JP6497648B2 - Building vibration control structure - Google Patents

Building vibration control structure Download PDF

Info

Publication number
JP6497648B2
JP6497648B2 JP2015000339A JP2015000339A JP6497648B2 JP 6497648 B2 JP6497648 B2 JP 6497648B2 JP 2015000339 A JP2015000339 A JP 2015000339A JP 2015000339 A JP2015000339 A JP 2015000339A JP 6497648 B2 JP6497648 B2 JP 6497648B2
Authority
JP
Japan
Prior art keywords
building
damping
frame
vibration
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015000339A
Other languages
Japanese (ja)
Other versions
JP2016125272A (en
Inventor
徹也 半澤
徹也 半澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2015000339A priority Critical patent/JP6497648B2/en
Publication of JP2016125272A publication Critical patent/JP2016125272A/en
Application granted granted Critical
Publication of JP6497648B2 publication Critical patent/JP6497648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、建物の制振構造に関する。   The present invention relates to a vibration control structure for a building.

例えば中高層建物が特大地震を受けると、建物の最弱層に損傷が生じて耐力が低下し始め、この層に地震エネルギー(振動エネルギー)が集中して層崩壊が生じ、他の層は健全性が確保されているにもかかわらず、層崩壊モードによって建物が崩壊に至るという現象が発生する。また、崩壊に至らない場合においても、最弱層の被害が甚大となり、補修による復旧が困難になる。   For example, if a middle- and high-rise building receives an oversized earthquake, the weakest layer of the building will be damaged and the proof stress will begin to decline. Seismic energy (vibration energy) will concentrate on this layer, causing layer collapse, and the other layers will be healthy. However, the phenomenon that the building collapses due to the layer collapse mode occurs. Even if it does not collapse, the damage of the weakest layer will be enormous, making it difficult to recover by repair.

これに対し、従来から、例えばオフィスビルなどの中・高層建物では、各層間にダンパー装置(減衰装置/制振装置)を設置し、地震時の振動エネルギーを吸収させて架構躯体の地震応答(加速度や変位、層間変位)を低減させる対策が多用されている。また、ダンパー装置として、ブレースタイプや間柱タイプ、壁型タイプなどが提案、実用化されている。   In contrast, conventionally, for example, in middle- and high-rise buildings such as office buildings, a damper device (attenuator / damping device) is installed between each layer to absorb the vibration energy at the time of the earthquake, and the seismic response of the frame ( Measures for reducing acceleration, displacement, and interlayer displacement) are often used. Also, as a damper device, a brace type, a stud type, a wall type, etc. have been proposed and put into practical use.

一方、特許文献1や特許文献2には、建物の内部構造体と外部構造体をダンパー装置で連結してなる建物の制振構造が開示されている。   On the other hand, Patent Document 1 and Patent Document 2 disclose a vibration control structure for a building in which an internal structure and an external structure of a building are connected by a damper device.

また、特許文献3には、建物の一棟を免震構造を備えて構築し、この建物を内側に設けて囲繞するように門型のもう一棟の建物を構築し、内側の棟と門型の棟をダンパー装置などで連結した構造が開示されている。   In Patent Document 3, one building is constructed with a seismic isolation structure, and another gate-type building is constructed so as to surround and surround this building. A structure in which mold ridges are connected by a damper device or the like is disclosed.

特開平11−62316号公報Japanese Patent Application Laid-Open No. 11-62316 特開平11−270175号公報Japanese Patent Laid-Open No. 11-270175 特開平10−231639号公報Japanese Patent Laid-Open No. 10-231539

しかしながら、一般に、大きな制振効果を得るためには多数のダンパー装置が必要で、コストがかかり、また、眺望などの建築計画の面からダンパー装置を設置できる架構面に制限があり、多数のダンパー装置を設置することが困難なケースがある。このため、ダンパー装置によって、より効率的に振動エネルギーを吸収できるようにすることが強く求められている。   However, in general, a large number of damper devices are required to obtain a large vibration damping effect, which is expensive. In addition, there is a limit to the frame on which the damper device can be installed in view of the architectural plan such as the view, and so on. There are cases where it is difficult to install the device. For this reason, there is a strong demand for a damper device that can absorb vibration energy more efficiently.

