motion is the building. B) The hardening type restoring force device prevents resonance during backswing, and c) Furthermore, the hardening type restoring force device suppresses the increase in displacement and is expected to have the effect of preventing the building from colliding with the retaining wall. can.

しかしながら、変位が増大するまで硬化型復元力装置があまり有効とならないため、建物と地面との相対変位をある程度を見込んだエキスパンション・ジョイントが必要になってしまう。言い換えれば、硬化型復元力装置が有効になるまでの建物と地面との相対変位に対応できるようにエキスパンション・ジョイントを構成しなくてはいけないという不都合があった。 However, since the hardening type restoring force device is not very effective until the displacement increases, an expansion joint that allows a certain degree of relative displacement between the building and the ground is required. In other words, there was the inconvenience that the expansion joint had to be configured to accommodate the relative displacement between the building and the ground until the curable restoring force device became effective.

本発明は、上記事情に鑑み、より効果的且つ確実に、a)回転慣性質量装置の付加質量効果により免震構造物をさらに長周期化して主要動の短周期成分の入力エネルギーが建物に伝わらないようにし、b)硬化型復元力装置によって後揺れ時の共振を防ぎ、c)さらに硬化型復元力装置によって変位増大を抑制して擁壁への建物の衝突を防ぐことを可能にした免震構造物を提供することを目的とする。 In view of the above circumstances, the present invention more effectively and reliably a) further lengthens the seismic isolation structure by the additional mass effect of the rotational inertia mass device, and the input energy of the short-period component of the main motion is transmitted to the building. The seismic isolation that made it possible to prevent the building from colliding with the retaining wall by b) preventing resonance during backswing with a hardening type restoring force device and c) suppressing an increase in displacement with a hardening type restoring force device. The purpose is to provide seismic structures.

上記の目的を達するために、この発明は以下の手段を提供している。 In order to achieve the above object, the present invention provides the following means.

本発明の免震構造物は、免震ピットと、前記免震ピットの内部空間に設けられる地下構造部と、前記地下構造部上に設けられる建物本体とを備え、前記免震ピットの底面と前記地下構造部の下面との間の免震層に介設された免震装置によって前記地下構造部が支持され、前記地下構造部の上面と前記建物本体の下面との間の免震層に介設された免震装置によって前記建物本体が支持され、回転慣性質量装置が一端を前記地下構造部、他端を前記免震ピットにそれぞれ接続して設けられるとともに、変位に応じて剛性が変化する硬化型復元力装置が一端を前記地下構造部に、他端を前記免震ピットにそれぞれ接続して設けられ、且つ、前記地下構造部と前記免震ピットの間に第1油圧ジャッキが設けられ、前記地下構造部と前記建物本体の間に第2油圧ジャッキが設けられ、前記第1油圧ジャッキと前記第2油圧ジャッキの互いの油室が連結管で連結されて前記地下構造部と地盤の相対変位が所定の値以上になるとともに前記第1油圧ジャッキと前記第2油圧ジャッキが動作開始され、前記第1油圧ジャッキと前記第2油圧ジャッキが前記地下構造部と前記建物本体の動きを逆方向にする作用力を発現するように構成されていることを特徴とする。 The seismic isolation structure of the present invention includes a seismic isolation pit, an underground structure portion provided in the internal space of the seismic isolation pit, and a building body provided on the underground structure portion, and has a bottom surface of the seismic isolation pit. The underground structure is supported by a seismic isolation device interposed in the seismic isolation layer between the lower surface of the underground structure and the seismic isolation layer between the upper surface of the underground structure and the lower surface of the building body. The building body is supported by an intervening seismic isolation device, and a rotary inertial mass device is provided by connecting one end to the underground structure and the other end to the seismic isolation pit, and the rigidity changes according to the displacement. A hardening type restoring force device is provided by connecting one end to the underground structure portion and the other end to the seismic isolation pit, and a first hydraulic jack is provided between the underground structure portion and the seismic isolation pit. A second hydraulic jack is provided between the underground structure portion and the building body, and the oil chambers of the first hydraulic jack and the second hydraulic jack are connected to each other by a connecting pipe to connect the underground structure portion and the ground. When the relative displacement of the above becomes equal to or more than a predetermined value, the operation of the first hydraulic jack and the second hydraulic jack is started, and the first hydraulic jack and the second hydraulic jack move the underground structure portion and the building body. It is characterized in that it is configured to exert an action force in the opposite direction.

