JP2015055267A - Intermediate base isolation structure - Google Patents

Intermediate base isolation structure Download PDF

Info

Publication number
JP2015055267A
JP2015055267A JP2013187450A JP2013187450A JP2015055267A JP 2015055267 A JP2015055267 A JP 2015055267A JP 2013187450 A JP2013187450 A JP 2013187450A JP 2013187450 A JP2013187450 A JP 2013187450A JP 2015055267 A JP2015055267 A JP 2015055267A
Authority
JP
Japan
Prior art keywords
seismic isolation
layer
structure portion
uppermost layer
lower structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013187450A
Other languages
Japanese (ja)
Other versions
JP6308741B2 (en
Inventor
山本 耕司
Koji Yamamoto
耕司 山本
耕司 村田
Koji Murata
耕司 村田
隆 大嶋
Takashi Oshima
隆 大嶋
悠磨 齋藤
Yuma Saito
悠磨 齋藤
山本 雅史
Masafumi Yamamoto
雅史 山本
孝行 曽根
Takayuki Sone
孝行 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2013187450A priority Critical patent/JP6308741B2/en
Publication of JP2015055267A publication Critical patent/JP2015055267A/en
Application granted granted Critical
Publication of JP6308741B2 publication Critical patent/JP6308741B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To improve habitability of at least the uppermost layer of an upper structure part and the uppermost layer of a lower structure part during an earthquake in an intermediate base isolation structure.SOLUTION: Response acceleration to be inputted from a foundation 800 to an intermediate base isolation structure 100 (a lower structure part 10) during an earthquake is to be reduced by disposing a fundamental base isolation layer 102 in addition to an intermediate base isolation layer 50. This ensures that vibration of the lower structure part 10 is reduced so as to reduce response acceleration of an uppermost layer 12 of the lower structure part 10.

Description

本発明は、中間免震構造物に関する。   The present invention relates to an intermediate seismic isolation structure.

特許文献1には、中間免震層を介して積層された複数の構造体により構成された構造物を、基礎免震層で支持した中間免震構造物が開示されている。   Patent Document 1 discloses an intermediate seismic isolation structure in which a structure composed of a plurality of structures stacked via an intermediate seismic isolation layer is supported by a basic seismic isolation layer.

このような中間免震構造物は、固有周期を長周期化することで、地震時における揺れの強い短周期地震動との共振を避けることで、激しい揺れから免れるようになっている。   Such an intermediate seismic isolation structure is designed to be free from intense shaking by making the natural period longer to avoid resonance with strong short-period ground motion during an earthquake.

しかし、中間免震層の上側の上部構造部の振動によって、中間免震層の下側の下部構造部の最上層(中間免震層の直下の層)では、応答加速度が増幅されることが知られている。そして、このように下部構造部の最上層の応答加速度が増幅されると、中間免震構造物であっても地震時における下部構造部の最上層の居住性が悪化する。   However, the response acceleration may be amplified in the uppermost layer of the lower structure below the middle seismic isolation layer (the layer directly below the middle seismic isolation layer) due to the vibration of the upper structure above the middle seismic isolation layer. Are known. And if the response acceleration of the uppermost layer of a lower structure part is amplified in this way, even if it is an intermediate seismic isolation structure, the habitability of the uppermost layer of the lower structure part at the time of an earthquake will deteriorate.

また、下部構造部よりも上部構造部が大きく質量が重い場合は、上部構造部の最上層の応答加速度が充分に低減されないため、中間免震構造物であっても地震時における上部構造部の最上層の居住性が充分に改善されない場合がある。   In addition, when the upper structure is larger and heavier than the lower structure, the response acceleration of the uppermost layer of the upper structure is not sufficiently reduced. The habitability of the top layer may not be improved sufficiently.

このように、単に長周期化を目的とした中間免震構造物では、地震時における上部構造部の最上層及び下部構造部の最上層の居住性に関して、改善の余地があった。   As described above, in the intermediate seismic isolation structure for the purpose of simply extending the period, there is room for improvement in the habitability of the uppermost layer of the upper structure and the uppermost layer of the lower structure at the time of the earthquake.

特開平01−263373号Japanese Patent Laid-Open No. 01-263373

本発明は、中間免震構造物における地震時の上部構造部の最上層及び下部構造部の最上層の少なくとも一方の居住性を向上させることが課題である。   An object of the present invention is to improve the habitability of at least one of the uppermost layer of the upper structure portion and the uppermost layer of the lower structure portion during an earthquake in the intermediate seismic isolation structure.

請求項1の発明は、下部構造部と上部構造部との間に設けられた第一免震層と、前記下部構造部の最上層及び前記上部構造部の最上層の少なくとも一方の応答加速度を低減させる応答加速度低減手段と、を備える。   According to the first aspect of the present invention, the response acceleration of at least one of the first seismic isolation layer provided between the lower structure portion and the upper structure portion, the uppermost layer of the lower structure portion, and the uppermost layer of the upper structure portion is obtained. Response acceleration reducing means for reducing the response acceleration.

請求項1に記載の発明では、応答加速度低減手段によって、下部構造部の最上層及び上部構造部の最上層の少なくとも一方の応力加速度を低減させることで、中間免震構造物における地震時の上部構造部の最上層及び下部構造部の最上層の少なくとも一方の揺れが小さくなり居住性が向上する。   In the first aspect of the invention, the response acceleration reducing means reduces the stress acceleration of at least one of the uppermost layer of the lower structure portion and the uppermost layer of the upper structure portion, so that the upper portion at the time of the earthquake in the intermediate seismic isolation structure The swaying of at least one of the uppermost layer of the structure part and the uppermost layer of the lower structure part is reduced, and the comfort is improved.

請求項2の発明は、前記応答加速度低減手段は、前記下部構造部の最上層及び前記上部構造部の最階層の少なくとも一方に設けられた制振装置を有する。   According to a second aspect of the present invention, the response acceleration reducing means includes a vibration damping device provided on at least one of the uppermost layer of the lower structure portion and the uppermost layer of the upper structure portion.

請求項2に記載の発明では、下部構造部の最上層及び上部構造部の最階層の少なくとも一方に制振装置を設けることで応力加速度が低減し、これにより中間免震構造物における地震時の上部構造部の最上層及び下部構造部の最上層の少なくとも一方の居住性が向上する。   In the invention described in claim 2, stress acceleration is reduced by providing a vibration damping device in at least one of the uppermost layer of the lower structure and the uppermost layer of the upper structure. The habitability of at least one of the uppermost layer of the upper structure portion and the uppermost layer of the lower structure portion is improved.

請求項3の発明は、前記応答加速度低減手段は、前記第一免震層以外の層に設けられた第二免震層を有する。   According to a third aspect of the present invention, the response acceleration reducing means has a second seismic isolation layer provided in a layer other than the first seismic isolation layer.