また、特許文献1や特許文献2に開示された制振構造においては、現実的に内部構造体をコア部(あるいはボイド空間を利用した駐車場タワー)、外部構造体を居住部とすることが想定され、両者の質量比が小さなものとなってしまい、コア部に非常に大きな剛性が必要になる。
さらに、特許文献3に開示された構造においては、建物の一棟を免震装置(下部減衰装置)で支持することが必須の構造になる。
このため、これら特許文献1や特許文献2、特許文献3に開示された構造はその適用に大きな制約が生じてしまう。
Moreover, in the vibration damping structure disclosed in Patent Document 1 or Patent Document 2, the internal structure may actually be a core part (or a parking lot tower using a void space) and the external structure may be a living part. It is assumed that the mass ratio between the two becomes small, and the core portion requires a very large rigidity.
Furthermore, in the structure disclosed in Patent Document 3, it is essential to support one building with a seismic isolation device (lower damping device).
For this reason, the structures disclosed in Patent Document 1, Patent Document 2, and Patent Document 3 are greatly restricted in application.

本発明は、上記事情に鑑み、その適用に大きな制約がなく、制振装置によってより効率的に振動エネルギーを吸収できる建物の制振構造を提供することを目的とする。   In view of the circumstances described above, an object of the present invention is to provide a building damping structure that can absorb vibration energy more efficiently by a damping device without significant restrictions on its application.

上記の目的を達するために、この発明は以下の手段を提供している。   In order to achieve the above object, the present invention provides the following means.

本発明の建物の制振構造は、建物の鉛直方向の任意のレベル位置に制振層を部分的に設け、前記制振層によって上部架構と下部架構を部分的に分割するとともに、前記制振層に制振装置、又は制振装置及び免震装置を介在させて構成されており、前記上部架構と前記下部架構の平面上の同位置に同一のコア部を含むようにして構成され、前記上部架構と前記コア部とは構造的に連結されており、前記下部架構と前記コア部とは構造的に連結されていないことを特徴とする。

The building vibration control structure of the present invention is provided with a vibration suppression layer partially at an arbitrary level position in the vertical direction of the building, and the upper frame and the lower frame are partially divided by the vibration suppression layer. A vibration control device or a vibration control device and a seismic isolation device interposed between the upper frame and the lower frame. And the core part are structurally connected, and the lower frame and the core part are not structurally connected .

本発明の建物の制振構造においては、従来架構(従来の制振構造)に比べて制振装置(ダンパー装置/減衰装置)による効率的な振動エネルギー吸収が可能になり、少ない制振装置量で大きな制振効果を得ることが可能になる。   In the building vibration damping structure of the present invention, the vibration energy can be efficiently absorbed by the vibration damping device (damper device / damping device) compared to the conventional frame (conventional vibration damping structure), and the amount of the damping device is small. This makes it possible to obtain a great vibration suppression effect.

本発明の一実施形態に係る建物の制振構造を示す横断面図である。It is a cross-sectional view which shows the vibration damping structure of the building which concerns on one Embodiment of this invention. 図1のX1−X1線矢視図である。It is the X1-X1 arrow view figure of FIG. 図1のX2−X2線矢視図である。FIG. 2 is an X2-X2 arrow view of FIG. 1. 従来の制振構造を示す横断面図である。It is a cross-sectional view showing a conventional vibration damping structure. 図4のX1−X1線矢視図である。It is a X1-X1 line arrow directional view of FIG. 本発明の一実施形態に係る建物の制振構造の変位状況を示す縦断面図である。It is a longitudinal cross-sectional view which shows the displacement condition of the damping structure of the building which concerns on one Embodiment of this invention. 本発明の一実施形態に係る建物の制振構造をモデル化した図である。It is the figure which modeled the damping structure of the building which concerns on one Embodiment of this invention. シミュレーション結果を示す図であり、従来架構(従来の構造:ダンパー無し)の地震時応答結果を示す図である。It is a figure which shows a simulation result, and is a figure which shows the response result at the time of an earthquake of a conventional frame (conventional structure: no damper). シミュレーション結果を示す図であり、従来架構(従来の制振構造:ダンパー有り)の地震時応答結果を示す図である。It is a figure which shows a simulation result, and is a figure which shows the response result at the time of an earthquake of the conventional frame (conventional damping structure: with a damper). シミュレーション結果を示す図であり、本発明の一実施形態に係る建物の制振構造の上部架構の地震時応答結果を示す図である。It is a figure which shows a simulation result, and is a figure which shows the response result at the time of the earthquake of the upper frame of the damping structure of the building which concerns on one Embodiment of this invention. シミュレーション結果を示す図であり、本発明の一実施形態に係る建物の制振構造の下部架構の地震時応答結果を示す図である。It is a figure which shows a simulation result, and is a figure which shows the response result at the time of the earthquake of the lower frame of the damping structure of the building which concerns on one Embodiment of this invention.