2011年東北地方太平洋沖地震の東京千代田区大手町での観測記録を示す図である。It is a figure which shows the observation record in Otemachi, Chiyoda-ku, Tokyo of the 2011 off the Pacific coast of Tohoku Earthquake. 本発明の一実施形態に係る免震構造物の一例を示す図である。It is a figure which shows an example of the seismic isolation structure which concerns on one Embodiment of this invention. 本発明の一実施形態に係る免震構造物の変更例を示す図である。It is a figure which shows the modification example of the seismic isolation structure which concerns on one Embodiment of this invention. 本発明の一実施形態に係る免震構造物の地下構造物と建物本体の変位、油圧ジャッキの作動変位の一例を示す図である。It is a figure which shows an example of the displacement of the underground structure of the seismic isolation structure which concerns on one Embodiment of this invention, the displacement of a building body, and the operational displacement of a hydraulic jack.

以下、図1から図4を参照し、本発明の一実施形態に係る免震構造物について説明する。 Hereinafter, the seismic isolation structure according to the embodiment of the present invention will be described with reference to FIGS. 1 to 4.

本実施形態の免震構造物Aは、図2に示すように、地盤Gを掘削して形成したコンクリート製の免震ピット1と、免震ピット1の内部空間に設けられる地下構造部2と、地下構造部2上に設けられる建物本体3とを備えている。 As shown in FIG. 2, the seismic isolation structure A of the present embodiment includes a concrete seismic isolation pit 1 formed by excavating the ground G and an underground structure portion 2 provided in the internal space of the seismic isolation pit 1. , The building main body 3 provided on the underground structure portion 2 is provided.

地下構造部2には、上面から下面側に凹む凹部2aが設けられており、この凹部2aに下端部側を挿入配置するようにして建物本体3が地下構造部2の上に設けられている。また、建物本体3は、側面から横方向に突出し、地下構造部2の凹部2aの外側の部分と上下に重なるとともに上面が免震ピット1の外部の地表面と略面一に配される地上面部(張り出し部)3aを備えて構成されている。 The underground structure portion 2 is provided with a recess 2a recessed from the upper surface to the lower surface side, and the building body 3 is provided above the underground structure portion 2 so that the lower end portion side is inserted and arranged in the recess 2a. .. Further, the building body 3 projects laterally from the side surface, overlaps the outer portion of the recess 2a of the underground structure portion 2 vertically, and has an upper surface substantially flush with the ground surface outside the seismic isolation pit 1. It is configured to include a surface portion (overhanging portion) 3a.

地上面部(張り出し部)3aは、免震ピット1の内部空間を覆うように配設されるとともに、突出方向先端部が免震ピット1の側壁部(擁壁)1aとの間に所定の隙間をあけ、側壁部1aと対向するように配設されている。そして、地上面部3aと免震ピット1の側壁部1aは、隙間を覆うように配設されたエキスパンション・ジョイント4によって接続され、このエキスパンション・ジョイント4と地上面部3aとによって免震ピット1の内部空間が閉塞した形となっている。 The ground surface portion (overhanging portion) 3a is arranged so as to cover the internal space of the seismic isolation pit 1, and the tip portion in the protruding direction is a predetermined gap between the side wall portion (retaining wall) 1a of the seismic isolation pit 1. Is arranged so as to face the side wall portion 1a. The ground surface portion 3a and the side wall portion 1a of the seismic isolation pit 1 are connected by an expansion joint 4 arranged so as to cover the gap, and the inside of the seismic isolation pit 1 is connected by the expansion joint 4 and the ground surface portion 3a. The space is closed.

地下構造部2の下面と免震ピット1の底面との間の第1免震層5には積層ゴムなどの免震装置6が複数介設され、地下構造部2がこれら複数の免震装置6によって支持されている。第1免震層5には、回転慣性質量装置7が一端を地下構造部2、他端を免震ピット1にそれぞれ接続して設けられている。なお、回転慣性質量装置7は、従来周知のものを適用することができる。 A plurality of seismic isolation devices 6 such as laminated rubber are interposed in the first seismic isolation layer 5 between the lower surface of the underground structure portion 2 and the bottom surface of the seismic isolation pit 1, and the underground structure portion 2 is the plurality of seismic isolation devices. Supported by 6. The first seismic isolation layer 5 is provided with a rotary inertial mass device 7 having one end connected to the underground structure portion 2 and the other end connected to the seismic isolation pit 1. As the rotary inertial mass device 7, a conventionally known one can be applied.

