JP2018009442A - Base-isolated structure - Google Patents

Base-isolated structure Download PDF

Info

Publication number
JP2018009442A
JP2018009442A JP2017121712A JP2017121712A JP2018009442A JP 2018009442 A JP2018009442 A JP 2018009442A JP 2017121712 A JP2017121712 A JP 2017121712A JP 2017121712 A JP2017121712 A JP 2017121712A JP 2018009442 A JP2018009442 A JP 2018009442A
Authority
JP
Japan
Prior art keywords
seismic isolation
layer
isolation layer
core
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017121712A
Other languages
Japanese (ja)
Other versions
JP6979805B2 (en
Inventor
祥江 小槻
Yoshie Kotsuki
祥江 小槻
杉本 浩一
Koichi Sugimoto
浩一 杉本
貴之 須賀
Takayuki Suga
貴之 須賀
伸也 牛坂
Shinya Ushizaka
伸也 牛坂
磯田 和彦
Kazuhiko Isoda
和彦 磯田
福喜多 輝
Teru Fukukita
輝 福喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Publication of JP2018009442A publication Critical patent/JP2018009442A/en
Application granted granted Critical
Publication of JP6979805B2 publication Critical patent/JP6979805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a base-isolated structure that has higher base isolation performance and that can cope with a greater seismic ground motion.SOLUTION: A base-isolated structure includes a core part 1 and a building body 2 adjacent to the core part 1. The base-isolated structure comprises: a multilayered base-isolated structure that comprises a foundation base-isolated layer 3 provided in a lower part of at least the building body 2 of the core part 1 and the building body 2, and an intermediate base-isolated layer 4 provided in an intermediate part of the building body 2; and a connected vibration control structure in which the core part 1 and the building body 2 are connected together by a vibration control device 5.SELECTED DRAWING: Figure 1

Description

本発明は、免震構造物に関する。   The present invention relates to a seismic isolation structure.

免震構造は、固有周期を長周期化することによる地震動入力の低減と、免震層に変形を集中させて地震エネルギーの効率的な吸収を両立するシステムであり、近年、このような免震構造を備えた免震構造物は、庁舎や病院、本社機能を有する拠点施設だけでなく、オフィスビルや集合住宅、学校建築など、用途を問わず採用されている(例えば、特許文献1、特許文献2、特許文献3参照)。   The seismic isolation structure is a system that achieves both the reduction of ground motion input by increasing the natural period and the effective absorption of seismic energy by concentrating deformation in the seismic isolation layer. The seismic isolation structure having a structure is adopted not only for government buildings, hospitals, and base facilities having head office functions, but also for office buildings, apartment houses, school buildings, etc. (for example, Patent Document 1, Patents) Reference 2 and Patent Reference 3).

特開2009−019479号公報JP 2009-019479 A 特開平11−241524号公報Japanese Patent Laid-Open No. 11-241524 特開2002−266517号公報JP 2002-266517 A

一方、東北地方太平洋沖地震を契機に、様々な地震動を想定し、従来よりもレベルの大きな地震動を考慮して構造物を設計することが求められ、これに伴い、免震層変位が想定よりも過大になる場合を考慮する必要性が生じている。   On the other hand, triggered by the Tohoku-Pacific Ocean Earthquake, various ground motions are assumed, and it is required to design structures considering ground motions that are larger than before. There is also a need to consider the case of becoming excessive.

すなわち、地震対策や事業継続に対する社会的ニーズが飛躍的に高まり、一般の建築物に対しても免震/制震技術が積極的に採用され、防災拠点施設や都心の超高層建物においては従来よりも高耐震の構造性能が求められている。   In other words, the social needs for earthquake countermeasures and business continuity have increased dramatically, and seismic isolation / seismic technology has been actively adopted for ordinary buildings. Conventional disaster prevention facilities and skyscrapers in central Tokyo Higher earthquake-resistant structural performance is required.

しかしながら、免震構造は建物全体の耐震性能が免震層によって決定づけられているため、高耐震化の手法として免震層に何らかの対応を施すことが第一に考えられるが、高い余裕度を求めて免震クリアランスを大きくする対策は床面積の減少に直結し、建築計画的な犠牲が大きい。また、最大級の地震を考慮し、免震層変位を抑えるべく免震層剛性を高めたり、ダンパーを大量に設置し高減衰化すると、かえって上部構造の加速度が大きくなり、免震効果が低減してしまう。   However, the seismic isolation structure has the seismic performance of the entire building determined by the seismic isolation layer, so it may be the first way to apply some countermeasures to the seismic isolation layer as a method of increasing seismic resistance. Therefore, measures to increase the seismic isolation clearance directly lead to a reduction in floor space, and there is a great architectural plan sacrifice. In addition, considering the largest earthquake, increasing the base isolation rigidity to suppress the base isolation displacement or installing a large amount of dampers to increase the damping will increase the acceleration of the superstructure and reduce the base isolation effect. Resulting in.

本発明は、上記事情に鑑み、より高性能な免震性能を備え、より大きな地震動に対応可能な免震構造物を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a seismic isolation structure that has higher performance seismic isolation performance and can cope with larger seismic motion.

上記の目的を達するために、この発明は以下の手段を提供している。   In order to achieve the above object, the present invention provides the following means.

本発明の免震構造物は、コア部と、該コア部に隣接する建物主要部とを備えるとともに、前記コア部と前記建物主要部の少なくとも前記建物主要部の下部に設けられた基礎免震層と、前記建物主要部の中間部に設けられた中間免震層とからなる複層免震構造、及び前記コア部と、前記建物主要部とを制振装置で連結してなる連結制振構造を備えて構成されていることを特徴とする。   The seismic isolation structure of the present invention comprises a core part and a building main part adjacent to the core part, and a basic seismic isolation provided at least in the lower part of the building main part of the core part and the building main part. Multi-layer seismic isolation structure comprising a layer and an intermediate seismic isolation layer provided in the middle part of the building main part, and a coupled vibration damping structure in which the core part and the building main part are coupled by a damping device It is characterized by comprising a structure.

また、本発明の免震構造物においては、前記中間免震層より上層の前記コア部と前記建物主要部が一体形成され、前記中間免震層より下層の前記コア部と前記建物主要部が前記制振装置で連結され、且つ前記コア部の下部が基礎免震層であることが望ましい。   Further, in the base isolation structure of the present invention, the core portion above the intermediate base isolation layer and the building main portion are integrally formed, and the core portion and the building main portion below the intermediate base isolation layer are formed. It is desirable that they are connected by the vibration damping device and the lower part of the core part is a basic seismic isolation layer.

本発明の免震構造物においては、前記中間免震層より下層の前記コア部と前記建物主要部が一体形成され、前記中間免震層より上層の前記コア部と前記建物主要部が前記制振装置で連結されていてもよい。   In the seismic isolation structure of the present invention, the core portion and the building main portion below the intermediate seismic isolation layer are integrally formed, and the core portion and the building main portion above the intermediate seismic isolation layer are formed by the control. You may be connected with the vibration apparatus.

本発明の免震構造物においては、前記コア部と前記建物主要部がそれぞれ独立して立設され、前記中間免震層より上層の前記コア部と前記建物主要部が前記制振装置で連結されていてもよい。   In the seismic isolation structure of the present invention, the core part and the building main part are erected independently, and the core part and the building main part above the intermediate seismic isolation layer are connected by the damping device. May be.

本発明の免震構造物は、コア部と、該コア部に隣接する物主要部とを備えるとともに、前記コア部と前記建物主要部の少なくとも前記建物主要部の下部に設けられた基礎免震層と、前記建物主要部の中間部に設けられた中間免震層とからなる複層免震構造を備え、前記中間免震層より上層の前記コア部と前記建物主要部が一体形成され、且つ前記中間免震層に制震装置を設けて構成されていることを特徴とする。   The seismic isolation structure of the present invention comprises a core part and an object main part adjacent to the core part, and a basic seismic isolation provided at least in the lower part of the building main part of the core part and the building main part. A multi-layer seismic isolation structure comprising a layer and an intermediate seismic isolation layer provided in an intermediate part of the building main part, and the core part and the building main part above the intermediate seismic isolation layer are integrally formed, And the said seismic isolation layer is provided with the damping device, It is characterized by the above-mentioned.

また、本発明の免震構造物においては、前記中間免震層及び前記基礎免震層に設置する免震層剛性kと減衰cの諸元を、下記の式(1)から式(4)を満たすように設定することが望ましい。   Further, in the base isolation structure of the present invention, the specifications of the base isolation layer stiffness k and damping c to be installed in the intermediate base isolation layer and the base base isolation layer are expressed by the following formulas (1) to (4). It is desirable to set so as to satisfy.

Figure 2018009442
Figure 2018009442

Figure 2018009442
Figure 2018009442

Figure 2018009442
Figure 2018009442

Figure 2018009442
Figure 2018009442

ここで、Mが中間免震層よりも上方の上部構造物の質量、Mが下部構造物の質量であり、k、kはそれぞれ基礎免震層と中間層免震層の免震層剛性、kはコアウォール下の免震層剛性であり、c、cはそれぞれ基礎免震層とコア下部支承部分に設置する減衰、cは中間層免震層のみではなく、コアウォールと下部構造物を連結する連結制震の減衰を含み、固有ベクトル{r,r}は、最大値を1として基準化した上部構造物と下部構造物の質点の固有ベクトルである。 Here, the mass above the upper structure than M A is an intermediate isolation layer, the mass of M B lower structure, k 1, k 2 is exemption of each basic isolation layer and the intermediate layer base isolation layer Shinso stiffness, k 3 is the base isolation layer rigid under the core wall, c 1, c 3 is attenuated to be installed in a basic seismic isolation layer and the core lower support portions respectively, c 2 is not only the intermediate layer base isolation layer In addition, the eigenvector {r 1 , r 2 } is a characteristic vector of the mass points of the upper structure and the lower structure that are normalized with the maximum value being 1, including the damping of the joint control that connects the core wall and the lower structure.

本発明の免震構造物においては、複層免震化によって超長周期化を実現でき、従来の免震構造物と比較して応答加速度を半減することができる。また、剛強なコアによる上部架構の高剛性化によって頂部加速度の増大(むちふり応答)を抑制することが可能になる。さらに、コア下部の制震部材に変形を効果的に集中させることで、単純な複層免震を超える制震効果を発揮させ、加速度低減効果と変位抑制効果を大幅に向上することができる。   In the seismic isolation structure of the present invention, ultra-long period can be realized by the multi-layer seismic isolation, and the response acceleration can be halved compared to the conventional seismic isolation structure. In addition, an increase in the top acceleration (whipping response) can be suppressed by increasing the rigidity of the upper frame with a rigid core. Furthermore, by effectively concentrating the deformation on the damping member under the core, the damping effect exceeding the simple multi-layer seismic isolation can be exhibited, and the acceleration reduction effect and the displacement suppression effect can be greatly improved.

よって、本発明の免震構造物によれば、より高性能な免震性能を備え、より大きな地震動に対応することが可能になる。   Therefore, according to the seismic isolation structure of the present invention, it is possible to have a higher performance seismic isolation performance and cope with a larger earthquake motion.