以下、図1から図11を参照し、本発明の一実施形態に係る建物の制振構造について説明する。   Hereinafter, a building damping structure according to an embodiment of the present invention will be described with reference to FIGS. 1 to 11.

本実施形態の建物の制振構造Aは、図1から図3に示すように、地震時(あるいは強風時)に例えばオフィスビルやマンションなどの多層構造の建物に作用した地震エネルギー(振動エネルギー)を吸収して減衰させ、建物の応答を低減させるためのものである。   As shown in FIGS. 1 to 3, the vibration damping structure A of the present embodiment is a seismic energy (vibration energy) that acts on a multi-layered building such as an office building or a condominium during an earthquake (or during a strong wind). It absorbs and attenuates and reduces the response of the building.

また、本実施形態の建物の制振構造Aは、建物の鉛直方向の任意のレベル位置に制振層1を設けて部分的に上下に(上部架構2と下部架構3)に分割し、この制振層1にダンパー装置(減衰装置/制振装置)4、又は、ダンパー装置4及び免震装置(減衰装置)5を介在させることにより、図4及び図5に示すような従来の制振構造(制振架構)Bと比較してダンパー装置4で効率的に振動エネルギーを吸収して架構躯体の地震応答の低減を図るようにしている。   In addition, the building damping structure A of the present embodiment is provided with a damping layer 1 at an arbitrary level position in the vertical direction of the building, and is partially divided up and down (upper frame 2 and lower frame 3). By interposing a damper device (damping device / damping device) 4, or a damper device 4 and a seismic isolation device (damping device) 5 in the damping layer 1, a conventional damping system as shown in FIGS. Compared to the structure (damping frame) B, the damper device 4 efficiently absorbs vibration energy to reduce the earthquake response of the frame.

具体的に、本実施形態の建物の制振構造Aにおいて、建物を上部架構2と下部架構3に分割する制振層1が鉛直方向の任意のレベル位置全体ではなく部分的に設けられている。また、この建物の制振構造Aは、制振層1よりも上方の上部架構2と下方の下部架構3の平面上の同位置に同一のコア部(ELV室や階段室を含む)6を含むようにして構成されている。すなわち、このコア部6によって上部架構2の自重の一部をそのまま下部架構3に伝達するように構成されている。   Specifically, in the vibration damping structure A of the building of the present embodiment, the vibration damping layer 1 that divides the building into the upper frame 2 and the lower frame 3 is partially provided instead of the entire arbitrary level position in the vertical direction. . The building damping structure A has the same core portion (including ELV room and staircase) 6 at the same position on the plane of the upper frame 2 above the damping layer 1 and the lower frame 3 below. It is configured to include. That is, the core portion 6 is configured to transmit a part of its own weight of the upper frame 2 to the lower frame 3 as it is.