地下構造部2と免震ピット1の側壁部1aの間には、所定の大きさの隙間が設けられている。この地下構造部2と免震ピット1の側壁部1aの間の隙間には、一端を地下構造部2に、他端を免震ピット1の側壁部1aにそれぞれ接続し、軸線方向を水平の横方向に向けて配された硬化型復元力装置(可変剛性装置)8が設けられている。なお、硬化型復元力装置8は、変位に応じて剛性が変化する装置であり、前述の特許文献4の可変剛性装置、非特許文献1の硬化型復元力装置などを適用することができる。 A gap having a predetermined size is provided between the underground structure portion 2 and the side wall portion 1a of the seismic isolation pit 1. In the gap between the underground structure 2 and the side wall 1a of the seismic isolation pit 1, one end is connected to the underground structure 2 and the other end is connected to the side wall 1a of the seismic isolation pit 1, and the axial direction is horizontal. A curing type restoring force device (variable rigidity device) 8 arranged in the horizontal direction is provided. The curing type restoring force device 8 is a device whose rigidity changes according to displacement, and the above-mentioned variable rigidity device of Patent Document 4, the curing type restoring force device of Non-Patent Document 1, and the like can be applied.

さらに、地下構造部2と免震ピット1の一方の側壁部の間の隙間と、地下構造部2と免震ピット1の一方の側壁部1aと対向する他方の側壁部1aの間の隙間とにはそれぞれ、一端を地下構造部2に接続し、軸線方向を水平の横方向に向けて配された第1油圧ジャッキ(油圧シリンダー)9が設けられている。また、これらの第1油圧ジャッキ9は、他端と免震ピット1の側壁部1aとの間に所定の間隔をあけて設けられており、地震時に地下構造部2が周期的に横揺れして所定量以上の変位が生じた際に他端が免震ピット1の側壁部1aに当接し、油圧のジャッキ力が地下構造部2に作用するように設けられている。 Further, a gap between the underground structure portion 2 and one side wall portion of the seismic isolation pit 1 and a gap between the underground structure portion 2 and the one side wall portion 1a of the seismic isolation pit 1 and the other side wall portion 1a facing the seismic isolation pit 1. Each is provided with a first hydraulic jack (hydraulic cylinder) 9 having one end connected to the underground structure portion 2 and arranged with the axial direction oriented in the horizontal lateral direction. Further, these first hydraulic jacks 9 are provided with a predetermined space between the other end and the side wall portion 1a of the seismic isolation pit 1, and the underground structure portion 2 periodically rolls during an earthquake. When a displacement of a predetermined amount or more occurs, the other end abuts on the side wall portion 1a of the seismic isolation pit 1, and the hydraulic jack force acts on the underground structure portion 2.

地下構造部2の凹部2aの底面と建物本体3の下面との間の第2免震層10には積層ゴムなどの免震装置6が複数介設され、建物本体3がこれら複数の免震装置6によって支持されている。さらに、地下構造部2の凹部2a以外の部分の上面と、建物本体3の地上面部3aの下面との間の第3免震層11に積層ゴムなどの免震装置6が複数介設され、これら複数の免震装置6によっても建物本体3が支持されている。 A plurality of seismic isolation devices 6 such as laminated rubber are interposed in the second seismic isolation layer 10 between the bottom surface of the recess 2a of the underground structure portion 2 and the lower surface of the building body 3, and the building body 3 has these plurality of seismic isolation devices. Supported by device 6. Further, a plurality of seismic isolation devices 6 such as laminated rubber are interposed in the third seismic isolation layer 11 between the upper surface of the portion other than the recess 2a of the underground structure portion 2 and the lower surface of the ground surface portion 3a of the building body 3. The building body 3 is also supported by these plurality of seismic isolation devices 6.