本発明の第1実施形態(及び第3実施形態)に係る免震構造物を示す図であり、(a)が縦断面図、(b)が平断面図((a)のX1−X1線矢視図)である。It is a figure which shows the seismic isolation structure which concerns on 1st Embodiment (and 3rd Embodiment) of this invention, (a) is a longitudinal cross-sectional view, (b) is a plane cross-sectional view (X1-X1 line of (a)) (Arrow view). 時刻歴応答解析で用いた振動モデルを示す図である。It is a figure which shows the vibration model used by the time history response analysis. 第1実施形態における時刻歴応答解析の結果を示す図である。It is a figure which shows the result of the time history response analysis in 1st Embodiment. 第1実施形態における時刻歴応答解析の結果を示す図である。It is a figure which shows the result of the time history response analysis in 1st Embodiment. 本発明の第1実施形態に係る免震構造物の変位−加速度関係の一例を示す図である。It is a figure which shows an example of the displacement-acceleration relationship of the seismic isolation structure which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る免震構造物を示す図である。It is a figure which shows the seismic isolation structure which concerns on 2nd Embodiment of this invention. 時刻歴応答解析で用いた振動モデルを示す図である。It is a figure which shows the vibration model used by the time history response analysis. 第2実施形態における時刻歴応答解析の結果を示す図である。It is a figure which shows the result of the time history response analysis in 2nd Embodiment. 第2実施形態における時刻歴応答解析の結果を示す図である。It is a figure which shows the result of the time history response analysis in 2nd Embodiment. 第2実施形態における時刻歴応答解析の結果を示す図である。It is a figure which shows the result of the time history response analysis in 2nd Embodiment. 第3実施形態の免震構造物の解析モデルと各諸元の定義を示す図である。It is a figure which shows the analysis model of the seismic isolation structure of 3rd Embodiment, and the definition of each item. 第3実施形態の免震構造物の解析モデルと1次の振動モードの一例を示す図である。It is a figure which shows an example of the analysis model of the seismic isolation structure of 3rd Embodiment, and a primary vibration mode. μ=1.0のときのαとβの関係を示すとともに、本発明の免震構造物の好適な適用範囲を示す図である。It is a figure which shows the suitable application range of the seismic isolation structure of this invention while showing the relationship between (alpha) and (beta) when (micro | micron | mu) = 1.0. μ=0.5のときのαとβの関係を示すとともに、本発明の免震構造物の好適な適用範囲を示す図である。It is a figure which shows the suitable application range of the seismic isolation structure of this invention while showing the relationship of (alpha) and (beta) when (micro | micron | mu) = 0.5. 解析で用いた(a)従来の免震構造物と、(b)従来の複層免震構造物と、(c)本発明の免震構造物を示す図である。It is a figure which shows (a) the conventional seismic isolation structure used by the analysis, (b) the conventional multilayer seismic isolation structure, and (c) the seismic isolation structure of this invention. 比較条件(1)で行った解析結果を示す図である。It is a figure which shows the analysis result performed on the comparison conditions (1). 比較条件(2)で行った解析結果を示す図である。It is a figure which shows the analysis result performed on the comparison conditions (2). 比較条件(3)で行った解析結果を示す図である。It is a figure which shows the analysis result performed on the comparison conditions (3). 入力地震動の疑似速度応答スペクトルを示す図である。It is a figure which shows the pseudo speed response spectrum of an input earthquake motion. 比較条件(1)で行った解析結果(a)〜(e)、及び各入力地震動の入力加速度(f)を示す図である。It is a figure which shows the analysis result (a)-(e) performed on the comparison conditions (1), and the input acceleration (f) of each input earthquake motion. (a)従来の免震構造物と、(b)従来の複層免震構造物と、(c)本発明の免震構造物の多質点系解析モデルを示す図である。It is a figure which shows the multi-mass point system analysis model of (a) conventional seismic isolation structure, (b) conventional multi-layer seismic isolation structure, and (c) seismic isolation structure of this invention. 2質点系に集約した諸元についての設計パラメータμ、α、β、γを示す図である。It is a figure which shows the design parameters (micro | micron | mu), (alpha), (beta), and (gamma) about the item collected by 2 mass point system. 解析結果を示す図であり、最大応答加速度分布を示す図である。It is a figure which shows an analysis result, and is a figure which shows maximum response acceleration distribution. 解析結果を示す図であり、最大層間変形角分布を示す図である。It is a figure which shows an analysis result, and is a figure which shows the largest interlayer deformation angle distribution. 解析結果を示す図であり、免震層の変形量を示す図である。It is a figure which shows an analysis result, and is a figure which shows the deformation amount of a seismic isolation layer.

以下、図1から図5を参照し、本発明の第1実施形態に係る免震構造物について説明する。   Hereinafter, the seismic isolation structure according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 5.

本実施形態の免震構造物は、剛強なコアを複数の免震層を有する複層免震建物の内部に貫通させ、相互を制震装置で連結した複層連結免震構造とし、従来の免震構造では不可能な超長周期化による加速度低減を実現しながらクリアランスやコア下部に設置した連結制震が単なる複層免震では不可能な制震効果を発揮して変位制御を両立するように構成されている。   The seismic isolation structure of the present embodiment has a multi-layer seismic isolation structure in which a rigid core is passed through a multi-layer seismic isolation building having a plurality of seismic isolation layers and connected to each other by a seismic control device. While achieving acceleration reduction that is impossible with a base-isolated structure, the joint control system installed at the bottom of the clearance and the core exhibits a seismic control effect that is not possible with simple multi-layer base isolation, and achieves both displacement control. It is configured as follows.

具体的に、本実施形態の免震構造物Aは、免震建物であり、図1に示すように、建物中央にコアウォールを備えてなる平面視方形状で最下層から最上層まで上下方向に連続的に延設された剛強なコア部(建物中央部)1と、コア部1に隣接し、コア部1を囲繞するように配設されて建物周囲を形成する建物主要部(建物周囲部)2とを備えている。なお、図1では、コア部1が中央コアとしているが、偏心コアや両端コアを備えた構造物であっても勿論構わない。   Specifically, the seismic isolation structure A of the present embodiment is a seismic isolation building, and as shown in FIG. 1, in a plan view shape having a core wall at the center of the building, the vertical direction from the bottom layer to the top layer A rigid core portion (building central portion) 1 continuously extended to the main portion of the building (adjacent to the core portion 1 and surrounding the core portion 1 to form the surroundings of the building) Part) 2. In addition, in FIG. 1, although the core part 1 is made into the center core, of course, you may be a structure provided with the eccentric core and the both-ends core.

コア部1と建物主要部2はそれぞれ下部に基礎免震層3を備えており、この基礎免震層3には任意の免震支承(免震装置)と減衰装置が設けられている。例えば、免震支承としては積層ゴム、すべり支承、リニアスライダーのいずれか、もしくは複数を併用し、減衰装置としてはオイルダンパー、鉛ダンパー(積層ゴムに内包するLRBを含む)、鋼材ダンパー、摩擦ダンパーのいずれか、もしくは複数を併用できる。   The core part 1 and the building main part 2 are each provided with a basic seismic isolation layer 3 at the lower part, and the base seismic isolation layer 3 is provided with an optional seismic isolation support (isolation device) and an attenuation device. For example, seismic isolation bearings may be laminated rubber, sliding bearings, linear sliders or a combination of several, and damping devices may be oil dampers, lead dampers (including LRBs contained in laminated rubber), steel dampers, friction dampers. Any one or a plurality of these can be used in combination.

さらに、本実施形態の免震構造物Aは所定の階層に中間免震層4を備えており、中間免震層4よりも上層はコア部1と建物主要部2が一体形成され、中間免震層4から下層は建物主要部2がコア部1との間に所定の空間を設け、それぞれ独立して立設するように形成されている。中間免震層4には基礎免震層3と同様に任意の免震支承(免震装置)が設けられ、この免震支承によって中間免震層4を境に上層の建物主要部2が支持されている。   Further, the seismic isolation structure A of the present embodiment includes an intermediate seismic isolation layer 4 at a predetermined level, and the core part 1 and the main building part 2 are integrally formed above the intermediate seismic isolation layer 4, so The lower layer from the seismic layer 4 is formed so that the building main part 2 provides a predetermined space between the core part 1 and stands independently. The middle seismic isolation layer 4 is provided with an optional seismic isolation bearing (base isolation device) in the same way as the base isolation layer 3 and is supported by the main building 2 in the upper layer with the middle seismic isolation layer 4 as a boundary. Has been.

また、中間免震層4よりも下層のそれぞれ独立して立設された建物主要部2とコア部1は、制振装置(連結ダンパー、減衰要素)5を介して連結されている。なお、制振装置5としてバネ要素と減衰要素を適用してもよく、この場合には、コア部1と建物主要部2(コア部1と建物主要部2の相互)をTMDの錘要素のように機能させることも可能になる。   In addition, the building main part 2 and the core part 1 which are erected independently from each other below the intermediate seismic isolation layer 4 are connected via a vibration damping device (connection damper, damping element) 5. In addition, a spring element and a damping element may be applied as the vibration damping device 5. In this case, the core part 1 and the building main part 2 (mutually between the core part 1 and the building main part 2) are used as TMD weight elements. It also becomes possible to make it function.

そして、本実施形態の免震構造物Aにおいては、基礎免震層3と中間免震層4を有する複層免震構造としたことで、固有周期の超長周期化を実現することができる。   And in the seismic isolation structure A of this embodiment, the multi-layer seismic isolation structure having the basic seismic isolation layer 3 and the intermediate seismic isolation layer 4 can realize an extremely long natural period. .

また、剛強なコア部1を建物全層にわたって貫通させ、構造的、機能的な心棒とし、さらに中間免震層4よりも下層の建物主要部2(基壇架構)とコア部1を接続した連結制震構造としたことによって、応答制御を効率的に行うことが可能になる。   In addition, a rigid core part 1 is penetrated through all layers of the building to form a structural and functional mandrel, and the main building part 2 (base frame) below the intermediate seismic isolation layer 4 is connected to the core part 1 By adopting a vibration control structure, response control can be performed efficiently.

さらに、コア部1を免震層3で支持することで、地震時に免震層3に設置した減衰装置を積極的に変形させてエネルギー吸収を効率化することが可能になる。なお、中間免震層4の位置は用途の境界等の建築計画的な観点から自由に決定できる。   Furthermore, by supporting the core portion 1 with the seismic isolation layer 3, it is possible to positively deform the damping device installed in the seismic isolation layer 3 at the time of an earthquake and to improve energy absorption efficiency. In addition, the position of the intermediate seismic isolation layer 4 can be freely determined from the viewpoint of architectural planning such as the boundary of use.

また、上記のように構成することによって、本実施形態の免震構造物Aにおいては、加速度−変位の関係における従来のコア付き免震、複層免震の対象領域以外の領域の免震性能を担うことが可能になる。   Moreover, in the seismic isolation structure A of this embodiment, by configuring as described above, seismic isolation performance in a region other than the target region for conventional cored seismic isolation and multilayer seismic isolation in the relationship between acceleration and displacement. It becomes possible to bear.

ここで、本実施形態の免震構造物Aの効果を検証するために、本実施形態の免震構造物Aの振動モデルを用いて時刻歴応答解析による検討(シミュレーション)を行った。また、比較のため、複層免震構造と、コアを有する中間層免震モデルについても応答解析を実施した。   Here, in order to verify the effect of the seismic isolation structure A of this embodiment, examination (simulation) by time history response analysis was performed using the vibration model of the seismic isolation structure A of this embodiment. For comparison, response analysis was also carried out for a multi-layer base isolation structure and an intermediate-layer base isolation model with a core.

まず、解析モデルを次のように設定した。
図2(a)は、建物内に2層の免震層を持つ複層免震モデルであり、図2(b)は、コアを有する中間層免震構造を模擬したモデルである。図2(c)は、本実施形態の免震構造物Aであり、コアを有する複層免震モデルである。
First, the analysis model was set as follows.
FIG. 2A is a multi-layer seismic isolation model having two seismic isolation layers in the building, and FIG. 2B is a model simulating an intermediate layer seismic isolation structure having a core. FIG.2 (c) is the seismic isolation structure A of this embodiment, and is the multilayer seismic isolation model which has a core.

また、建物主要部は30質点のせん断モデルであり、コア部は30質点の曲げせん断モデルである。建物主要部は、免震層以外はS造を想定した線形特性を用いている。コア部はRC造を想定した曲げとせん断の線形特性を用いている。   The main part of the building is a 30-mass point shear model, and the core part is a 30-mass bending shear model. The main part of the building uses linear characteristics assuming an S structure except for the seismic isolation layer. The core part uses linear characteristics of bending and shearing assuming RC construction.