また、上部架構2の自重の残り分は、下部架構3との境界の制振層1に例えば免震装置(積層ゴムやリニアガイドレールなどの免震支承)5などの支持機構を設けることにより、直下の下部架構3で受け、基礎や地盤に伝達される。   The remaining weight of the upper frame 2 is provided by providing a support mechanism such as a seismic isolation device (seismic isolation device such as laminated rubber or linear guide rail) 5 on the damping layer 1 at the boundary with the lower frame 3. , Received by the lower frame 3 directly below, and transmitted to the foundation and ground.

ここで、本実施形態の建物の制振構造Aにおいては、水平方向の挙動に関して、力学的にはいわゆる連結制振機構を成している。一般に、連結制振は層間ダンパーによる制振機構に比べてダンパー装置4が効果的に働き、装置台数を減らすことが可能である。また、連結制振機構では、連結させる棟の固有振動数が異なっている必要があるが、上記のような本実施形態の建物の制振構造Aの構成を採用することで、上部架構2、下部架構3の固有振動数を特別な部材設定をすることなく、相当異なる値にすることができる。このため、従来の特許文献3のように連結する一方を例えば免震構造として下部減衰装置を設置する必要がない。   Here, in the building vibration damping structure A of the present embodiment, a so-called coupled vibration damping mechanism is mechanically formed with respect to the behavior in the horizontal direction. In general, the damper device 4 works more effectively in the coupled vibration control than the vibration control mechanism using the interlayer damper, and the number of devices can be reduced. Further, in the connected vibration control mechanism, the natural frequencies of the buildings to be connected need to be different, but by adopting the structure of the building vibration control structure A of the present embodiment as described above, the upper frame 2, The natural frequency of the lower frame 3 can be set to a considerably different value without setting a special member. For this reason, it is not necessary to install a lower damping device, for example by making one side connected like conventional patent document 3 into a seismic isolation structure.

すなわち、本実施形態の建物の制振構造Aにおいては、従来の特許文献1や特許文献2のようにコア部6に非常に大きな剛性を与えたり、従来の特許文献3のように一棟に下部減衰装置が必須で必要になるなどの制約がない。   That is, in the building damping structure A of the present embodiment, the core portion 6 is given a very large rigidity as in the conventional patent document 1 and the patent document 2, or in the same building as in the conventional patent document 3. There is no restriction that a lower damping device is essential and necessary.

次に、本実施形態の建物の制振構造A(以下、本実施形態の架構ともいう)の耐震性能を数値解析した結果について説明する。   Next, the result of numerical analysis of the seismic performance of the building damping structure A of the present embodiment (hereinafter also referred to as the frame of the present embodiment) will be described.

まず、このシミュレーションでは、20階建ての超高層建物を対象とした。また、表1は、図4及び図5に示した比較対象の従来架構Bの諸元、リリーフ付きオイルダンパー4の諸元を示している。表2は、図1から図3、図6及び図7のように上部架構2、下部架構3に分断した本実施形態の架構Aの諸元を、両架構2、3を繋ぐオイルダンパー4(線形)の諸元とともに示している。   First, in this simulation, a 20-story skyscraper was targeted. Table 1 shows the specifications of the comparative conventional frame B shown in FIGS. 4 and 5 and the specifications of the oil damper 4 with relief. Table 2 shows the specifications of the frame A of the present embodiment divided into the upper frame 2 and the lower frame 3 as shown in FIGS. 1 to 3, 6 and 7, and the oil damper 4 ( (Linear) specifications are shown.

Figure 0006497648
Figure 0006497648

Figure 0006497648
Figure 0006497648

これら表1及び表2の通り、オイルダンパー4の諸元から設置階数及び設置台数は本実施形態の方が格段に少なくなっている。また、免震支承(免震装置5)にはリニアガイドを用いており、剛性は付加していない。さらに、1層〜10層については平面の約20%をコア部6とし、質量・剛性を同じ比率で分割するものとしている。   As shown in Tables 1 and 2, the number of installation floors and the number of installations are much smaller in the present embodiment from the specifications of the oil damper 4. Moreover, a linear guide is used for the seismic isolation bearing (the seismic isolation device 5), and rigidity is not added. Furthermore, about 1 layer-10 layers, about 20% of a plane is made into the core part 6, and mass and rigidity shall be divided | segmented by the same ratio.