地下構造部2の凹部2aの内面と建物本体3の側面との間に隙間が設けられている。地下構造部2の凹部2aの一方の内面と建物本体3の側面との間に隙間と、地下構造部2の凹部2aの一方の内面に対向する他方の内面と建物本体3の側面との間に隙間とにそれぞれ、一端を地下構造部2に、他端を建物本体3にそれぞれ接続し、軸線方向を水平の横方向に配して第2油圧ジャッキ(油圧シリンダー)12が設けられている。 A gap is provided between the inner surface of the recess 2a of the underground structure 2 and the side surface of the building body 3. Between one inner surface of the recess 2a of the underground structure 2 and the side surface of the building body 3 and between the other inner surface facing one inner surface of the recess 2a of the underground structure 2 and the side surface of the building body 3. A second hydraulic jack (hydraulic cylinder) 12 is provided with one end connected to the underground structure 2 and the other end connected to the building body 3 and the axial direction is arranged in the horizontal horizontal direction. ..

そして、本実施形態の免震構造物Aにおいては、地下構造部2と免震ピット1の間の第1油圧ジャッキ9と、地下構造部2と建物本体3の間の第2油圧ジャッキ12とが互いに油圧を伝え合うように連結管13で連結されている。具体的には、地下構造部2と免震ピット1の間の第1油圧ジャッキ9と、地下構造部2と建物本体3の間の第2油圧ジャッキ12は、地下構造部2と地盤Gの相対変位がある程度以上になるとともに動作が開始され、このとき、各油圧ジャッキ9、12が地下構造部2と建物本体3の動きを逆方向にする作用力を発現するように、第1油圧ジャッキ9と第2油圧ジャッキ12の互いの油室が連結管13で連結されている。 In the seismic isolation structure A of the present embodiment, the first hydraulic jack 9 between the underground structure portion 2 and the seismic isolation pit 1 and the second hydraulic jack 12 between the underground structure portion 2 and the building body 3 are used. Are connected by a connecting pipe 13 so as to transmit hydraulic pressure to each other. Specifically, the first hydraulic jack 9 between the underground structure 2 and the seismic isolation pit 1 and the second hydraulic jack 12 between the underground structure 2 and the building body 3 are the underground structure 2 and the ground G. The operation is started when the relative displacement becomes more than a certain level, and at this time, the first hydraulic jacks 9 and 12 exert an acting force that reverses the movements of the underground structure portion 2 and the building body 3. The oil chambers of 9 and the second hydraulic jack 12 are connected to each other by a connecting pipe 13.

ここで、第1免震層5や第2免震層10、第3免震層11に設けられる免震装置6は、積層ゴムの他に滑り支承などであってもよく、特に限定を必要としない。 Here, the seismic isolation device 6 provided in the first seismic isolation layer 5, the second seismic isolation layer 10, and the third seismic isolation layer 11 may be a sliding bearing or the like in addition to the laminated rubber, and is particularly limited. Do not.

また、図3に示すように、第1油圧ジャッキ9は地下構造部2と免震ピット1の間に設けられていれば、第2油圧ジャッキ12は地下構造部2と建物本体3の間に設けられていれば、それ以上の配置の限定をする必要はない。また、第1油圧ジャッキ9と第2油圧ジャッキ12の数も限定を必要としない。 Further, as shown in FIG. 3, if the first hydraulic jack 9 is provided between the underground structure portion 2 and the seismic isolation pit 1, the second hydraulic jack 12 is located between the underground structure portion 2 and the building body 3. If it is provided, there is no need to further limit the arrangement. Further, the number of the first hydraulic jack 9 and the second hydraulic jack 12 does not need to be limited.

そして、地震が発生した際に、図1に示すような主要動R1では地盤Gが短周期で激しく揺れるが、上記構成からなる本実施形態の免震構造物Aにおいては、積層ゴムなどの免震装置6と回転慣性質量装置7によって長周期化しているため、地下構造部2への入力エネルギーが低減する。 When an earthquake occurs, the ground G violently shakes in a short cycle in the main motion R1 as shown in FIG. 1. However, in the seismic isolation structure A of the present embodiment having the above configuration, laminated rubber or the like is exempted. Since the period is extended by the seismic isolation device 6 and the rotational inertia mass device 7, the input energy to the underground structure portion 2 is reduced.