各々のモデルは、基礎免震層、中間免震層を有し、図2(b)、図2(c)のモデルは、中間免震層より上層の建物主要部とコア部を剛梁で剛結している。また、図2(c)の本実施形態の免震構造物Aのモデルにおいては、中間免震層より下層の建物主要部とコア部をダンパーで連結している。   Each model has a base isolation layer and an intermediate isolation layer. The models shown in Fig. 2 (b) and Fig. 2 (c) use rigid beams for the main building and the core above the intermediate isolation layer. It is tight. Moreover, in the model of the seismic isolation structure A of this embodiment of FIG.2 (c), the building main part and core part of a layer lower than an intermediate seismic isolation layer are connected with the damper.

表1は、上記の解析で使用した各振動モデルの諸元を示している。
この表1に示す通り、図2(b)のコア付き免震の免震層は、複層免震の基礎免震層剛性と減衰を建物主要部とコア部の質量比に応じて分配した。図2(c)のコア付き複層免震の連結ダンパーは、基礎免震層の上の1〜4層に1.0E+07kN/(m/s)ずつ設置した。また、コア付き複層免震のダンパー総量は、連結ダンパーも含めて複層免震のダンパー総量と同量である。
Table 1 shows the specifications of each vibration model used in the above analysis.
As shown in Table 1, the base-isolated base isolation layer of Fig. 2 (b) distributes the base isolation base stiffness and damping of the multi-layer base isolation according to the mass ratio of the main building and the core. . The cored multi-layer seismic isolation dampers in Fig. 2 (c) were installed at 1.0E + 07kN / (m / s) on the 1st to 4th layers above the base seismic isolation layer. In addition, the total amount of dampers for cored multi-layer seismic isolation is the same as the total amount of dampers for multi-layer base isolation including connected dampers.

Figure 2018009442
Figure 2018009442

そして、表1に示した通り、まず、免震ありの固有周期を3つのモデルで比較すると、コア付き免震モデルは5.05秒と、一般的な免震建物の固有周期と同等であるが、複層免震およびコア付き複層免震は、それぞれ7.14秒、6.08秒と、一般的な免震建物よりも長く、複層免震によって超長周期化が実現できることが確認された。   And as shown in Table 1, first, the natural period with seismic isolation is compared between the three models. The cored seismic isolation model is 5.05 seconds, which is equivalent to the natural period of a general seismic isolated building. However, the multi-layer seismic isolation and the multi-layer seismic isolation with a core are 7.14 seconds and 6.08 seconds, respectively, which are longer than general seismic isolation buildings. confirmed.

次に、時刻歴応答解析には、EL CENTRO、告示KOBE、OS2を入力地震動として用いた。
EL CENTROは、1秒以下の周期帯の加速度応答が大きく、告示KOBEは1秒以下から長周期領域にかけてフラットな速度応答スペクトルをもつのが特徴である。OS2は、5〜8秒という長周期領域で大きな速度応答スペクトルを示すのが特徴である。
Next, for the time history response analysis, EL CENTRO, notification KOBE, and OS2 were used as input earthquake motions.
EL CENTRO has a large acceleration response in a period band of 1 second or less, and the notification KOBE is characterized by a flat velocity response spectrum from 1 second or less to a long period region. OS2 is characterized by a large velocity response spectrum in a long period of 5 to 8 seconds.

図3にEL CENTROを入力地震動としたときの時刻歴応答解析結果の建物主要部とコア部の加速度、変位、層間変形角の最大値分布を示す。
なお、告示KOBE、OS2を入力地震動とした場合もほぼ同様の傾向を示している。
FIG. 3 shows the maximum value distribution of acceleration, displacement, and interlayer deformation angle of the building main part and the core part as a result of time history response analysis when EL CENTRO is input earthquake motion.
In addition, when the notification KOBE and OS2 are input seismic motions, the same tendency is shown.

まず、加速度応答について評価すると、コア付き免震は、建物主要部の中間免震層より上層、及びコア部は一般的な免震構造と同等の加速度低減効果が得られているが、下層部分は耐震であることから応答加速度を低減できない。   First, when evaluating acceleration response, the core-based seismic isolation is higher than the middle seismic isolation layer of the main part of the building, and the core part has the same acceleration reduction effect as the general seismic isolation structure. Because it is earthquake resistant, the response acceleration cannot be reduced.

複層免震とコア付き複層免震の建物主要部は、複層免震による超長周期化により、全層にわたって大きな加速度低減効果が得られている。   The main part of the building with multi-layer seismic isolation and core multi-layer seismic isolation has a large acceleration reduction effect over all layers due to the ultra-long period by multi-layer seismic isolation.

ただし、複層免震は中間免震層直下と建物頂部の加速度が増幅する傾向にあり、EL CENTRO(と告示KOBE)入力の場合に100Galを超える層があるが、コア付き複層免震は、連結制振とコアの効果により中間免震層直下と建物頂部の加速度増幅を抑制でき、全層でおおよそ100Gal以下を実現できる。   However, multi-layer seismic isolation tends to amplify the acceleration immediately below the middle seismic isolation layer and the top of the building. In the case of EL CENTRO (and notification KOBE) input, there is a layer exceeding 100 Gal, Acceleration amplification directly below the middle seismic isolation layer and the top of the building can be suppressed by the combined vibration control and the core effect, and approximately 100 Gal or less can be realized in all layers.

次に、応答変位を評価すると、コア付き複層免震の基礎および中間の免震層変位は、複層免震の各免震層変位よりも小さく抑えられ、最も応答変位の大きいOS2においては、複層免震に対して頂部の最大変位を30%以上低減することが確認された。複層免震モデルとコア付き複層免震モデルのダンパー総量は同じであることから、コア付き複層免震の方がダンパーの制震効果を効率的に発揮させ、加速度低減と変位制御の両立に寄与していることが確認された。   Next, when evaluating the response displacement, the base and intermediate isolation layer displacements of the cored multi-layer seismic isolation are suppressed to be smaller than each seismic isolation layer displacement of the multi-layer seismic isolation, and in OS2 with the largest response displacement It was confirmed that the maximum displacement at the top was reduced by 30% or more with respect to multi-layer seismic isolation. Since the total amount of damper in the multi-layer seismic isolation model and the core multi-layer seismic isolation model is the same, the multi-layer seismic isolation with core more effectively exhibits the damping effect of the damper, reducing acceleration and displacement control. It was confirmed that it contributed to coexistence.

図4に、コア付き免震とコア付き複層免震の各解析ケースにおける建物主要部とコア部の棟間の変位の最大値分布を示す。どのケースにおいても、コア付き複層免震の方が棟間変位を小さく抑えられている。その変位は130mm〜350mmであることから、連結ダンパーのストロークとしては400mm程度を確保すればよく、既存の免震用のダンパーで対応可能である。   FIG. 4 shows the maximum distribution of displacement between the main building and the core building in each analysis case of the core-isolated and multi-layered base-isolated. In any case, the inter-building displacement is reduced with the multi-layer seismic isolation with core. Since the displacement is 130 mm to 350 mm, it is only necessary to secure about 400 mm as the stroke of the connecting damper, which can be handled by an existing seismic isolation damper.

以上より、本実施形態の免震構造物Aにおいては、複層免震化による大幅な加速度応答の低減と、連結制震による免震層の変位制御を両立できる効果的な構造を実現できることが実証された。   As described above, in the seismic isolation structure A of the present embodiment, it is possible to realize an effective structure that can achieve both a significant reduction in acceleration response due to the multi-layer seismic isolation and a displacement control of the seismic isolation layer due to the joint seismic control. Proven.

したがって、本実施形態の免震構造物Aにおいては、複層免震化によって超長周期化を実現でき、従来の免震構造物と比較して応答加速度を半減することができる。また、剛強なコア部1による上部架構の高剛性化によって頂部加速度の増大(むちふり応答)を抑制することが可能になる。さらに、中間免震層4よりも下層のコア部1と建物主要部2を減衰装置で連結した連結制震によって、単純な複層免震を超える加速度低減効果と変位抑制効果の両立を実現することが可能になる。   Therefore, in the seismic isolation structure A of the present embodiment, ultra-long period can be realized by the multi-layer seismic isolation, and the response acceleration can be halved compared with the conventional seismic isolation structure. Further, the increase in the top acceleration (whipping response) can be suppressed by increasing the rigidity of the upper frame by the rigid core portion 1. In addition, the combined damping that connects the core part 1 and the building main part 2 below the intermediate seismic isolation layer 4 with a damping device realizes both acceleration reduction effect and displacement suppression effect that exceed simple multi-layer isolation. It becomes possible.

また、本実施形態の免震構造物Aにおいては、コア下部のダンパーが高層階の地震エネルギーを吸収し、構造物全体の変位を効率的に低減することができる。複層免震化により、免震層の変形が分散されるため、従来の免震構造物に比べて免震層の最大応答変位を低減することが可能になる。免震層変位を抑制できるため、耐震余裕度が向上し、最大級の設計用地震動に対応することが可能になる。   Moreover, in the seismic isolation structure A of this embodiment, the damper of the lower part of a core can absorb the earthquake energy of a high floor, and can reduce the displacement of the whole structure efficiently. Since the deformation of the base isolation layer is dispersed by the multi-layer base isolation, the maximum response displacement of the base isolation layer can be reduced as compared with the conventional base isolation structure. Since the seismic isolation layer displacement can be suppressed, the seismic margin is improved and it is possible to cope with the largest design seismic motion.

さらに、本実施形態の免震構造物Aにおいては、ダンパーの設置箇所が基礎免震層3、中間免震層4、連結部(連結ダンパー部)、コア下部の4か所で計画でき、任意の制震装置、台数を組み合わせることが可能である。このため、制震システムとしての選択肢が多く、要求性能に応じたチューニングが可能になる。すなわち、加速度低減重視、変位制御重視、両者のバランス等、設計者が適宜選択、判断することが可能になる。   Furthermore, in the seismic isolation structure A of the present embodiment, the installation locations of the dampers can be planned at the base seismic isolation layer 3, the intermediate seismic isolation layer 4, the connection part (connection damper part), and the lower part of the core. It is possible to combine the number of seismic control devices. For this reason, there are many options as a seismic control system, and tuning according to required performance becomes possible. That is, it becomes possible for the designer to select and judge as appropriate, such as emphasizing acceleration reduction, emphasizing displacement control, and a balance between the two.

また、ダンパーの設置可能な場所が多く、これに伴い、従来の免震構造や複層免震構造に比べて構造物全体の減衰性能を大幅に向上できる。   In addition, there are many places where dampers can be installed, and as a result, the damping performance of the entire structure can be greatly improved compared to conventional seismic isolation structures and multi-layer seismic isolation structures.

さらに、本実施形態の免震構造物Aにおいては、複層免震化により建物主要部2の居室に作用する地震力が低減され、水平力の大部分をコア部1が負担する構造を実現できる。このため、柱、梁のスリム化やロングスパン化による建築計画の自由度向上が可能になる。   Furthermore, in the seismic isolation structure A of the present embodiment, the seismic force acting on the room of the main part 2 of the building is reduced by the multi-layer seismic isolation, and a structure in which the core part 1 bears most of the horizontal force is realized. it can. For this reason, it becomes possible to improve the degree of freedom of the architectural plan by slimming the pillars and beams and by extending the span.

また、複層免震でありながらコア部1は高さ方向に建物を貫いているため、エレベーターや設備等の縦シャフトが免震層に分断されない計画が可能になる。さらに、高層階でコア部1が居室がある建物主要部2と一体になっているため、連結制震によって基準階のレンタブル比が低下しない計画が可能になる。   In addition, since the core portion 1 penetrates the building in the height direction while being multi-layer seismic isolation, it is possible to plan that the vertical shafts of elevators, equipment, etc. are not divided by the seismic isolation layer. Furthermore, since the core part 1 is united with the main building part 2 where the room is located on the higher floor, it is possible to plan that the rentable ratio of the reference floor does not decrease due to the connected vibration control.