次に、表3は、従来架構Bと、本実施形態の架構A(上部架構2、下部架構3)の1次固有振動数を示している。   Next, Table 3 shows primary natural frequencies of the conventional frame B and the frame A (upper frame 2 and lower frame 3) of the present embodiment.

Figure 0006497648
Figure 0006497648

構造減衰は、各架構A、B(本実施形態の架構Aの場合は上部架構2、下部架構3それぞれ)の1次固有周期に対して2%の初期剛性比例型とした。また、簡単のため、架構A、Bは線形としている。   The structural damping was an initial stiffness proportional type of 2% with respect to the primary natural period of each of the frames A and B (in the case of the frame A of the present embodiment, the upper frame 2 and the lower frame 3 respectively). For simplicity, frames A and B are linear.

次に、従来架構B、本実施形態の架構Aに入力した入力地震動は、El Centro NS波(ELCN)、TAFT EW波(TAFT)、八戸 NS波(Hach)、センター波レベル2(BCl2)の4波を与える。El Centro NS波、TAFT EW波、八戸 NS波の3波については最大速度が50kineとなるように規準化した。   Next, the input seismic motion input to the conventional frame B and the frame A of this embodiment is an El Centro NS wave (ELCN), a TAFT EW wave (TAFT), a Hachinohe NS wave (Hach), and a center wave level 2 (BCl2). Give 4 waves. El Centro NS wave, TAFT EW wave, and Hachinohe NS wave were normalized so that the maximum velocity was 50 kine.

図8から図11はシミュレーション結果を示したものであり、図8(ダンパー4無し)及び図9(ダンパー4有り)は従来架構Bの最大変位及び加速度、図10(上部架構2)及び図11(下部架構3)は本実施形態の架構の最大変位及び加速度を示している。   FIGS. 8 to 11 show simulation results. FIGS. 8 (without the damper 4) and 9 (with the damper 4) are the maximum displacement and acceleration of the conventional frame B, and FIGS. 10 (upper frame 2) and FIG. (Lower frame 3) shows the maximum displacement and acceleration of the frame of this embodiment.

まず、従来架構Bの制振効果においては、図8と図9の比較により、設定した層間のオイルダンパー4によって頂部における応答が、変位で47〜97cmから29〜46cmに、加速度で420〜690galから220〜430galに減少することが確認された。   First, in the vibration damping effect of the conventional frame B, the comparison between FIG. 8 and FIG. 9 shows that the response at the top is changed from 47 to 97 cm to 29 to 46 cm in displacement and 420 to 690 gal in acceleration by the set oil damper 4 between the layers. It was confirmed to decrease from 220 to 430 gal.

これに対し、本実施形態の架構Aにおいては、図8と図10、図11の比較により、頂部における応答が、変位で47〜97cmから24〜43cmに、加速度で420〜690galから260〜280galに大きく減少することが確認された。なお、下部架構3の頂部(10階)の最大加速度は420〜590galと、上部架構2の頂部に比べて大きいが、図8の頂部の最大加速度に比べれば小さい。   On the other hand, in the frame A of this embodiment, the response at the top is changed from 47 to 97 cm to 24 to 43 cm in displacement and from 420 to 690 gal to 260 to 280 gal in acceleration by comparing FIG. 8, FIG. 10 and FIG. It was confirmed that it decreased greatly. The maximum acceleration at the top (10th floor) of the lower frame 3 is 420 to 590 gal, which is larger than the top of the upper frame 2, but is smaller than the maximum acceleration at the top of FIG.

したがって、本実施形態の建物の制振構造Aにおいては、従来架構(従来の制振構造)Bに比べてダンパー装置(減衰装置/制振装置)4による効率的な振動エネルギー吸収が可能になり、少ないダンパー設置量で大きな制振効果を得ることが可能になる。   Therefore, in the vibration damping structure A of the building of this embodiment, it is possible to efficiently absorb vibration energy by the damper device (attenuator / damping device) 4 as compared with the conventional frame (conventional vibration damping structure) B. Therefore, it is possible to obtain a large vibration control effect with a small amount of damper installation.