なお、回転慣性質量装置7の仮想質量の値を極端に大きくした場合は回転慣性質量装置7のハイパスフィルター(短周期成分をそのまま透過させてしまう)としての効果が顕著になるため、実質量と仮想質量の比は最大でも1程度以下にすることが望ましい。 When the value of the virtual mass of the rotary inertial mass device 7 is made extremely large, the effect of the rotary inertial mass device 7 as a high-pass filter (which allows short-period components to pass through as it is) becomes remarkable. It is desirable that the ratio of virtual mass is about 1 or less at the maximum.

また、回転慣性質量装置7の影響で地下構造部2に入力した一部の短周期成分は、2段目(第2免震層10、第3免震層11)の積層ゴムなどの免震装置6によって遮断されるため、建物本体3にはあまり伝わらない。 In addition, some short-period components input to the underground structure 2 due to the influence of the rotary inertia mass device 7 are seismic isolated such as laminated rubber of the second stage (second seismic isolation layer 10, third seismic isolation layer 11). Since it is blocked by the device 6, it is not transmitted to the building body 3 very much.

これにより、本実施形態の免震構造物Aによれば、建物本体3の揺れを好適に抑えることが可能になる。 As a result, according to the seismic isolation structure A of the present embodiment, it is possible to suitably suppress the shaking of the building body 3.

ここで、仮に建物本体3が全く揺れない状況、すなわち、絶対座標系で静止している状況では、地盤Gの揺れの変位成分の最大値がエキスパンション・ジョイント4で考慮すべき変位となる。この考慮すべき変位が本実施形態では例えば最大でも10cm程度であり、通常の免震構造物で想定されている相対変位よりもかなり小さくなることが確認されている。 Here, in a situation where the building body 3 does not shake at all, that is, in a situation where it is stationary in the absolute coordinate system, the maximum value of the displacement component of the shaking of the ground G is the displacement to be considered in the expansion joint 4. It has been confirmed that the displacement to be considered is, for example, about 10 cm at the maximum in the present embodiment, which is considerably smaller than the relative displacement assumed in the normal seismic isolation structure.

次に、図1に示すように、主要動R1以降では加速度は小さくなるが変位成分が目立ってくる。すなわち、免震構造物Aへの入力エネルギーとなる長周期成分が卓越してくる。建物本体3が絶対座標系上で静止していると仮定すると地盤Gの変位最大値がエキスパンション・ジョイント4で考慮すべき変位となり、主要動R1以降の後揺れR2の変位はそれほど大きくない。 Next, as shown in FIG. 1, after the main motion R1, the acceleration becomes small, but the displacement component becomes conspicuous. That is, the long-period component that becomes the input energy to the seismic isolation structure A is predominant. Assuming that the building body 3 is stationary on the absolute coordinate system, the maximum displacement of the ground G is the displacement to be considered in the expansion joint 4, and the displacement of the backswing R2 after the main motion R1 is not so large.

このため、エキスパンション・ジョイント4として憂慮すべきは、免震構造物Aの共振による変位増大である。 Therefore, what is worrisome as the expansion joint 4 is the increase in displacement due to the resonance of the seismic isolation structure A.

既存の技術では硬化型復元力装置8を配置することにより共振を抑制している。さらに、免震ピット1の側壁部1aにぶつからないように定めた目標上限値付近では硬化型復元力装置8の剛性が急激に増大して変位を抑制している。 In the existing technique, resonance is suppressed by arranging the curing type restoring force device 8. Further, in the vicinity of the target upper limit value determined so as not to hit the side wall portion 1a of the seismic isolation pit 1, the rigidity of the curing type restoring force device 8 rapidly increases and the displacement is suppressed.

これに対し、本実施形態の免震構造物Aにおいては、エキスパンション・ジョイント4の性能を勘案して定めた油圧ジャッキ作動変位に達すると、地下構造部2と建物本体3を別方向に動かすように油圧ジャッキ9、12が作動する。これにより、地下構造部2の変位が増大するにつれ、建物本体3の変位を減少させることが可能になる。 On the other hand, in the seismic isolation structure A of the present embodiment, when the hydraulic jack operating displacement determined in consideration of the performance of the expansion joint 4 is reached, the underground structure portion 2 and the building body 3 are moved in different directions. The hydraulic jacks 9 and 12 are activated. As a result, as the displacement of the underground structure portion 2 increases, the displacement of the building body 3 can be reduced.