また、各免震層の剛性バランスを調整し変形を制御することで、建物外周に必要な免震クリアランスを一般免震に対して半減させ、敷地の有効活用も可能になる。   Moreover, by adjusting the rigidity balance of each seismic isolation layer and controlling the deformation, the seismic isolation clearance required for the outer periphery of the building is halved compared to general seismic isolation, and the site can be used effectively.

また、本実施形態の免震構造物Aにおいては、想定を上回る地震動が入力され、免震層の変位が増大した場合でも、建物を貫くコア部1が芯棒として機能することで上部構造物と基壇構造物が相互に脱落しない。これにより、信頼性が高く安全な複層免震構造を実現できる。   Moreover, in the seismic isolation structure A of this embodiment, even if the seismic motion exceeding assumption is input and the displacement of the seismic isolation layer increases, the core structure 1 that penetrates the building functions as a core rod, so that the upper structure And the basement structure does not fall off each other. As a result, a reliable and safe multi-layer seismic isolation structure can be realized.

よって、本実施形態の免震構造物Aによれば、より高性能な免震性能を備え、より大きな地震動に対応することが可能になる。   Therefore, according to the seismic isolation structure A of the present embodiment, it is possible to provide a higher performance seismic isolation performance and cope with a larger earthquake motion.

また、本実施形態の免震構造物Aによれば、図5に示すように、従来のコア付き免震(図2(b)参照)、従来の複層免震(図2(a)参照)と異なる変位−加速度領域の免震性能を付与することが可能になる。   Further, according to the seismic isolation structure A of the present embodiment, as shown in FIG. 5, a conventional cored seismic isolation (see FIG. 2 (b)), a conventional multi-layer seismic isolation (see FIG. 2 (a)). It is possible to provide seismic isolation performance in a displacement-acceleration region different from).

以上、本発明に係る免震構造物の第1実施形態について説明したが、本発明は上記の第1実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。   As mentioned above, although 1st Embodiment of the seismic isolation structure which concerns on this invention was described, this invention is not limited to said 1st Embodiment, It can change suitably in the range which does not deviate from the meaning.

例えば、本実施形態と同様、所定の階層に中間免震層4を備え、中間免震層4よりも上層はコア部1と建物主要部2を一体形成し、中間免震層4から下層の建物主要部2とコア部1の間に所定の空間を設けた場合に、必ずしも本実施形態のように中間免震層4よりも下層の建物主要部2とコア部1を制振装置(連結ダンパー、減衰要素)5で連結しなくてもよい。この場合には、例えば、中間免震層4に任意の免震支承(免震装置)とともに制震装置5を中間免震層4に設けることにより(ダンパーを中間免震層4に集中配置することにより)、本実施形態と同様の作用効果を得ることが可能である。   For example, as in the present embodiment, an intermediate seismic isolation layer 4 is provided at a predetermined level, the upper layer above the intermediate seismic isolation layer 4 is integrally formed with the core part 1 and the main building part 2, and the intermediate seismic isolation layer 4 extends to the lower layer. When a predetermined space is provided between the building main part 2 and the core part 1, the building main part 2 and the core part 1 lower than the intermediate seismic isolation layer 4 are not necessarily connected as in the present embodiment. (Damper, damping element) 5 may not be connected. In this case, for example, by providing a seismic isolation device 5 in the intermediate seismic isolation layer 4 together with an optional seismic isolation support (seismic isolation device) in the intermediate seismic isolation layer 4 (dampers are concentrated on the intermediate seismic isolation layer 4 Therefore, it is possible to obtain the same effect as the present embodiment.

次に、図6から図10を参照し、本発明の第2実施形態に係る免震構造物について説明する。なお、本実施形態では、第1実施形態と同様の構成に対して同一符号を付し、その詳細な説明を省略する。   Next, with reference to FIGS. 6 to 10, a seismic isolation structure according to a second embodiment of the present invention will be described. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施形態の免震構造物Bは、免震建物であり、図6(a)に示すように、それぞれ自立したコア部(建物中央部、一方の免震構造体)1と、コア部1に隣接し、コア部1を囲繞するように配設された建物主要部(他方の免震構造体)2を備えている。なお、コア部1が中央コアとしているが、偏心コアや両端コアを備えた構造物であっても勿論構わない。   The seismic isolation structure B of the present embodiment is a seismic isolation building, and as shown in FIG. 6A, the independent core part (the central part of the building, one seismic isolation structure) 1 and the core part 1. The building main part (the other seismic isolation structure) 2 is provided so as to be adjacent to the core part 1 and surround the core part 1. In addition, although the core part 1 is made into the center core, of course, even if it is a structure provided with the eccentric core and the both-ends core, it does not matter.

また、建物主要部2は下部に基礎免震層3を備えており、この基礎免震層3には任意の免震支承(免震装置)と減衰装置が設けられている。第1実施形態と同様、例えば、免震支承としては積層ゴム、すべり支承、リニアスライダーのいずれか、もしくは複数を併用し、減衰装置としてはオイルダンパー、鉛ダンパー(積層ゴムに内包するLRBを含む)、鋼材ダンパー、摩擦ダンパーのいずれか、もしくは複数を併用する。   Moreover, the building main part 2 is provided with a base seismic isolation layer 3 in the lower part, and the base seismic isolation layer 3 is provided with any seismic isolation bearing (base isolation device) and a damping device. As in the first embodiment, for example, as a seismic isolation bearing, laminated rubber, a sliding bearing, a linear slider, or a combination of a plurality of sliders are used, and as a damping device, an oil damper, a lead damper (including an LRB included in the laminated rubber) ), Steel damper, friction damper, or a combination of two or more.

さらに、コア部1と独立して立設された建物主要部2には、所定の階層に中間免震層4が設けられている。この中間免震層4には基礎免震層3と同様に任意の免震支承(免震装置)が設けられ、免震支承によって中間免震層4を境に上層の建物主要部が支持されている。   Furthermore, an intermediate seismic isolation layer 4 is provided at a predetermined level in the building main part 2 standing independently of the core part 1. The middle seismic isolation layer 4 is provided with an optional seismic isolation bearing (seismic isolation device) in the same way as the basic seismic isolation layer 3, and the upper part of the building is supported by the seismic isolation bearing. ing.

さらに、中間免震層4よりも上層で、それぞれ独立して立設された建物主要部2とコア部1が制振装置(連結ダンパー、減衰要素)5を介して連結されている。なお、制振装置5としてバネ要素と減衰要素を適用してもよく、この場合には、コア部1と建物主要部2(コア部1と建物主要部2の相互)をTMDの錘要素のように機能させることも可能になる。   Furthermore, the building main part 2 and the core part 1 which are erected independently of each other in an upper layer than the intermediate seismic isolation layer 4 are connected via a vibration damping device (connection damper, damping element) 5. In addition, a spring element and a damping element may be applied as the vibration damping device 5. In this case, the core part 1 and the building main part 2 (mutually between the core part 1 and the building main part 2) are used as TMD weight elements. It also becomes possible to make it function.

なお、本実施形態の免震構造物Bにおいては、図6(b)に示すように、中間免震層4よりも下層のコア部1と建物主要部2を一体形成し、コア部1と建物主要部2の下部に基礎免震層3を設けるようにしてもよい。   In the seismic isolation structure B of the present embodiment, as shown in FIG. 6 (b), the core portion 1 and the main building portion 2 below the intermediate seismic isolation layer 4 are integrally formed, and the core portion 1 The base seismic isolation layer 3 may be provided at the lower part of the building main part 2.

上記のように構成した本実施形態の免震構造物Bにおいては、通常の免震建物と比較し、建物主要部2の免震層の応答加速度の増加を抑えながら応答変位を低減させることが可能になる。   In the seismic isolation structure B of the present embodiment configured as described above, it is possible to reduce the response displacement while suppressing an increase in the response acceleration of the seismic isolation layer of the main part 2 of the building as compared to a normal base isolation building. It becomes possible.

すなわち、本実施形態の免震構造物Bにおいては、建物の基礎部と中間部に免震層を設けて複層免震構造とし、さらに異なる振動特性を持つ建物主要部2とコア部1を連結する連結制震構造を備えるようにしたことで、コア部1と建物主要部2の両者の地震時応答を効果的に低減させることが可能になる。   That is, in the seismic isolation structure B of the present embodiment, the building main part 2 and the core part 1 having different vibration characteristics are provided by providing seismic isolation layers at the foundation and middle of the building to form a multi-layer seismic isolation structure. By providing the connected seismic control structure to be connected, it is possible to effectively reduce the earthquake response of both the core part 1 and the building main part 2.

なお、図6(a)のようにコア部1を耐震構造とする場合、建物主要部2は建物の基礎部と中間部に免震層を設け、コア部1と建物主要部2を任意の高さ位置でダンパーにより連結すればよい。   In addition, when the core part 1 is made into an earthquake-resistant structure as shown in FIG. 6A, the building main part 2 is provided with seismic isolation layers at the foundation part and the middle part of the building, and the core part 1 and the building main part 2 are arbitrarily connected. What is necessary is just to connect with a damper in a height position.

一方、図6(b)のようにコア部1を基礎免震構造とする場合、建物主要部2はコア部1の基壇架構上の中間免震層4に支持された免震構造とし、コア部1と建物主要部2をダンパー5で連結する。このとき、ダンパー5の高さ方向の連結位置は、中間免震層4より上層の任意の位置とする。   On the other hand, when the core part 1 has a basic seismic isolation structure as shown in FIG. 6 (b), the building main part 2 has a seismic isolation structure supported by the intermediate seismic isolation layer 4 on the base frame of the core part 1, and the core Part 1 and building main part 2 are connected by damper 5. At this time, the connecting position in the height direction of the damper 5 is an arbitrary position above the intermediate seismic isolation layer 4.

また、加速度応答を効果的に低減させるため、中間免震層4は建物の中層から低層に設けることが望ましい。   In order to effectively reduce the acceleration response, it is desirable to provide the intermediate seismic isolation layer 4 from the middle layer to the lower layer of the building.

ここで、本実施形態の免震構造物Aの効果を検証するために、図7に示す本実施形態の免震構造物Bの振動モデルを用いて時刻歴応答解析による検討(シミュレーション)を行った。   Here, in order to verify the effect of the seismic isolation structure A of this embodiment, examination (simulation) by time history response analysis is performed using the vibration model of the seismic isolation structure B of this embodiment shown in FIG. It was.

まず、解析モデルを次のように設定した。
図7に示すように、建物主要部2は30質点のせん断モデルであり、コア部1は30質点の曲げせん断モデルである。建物主要部2は最下層と7層目に免震層を持つ複層免震であり免震層以外はS造を想定した線形特性を備えるものとした。
First, the analysis model was set as follows.
As shown in FIG. 7, the building main part 2 is a 30-mass point shear model, and the core part 1 is a 30-mass point bending shear model. The main part 2 of the building is a multi-layer seismic isolation with a base isolation layer in the lowest layer and the seventh layer, and other than the base isolation layer, it is assumed to have linear characteristics assuming an S structure.

コア部1は基礎固定の耐震構造であり、各層はRC造を想定した曲げとせん断の線形特性を備えるものとした。   The core portion 1 is a foundation-fixed seismic structure, and each layer is assumed to have linear characteristics of bending and shearing assuming RC construction.

表2に、解析に使用した振動モデルの諸元を示す。
連結ダンパー5を中間免震層4の直上層に設置した。また、連結ダンパー5を中間免震層4の直上層及び20階に設置した。連結用のダンパー5は、1台あたり1000kN/(m/s)の減衰係数の線形オイルダンパーとした。
Table 2 shows the specifications of the vibration model used for the analysis.
The connecting damper 5 was installed directly above the middle seismic isolation layer 4. Moreover, the connection damper 5 was installed in the upper layer of the middle seismic isolation layer 4 and the 20th floor. The connecting damper 5 was a linear oil damper having a damping coefficient of 1000 kN / (m / s) per unit.