請求項3に記載の発明では、第一免震層以外の層に設けた第二免震層が、下部構造部の最上層及び上部構造部の最上層の少なくとも一方の応答加速度を低減するので、中間免震構造物における地震時の上部構造部の最上層及び下部構造部の最上層の少なくとも一方の居住性が向上する。   In the invention according to claim 3, since the second seismic isolation layer provided in a layer other than the first seismic isolation layer reduces response acceleration of at least one of the uppermost layer of the lower structure portion and the uppermost layer of the upper structure portion. In addition, the habitability of at least one of the uppermost layer of the upper structure and the uppermost layer of the lower structure at the time of the earthquake in the intermediate seismic isolation structure is improved.

本発明によれば、中間免震構造物における地震時の上部構造部の最上層及び下部構造部の最上層の少なくとも一方の居住性を向上させることができる。   According to the present invention, the habitability of at least one of the uppermost layer of the upper structure portion and the uppermost layer of the lower structure portion at the time of the earthquake in the intermediate seismic isolation structure can be improved.

(A)は第一実施形態の中間免震構造物を示す立面図であり、(B)は地震時における応答加速度を示す説明図である。(A) is an elevational view showing the intermediate seismic isolation structure of the first embodiment, and (B) is an explanatory view showing response acceleration during an earthquake. 第一実施形態の第一変形例の中間免震構造物を示す立面図である。It is an elevation which shows the middle seismic isolation structure of the 1st modification of a first embodiment. 第一実施形態の第二変形例の中間免震構造物を示す立面図である。It is an elevation which shows the middle seismic isolation structure of the 2nd modification of a first embodiment. 第一実施形態の第三変形例の中間免震構造物を示す立面図である。It is an elevation view which shows the intermediate seismic isolation structure of the 3rd modification of 1st embodiment. (A)は第一実施形態の第四変形例の中間免震構造物を示す立面図であり、(B)は第一実施形態の第五変形例の中間免震構造物を示す立面図であり、(C)は第一実施形態の第六変形例の中間免震構造物を示す立面図であり、(D)は第一実施形態の第七変形例の中間免震構造物を示す立面図である。(A) is an elevation view showing an intermediate seismic isolation structure of a fourth modification of the first embodiment, and (B) is an elevation showing an intermediate isolation structure of the fifth modification of the first embodiment. (C) is an elevation view showing an intermediate seismic isolation structure according to the sixth modification of the first embodiment, and (D) is an intermediate seismic isolation structure according to the seventh modification of the first embodiment. FIG. 第二実施形態の中間免震構造物を示す立面図である。It is an elevation view which shows the intermediate seismic isolation structure of 2nd embodiment. 第二実施形態の変形例の中間免震構造物を示す立面図である。It is an elevational view showing an intermediate seismic isolation structure of a modification of the second embodiment. 第三実施形態の中間免震構造物を示す立面図である。It is an elevation view which shows the intermediate seismic isolation structure of 3rd embodiment. 図1に示す第一実施形態の中間免震構造物の等価2質点系の構造モデルである。It is a structural model of the equivalent two-mass system of the intermediate seismic isolation structure of 1st embodiment shown in FIG. 図10の等価2質点系の構造モデルにおける質量比γと刺激関数βとの関係を示すグラフである。11 is a graph showing the relationship between the mass ratio γ and the stimulation function β 1 u 2 in the structural model of the equivalent two-mass system in FIG. 本発明が適用されていない比較例の中間免震構造物を示す立面図である。It is an elevational view showing an intermediate seismic isolation structure of a comparative example to which the present invention is not applied.

<第一実施形態>
本発明の第一実施形態に係る中間免震構造物について説明する。
<First embodiment>
The intermediate seismic isolation structure according to the first embodiment of the present invention will be described.

[構造]
図1(A)に示すように、中間免震構造物100は、鉄筋コンクリート造、鉄骨鉄筋コンクリート造、及び鉄骨造等の下部構造部10と上部構造部20とを有し、これら下部構造部10と上部構造部20との間に中間免震層50が設けられている。また、下部構造部10と地盤800との間に基礎免震層102が設けられている。なお、本実施形態では、下部構造部10は上部構造部20よりも大きく、下部構造部10の質量m1は上部構造部20の質量m2よりも重い(図9を参照)。
[Construction]
As shown in FIG. 1A, the intermediate seismic isolation structure 100 includes a lower structure portion 10 and an upper structure portion 20 such as a reinforced concrete structure, a steel reinforced concrete structure, and a steel structure. An intermediate seismic isolation layer 50 is provided between the upper structure portion 20 and the upper structure portion 20. In addition, a base seismic isolation layer 102 is provided between the lower structure 10 and the ground 800. In the present embodiment, the lower structure unit 10 is larger than the upper structure unit 20, and the mass m1 of the lower structure unit 10 is heavier than the mass m2 of the upper structure unit 20 (see FIG. 9).

中間免震層50には、免震装置60が設置されている。免震装置60は、上部構造部20を支持する免震支承(アイソレータ)の一例としての積層ゴム62と、振動エネルギーを吸収する減衰手段の一例としての鉛ダンパー(履歴型制震ダンパー)64と、を有している。   A seismic isolation device 60 is installed in the intermediate seismic isolation layer 50. The seismic isolation device 60 includes a laminated rubber 62 as an example of a seismic isolation support (isolator) that supports the upper structure 20, and a lead damper (hysteretic damping damper) 64 as an example of a damping means that absorbs vibration energy. ,have.

また、同様に、基礎免震層102にも、下部構造部10を支持する免震支承(アイソレータ)の一例としての積層ゴム62と、振動エネルギーを吸収する減衰手段の一例としての鉛ダンパー(履歴型制震ダンパー)54と、を有する免震装置60が設置されている。なお、免震装置60は、図示していない免震ピット等の基礎の上に設けられている。   Similarly, a laminated rubber 62 as an example of a seismic isolation support (isolator) that supports the lower structure 10 and a lead damper (an example of a damping means that absorbs vibration energy) are also provided in the base isolation layer 102. And a seismic isolation device 60 having a type seismic damper 54. The seismic isolation device 60 is provided on a base such as a seismic isolation pit (not shown).

また、上部構造部20の最上層22の応答加速度α2(図1(B)を参照)と下部構造部10の最上層12と応答加速度α1(図1(B)を参照)とが同じになるように、中間免震層50及び基礎免震層102に設けられた各免震装置60の各種諸元が設定されている。なお、諸元の設定方法(計算方法)の一例については、後述する。   Further, the response acceleration α2 (see FIG. 1B) of the uppermost layer 22 of the upper structure 20 is the same as the response acceleration α1 (see FIG. 1B) of the uppermost layer 12 of the lower structure 10. As described above, various specifications of each seismic isolation device 60 provided in the intermediate seismic isolation layer 50 and the basic seismic isolation layer 102 are set. An example of the specification setting method (calculation method) will be described later.