なお、2つの油圧ジャッキ9、12の径などを変えることによって、地下構造部2の変位が建物本体3の変位に及ぼす影響を調整することも可能になる。 By changing the diameters of the two hydraulic jacks 9 and 12, it is possible to adjust the influence of the displacement of the underground structure portion 2 on the displacement of the building body 3.

したがって、本実施形態の免震構造物Aによれば、より効果的且つ確実に、a)回転慣性質量装置7の付加質量効果により免震構造物Aをさらに長周期化して主要動R1の短周期成分の入力エネルギーが建物に伝わらないようにし、b)硬化型復元力装置8によって後揺れ時の共振を防ぎ、c)さらに硬化型復元力装置8によって変位増大を抑制して擁壁(免震ピット1の側壁部1a)への建物3の衝突を防ぐことが可能になる。 Therefore, according to the seismic isolation structure A of the present embodiment, a) the seismic isolation structure A is further lengthened by the additional mass effect of the rotational inertia mass device 7 to shorten the main motion R1. The input energy of the periodic component is not transmitted to the building, b) the hardening type restoring force device 8 prevents resonance at the time of back shaking, and c) the hardening type restoring force device 8 further suppresses the increase in displacement and the retaining wall (isolation). It becomes possible to prevent the building 3 from colliding with the side wall portion 1a) of the seismic isolation pit 1.

以上、本発明に係る免震構造物Aの一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 Although the embodiment of the seismic isolation structure A according to the present invention has been described above, the present invention is not limited to the above-mentioned embodiment and can be appropriately modified without departing from the spirit of the present invention.

1 免震ピット
1a 側壁部(擁壁)
2 地下構造部
2a 凹部
3 建物本体
3a 地上面部(張り出し部)
4 エキスパンション・ジョイント
5 第1免震層
6 免震装置
7 回転慣性質量装置
8 硬化型復元力装置
9 第1油圧ジャッキ
10 第2免震層
11 第3免震層
12 第2油圧ジャッキ
13 連結管
A 免震構造物
1 Seismic isolation pit 1a Side wall (retaining wall)
2 Underground structure 2a Recess 3 Building body 3a Ground surface (overhanging part)
4 Expansion joint 5 1st seismic isolation layer 6 Seismic isolation device 7 Rotating inertial mass device 8 Hardened restoring force device 9 1st hydraulic jack 10 2nd seismic isolation layer 11 3rd seismic isolation layer 12 2nd hydraulic jack 13 Connecting pipe A Seismic isolation structure

Claims (1)

免震ピットと、前記免震ピットの内部空間に設けられる地下構造部と、前記地下構造部上に設けられる建物本体とを備え、
前記免震ピットの底面と前記地下構造部の下面との間の免震層に介設された免震装置によって前記地下構造部が支持され、
前記地下構造部の上面と前記建物本体の下面との間の免震層に介設された免震装置によって前記建物本体が支持され、
回転慣性質量装置が一端を前記地下構造部、他端を前記免震ピットにそれぞれ接続して設けられるとともに、変位に応じて剛性が変化する硬化型復元力装置が一端を前記地下構造部に、他端を前記免震ピットにそれぞれ接続して設けられ、
且つ、前記地下構造部と前記免震ピットの間に第1油圧ジャッキが設けられ、前記地下構造部と前記建物本体の間に第2油圧ジャッキが設けられ、
前記第1油圧ジャッキと前記第2油圧ジャッキの互いの油室が連結管で連結されて前記地下構造部と地盤の相対変位が所定の値以上になるとともに前記第1油圧ジャッキと前記第2油圧ジャッキが動作開始され、前記第1油圧ジャッキと前記第2油圧ジャッキが前記地下構造部と前記建物本体の動きを逆方向にする作用力を発現するように構成されていることを特徴とする免震構造物。
It is provided with a seismic isolation pit, an underground structure provided in the internal space of the seismic isolation pit, and a building body provided on the underground structure.
The underground structure is supported by a seismic isolation device interposed in the seismic isolation layer between the bottom surface of the seismic isolation pit and the lower surface of the underground structure.
The building body is supported by a seismic isolation device interposed in a seismic isolation layer between the upper surface of the underground structure portion and the lower surface of the building body.
A rotary inertial mass device is provided by connecting one end to the underground structure and the other end to the seismic isolation pit, and a hardening type restoring force device whose rigidity changes according to displacement is provided by connecting one end to the underground structure. The other end is connected to the seismic isolation pit and provided.
Further, a first hydraulic jack is provided between the underground structure portion and the seismic isolation pit, and a second hydraulic jack is provided between the underground structure portion and the building body.
The oil chambers of the first hydraulic jack and the second hydraulic jack are connected to each other by a connecting pipe, and the relative displacement between the underground structure and the ground becomes equal to or more than a predetermined value, and the first hydraulic jack and the second hydraulic pressure are used. The operation of the jack is started, and the first hydraulic jack and the second hydraulic jack are configured to exert an action force that reverses the movements of the underground structure portion and the building body. Seismic structure.
JP2018067786A 2018-03-30 2018-03-30 Seismic isolation structure Active JP7019487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018067786A JP7019487B2 (en) 2018-03-30 2018-03-30 Seismic isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018067786A JP7019487B2 (en) 2018-03-30 2018-03-30 Seismic isolation structure