Figure 2018009442
Figure 2018009442

時刻歴応答解析には、1秒以下から長周期領域にかけて略フラットな速度応答スペクトルをもつ入力地震動を使用した。   For the time history response analysis, input ground motion with a substantially flat velocity response spectrum from less than 1 second to a long period region was used.

図8に、免震層直上層に連結ダンパー5を設置した場合の最大応答値分布を示す。
図中、「連結なし」は建物主要部2とコア部1を連結するダンパー5がないケース、「OD連結(10台)」は10台のオイルダンパー5で連結したケース、「OD連結(20台)」は20台のオイルダンパー5で連結したケースである。
FIG. 8 shows the maximum response value distribution when the connecting damper 5 is installed immediately above the base isolation layer.
In the figure, “No connection” means a case where there is no damper 5 connecting the main building part 2 and the core part 1, “OD connection (10 units)” means a case where 10 oil dampers 5 are connected, and “OD connection (20 Stand) ”is a case where 20 oil dampers 5 are connected.

まず「連結なし」の場合、建物主要部2の加速度は複層免震の効果により最大応答加速度が100Gal以下に低減しており、従来の免震構造を超える加速度低減効果が確認された。基礎、中間部の免震層の最大変位は各々30〜40cm程度であり、従来の免震構造とさほど変わらない大きさであった。   First, in the case of “no connection”, the acceleration of the main part 2 of the building was reduced to 100 Gal or less due to the effect of the multi-layer seismic isolation, and the acceleration reduction effect exceeding the conventional seismic isolation structure was confirmed. The maximum displacements of the base and middle seismic isolation layers were about 30 to 40 cm each, and the size was not so different from the conventional base isolation structure.

さらに、「OD連結(10台)」、「OD連結(20台)」のように建物主要部2とコア部1をダンパー5で連結すると、加速度応答をほとんど上昇させず、基礎及び中間部の免震層変位が大幅に低減することが確認された。これは、免震層の余裕度が大幅に向上したことを意味する。また、コア部1についてもダンパー5で連結することで各応答値が低減されている。   Furthermore, when the building main part 2 and the core part 1 are connected by the damper 5 as in “OD connection (10 units)” and “OD connection (20 units)”, the acceleration response is hardly increased, and the basic and intermediate portions are not increased. It was confirmed that the seismic isolation layer displacement was greatly reduced. This means that the margin of the seismic isolation layer has greatly improved. Moreover, each response value is reduced by connecting the core part 1 with the damper 5.

図9に、免震層直上層及び20階に連結ダンパー5を設置した場合の最大応答値分布を示す。
図中、「連結なし」は建物主要部2とコア部1を連結するダンパー5がないケース、「OD連結(10台+10台)」は中間免震層直上で10台、20階で10台の計20台のオイルダンパー5によって連結したケースである。
FIG. 9 shows the maximum response value distribution when the connecting damper 5 is installed immediately above the base isolation layer and the 20th floor.
In the figure, “No connection” is the case where there is no damper 5 connecting the main building part 2 and the core part 1, and “OD connection (10 units + 10 units)” is 10 units directly above the middle seismic isolation layer and 10 units on the 20th floor. The case is connected by a total of 20 oil dampers 5.

図8と同様に、連結ダンパー5の設置により加速度をほとんど上昇させずに基礎及び中間部の免震層変位を抑制できることが確認され、コア部1の応答低減効果も確認された。建物頂部の地表に対する相対変位は、建物主要部2、コア部1ともに半減しており、高い変形抑制効果が確認された。また、「OD連結(10台+10台)」は、図8に示す「OD連結(20台)」のケースとほぼ同等の応答低減効果となった。   As in FIG. 8, it was confirmed that the displacement of the base isolation layer at the foundation and the middle part can be suppressed without substantially increasing the acceleration by installing the connecting damper 5, and the response reduction effect of the core part 1 was also confirmed. The relative displacement of the building top with respect to the ground surface was halved in both the main building part 2 and the core part 1, and a high deformation suppressing effect was confirmed. In addition, “OD connection (10 units + 10 units)” had a response reduction effect almost equivalent to the case of “OD connection (20 units)” shown in FIG.

これにより、連結ダンパー5の高さ方向の設置位置は任意に設定でき、ダンパー量が同量であれば、設置位置に関わらず同等の応答低減効果が得られ、建築計画に合わせてダンパー5を任意に配置できることが確認された。   Thereby, the installation position in the height direction of the connecting damper 5 can be arbitrarily set, and if the amount of the damper is the same amount, the same response reduction effect can be obtained regardless of the installation position. It was confirmed that they can be arranged arbitrarily.

図10に、図8、図9の解析ケースにおける建物主要部2とコア部1の棟間の変位の最大値分布を示す。図10(a)の中間免震層直上の棟間変位が約40cm、図10(b)の中間免震層より上の変位も約40cmであった。これにより、ダンパー5のストロークは40cm程度であり、既存の免震用のダンパーで十分に対応できることが確認された。   FIG. 10 shows the maximum value distribution of displacement between the building main part 2 and the core part 1 in the analysis cases of FIGS. 8 and 9. The displacement between buildings just above the middle seismic isolation layer in FIG. 10 (a) was about 40 cm, and the displacement above the middle seismic isolation layer in FIG. 10 (b) was also about 40 cm. Thereby, the stroke of the damper 5 is about 40 cm, and it was confirmed that the existing seismic isolation damper can sufficiently cope with it.

以上より、本実施形態の免震構造物は、複層免震化による大幅な加速度応答の低減と、連結制震による免震層の変位制御を両立できることが実証された。   From the above, it was proved that the seismic isolation structure of the present embodiment can achieve both a significant reduction in acceleration response due to the multi-layer seismic isolation and displacement control of the seismic isolation layer due to coupled seismic control.

したがって、本実施形態の免震構造物Bにおいては、複層免震化によって超長周期化を実現でき、従来の免震構造物と比較して応答加速度を半減することができる。また、コア部1との連結制震により高層部の応答制御が可能であり、建物主要部2の剛性が小さい場合でもむち振り応答を低減できる。   Therefore, in the seismic isolation structure B of the present embodiment, the ultra-long period can be realized by the multi-layer seismic isolation, and the response acceleration can be halved compared to the conventional seismic isolation structure. Moreover, the response control of a high-rise part is possible by the joint vibration control with the core part 1, and even when the rigidity of the building main part 2 is small, a whip swing response can be reduced.

また、複層免震化により、免震層の変形が分散されるため、従来の免震に比べて免震層の最大応答変位を低減することが可能になる。さらに、連結制震により、応答加速度を抑制したまま免震層の変形を大幅に低減できる。   Moreover, since the deformation of the base isolation layer is dispersed by the multi-layer base isolation, it is possible to reduce the maximum response displacement of the base isolation layer compared to the conventional base isolation. Furthermore, the deformation of the base isolation layer can be greatly reduced by suppressing the response acceleration by the coupled vibration control.

また、ダンパー5の設置箇所が基礎免震層3、中間免震層4、連結部の3か所で計画でき、任意の制震装置を組み合わせることが可能であるため、制震システムとしての選択肢が多い。   In addition, the installation location of the damper 5 can be planned in three locations: the base seismic isolation layer 3, the intermediate seismic isolation layer 4, and the connecting part, and any seismic control device can be combined, so it is an option as a seismic control system There are many.

ダンパー5の設置可能場所が多く、従来の免震構造や複層免震構造に比べて構造物全体の減衰性能を大幅に向上できる。   There are many places where the damper 5 can be installed, and the damping performance of the entire structure can be greatly improved as compared with conventional seismic isolation structures and multi-layer seismic isolation structures.

さらに、建物主要部2は複層免震化により地震力が低減され、水平力は連結制震を介してコア部1に負担させることができる。このため、柱、梁のスリム化やロングスパン化による建築計画の自由度向上が可能になる。   Furthermore, the building main part 2 has a seismic force reduced by the multi-layer seismic isolation, and the horizontal force can be borne by the core part 1 through the coupled vibration control. For this reason, it becomes possible to improve the degree of freedom of the architectural plan by slimming the pillars and beams and by extending the span.

また、複層免震でありながらコア部1は高さ方向に建物を貫いているため、エレベーターや設備等の縦シャフトが免震層に分断されない計画が可能になる。   In addition, since the core portion 1 penetrates the building in the height direction while being multi-layer seismic isolation, it is possible to plan that the vertical shafts of elevators, equipment, etc. are not divided by the seismic isolation layer.

連結制震により免震層変位を制御し、免震クリアランスを小さく抑える計画も可能になる。   It is possible to plan to keep the seismic isolation clearance small by controlling the seismic isolation layer displacement by connecting seismic control.

想定を上回る地震動が入力され、免震層の変位が増大した場合でも、建物を貫くコア部1がストッパー機能を果たし、上部構造物が脱落しない機構となっているため、信頼性が高く安全な複層免震構造を実現できる。   Even if the seismic ground motion exceeds the expected value and the displacement of the seismic isolation layer increases, the core part 1 that penetrates the building functions as a stopper and the upper structure does not fall off, making it highly reliable and safe. A multi-layer seismic isolation structure can be realized.

よって、本実施形態の免震構造物Bによれば、より高性能な免震性能を備え、より大きな地震動に対応することが可能になる。   Therefore, according to the seismic isolation structure B of the present embodiment, it is possible to have a higher performance seismic isolation performance and cope with a larger earthquake motion.

以上、本発明に係る免震構造物の第2実施形態について説明したが、本発明は上記の第2実施形態に限定されるものではなく、第1実施形態を含め、その趣旨を逸脱しない範囲で適宜変更可能である。   As mentioned above, although 2nd Embodiment of the seismic isolation structure which concerns on this invention was described, this invention is not limited to said 2nd Embodiment, The range which does not deviate from the meaning including 1st Embodiment. It can be changed as appropriate.

次に、図1、図11から図25を参照し、本発明の第3実施形態に係る免震構造物について説明する。なお、本実施形態では、第1、第2実施形態と同様の構成に対して同一符号を付し、その詳細な説明を省略する。   Next, with reference to FIG. 1, FIG. 11 to FIG. 25, the seismic isolation structure which concerns on 3rd Embodiment of this invention is demonstrated. In the present embodiment, the same components as those in the first and second embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.

はじめに、本実施形態では、i)免震層変位を従来の免震構造と同等に抑えつつ、従来の免震構造では達成できなかった大幅な加速度低減を実現できるようにし、且つ、ii)複数の免震層を有する複層免震構造と同等の加速度低減効果を持ちながら、従来の複層免震では達成できなかった大幅な免震層の変位抑制を実現できるようにするための各免震層剛性や設置する減衰量など、最適な免震諸元の適用範囲について説明を行う。   First, in this embodiment, i) it is possible to realize a significant acceleration reduction that cannot be achieved by the conventional seismic isolation structure while keeping the seismic isolation layer displacement equal to that of the conventional seismic isolation structure, and ii) a plurality of Each type of seismic isolation to achieve a significant displacement suppression of the seismic isolation layer, which could not be achieved with the conventional multi-layer seismic isolation, while having the same effect of reducing the acceleration as a multi-layer seismic isolation structure with multiple seismic isolation layers The application range of the optimal seismic isolation specifications, such as seismic layer rigidity and the amount of attenuation to be installed, will be explained.

具体的に、本実施形態では、図1(a)、図1(b)に示した免震構造物A(第1実施形態と同様の免震構造物A)を一例として説明を行う。なお、図1では、コア部1が中央コアとしているが、偏心コアや両端コアを備えた構造物であっても勿論構わない。   Specifically, in this embodiment, the seismic isolation structure A (the seismic isolation structure A similar to the first embodiment) shown in FIGS. 1A and 1B will be described as an example. In addition, in FIG. 1, although the core part 1 is made into the center core, of course, you may be a structure provided with the eccentric core and the both-ends core.