[作用及び効果]
つぎに本実施形態の作用及び効果について説明する。
[Action and effect]
Next, the operation and effect of this embodiment will be described.

まず、本発明が適用されてない比較例としての中間免震構造物について説明する。
図11に示す比較例の中間免震構造物900は、下部構造部10と上部構造部20とを有し、これら下部構造部10と上部構造部20との間に中間免震層50が設けられている。しかし、下部構造部10と地盤800との間には基礎免震層102(図1(A))は設けられていない。また、比較例の中間免震構造物900は、固有周期を長周期化することで、地震時における揺れの強い短周期地震動との共振を避け、激しい揺れから免れるようになっている。
First, an intermediate seismic isolation structure as a comparative example to which the present invention is not applied will be described.
An intermediate seismic isolation structure 900 of a comparative example shown in FIG. 11 has a lower structure portion 10 and an upper structure portion 20, and an intermediate seismic isolation layer 50 is provided between the lower structure portion 10 and the upper structure portion 20. It has been. However, the base seismic isolation layer 102 (FIG. 1A) is not provided between the lower structure portion 10 and the ground 800. Moreover, the intermediate seismic isolation structure 900 of the comparative example makes the natural period longer, thereby avoiding resonance with the strong short-period ground motion during an earthquake and avoiding intense shaking.

このような中間免震構造物900は、下部構造部10の最上層12(中間免震層50の直下の階層)の応答加速度α3が局所的に大きくなる現象が知られている(図11(B)を参照)。よって、地震時における下部構造部10の最上層12の応答変位(揺れ幅)が大きくなり、地震時の居住性が充分に確保されない。   In such an intermediate seismic isolation structure 900, a phenomenon is known in which the response acceleration α3 of the uppermost layer 12 of the lower structure portion 10 (hierarchy immediately below the intermediate seismic isolation layer 50) locally increases (FIG. 11 ( See B)). Therefore, the response displacement (swing width) of the uppermost layer 12 of the lower structure portion 10 at the time of the earthquake becomes large, and the habitability at the time of the earthquake is not sufficiently ensured.

なお、上部構造部20が振動すると、免震装置60を介して下部構造部10の最上層12が引っ張られることで、下部構造部10の最上層12の応答加速度が増幅され局所的に大きくなると考えられる。   In addition, when the upper structure part 20 vibrates, when the uppermost layer 12 of the lower structure part 10 is pulled via the seismic isolation device 60, the response acceleration of the uppermost layer 12 of the lower structure part 10 is amplified and locally increased. Conceivable.

そこで、図1(A)に示す本実施形態の中間免震構造物100では、中間免震層50に加え、基礎免震層102を設けることで、地震時に地盤800から中間免震構造物100(下部構造部10)に入力される応答加速度を低減させている。これにより、下部構造部10の振動が低減され、この結果、下部構造部10の最上層12の応答加速度が低減される。つまり、地震時における下部構造部10の最上層12の応答変位(揺れ幅)が、比較例の中間免震構造物900(図11を参照)と比較して小さくなり、地震時の居住性が向上する。   Therefore, in the intermediate seismic isolation structure 100 of this embodiment shown in FIG. 1 (A), by providing the base isolation layer 102 in addition to the intermediate isolation layer 50, the intermediate isolation structure 100 from the ground 800 during an earthquake is provided. The response acceleration input to the (lower structure unit 10) is reduced. Thereby, the vibration of the lower structure part 10 is reduced, and as a result, the response acceleration of the uppermost layer 12 of the lower structure part 10 is reduced. That is, the response displacement (swing width) of the uppermost layer 12 of the lower structure 10 at the time of the earthquake is smaller than that of the intermediate seismic isolation structure 900 (see FIG. 11) of the comparative example, and the habitability at the time of the earthquake is reduced. improves.

更に、図1(B)に示すように、本実施形態では、上部構造部20の最上層22の応答加速度α2と下部構造部10の最上層12と応答加速度α1とが同じになるように、中間免震層50及び基礎免震層102に設けられた各免震装置60の各種諸元が設定されている。よって、上部構造部20の最上層22と下部構造部10の最上層12との両方の応答加速度がバランスよく低減されることで、両方の居住性が向上する(両方の居住性が確保される)。   Further, as shown in FIG. 1B, in the present embodiment, the response acceleration α2 of the uppermost layer 22 of the upper structure portion 20 and the uppermost layer 12 of the lower structure portion 10 are the same as the response acceleration α1. Various specifications of each seismic isolation device 60 provided in the intermediate seismic isolation layer 50 and the basic seismic isolation layer 102 are set. Therefore, the response acceleration of both the uppermost layer 22 of the upper structure part 20 and the uppermost layer 12 of the lower structure part 10 is reduced in a balanced manner, thereby improving both habitability (both habitability is ensured). ).

また、中間免震層50及び基礎免震層102の(応答変位(揺れ幅))免震変位量が同じ又は略同じになるので、これら中間免震層50及び基礎免震層102に配置された各種配管やエレベーター等の設備設計が容易である。   Moreover, since the seismic isolation displacement amounts of the intermediate isolation layer 50 and the basic isolation layer 102 are the same or substantially the same, they are arranged in the intermediate isolation layer 50 and the basic isolation layer 102. It is easy to design equipment such as various pipes and elevators.

(計算方法)
次に、上述した中間免震構造物100の中間免震層50及び基礎免震層102に設けられた各免震装置60の諸元の設定方法(計算方法)の一例について説明する。
(Method of calculation)
Next, an example of a setting method (calculation method) of specifications of each seismic isolation device 60 provided in the intermediate seismic isolation layer 50 and the basic seismic isolation layer 102 of the intermediate seismic isolation structure 100 described above will be described.

図9に示すように、中間免震構造物100における下部構造部10及び上部構造部20の挙動を等価2質点系の構造モデルに置き換える。   As shown in FIG. 9, the behavior of the lower structure portion 10 and the upper structure portion 20 in the intermediate seismic isolation structure 100 is replaced with an equivalent two-mass structure model.