Publications (2)

Publication Number Publication Date
JP2019178532A JP2019178532A (en) 2019-10-17
JP7019487B2 true JP7019487B2 (en) 2022-02-15

Family

ID=68277935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018067786A Active JP7019487B2 (en) 2018-03-30 2018-03-30 Seismic isolation structure

Country Status (1)

Country Link
JP (1) JP7019487B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070909A (en) 2008-09-16 2010-04-02 Shimizu Corp Base-isolated structure
JP2015168997A (en) 2014-03-07 2015-09-28 明義 西野 Seismic-isolation foundation structure for building
JP2017003089A (en) 2015-06-15 2017-01-05 清水建設株式会社 Rotational inertia mass device and vibration control structure including the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527852B2 (en) * 1973-01-23 1977-03-04
JPH02125231U (en) * 1989-03-27 1990-10-16
JPH10311162A (en) * 1997-05-12 1998-11-24 Taisei Corp Base isolated building

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070909A (en) 2008-09-16 2010-04-02 Shimizu Corp Base-isolated structure
JP2015168997A (en) 2014-03-07 2015-09-28 明義 西野 Seismic-isolation foundation structure for building
JP2017003089A (en) 2015-06-15 2017-01-05 清水建設株式会社 Rotational inertia mass device and vibration control structure including the same

Also Published As

Publication number Publication date
JP2019178532A (en) 2019-10-17

Similar Documents

Publication Publication Date Title
JP5696881B2 (en) Vibration control device using inertial mass damper
JP2010007793A (en) Base isolation structure
JP6000099B2 (en) Isolated vibration structure
KR100795937B1 (en) Bearing apparatus for structure
JP6440243B2 (en) Setting method of bridge damping structure
Nakaminami et al. Response Characteristics of a Base-Isolated Structure Incorporated with a Force-Restricted Viscous Mass MaMass Damper Damper
JP7019487B2 (en) Seismic isolation structure
JP5574330B2 (en) Seismic isolation structure
JP2015206381A (en) Rotary mass damper
JP5473000B2 (en) Vertical vibration control system for building floor
JP4002899B2 (en) Multi-layer type vibration isolation connection mechanism
JP5252173B2 (en) Anti-vibration mechanism
JP6440244B2 (en) Setting method of bridge damping structure
JP2004027832A (en) Vibration control device using toggle mechanism
JP6441090B2 (en) Seismic isolation structure
JP6895737B2 (en) Installation structure of building oil damper
JP5024623B2 (en) Seismic isolation mechanism
JP6726381B2 (en) Installation structure of rotary mass damper
KR100994175B1 (en) Hybrid isolator
JP7312342B2 (en) Damping device and damping structure
KR100898630B1 (en) Complex damper to reduce armhole of construction
JP2018173138A (en) Vibration control device and vibration control system
JP2007085023A (en) Tower-like structure
JP7057545B2 (en) Vibration control structure of tower structure
JP2004162319A (en) Earthquake damping structure having basement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220202

R150 Certificate of patent or registration of utility model

Ref document number: 7019487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150