そして、図1に示した免震構造物Aに対して、下記の1)〜5)の事項を実現できる免震諸元の適用範囲を設定する手法を以下に説明する。   And the method of setting the application range of the seismic isolation specification which can implement | achieve the matter of following 1) -5) with respect to the seismic isolation structure A shown in FIG. 1 is demonstrated below.

(1) 基礎免震と中間層免震を有する複層免震構造とし、固有周期の超長周期化を実現する。
(2) 剛強なコアウォールを建物全層にわたって貫通させ、構造的・機能的な心棒としている(一般的な複層免震ではコアウォールは中間免震層で分断されている)。
(3) 基壇架構とコアウォールを接続した連結制震構造とし、応答制御を効率的に行う。
(4) コアウォール下も免震層で支持し、これを積極的に変形させてエネルギー吸収を効率化する。
(5) 中間層免震の位置は、用途の境界等の建築計画的な観点から決定できる。
(1) A multi-layer seismic isolation structure with a base isolation and an intermediate isolation will be used to achieve an extremely long natural period.
(2) A rigid core wall is penetrated throughout the building to form a structural and functional mandrel (in a general multi-layer seismic isolation, the core wall is divided by an intermediate seismic isolation layer).
(3) The response control will be performed efficiently by connecting the foundation frame to the core wall.
(4) Under the core wall is also supported by the seismic isolation layer, which is actively deformed to improve energy absorption efficiency.
(5) The location of the middle-layer seismic isolation can be determined from the architectural planning point of view, such as boundary of use.

ここで、図1の振動モデルは図11のように表すことができる。
が中間免震層4よりも上方の上部構造物の質量、Mが下部構造物の質量であり、k、kはそれぞれ基礎免震層3と中間層免震層4の免震層剛性、kはコアウォール下の免震層剛性である。免震層3の剛性に比して一般部の層剛性は桁違いに大きいので、上部・下部とも層剛性を∞の剛体とする(但し、建物剛性を含めた多質点系の検討についても後述する)。また、c、cはそれぞれ基礎免震層3とコア下部支承部分に設置する減衰である。cは中間層免震層4のみではなく、コアウォールと下部構造物を連結する連結制震の減衰も含んでいる。図11中の固有ベクトル{r,r}は、最大値を1として基準化した質点Aと質点Bの固有ベクトルである。
Here, the vibration model of FIG. 1 can be expressed as shown in FIG.
Mass M A is above the upper structure than the intermediate isolation layer 4, the mass of M B lower structure, Men k 1, k 2 each basic isolation layer 3 and the intermediate layer base isolation layer 4 Shinso rigidity, k 3 is a seismic isolation layer rigidity under the core wall. Since the rigidity of the general part is orders of magnitude greater than the rigidity of the seismic isolation layer 3, the upper and lower layers are rigid with an infinite layer rigidity (however, the examination of multi-mass systems including building rigidity will be described later) To do). Further, c 1 and c 3 are attenuations installed in the base seismic isolation layer 3 and the core lower support part, respectively. c 2 includes not only the intermediate seismic isolation layer 4 but also the damping of the connected seismic control that connects the core wall and the substructure. The eigenvectors {r 1 , r 2 } in FIG. 11 are eigenvectors of the mass points A and B that are standardized with the maximum value being 1.

これらに関して、応答低減効果が見込める適用範囲を以下に示す。   With respect to these, the application range in which the response reduction effect can be expected is shown below.

そして、本実施形態では、免震層3に設置する諸元の適用範囲を下記の式(5)〜式(8)のように設定する。   And in this embodiment, the application range of the specification installed in the seismic isolation layer 3 is set like the following formula | equation (5)-Formula (8).

そして、本実施形態では、の複層連結の免震構造物Aに対し、免震層3、4に設置する支承とダンパーの諸元(k、k、kとc、c、cの諸元)の適用範囲、すなわち、応答低減効果が見込める適用範囲を下記の式(5)、式(6)、式(7)、式(8)のように設定する。ここで、各諸元の単位は質量M(t)、剛性k(kt/m)、減衰c(kN/cm/s)である。 In this embodiment, the specifications of the bearings and dampers (k 1 , k 2 , k 3 and c 1 , c 2) installed in the seismic isolation layers 3, 4 with respect to the multi-layer seismic isolation structure A , C 3 specifications), that is, an application range in which a response reduction effect can be expected is set as shown in the following equations (5), (6), (7), and (8). Here, the unit of each specification is mass M (t), rigidity k (kt / m), and attenuation c (kN / cm / s).

Figure 2018009442
Figure 2018009442

Figure 2018009442
Figure 2018009442

Figure 2018009442
Figure 2018009442

Figure 2018009442
Figure 2018009442

次に、最適範囲を導出するために、まず非減衰振動時における固有値問題(式(9))より、式(10)、式(11)を導出する。   Next, in order to derive the optimum range, first, equations (10) and (11) are derived from the eigenvalue problem (equation (9)) at the time of non-damped vibration.

Figure 2018009442
Figure 2018009442

Figure 2018009442
Figure 2018009442

Figure 2018009442
Figure 2018009442

そして、式(10)、式(11)、α、βを用いて、式(12)、式(13)を導き出す。   Then, Expression (12) and Expression (13) are derived using Expression (10), Expression (11), α, and β.

Figure 2018009442
Figure 2018009442

Figure 2018009442
Figure 2018009442

次に、式(12)、式(13)から式(14)を求め、さらに、αを用いると、式(14)は式(15)となる。   Next, when Expression (14) is obtained from Expression (12) and Expression (13), and α is further used, Expression (14) becomes Expression (15).

Figure 2018009442
Figure 2018009442

Figure 2018009442
Figure 2018009442

ここで、図12に本実施形態の免震構造物Aの1次の振動モード例を示す。
図12(b)は上下の免震層3、4の変位を揃えた場合の振動モードであり、図12(c)は下部の免震層3の剛性を比較的柔らかくすることで、下部の免震層3の変位を大きくした場合の振動モードである。
Here, the example of the primary vibration mode of the seismic isolation structure A of this embodiment is shown in FIG.
FIG. 12B shows a vibration mode when the upper and lower seismic isolation layers 3 and 4 are aligned, and FIG. 12C shows the lower seismic isolation layer 3 by relatively softening the rigidity. This is a vibration mode when the displacement of the seismic isolation layer 3 is increased.

事前の解析から、本実施形態の免震構造物Aはコア部1の下にも免震層3を設けているため、免震層3の剛性を比較的柔らかくして減衰を付加し、下層部でエネルギーを吸収させることにより、中間免震層4より下方の下部構造の加速度応答値を増加させることなく建物応答の低減効果を高めることが可能である。   From the prior analysis, since the seismic isolation structure A of the present embodiment is provided with the seismic isolation layer 3 under the core portion 1, the rigidity of the seismic isolation layer 3 is made relatively soft to add damping, By absorbing energy at the part, it is possible to enhance the effect of reducing the building response without increasing the acceleration response value of the lower structure below the intermediate seismic isolation layer 4.

この事前解析結果より、γの上限値は理想的には2.5〜3.0以下とすることが望ましいが、免震装置(例えば積層ゴム)のばらつきを考慮し、1.0<γ<4.0と適用範囲を設定した。   From this preliminary analysis result, it is desirable that the upper limit value of γ is ideally 2.5 to 3.0 or less, but 1.0 <γ <in consideration of the variation of the seismic isolation device (for example, laminated rubber). The applicable range was set to 4.0.

なお、実設計では、1)建物の1次固有周期を決定し、2)建築計画において上層部と下層部の質量比(μ)が決定される。つまり、ωとμが既知となることが多い。 In the actual design, 1) the primary natural period of the building is determined, and 2) the mass ratio (μ) of the upper layer portion and the lower layer portion is determined in the building plan. That is, ω 1 and μ are often known.

ここで、図13、図14は、式(14)に既知であるμを代入し、事前解析より設定したγの上下限の範囲内でαとβの関係を求めた結果を示している。図13はμ=1.0、図14はμ=0.5の場合を示している。なお、μには制約を設定していない。   Here, FIG. 13 and FIG. 14 show the results of obtaining the relationship between α and β within the range of the upper and lower limits of γ set by prior analysis by substituting known μ into the equation (14). FIG. 13 shows the case where μ = 1.0, and FIG. 14 shows the case where μ = 0.5. Note that no constraint is set for μ.

図13で示した範囲内が応答低減効果を見込められる適用範囲であり、求めるk、k、kの剛性比である。 The range shown in FIG. 13 is an application range in which a response reduction effect can be expected, and is a rigidity ratio of k 1 , k 2 , and k 3 to be obtained.

次に、c〜cの粘性減衰量に関する適用範囲を示す。
、cの上限値は剛性比例型の減衰として全体の2次の固有周期に対して過減衰にならないように100%未満とする。また、cの下限値は事前解析結果より1次の固有周期に対して5%以上とした。cは事前解析では減衰量0の場合でも本実施形態の免震構造物Aの応答低減効果は確認されたため、0以上とした。
Next, the application range regarding the viscous damping amount of c 1 to c 3 is shown.
The upper limit values of c 1 and c 2 are less than 100% so as not to be overdamped with respect to the entire second-order natural period as stiffness-proportional damping. Further, the lower limit value of c 1 is set to 5% or more with respect to the primary natural period based on the preliminary analysis result. c 2 because the response effect of reducing the base-isolated structure A of this embodiment, even if the attenuation zero in the pre-analysis was confirmed, was 0 or more.

これをまとめると、式(16)で表され、この式(16)から式(17)が求まる。ここで、k1は2次の減衰定数である。 This can be summarized by Expression (16), and Expression (17) can be obtained from Expression (16). Here, k1 h 2 is the second order decay constant.

Figure 2018009442
Figure 2018009442

Figure 2018009442
Figure 2018009442

同様に、式(18)から式(19)が求まる。ここで、k2は2次の減衰定数である。 Similarly, equation (19) is obtained from equation (18). Here, k2 h 2 is the second order decay constant.

Figure 2018009442
Figure 2018009442

Figure 2018009442
Figure 2018009442

については、必ず減衰を付加するという条件であり、式(20)となる。 For c 3, a condition necessarily adding attenuation, the equation (20).

Figure 2018009442
Figure 2018009442

なお、上記の範囲は粘性減衰の適用範囲であり、摩擦ダンパーやLRBなどの履歴系ダンパーに関しては範囲無く付加可能である。   Note that the above range is an application range of viscous damping, and a hysteresis damper such as a friction damper or LRB can be added without a range.

次に、上記の諸元の範囲における応答低減効果を確認した結果について説明する。   Next, the result of confirming the response reduction effect in the range of the above specifications will be described.

<応答倍率曲線>
はじめに、図15(a)は従来の免震構造物、図15(b)は従来の単純な複層免震構造物、図15(c)は本発明に係る免震構造物の概略的な架構図を示す。
<Response magnification curve>
First, FIG. 15 (a) is a conventional base-isolated structure, FIG. 15 (b) is a conventional simple multi-layer base-isolated structure, and FIG. 15 (c) is a schematic diagram of the base-isolated structure according to the present invention. A frame structure is shown.

このうち従来の複層免震構造物と本発明に係る免震構造物について、以下に示す(1)〜(3)の比較条件のもと、質点Aと質点Bのそれぞれの変位の応答倍率曲線、及び加速度の応答倍率曲線について比較を行った(図16〜図18)。   Among these, for the conventional multi-layer seismic isolation structure and the seismic isolation structure according to the present invention, the response magnification of each displacement of the mass point A and the mass point B under the following comparison conditions (1) to (3) The curve and the response magnification curve of acceleration were compared (FIGS. 16 to 18).

表3に設定した解析モデルの諸元を示す。
このとき、複層免震(1)〜(3)の諸元はρ(=T/T)=1.0となるように剛性kを決定し、減衰cは剛性比例で付与した。
Table 3 shows the specifications of the analysis model set.
At this time, specification of the multi-layer base isolation (1) to (3) determines the stiffness k such that ρ (= T A / T B ) = 1.0, the attenuation c conferred rigid proportional.