なお、下部構造部10の質量をmとし、上部構造部20の質量をmとし、基礎免震層の剛性をk1とし、中間免震層50の剛性をk2とする。また、地震時の地動変位量をyとし、基礎免震層102の層間変形量(地盤800と下部構造部10との相対移動量)をδとし、中間免震層50の層間変形量(下部構造部10と上部構造部20との相対移動量)をδとする。また、上部構造部20及び下部構造部10は剛体と仮定する。 Incidentally, the mass of the lower structure portion 10 and m 1, the mass of the upper structure portion 20 and m 2, the rigidity of the basic isolation layer and k1, the rigidity of the intermediate isolation layer 50 and k2. In addition, the amount of ground motion displacement at the time of the earthquake is y 0 , the amount of interlayer deformation of the base seismic isolation layer 102 (the relative movement amount of the ground 800 and the lower structure 10) is δ 1, and the amount of interlayer deformation of the intermediate seismic isolation layer 50 (relative moving amount of the lower structure portion 10 and the upper structure part 20) and [delta] 2. Further, it is assumed that the upper structure portion 20 and the lower structure portion 10 are rigid bodies.

そして、層間変形量δ、δを変数とした非減衰系の運動方程式は、下記[数1]にように表わすことができる。 The equation of motion of the non-damping system using the interlayer deformation amounts δ 1 and δ 2 as variables can be expressed as [Equation 1] below.

ここで、あるモードの固有値を
λ(=ω
とし、
モード形(層間モードに対応)を
{du}={du du
とすれば、下記[数2]の固有方程式が成り立つ。
Here, the eigenvalue of a certain mode is λ (= ω 2 )
age,
Change the mode form (corresponding to the interlayer mode) to {du} = {du 2 du 2 } T
If so, the following equation [Equation 2] is established.

更に、下記の行列式[数3]   Furthermore, the following determinant [Formula 3]

を整理し、下記の[数4]の様に表す。 Is expressed as [Equation 4] below.

ここで、
ωは、下部構造部10の質量をmとし、基礎免震層102の剛性をkとしたときの非減衰系1質点モデルにおける下部構造部10の固有円振動数であり、
here,
ω 1 is the natural circular frequency of the lower structure 10 in the non-damping system 1-mass model when the mass of the lower structure 10 is m 1 and the rigidity of the base seismic isolation layer 102 is k 1 ,

ωは、上部構造部20の質量をmとし、中間免震層50の剛性をkとしたときの非減衰系1質点モデルにおける上部構造部20の固有円振動数であり、 ω 2 is the natural circular frequency of the upper structure 20 in the non-damping system 1-mass model when the mass of the upper structure 20 is m 2 and the rigidity of the intermediate seismic isolation layer 50 is k 2 ,

γは、上部構造部20と下部構造部10との質量比(m=m)である。 γ is a mass ratio (m 2 = m 1 ) between the upper structure portion 20 and the lower structure portion 10.

そして、[数4]から、以下(1)〜(4)の関係が導かれる。   From [Equation 4], the following relationships (1) to (4) are derived.

(1)ω、ω、γが既知の場合は、下記[数5]となる。 (1) When ω 1 , ω 2 , and γ are known, the following [Equation 5] is obtained.

(2)ω、ω、λが既知の場合は、下記[数6]となる。 (2) When ω 1 , ω 2 , and λ are known, the following [Equation 6] is obtained.

(3)ω、λ、γが既知の場合は、下記[数7]となる。 (3) When ω 2 , λ, and γ are known, the following [Equation 7] is obtained.

(4)ω、ω、λが既知の場合は、下記[数8]となる。 (4) When ω 1 , ω 2 , and λ are known, the following [Equation 8] is obtained.

またモード形(層間モードに対応)に関しては、以下の[数9]又は[数10]の関係が成り立つ。   Regarding the mode shape (corresponding to the interlayer mode), the following [Equation 9] or [Equation 10] is established.

ここで、上部構造部20と下部構造部10の応答変位をバランスよく制御する、すなわち、上部構造部20の最上層22の応答加速度α2と下部構造部10の最上層12と応答加速度α1が同じになるようにすることから、変位応答において支配的となる1次モードの層間応答が中間免震層50と基礎免震層102とで等しいとした場合を想定し、質量比と変位との関係を考察する。   Here, the response displacements of the upper structure portion 20 and the lower structure portion 10 are controlled in a balanced manner, that is, the response acceleration α2 of the uppermost layer 22 of the upper structure portion 20 and the response acceleration α1 of the uppermost layer 12 of the lower structure portion 10 are the same. Therefore, assuming that the interlayer response of the primary mode that is dominant in the displacement response is the same in the intermediate isolation layer 50 and the basic isolation layer 102, the relationship between the mass ratio and the displacement Is considered.

そして、1次モードの層間応答が中間免震層50と基礎免震層102とで等しいという条件から、1次モード形(層間モードに対応)を
{du}={1 1}
と表せる。
From the condition that the interlayer response of the primary mode is the same in the intermediate isolation layer 50 and the basic isolation layer 102, the primary mode form (corresponding to the interlayer mode) is {du} = {1 1} T
It can be expressed.

このモード形を[数9]に代入すると、1次モードの固有値λとωとに関する下記の[数11]の関係式が求まる。 By substituting this mode form into [Equation 9], the following [Equation 11] relational expression regarding the eigenvalues λ 1 and ω 2 of the primary mode is obtained.

更に、γ及びλが既知とし、ωに、上記の[数11]の関係を適用すると、上記[数7]よりωが以下の[数12]の様に表すことができる。 Further, γ and λ are known, the omega 2, when applying the relationship [number 11] above, omega 1 from the [Equation 7] can be expressed as the following Equation 12].

そして、これら[数11]及び[数12]を利用することで、1次モードの層間応答が中間免震層50と基礎免震層102とで等しくなる非減衰系2質点モデルを作成することができる。   Then, by using these [Equation 11] and [Equation 12], a non-attenuating two-mass model is created in which the interlayer response in the first-order mode is equal between the intermediate isolation layer 50 and the basic isolation layer 102. Can do.

つぎに、1次モードの刺激関数の最大値を求める。1次モード形を地盤(地上)30に対する相対応答の形に書き換えると、
{u}={2 1}
となる。
Next, the maximum value of the stimulation function in the first-order mode is obtained. When the primary mode shape is rewritten to the shape of relative response to the ground (ground) 30,
{U} = {2 1} T
It becomes.

よって、地動加速度に対する1次モードの刺激関数の最大値βを求めると、以下の[数13]の様に表わすことがきる。 Therefore, when the maximum value β 1 u 2 of the first-order mode stimulation function with respect to the ground motion acceleration is obtained, it can be expressed as the following [Equation 13].

ここで、最大値βは1から2までの値を取る質量比γを変数とした単調減少関数である。そして、設計における現実的な質量比γの想定範囲を0.2〜5.0(実際の設計における想定範囲)と仮定すると、図10のグラフから、最大値βは1.56〜1.08の値となる。 Here, the maximum value β 1 u 2 is a monotonically decreasing function with the mass ratio γ taking values from 1 to 2 as variables. Then, assuming that the assumed range of the actual mass ratio γ in the design is 0.2 to 5.0 (the assumed range in the actual design), the maximum value β 1 u 2 is 1.56 to 1.5 from the graph of FIG. The value is 1.08.