以上、本発明に係る建物の制振構造の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。   As mentioned above, although one Embodiment of the vibration damping structure of the building which concerns on this invention was described, this invention is not limited to said one Embodiment, It can change suitably in the range which does not deviate from the meaning.

1 制振層
2 上部架構
3 下部架構
4 制振装置(ダンパー装置/減衰装置)
5 免震装置(減衰装置)
6 コア部
A 建物の制振構造(制振架構)
B 従来の制振構造(従来架構)
1 Damping layer 2 Upper frame 3 Lower frame 4 Damping device (damper / damping device)
5 Seismic isolation device (attenuator)
6 Core part A Building damping structure (damping frame)
B Conventional vibration control structure (conventional frame)

Claims (1)

建物の鉛直方向の任意のレベル位置に制振層を部分的に設け、前記制振層によって上部架構と下部架構を部分的に分割するとともに、前記制振層に制振装置、又は制振装置及び免震装置を介在させて構成されており、
前記上部架構と前記下部架構の平面上の同位置に同一のコア部を含むようにして構成され、
前記上部架構と前記コア部とは構造的に連結されており、前記下部架構と前記コア部とは構造的に連結されていないことを特徴とする建物の制振構造。
A damping layer is partially provided at an arbitrary level position in the vertical direction of the building, and the upper frame and the lower frame are partially divided by the damping layer, and the damping device or the damping device is provided in the damping layer. And seismic isolation devices .
The upper frame and the lower frame are configured to include the same core part at the same position on the plane,
The building damping structure according to claim 1, wherein the upper frame and the core part are structurally connected, and the lower frame and the core part are not structurally connected .
JP2015000339A 2015-01-05 2015-01-05 Building vibration control structure Active JP6497648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015000339A JP6497648B2 (en) 2015-01-05 2015-01-05 Building vibration control structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015000339A JP6497648B2 (en) 2015-01-05 2015-01-05 Building vibration control structure

Publications (2)

Publication Number Publication Date
JP2016125272A JP2016125272A (en) 2016-07-11
JP6497648B2 true JP6497648B2 (en) 2019-04-10

Family

ID=56356992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015000339A Active JP6497648B2 (en) 2015-01-05 2015-01-05 Building vibration control structure

Country Status (1)

Country Link
JP (1) JP6497648B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5567094B2 (en) * 2012-10-12 2014-08-06 大成建設株式会社 Long-period building

Also Published As

Publication number Publication date
JP2016125272A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
JP6979805B2 (en) Seismic isolation structure
JP2020101081A (en) Vibration control device and architectural structure having this
JP2010203192A (en) Connected seismic control structure
JP6274726B2 (en) Seismic control building and design method of seismic control building
JP4913660B2 (en) Steel stairs
JP6497648B2 (en) Building vibration control structure
JP6709600B2 (en) Multi-layer seismic isolation structure
JP6143058B2 (en) Vibration control structure
JP2010242449A (en) Seismic response control repair structure and seismic response control repair method for existing building
JP2014101749A (en) Period-prolonged architectural structure
JP5290786B2 (en) Damping structure
JP2015055267A (en) Intermediate base isolation structure
JP2017043988A (en) Vibration control building
JP2007132125A (en) Vibration control method for small-scale building
JP6495638B2 (en) Complex building
JP6994977B2 (en) Seismic isolation structure
JP6432759B2 (en) Building vibration control structure
JP2014136888A (en) Building structure
Murata et al. Compact TMD (tuned mass damper) for long‐period earthquakes in an existing high rise building
CN203891237U (en) Building shock absorption system constructed by energy dissipation and shock absorption floor
TWI713804B (en) Shock absorption structure of building
JPH11343755A (en) Earthquake damping structure
JP7370789B2 (en) Seismic control structure, control method of seismic control structure, and design method of seismic control structure
JP7097204B2 (en) Vibration control system
JP5270739B2 (en) Seismic isolation structure for floor slabs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190304

R150 Certificate of patent or registration of utility model

Ref document number: 6497648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150