Figure 2018009442
Figure 2018009442

一方、本発明に係る免震構造物の例(1)〜(3)は固有ベクトル比γが1.0<γ<4.0を満足する剛性比αで剛性kを与え、減衰cも適用範囲を満足させた上で減衰係数の総和が複層免震のそれと等しくなるようにして、cの減衰を設定した。 On the other hand, examples (1) to (3) of the seismic isolation structure according to the present invention give the rigidity k with the rigidity ratio α satisfying the eigenvector ratio γ satisfying 1.0 <γ <4.0, and the damping c is also applicable. the sum of the damping coefficient on which to satisfy is set to be equal to that of the multi-layer base isolation and sets the attenuation of c 3.

比較条件(1):周期(T)=7秒 質量比(μ)=1.0
比較条件(2):周期(T)=7秒 質量比(μ)=0.5
比較条件(3):周期(T)=6秒 質量比(μ)=1.0
Comparison condition (1): Period (T) = 7 seconds Mass ratio (μ) = 1.0
Comparison condition (2): Period (T) = 7 seconds Mass ratio (μ) = 0.5
Comparison condition (3): Period (T) = 6 seconds Mass ratio (μ) = 1.0

図16〜図18から、どの比較条件においても本発明の免震構造物の例の方が質点Aの応答変位と応答加速度を大幅に低減できており、さらに質点Bの変位と加速度のピーク値を低減できていることが分かる。つまり、本発明の免震構造物によれば、図15(b)に示した従来の複層免震構造よりも、上層部、下層部ともに変位と加速度の両方を低減できる。   From FIG. 16 to FIG. 18, the example of the seismic isolation structure of the present invention can greatly reduce the response displacement and response acceleration of the mass point A under any comparison condition, and further the peak value of the displacement and acceleration of the mass point B. It can be seen that That is, according to the seismic isolation structure of the present invention, both displacement and acceleration can be reduced in both the upper layer and the lower layer than in the conventional multi-layer seismic isolation structure shown in FIG.

<地震応答解析>
次に、図12に示した2質点系モデルに対し、前述の比較条件(1)について時刻歴応答解析を行った結果を示す。
<Earthquake response analysis>
Next, the result of performing time history response analysis on the above-mentioned comparison condition (1) for the two mass point system model shown in FIG. 12 is shown.

入力地震動はLv2に基準化した観測波(エルセントロNS、タフトEW、八戸EW)の3波、告示波(神戸NS位相、関東EW位相、ランダム位相)の3波、及び南海トラフの地震動(OS1)とした(図20(f)参照)。これらの擬似速度応答スペクトル(h=5%)を図19に示す。   Input seismic motion is 3 waves of observation waves (El Centro NS, Taft EW, Hachinohe EW) normalized to Lv2, 3 waves of notification waves (Kobe NS phase, Kanto EW phase, random phase), and Nankai Trough earthquake motion (OS1) (See FIG. 20 (f)). These pseudo speed response spectra (h = 5%) are shown in FIG.

そして、図20(a)〜図20(e)に示す解析結果の通り、質点Aの応答加速度は、従来の複層免震構造の例(1)と比べ、本発明の例(1)の方がいずれの地震動においても同等かそれ以下となっている。質点Bの応答加速度についても同様に低減している。   And as the analysis result shown in Drawing 20 (a)-Drawing 20 (e), the response acceleration of mass A is compared with example (1) of the conventional multilayer seismic isolation structure of example (1) of the present invention. Are equal or less in any earthquake motion. Similarly, the response acceleration of the mass point B is also reduced.

質点Aの層間変形については、本発明の例(1)の低減効果が顕著に表れており、従来の複層免震の例(1)に対しておおよそ半減している。質点Bの層間変形はほぼ同等である。従って、時刻歴応答解析においても、本発明の例(1)の有効性が確認できる。   About the interlaminar deformation of the mass point A, the reduction effect of the example (1) of the present invention is remarkably exhibited, and is approximately halved compared with the conventional example (1) of the multi-layer seismic isolation. The interlaminar deformation of the mass B is almost the same. Therefore, the effectiveness of the example (1) of the present invention can also be confirmed in the time history response analysis.

次に、等価せん断型の多質点系解析モデルについて検討した結果について説明する。
ここでは、図21(a)に示した従来の免震構造物、図21(b)に示した従来の複層免震構造物、及び図21(c)に示した本発明の免震構造物の3ケースについて、それぞれモデル化を行い時刻歴応答解析した結果を比較した。
なお、入力地震動は前述と同様、エルセントロNS、タフトEW、告示神戸NS、告示ランダム、南海トラフの地震動(OS1)の5波とした(図20(f)参照)。
Next, the results of studying the equivalent shear type multi-mass system analysis model will be described.
Here, the conventional seismic isolation structure shown in FIG. 21 (a), the conventional multi-layer seismic isolation structure shown in FIG. 21 (b), and the seismic isolation structure of the present invention shown in FIG. 21 (c). For three cases of objects, each was modeled and the results of time history response analysis were compared.
As described above, the input ground motion was five waves of El Centro NS, Taft EW, Notification Kobe NS, Notification Random, and Nankai Trough ground motion (OS1) (see FIG. 20 (f)).

ここで、従来の免震構造物の復元力は鉛プラグ入り積層ゴムまたは鋼材系ダンパーと天然ゴム系積層ゴムを併用したバイリニア型の復元力特性とし、免震層歪200%時に1次周期が5秒となるようにした。従来の複層免震構造物、本発明の免震構造物の復元力は天然ゴム系積層ゴムのみとし、実固有値解析で1次周期が約7.5秒となるように設定した。   Here, the restoring force of a conventional seismic isolation structure is a bilinear type restoring force characteristic that uses a laminated rubber with lead plugs or a steel damper and a natural rubber laminated rubber, and the primary period is at 200% of the seismic isolation layer strain. It was set to 5 seconds. The restoring force of the conventional multi-layer seismic isolation structure and the seismic isolation structure of the present invention was set to be only natural rubber-based laminated rubber, and the primary period was set to about 7.5 seconds in the actual eigenvalue analysis.

さらに、複層免震層はγが2.0となるように免震層の剛性を決めた。
また、構造減衰として免震層を除く各層に剛性比例で2%の減衰を付与し、加えて、従来の免震構造物では等価線形化して得られる履歴減衰を含めた1次の減衰定数がおよそ12%となるように、従来の複層免震構造物では1次の減衰定数がおよそ12%となるように剛性比例で免震層の減衰係数を与えた。一方、本発明の免震構造物では免震層の減衰を、適用範囲を満足させた上で複層免震と付与する減衰係数の総和が等しくなるようにして与えた。なお、いずれも、粘性減衰はリリーフ速度0.32m/sとするバイリニア型とし、リリーフ後の減衰係数はその0.0678倍とした。
Furthermore, the stiffness of the base isolation layer was determined so that γ was 2.0.
In addition, as a structural damping, 2% damping is given to each layer excluding the seismic isolation layer in proportion to rigidity. In addition, the conventional primary seismic isolation structure has a first-order damping constant including hysteresis damping obtained by equivalent linearization. In the conventional multi-layer seismic isolation structure, the damping coefficient of the seismic isolation layer is given in proportion to the rigidity so that the first-order damping constant is about 12% so that it becomes about 12%. On the other hand, in the seismic isolation structure of the present invention, the damping of the seismic isolation layer is given so that the sum of the damping coefficients to be applied is equal to the multi-layer seismic isolation after satisfying the applicable range. In all cases, the viscous damping was a bilinear type with a relief speed of 0.32 m / s, and the damping coefficient after relief was 0.0678 times the relief coefficient.

このときの解析諸元と複素固有値解析で求めた固有周期および減衰定数を表4に示す。   Table 4 shows the analysis period and the natural period and attenuation constant obtained by the complex eigenvalue analysis.

Figure 2018009442
Figure 2018009442

また、本発明のシステムについての適用範囲を確認するため、2質点系に集約した諸元(表5)についての設計パラメータμ、及びα、β、γを図22に示す。γは1.75であり、1.0<γ<4.0を満足する。   Moreover, in order to confirm the application range about the system of this invention, the design parameter (micro | micron | mu) and (alpha), (beta), and (gamma) about the item (Table 5) concentrated on 2 mass point system are shown in FIG. γ is 1.75, which satisfies 1.0 <γ <4.0.

Figure 2018009442
Figure 2018009442

図23から図26に、従来の免震構造物と、従来の複層免震構造物と、本発明の免震構造物の応答加速度、層間変形角及び免震層変形を比較した結果を示す。   FIG. 23 to FIG. 26 show the results of comparing the response acceleration, interlayer deformation angle, and seismic isolation layer deformation of the conventional seismic isolation structure, the conventional multi-layer seismic isolation structure, and the seismic isolation structure of the present invention. .

いずれも従来免震に対して本発明の免震構造物は大きく応答低減しており、2質点系で解析した結果と傾向は概ね一致する。さらに、従来の複層免震構造物に対しても応答加速度は同程度でありながら免震層変形が大きく低減できている。したがって、本発明の免震構造物の優位性が実証され、且つ適用範囲で設定した各設計パラメータが多質点系においても適用可能であることが実証された。   In any case, the seismic isolation structure of the present invention greatly reduces the response to the conventional seismic isolation, and the trend is almost the same as the result of analysis using a two-mass system. Furthermore, the deformation of the base isolation layer can be greatly reduced while the response acceleration is similar to that of the conventional multi-layer base isolation structure. Therefore, the superiority of the seismic isolation structure of the present invention has been demonstrated, and it has been demonstrated that each design parameter set in the applicable range can be applied to a multi-mass system.

以上の結果から、本実施形態の免震構造物Aにおいては、本実施形態で示した各諸元(減衰量や剛性比)の適用範囲内で設計することにより、以下の効果を得ることが可能になる。   From the above results, in the seismic isolation structure A of the present embodiment, the following effects can be obtained by designing within the application range of each item (attenuation amount and rigidity ratio) shown in the present embodiment. It becomes possible.

一般免震を凌駕した加速度低減効果が実現でき、現在設計で用いられている地震動に対し全層に渡り100cm/s以下の応答加速度となる。それにより、大地震時においてもエレベーターが停止しないなどの利点がある。 An acceleration reduction effect surpassing general seismic isolation can be realized, and the response acceleration is 100 cm / s 2 or less over the entire layer with respect to the earthquake motion currently used in the design. Thereby, there is an advantage that the elevator does not stop even in the event of a large earthquake.

より詳細に、複層免震化による超長周期化により、通常の免震に対して応答加速度を半減することができる。また、剛強なコアによる上部架構の高剛性化により頂部加速度(むちふり応答)を低減することができる。コア部1との連結制震及び各免震層3、4の理想的な剛性比の設定により、従来の単純な複層免震構造物では応答加速度が増加する中間免震層直下の応答加速度も抑制可能になる。さらに、理想的な減衰配分により、高次が過減衰となって応答加速度が増加するのを抑制することが可能になる。   More specifically, the response acceleration can be halved with respect to normal seismic isolation by ultra-long period by multi-layer seismic isolation. In addition, the top acceleration (whipping response) can be reduced by increasing the rigidity of the upper frame with a rigid core. Response acceleration just below the middle seismic isolation layer, which increases the response acceleration in the conventional simple multi-layer seismic isolation structure, due to the coupling control with the core part 1 and the ideal stiffness ratio of each seismic isolation layer 3 and 4 Can also be suppressed. Furthermore, it is possible to suppress an increase in response acceleration due to overdamping of the higher order by the ideal damping distribution.

また、一般免震を凌駕した免震層変位の低減効果が実現でき、現在設計で用いられている地震動に対し約7割程度の変形に抑えることが可能である。   Moreover, the effect of reducing the displacement of the seismic isolation layer surpassing that of general seismic isolation can be realized, and the deformation can be suppressed to about 70% of the ground motion used in the current design.