よって、例えば、質量比γ=0.2の場合、上部構造部20(上部質点)の刺激関数が1.56となり、下部構造部10(下部質点)の刺激関数が0.78となる。これは、質量が同じ比較例の基礎免震層102を有していない中間免震構造物900(図11(A)を参照)の中間免震層50の変位量を1.0と仮定した場合、質量比γ=0.2の本実施形態の中間免震構造物100(図1(A)参照)では、中間免震層50及び基礎免震層102の免震変位量が、それぞれ0.78となることを意味する。そして、この関係は、広義の意味で応答加速度に当てはまる。   Therefore, for example, when the mass ratio γ = 0.2, the stimulation function of the upper structure portion 20 (upper mass point) is 1.56, and the stimulation function of the lower structure portion 10 (lower mass point) is 0.78. This is based on the assumption that the amount of displacement of the intermediate seismic isolation layer 50 of the intermediate seismic isolation structure 900 (see FIG. 11A) that does not have the basic base isolation layer 102 having the same mass is 1.0. In this case, in the intermediate seismic isolation structure 100 of the present embodiment having the mass ratio γ = 0.2 (see FIG. 1A), the seismic isolation displacements of the intermediate isolation layer 50 and the basic isolation layer 102 are 0 respectively. .78. This relationship applies to response acceleration in a broad sense.

[変形例]
つぎに、本実施形態の変形例について説明する。
[Modification]
Next, a modification of this embodiment will be described.

(第一変形例)
図2に示す第一変形例の中間免震構造物110は、上部構造部24が下部構造部14よりも大きく、上部構造部24の質量mは下部構造部14の質量mよりも重い。
(First modification)
In the intermediate seismic isolation structure 110 of the first modification shown in FIG. 2, the upper structure portion 24 is larger than the lower structure portion 14, and the mass m 2 of the upper structure portion 24 is heavier than the mass m 1 of the lower structure portion 14. .

また、上部構造部24の最上層26の応答加速度α2と下部構造部14の最上層16と応答加速度α1とが同じになるように、中間免震層50及び基礎免震層102に設けられた各免震装置60の各種諸元が設定されている。   Further, the upper base layer 26 of the upper structure portion 24 and the uppermost layer 16 of the lower structure portion 14 are provided in the intermediate base isolation layer 50 and the base base isolation layer 102 so that the response acceleration α1 is the same. Various specifications of each seismic isolation device 60 are set.

このように上部構造部24が大きくて重い場合、上部構造部24の最上層26の応答加速度α2が下部構造部14の最上層16よりも大きくなる場合がある。つまり、地震時における上部構造部24の最上層26の応答変位(揺れ幅)が大きくなり、地震時の居住性が充分に確保されない場合がある。   When the upper structure portion 24 is thus large and heavy, the response acceleration α2 of the uppermost layer 26 of the upper structure portion 24 may be larger than that of the uppermost layer 16 of the lower structure portion 14. That is, the response displacement (swing width) of the uppermost layer 26 of the upper structure portion 24 at the time of an earthquake becomes large, and there may be a case where sufficient comfort is not ensured at the time of the earthquake.

しかし、第一実施形態と同様に、第一変形例の中間免震構造物110では、中間免震層50に加え、基礎免震層102を設けることで、地震時に地盤800から中間免震構造物110(下部構造部14)に入力される応答加速度を低減させている。これにより、上部構造部24に入力される応答加速が低減され、この結果、上部構造部24の最上層26の応答加速度α2が低減されている。よって、地震時における上部構造部24の最上層26の応答変位(揺れ幅)が、基礎免震層102が無い場合と比較し、地震時の居住性が向上する。   However, similarly to the first embodiment, in the intermediate seismic isolation structure 110 of the first modified example, by providing the base isolation layer 102 in addition to the intermediate isolation layer 50, the intermediate isolation structure from the ground 800 at the time of the earthquake. The response acceleration input to the object 110 (lower structure part 14) is reduced. Thereby, the response acceleration input to the upper structure portion 24 is reduced, and as a result, the response acceleration α2 of the uppermost layer 26 of the upper structure portion 24 is reduced. Therefore, the response displacement (swing width) of the uppermost layer 26 of the upper structure portion 24 at the time of the earthquake improves the comfortability at the time of the earthquake as compared with the case where the base seismic isolation layer 102 is not provided.

また、第一実施形態と同様に、上部構造部20の最上層22の応答加速度α2と下部構造部14の最上層16と応答加速度α1とが同じになるように、中間免震層50及び基礎免震層102に設けられた各免震装置60の各種諸元が設定されている。よって、上部構造部24の最上層26と下部構造部14の最上層16との両方の応答加速度がバランスよく低減されることで、両方の居住性が向上する(両方の居住性が確保される)。   Similarly to the first embodiment, the intermediate seismic isolation layer 50 and the foundation are set so that the response acceleration α2 of the uppermost layer 22 of the upper structure portion 20 and the uppermost layer 16 of the lower structure portion 14 and the response acceleration α1 are the same. Various specifications of each seismic isolation device 60 provided in the seismic isolation layer 102 are set. Therefore, the response acceleration of both the uppermost layer 26 of the upper structure part 24 and the uppermost layer 16 of the lower structure part 14 is reduced in a balanced manner, so that both habitability is improved (both habitability is ensured). ).

(第二変形例)
図3に示す第二変形例の中間免震構造物120は、下部構造部14と上部構造部20との間に中部構造部30が設けられ、上部構造部20と中部構造部30との間に中間免震層50が設けられ、中部構造部30と下部構造部14との間に中間免震層104が設けられている。
(Second modification)
The intermediate seismic isolation structure 120 of the second modification shown in FIG. 3 is provided with a middle structure portion 30 between the lower structure portion 14 and the upper structure portion 20, and between the upper structure portion 20 and the middle structure portion 30. An intermediate seismic isolation layer 50 is provided, and an intermediate seismic isolation layer 104 is provided between the middle structure portion 30 and the lower structure portion 14.

また、上部構造部24の最上層26の応答加速度と中部構造部30の最上層32の応答加速度とが同じになるように、中間免震層50及び中間免震層104に設けられた各免震装置60の各種諸元が設定されている。   Further, each of the isolations provided in the intermediate isolation layer 50 and the intermediate isolation layer 104 so that the response acceleration of the uppermost layer 26 of the upper structure portion 24 and the response acceleration of the uppermost layer 32 of the middle structure portion 30 are the same. Various specifications of the seismic device 60 are set.

なお、本変形例では、中部構造部30が、特許請求の範囲における下部構造部に相当する。   In this modification, the middle structure portion 30 corresponds to the lower structure portion in the claims.

また、第一実施形態及び変形例と同様に、本変形例の中間免震構造物120では、中間免震層50(又は中間免震層104)に加え、中間免震層104(又は中間免震層50)を設けることで、中間免震構造物120に入力される応答加速度を低減させている。これにより、上部構造部24の最上層26の応答加速度と中部構造部30の最上層32の応答加速度とが低減する。   Further, similarly to the first embodiment and the modified example, in the intermediate seismic isolation structure 120 of the present modified example, in addition to the intermediate seismic isolation layer 50 (or the intermediate seismic isolation layer 104), the intermediate seismic isolation layer 104 (or the intermediate seismic isolation layer). By providing the seismic layer 50), the response acceleration input to the intermediate seismic isolation structure 120 is reduced. As a result, the response acceleration of the uppermost layer 26 of the upper structure portion 24 and the response acceleration of the uppermost layer 32 of the middle structure portion 30 are reduced.

(第三変形例)
図4に示す第三変形例の中間免震構造物130は、下部構造部14と上部構造部20との間に中部構造部34が設けられている。また、上部構造部20と中部構造部34との間に中間免震層50が設けられ、中部構造部34と下部構造部14との間に中間免震層104が設けられ、下部構造部14と地盤800との間に基礎免震層102が設けられている。
(Third modification)
The intermediate seismic isolation structure 130 of the third modification shown in FIG. 4 is provided with a middle structure portion 34 between the lower structure portion 14 and the upper structure portion 20. Further, an intermediate seismic isolation layer 50 is provided between the upper structure portion 20 and the middle structure portion 34, and an intermediate seismic isolation layer 104 is provided between the middle structure portion 34 and the lower structure portion 14. The base isolation layer 102 is provided between the ground and the ground 800.

また、上部構造部20の最上層22の応答加速度と中部構造部34の最上層36の応答加速度と下部構造部14の最上層16の応答加速度とが同じになるように、中間免震層50、中間免震層104、及び基礎免震層102に設けられた各免震装置60の各種諸元が設定されている。   Further, the intermediate seismic isolation layer 50 is set so that the response acceleration of the uppermost layer 22 of the upper structure portion 20, the response acceleration of the uppermost layer 36 of the middle structure portion 34, and the response acceleration of the uppermost layer 16 of the lower structure portion 14 are the same. Various specifications of each seismic isolation device 60 provided in the intermediate seismic isolation layer 104 and the basic seismic isolation layer 102 are set.

なお、本変形例では、上部構造部20に対しては中部構造部34は特許請求の範囲における下部構造部に相当し、下部構造部14に対しては中部構造部34は特許請求の範囲における上部構造部に相当する。   In this modification, the middle structure portion 34 corresponds to the lower structure portion in the claims for the upper structure portion 20, and the middle structure portion 34 in the claims for the lower structure portion 14. Corresponds to the upper structure.

上記実施形態及び変形例と同様に、本変形例の中間免震構造物130では、中間免震層50(又は中間免震層104)に加え、中間免震層104(又は中間免震層50)及び基礎免震層102を設けることで、中間免震構造物130に入力される応答加速度を低減させている。これにより、上部構造部20の最上層22の応答加速度と中部構造部34の最上層36の応答加速度と下部構造部14の最上層16の応答加速度とが低減される。   Similar to the above embodiment and the modified example, in the intermediate seismic isolation structure 130 of the present modified example, in addition to the intermediate seismic isolation layer 50 (or the intermediate seismic isolation layer 104), the intermediate seismic isolation layer 104 (or the intermediate seismic isolation layer 50). ) And the base seismic isolation layer 102, the response acceleration input to the intermediate seismic isolation structure 130 is reduced. Thereby, the response acceleration of the uppermost layer 22 of the upper structure portion 20, the response acceleration of the uppermost layer 36 of the middle structure portion 34, and the response acceleration of the uppermost layer 16 of the lower structure portion 14 are reduced.

(その他の変形例)
その他の構造の中間免震構造物であってもよい。例えば、図5(A)〜図5(D)に示す第四変形例〜第七変形例のような構造であってもよい。
(Other variations)
An intermediate seismic isolation structure having another structure may be used. For example, structures such as the fourth to seventh modifications shown in FIGS. 5A to 5D may be used.

図5(A)の第四変形例の中間免震構造物140は、上部構造部40が平面視において下部構造部10よりも小さく、且つセットバックされて配置された構造である。   The intermediate seismic isolation structure 140 of the fourth modified example of FIG. 5A is a structure in which the upper structure portion 40 is smaller than the lower structure portion 10 in a plan view and is set back.

図5(B)の第五変形例の中間免震構造物150は、上部構造部42が平面視において下部構造部10よりも大きくオーバーハングした構造である。   The intermediate seismic isolation structure 150 of the fifth modified example in FIG. 5B has a structure in which the upper structure portion 42 is overhanged larger than the lower structure portion 10 in plan view.

図5(C)の第六変形例の中間免震構造物160は、側面視において、上部構造部44と下部構造部45との間に段差があり、中間免震層55もこれに合わせて段差がある構造である。   The intermediate seismic isolation structure 160 of the sixth modified example in FIG. 5C has a step between the upper structure portion 44 and the lower structure portion 45 in a side view, and the intermediate seismic isolation layer 55 is also in accordance therewith. It is a structure with steps.

図5(D)の第七変形例の中間免震構造物170は、側面視において、上部構造部46と下部構造部47とが、それぞれ斜めに傾斜した平行四辺形状である構造である。   The intermediate seismic isolation structure 170 of the seventh modified example in FIG. 5D has a structure in which the upper structure portion 46 and the lower structure portion 47 are each in a parallelogram shape inclined obliquely in a side view.

また、第四変形例〜第七変形例においても、第二変形例のように基礎免震層102でなく中間免震層104を設けてもよいし、第三変形例のように基礎免震層102と中間免震層104との両方が設けられた構造であってもよい。   Also, in the fourth to seventh modifications, the intermediate seismic isolation layer 104 may be provided instead of the basic seismic isolation layer 102 as in the second modification, or the basic seismic isolation as in the third modification. The structure in which both the layer 102 and the intermediate seismic isolation layer 104 are provided may be used.

要は、中間免震構造物の下部構造部の最上層及び上部構造部の最上層の少なくとも一方(或いは、少なくとも応答加速度が大きい方)の最上層の応答加速度を低減させるように、第二免震層(中間免震層又は基礎免震層)を設ければよい。   The key is to reduce the second acceleration so as to reduce the response acceleration of the uppermost layer of the lower structure part of the intermediate seismic isolation structure and the uppermost layer of the upper structure part (or at least the higher response acceleration). An earthquake layer (intermediate base isolation layer or basic base isolation layer) may be provided.