すなわち、コア下部のダンパーが高層階の地震エネルギーを吸収し、建物全体の変位を効率的に低減することができる。また、複層免震化により、免震層の変形が分散されるため、従来の免震に比べて免震層の最大応答変位が低減可能である。さらに、免震層変位を抑制でき、耐震余裕度を向上させることができる。   That is, the damper under the core absorbs the earthquake energy of the higher floors, and the displacement of the entire building can be reduced efficiently. Moreover, since the deformation of the base isolation layer is dispersed by the multi-layer base isolation, the maximum response displacement of the base isolation layer can be reduced compared to the conventional base isolation. Furthermore, the seismic isolation layer displacement can be suppressed, and the seismic margin can be improved.

以上、本発明に係る免震構造物の第3実施形態について説明したが、本発明は上記の第3実施形態に限定されるものではなく、第1、第2実施形態を含め、その趣旨を逸脱しない範囲で適宜変更可能である。   As mentioned above, although 3rd Embodiment of the seismic isolation structure which concerns on this invention was described, this invention is not limited to said 3rd Embodiment, The meaning is included including 1st, 2nd embodiment. Changes can be made as appropriate without departing from the scope.

1 コア部
2 建物主要部
3 基礎免震層
4 中間免震層
5 制振装置
A 免震構造物
B 免震構造物
1 Core part 2 Main building part 3 Base seismic isolation layer 4 Middle seismic isolation layer 5 Damping device A Seismic isolation structure B Seismic isolation structure

Claims (6)

コア部と、該コア部に隣接する建物主要部とを備えるとともに、
前記コア部と前記建物主要部の少なくとも前記建物主要部の下部に設けられた基礎免震層と、前記建物主要部の中間部に設けられた中間免震層とからなる複層免震構造、及び前記コア部と、前記建物主要部とを制振装置で連結してなる連結制振構造を備えて構成されていることを特徴とする免震構造物。
While having a core part and a building main part adjacent to the core part,
A multi-layer seismic isolation structure comprising a base seismic isolation layer provided at least in the lower part of the building main part of the core part and the building main part, and an intermediate base isolation layer provided in an intermediate part of the building main part, And the said base part and the said building main part are provided with the connection damping structure formed by connecting with a damping device, The seismic isolation structure characterized by the above-mentioned.
請求項1記載の免震構造物において、
前記中間免震層より上層の前記コア部と前記建物主要部が一体形成され、
前記中間免震層より下層の前記コア部と前記建物主要部が前記制振装置で連結され、且つ前記コア部の下部が基礎免震層であることを特徴とする免震構造物。
In the seismic isolation structure according to claim 1,
The core part above the intermediate seismic isolation layer and the building main part are integrally formed,
The seismic isolation structure, wherein the core part below the intermediate seismic isolation layer and the main building part are connected by the damping device, and the lower part of the core part is a basic seismic isolation layer.
請求項1記載の免震構造物において、
前記中間免震層より下層の前記コア部と前記建物主要部が一体形成され、
前記中間免震層より上層の前記コア部と前記建物主要部が前記制振装置で連結されていることを特徴とする免震構造物。
In the seismic isolation structure according to claim 1,
The core part and the building main part below the intermediate seismic isolation layer are integrally formed,
The seismic isolation structure, wherein the core portion above the intermediate seismic isolation layer and the main building portion are connected by the vibration control device.
請求項1記載の免震構造物において、
前記コア部と前記建物主要部がそれぞれ独立して立設され、
前記中間免震層より上層の前記コア部と前記建物主要部が前記制振装置で連結されていることを特徴とする免震構造物。
In the seismic isolation structure according to claim 1,
The core part and the building main part are erected independently,
The seismic isolation structure, wherein the core portion above the intermediate seismic isolation layer and the main building portion are connected by the vibration control device.
コア部と、該コア部に隣接する建物主要部とを備えるとともに、
前記コア部と前記建物主要部の少なくとも前記建物主要部の下部に設けられた基礎免震層と、前記建物主要部の中間部に設けられた中間免震層とからなる複層免震構造を備え、
前記中間免震層より上層の前記コア部と前記建物主要部が一体形成され、
且つ前記中間免震層に制震装置を設けて構成されていることを特徴とする免震構造物。
While having a core part and a building main part adjacent to the core part,
A multi-layer seismic isolation structure comprising a base seismic isolation layer provided at least in the lower part of the building main part of the core part and the main part of the building, and an intermediate base isolation layer provided in an intermediate part of the main part of the building. Prepared,
The core part above the intermediate seismic isolation layer and the building main part are integrally formed,
And the seismic isolation structure characterized by providing a seismic control apparatus in the said middle seismic isolation layer.
請求項1から請求項5のいずれか一項に記載の免震構造物において、
前記中間免震層及び前記基礎免震層に設置する免震層剛性kと減衰cの諸元を、下記の式(1)から式(4)を満たすように設定することを特徴とする免震構造物。
Figure 2018009442
Figure 2018009442
Figure 2018009442
Figure 2018009442
ここで、Mが中間免震層よりも上方の上部構造物の質量、Mが下部構造物の質量であり、k、kはそれぞれ基礎免震層と中間層免震層の免震層剛性、kはコアウォール下の免震層剛性であり、c、cはそれぞれ基礎免震層とコア下部支承部分に設置する減衰、cは中間層免震層のみではなく、コアウォールと下部構造物を連結する連結制震の減衰を含み、固有ベクトル{r,r}は、最大値を1として基準化した上部構造物と下部構造物の質点の固有ベクトルである。
In the seismic isolation structure according to any one of claims 1 to 5,
Specifications of seismic isolation layer stiffness k and damping c installed in the intermediate isolation layer and the basic isolation layer are set so as to satisfy the following formulas (1) to (4): Seismic structure.
Figure 2018009442
Figure 2018009442
Figure 2018009442
Figure 2018009442
Here, the mass above the upper structure than M A is an intermediate isolation layer, the mass of M B lower structure, k 1, k 2 is exemption of each basic isolation layer and the intermediate layer base isolation layer Shinso stiffness, k 3 is the base isolation layer rigid under the core wall, c 1, c 3 is attenuated to be installed in a basic seismic isolation layer and the core lower support portions respectively, c 2 is not only the intermediate layer base isolation layer In addition, the eigenvector {r 1 , r 2 } is a characteristic vector of the mass points of the upper structure and the lower structure that are normalized with the maximum value being 1, including the damping of the joint control that connects the core wall and the lower structure.
JP2017121712A 2016-07-01 2017-06-21 Seismic isolation structure Active JP6979805B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016131590 2016-07-01
JP2016131590 2016-07-01

Publications (2)

Publication Number Publication Date
JP2018009442A true JP2018009442A (en) 2018-01-18
JP6979805B2 JP6979805B2 (en) 2021-12-15

Family

ID=60994203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017121712A Active JP6979805B2 (en) 2016-07-01 2017-06-21 Seismic isolation structure

Country Status (1)

Country Link
JP (1) JP6979805B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143331A (en) * 2018-02-19 2019-08-29 清水建設株式会社 Seismically isolated structure
JP2019210771A (en) * 2018-06-08 2019-12-12 清水建設株式会社 Seismic control structure
JP2019218841A (en) * 2018-06-15 2019-12-26 清水建設株式会社 Structure
JP2020012254A (en) * 2018-07-13 2020-01-23 清水建設株式会社 Seismic isolation structure
JP2020012253A (en) * 2018-07-13 2020-01-23 清水建設株式会社 Seismic isolation structure
JP2020143447A (en) * 2019-03-04 2020-09-10 清水建設株式会社 Seismically isolated structure
JP2021031865A (en) * 2019-08-19 2021-03-01 株式会社竹中工務店 Intermediate base isolation structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1122237A (en) * 1997-07-03 1999-01-26 Tatsuji Ishimaru Vibration control structure for building structure
JPH11241524A (en) * 1998-02-23 1999-09-07 Shimizu Corp Building used jointly for both base isolation and seismic control
JP2001193311A (en) * 1999-10-19 2001-07-17 Shimizu Corp Base isolation building
JP2004176348A (en) * 2002-11-26 2004-06-24 Fujita Corp Base isolation structure of high rise building
JP2006009477A (en) * 2004-06-28 2006-01-12 Taisei Corp Intermediate base isolating structure of existing building
JP2006144476A (en) * 2004-11-24 2006-06-08 Chiba Univ Base-isolating device and building structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1122237A (en) * 1997-07-03 1999-01-26 Tatsuji Ishimaru Vibration control structure for building structure
JPH11241524A (en) * 1998-02-23 1999-09-07 Shimizu Corp Building used jointly for both base isolation and seismic control
JP2001193311A (en) * 1999-10-19 2001-07-17 Shimizu Corp Base isolation building
JP2004176348A (en) * 2002-11-26 2004-06-24 Fujita Corp Base isolation structure of high rise building
JP2006009477A (en) * 2004-06-28 2006-01-12 Taisei Corp Intermediate base isolating structure of existing building
JP2006144476A (en) * 2004-11-24 2006-06-08 Chiba Univ Base-isolating device and building structure

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143331A (en) * 2018-02-19 2019-08-29 清水建設株式会社 Seismically isolated structure
JP6994977B2 (en) 2018-02-19 2022-01-14 清水建設株式会社 Seismic isolation structure
JP2019210771A (en) * 2018-06-08 2019-12-12 清水建設株式会社 Seismic control structure
JP7257747B2 (en) 2018-06-08 2023-04-14 清水建設株式会社 Damping structure
JP2019218841A (en) * 2018-06-15 2019-12-26 清水建設株式会社 Structure
JP7244286B2 (en) 2018-06-15 2023-03-22 清水建設株式会社 Structure
JP2020012254A (en) * 2018-07-13 2020-01-23 清水建設株式会社 Seismic isolation structure
JP2020012253A (en) * 2018-07-13 2020-01-23 清水建設株式会社 Seismic isolation structure
JP7145669B2 (en) 2018-07-13 2022-10-03 清水建設株式会社 Seismic isolation structure
JP2020143447A (en) * 2019-03-04 2020-09-10 清水建設株式会社 Seismically isolated structure
JP2021031865A (en) * 2019-08-19 2021-03-01 株式会社竹中工務店 Intermediate base isolation structure
JP7357486B2 (en) 2019-08-19 2023-10-06 株式会社竹中工務店 Intermediate seismic isolation structure

Also Published As

Publication number Publication date
JP6979805B2 (en) 2021-12-15

Similar Documents

Publication Publication Date Title
JP6979805B2 (en) Seismic isolation structure
JP5316850B2 (en) Seismic isolation structure
JP5567094B2 (en) Long-period building
JP6482373B2 (en) Seismic isolation structure
JP2010203192A (en) Connected seismic control structure
Etedali et al. A proposed approach to mitigate the torsional amplifications of asymmetric base-isolated buildings during earthquakes
JP5945889B2 (en) Seismic isolation structure
Shiravand et al. Optimum arrangement investigation of LRB and FPS isolators for seismic response control in irregular buildings
JP6835492B2 (en) Seismic isolation structure
JP6709600B2 (en) Multi-layer seismic isolation structure
JP5918282B2 (en) Long-period building
JP6590201B2 (en) Multi-layer seismic isolation structure
JP6432759B2 (en) Building vibration control structure
JP6994977B2 (en) Seismic isolation structure
JP2017145621A (en) Base-isolation structure
Soleimanloo A Survey study on design procedure of Seismic Base Isolation Systems
JP6190643B2 (en) Vibration control device
Kasalanati et al. Seismic isolation of sensitive equipment
JP7244286B2 (en) Structure
JP5131553B2 (en) Damping structure
JP6497648B2 (en) Building vibration control structure
JP7145669B2 (en) Seismic isolation structure
Raju et al. Seismic design of buildings with viscous fluid dampers-a methodology
JP2020012253A (en) Seismic isolation structure
JP6936623B2 (en) Structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211116

R150 Certificate of patent or registration of utility model

Ref document number: 6979805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150