<第二実施形態>
つぎに、本発明の第二実施形態に係る中間免震構造物について説明する。なお、第一実施形態と同一の部材には同一の符号を付し、重複する説明は省略する。
<Second embodiment>
Next, an intermediate seismic isolation structure according to the second embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the member same as 1st embodiment, and the overlapping description is abbreviate | omitted.

[構造]
図6に示すように、中間免震構造物200は、下部構造部10と上部構造部20との間に中間免震層50が設けられている。中間免震層50には、上部構造部20を支持する積層ゴム62と鉛ダンパー64とを有する免震装置60が設けられている。
[Construction]
As shown in FIG. 6, the intermediate seismic isolation structure 200 is provided with an intermediate seismic isolation layer 50 between the lower structure portion 10 and the upper structure portion 20. The intermediate seismic isolation layer 50 is provided with a seismic isolation device 60 having a laminated rubber 62 and a lead damper 64 that support the upper structure portion 20.

下部構造部10の最上層12(中間免震層50の直下の層)には、制振装置70が複数設けられている。制振装置70は、どのようなものであってもよいが、本実施形態では、最上層12の上下のスラブや梁等の構造部材の間を、ダンパー72を介して連結し、地震動によって最上層12が変形した際にダンパー72によってエネルギーを吸収させる層間ダンパー型の制振装置70である。   A plurality of vibration damping devices 70 are provided on the uppermost layer 12 of the lower structure portion 10 (a layer directly below the intermediate seismic isolation layer 50). The damping device 70 may be any type, but in the present embodiment, structural members such as upper and lower slabs and beams of the uppermost layer 12 are connected via a damper 72 so that the vibration can be reduced by seismic motion. This is an interlayer damper type damping device 70 that absorbs energy by the damper 72 when the upper layer 12 is deformed.

[作用及び効果]
つぎに本実施形態の作用及び効果について説明する。
[Action and effect]
Next, the operation and effect of this embodiment will be described.

第一実施形態で説明したように、図11に示す比較例の中間免震構造物900は、下部構造部10の最上層12(中間免震層50の直下の階層)の応答加速度が増幅され局所的に大きくなる現象が知られている。よって、地震時における下部構造部10の最上層12の応答変位(揺れ幅)が大きくなり、地震時の居住性が充分に確保されない。   As described in the first embodiment, in the intermediate seismic isolation structure 900 of the comparative example shown in FIG. 11, the response acceleration of the uppermost layer 12 of the lower structure portion 10 (the layer immediately below the intermediate seismic isolation layer 50) is amplified. A phenomenon of locally increasing is known. Therefore, the response displacement (swing width) of the uppermost layer 12 of the lower structure portion 10 at the time of the earthquake becomes large, and the habitability at the time of the earthquake is not sufficiently ensured.

そこで、本実施形態の中間免震構造物200では、下部構造部10の最上層12に制振装置70を設けることで、下部構造部10の最上層12の応答加速度を低減させている。よって、地震時における下部構造部10の最上層12の応答変位(揺れ幅)が、比較例の中間免震構造物900(図11を参照)と比較して小さくなり、地震時の居住性が向上する。   Therefore, in the intermediate seismic isolation structure 200 of the present embodiment, the response acceleration of the uppermost layer 12 of the lower structure unit 10 is reduced by providing the vibration damping device 70 on the uppermost layer 12 of the lower structure unit 10. Therefore, the response displacement (swing width) of the uppermost layer 12 of the lower structure 10 at the time of the earthquake is smaller than that of the intermediate seismic isolation structure 900 (see FIG. 11) of the comparative example, and the habitability at the time of the earthquake is reduced. improves.

[変形例]
つぎに、本実施形態の変形例について説明する。
[Modification]
Next, a modification of this embodiment will be described.

図7に示す変形例の中間免震構造物210は、上部構造部24が下部構造部14よりも大きく、上部構造部24の質量m2は下部構造部14の質量m1よりも重い。   In the intermediate seismic isolation structure 210 of the modification shown in FIG. 7, the upper structure portion 24 is larger than the lower structure portion 14, and the mass m2 of the upper structure portion 24 is heavier than the mass m1 of the lower structure portion 14.

第一実施形態で説明したように、上部構造部24の最上層26の応答加速度が下部構造部14の最上層16よりも大きくなる場合がある。つまり、地震時における上部構造部24の最上層26の応答変位(揺れ幅)が大きくなり、地震時の居住性が充分に確保されない場合がある。   As described in the first embodiment, the response acceleration of the uppermost layer 26 of the upper structure portion 24 may be larger than that of the uppermost layer 16 of the lower structure portion 14. That is, the response displacement (swing width) of the uppermost layer 26 of the upper structure portion 24 at the time of an earthquake becomes large, and there may be a case where sufficient comfort is not ensured at the time of the earthquake.

したがって、第一変形例の中間免震構造物210では、上部構造部24の最上層26に、制振装置70を設け、上部構造部24の最上層26の応答加速度を低減させている。よって、地震時における上部構造部24の最上層26の応答変位(揺れ幅)が小さくなり、地震時の居住性が向上する。   Therefore, in the intermediate seismic isolation structure 210 of the first modified example, the vibration damping device 70 is provided in the uppermost layer 26 of the upper structure portion 24 to reduce the response acceleration of the uppermost layer 26 of the upper structure portion 24. Therefore, the response displacement (swing width) of the uppermost layer 26 of the upper structure portion 24 at the time of the earthquake is reduced, and the habitability at the time of the earthquake is improved.

(その他の変形)
図7の変形例の中間免震構造物210では、上部構造部24の最上層26に制振装置70が設けられていたが、下部構造部14の最上層16にも制振装置70を設けてもよい。また、図6の中間免震構造物200の上部構造部20の最上層22にも制振装置70を設けてもよい。つまり、中間免震構造物200、210の上部構造部20、24の最上層22、26と下部構造部10、14の最上層12、16との両方に制振装置70を設けてもよい。
(Other variations)
In the intermediate seismic isolation structure 210 of the modified example of FIG. 7, the vibration damping device 70 is provided in the uppermost layer 26 of the upper structure portion 24, but the vibration damping device 70 is also provided in the uppermost layer 16 of the lower structure portion 14. May be. Moreover, you may provide the damping device 70 also in the uppermost layer 22 of the upper structure part 20 of the intermediate seismic isolation structure 200 of FIG. In other words, the damping device 70 may be provided on both the uppermost layers 22 and 26 of the upper structure portions 20 and 24 of the intermediate seismic isolation structures 200 and 210 and the uppermost layers 12 and 16 of the lower structure portions 10 and 14.

また、第一実施形態の図5の各変形例で基礎免震層102がない構成の中間免震構造物にも、上部構造部の最上層及び上部構造部の最上層と少なくとも一方に制振装置を設けてもよい。   In addition, the intermediate seismic isolation structure having the basic seismic isolation layer 102 in each modification of the first embodiment shown in FIG. 5 is damped to at least one of the uppermost layer of the upper structure portion and the uppermost layer of the upper structure portion. An apparatus may be provided.

要は中間免震構造物の下部構造部の最上層及び上部構造部の最上層の少なくとも一方(或いは、少なくとも応答加速度が大きい方)の最上層に制振装置を設ければよい。   In short, a vibration damping device may be provided on at least one of the uppermost layer of the lower structure portion of the intermediate seismic isolation structure and the uppermost layer of the upper structure portion (or at least the higher response acceleration).

<第三実施形態>
つぎに、本発明の第三実施形態に係る中間免震構造物について説明する。なお、第一実施形態及び第二実施形態と同一の部材には同一の符号を付し、重複する説明は省略する。
<Third embodiment>
Next, an intermediate seismic isolation structure according to the third embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the member same as 1st embodiment and 2nd embodiment, and the overlapping description is abbreviate | omitted.

[構造]
図8に示すように、中間免震構造物300は、下部構造部10と上部構造部20とを有し、これら下部構造部10と上部構造部20との間に中間免震層50が設けられている。また、下部構造部10と地盤800との間に基礎免震層102が設けられている。更に、下部構造部10の最上層12(中間免震層50の直下)には、制振装置70が設けられている。
[Construction]
As shown in FIG. 8, the intermediate seismic isolation structure 300 includes a lower structure portion 10 and an upper structure portion 20, and an intermediate seismic isolation layer 50 is provided between the lower structure portion 10 and the upper structure portion 20. It has been. In addition, a base seismic isolation layer 102 is provided between the lower structure 10 and the ground 800. Furthermore, a vibration damping device 70 is provided on the uppermost layer 12 of the lower structure portion 10 (just below the intermediate seismic isolation layer 50).

また、本実施形態では、上部構造部20の最上層22の応答加速度と下部構造部10の最上層12と応答加速度とが同じになるように、中間免震層50及び基礎免震層102に設けられた免震装置60の各諸元が設定されている。   In the present embodiment, the intermediate seismic isolation layer 50 and the basic seismic isolation layer 102 are arranged so that the response acceleration of the uppermost layer 22 of the upper structure portion 20 and the uppermost layer 12 of the lower structure portion 10 are the same. Each specification of the provided seismic isolation apparatus 60 is set.

[作用及び効果]
つぎに、本実施形態の作用及び効果について説明する。
[Action and effect]
Next, functions and effects of the present embodiment will be described.

本実施形態の中間免震構造物300では、中間免震層50に加え、基礎免震層102を設けることで、地震時に地盤800から中間免震構造物100(下部構造部10)に入力される応答加速度を低減させている。更に、下部構造部10の最上層12に制振装置70を設けることで、下部構造部10の最上層12の応答加速度を低減させている。   In the intermediate seismic isolation structure 300 of the present embodiment, by providing the base seismic isolation layer 102 in addition to the intermediate seismic isolation layer 50, the earthquake is input from the ground 800 to the intermediate seismic isolation structure 100 (lower structure unit 10) during an earthquake. Response acceleration is reduced. Furthermore, the response acceleration of the uppermost layer 12 of the lower structure unit 10 is reduced by providing the vibration damping device 70 on the uppermost layer 12 of the lower structure unit 10.

よって、下部構造部10の最上層12の応答加速度が効果的に低減される。つまり、地震時における下部構造部10の最上層12の応答変位(揺れ幅)が、比較例の中間免震構造物900(図11を参照)と比較して小さくなり、地震時の居住性が効果的に向上する。   Therefore, the response acceleration of the uppermost layer 12 of the lower structure unit 10 is effectively reduced. That is, the response displacement (swing width) of the uppermost layer 12 of the lower structure 10 at the time of the earthquake is smaller than that of the intermediate seismic isolation structure 900 (see FIG. 11) of the comparative example, and the habitability at the time of the earthquake is reduced. Effectively improve.

更に、本実施形態では、上部構造部20の最上層22の応答加速度と下部構造部10の最上層12と応答加速度とが同じになるように、中間免震層50及び基礎免震層102に設けられた免震装置60の各諸元が設定されている。よって、上部構造部20の最上層22と下部構造部10の最上層12との両方の応答加速度がバランスよく低減されることで、両方の居住性が向上する(両方の居住性が確保される)。   Furthermore, in the present embodiment, the intermediate seismic isolation layer 50 and the basic seismic isolation layer 102 are arranged so that the response acceleration of the uppermost layer 22 of the upper structure portion 20 and the uppermost layer 12 of the lower structure portion 10 are the same. Each specification of the provided seismic isolation apparatus 60 is set. Therefore, the response acceleration of both the uppermost layer 22 of the upper structure part 20 and the uppermost layer 12 of the lower structure part 10 is reduced in a balanced manner, thereby improving both habitability (both habitability is ensured). ).

[変形例]
つぎに、本実施形態の変形例について説明する。
[Modification]
Next, a modification of this embodiment will be described.

本実施形態では、下部構造部10の最上層12に制振装置70が設けられていたが、上部構造部20の最上層22に制振装置70を設けてもよい。更に、上部構造部20の最上層22と下部構造部10の最上層12との両方に制振装置70を設けてもよい。   In the present embodiment, the vibration damping device 70 is provided on the uppermost layer 12 of the lower structure portion 10, but the vibration damping device 70 may be provided on the uppermost layer 22 of the upper structure portion 20. Furthermore, the vibration damping device 70 may be provided on both the uppermost layer 22 of the upper structure portion 20 and the uppermost layer 12 of the lower structure portion 10.

また、第一実施形態の各変形例においても、上部構造部の最上層及び下部構造部の最上層と少なくとも一方に制振装置70を設けてもよい。   In each modification of the first embodiment, the damping device 70 may be provided on at least one of the uppermost layer of the upper structure portion and the uppermost layer of the lower structure portion.

なお、第一実施形態の図4に示す第三変形例の中間免震構造物130では、下部構造部の最上層と、上部構造部の最上層と、中部構造部の最上層と、の少なくとも一つに制振装置が設けられていればよい   In the intermediate seismic isolation structure 130 of the third modification shown in FIG. 4 of the first embodiment, at least one of the uppermost layer of the lower structure portion, the uppermost layer of the upper structure portion, and the uppermost layer of the middle structure portion. It is only necessary to have a vibration control device

<その他>
尚、本発明は上記実施形態に限定されない。
<Others>
The present invention is not limited to the above embodiment.

本発明が適用された中間免震構造物は、新築だけでなく、既存の構造物の改修(耐震改修)にも適用することができる。改築(耐震改修)の場合の既存の構造物は、中間免震層を有する構造物、基礎免震層を有する構造物、免震層を有していない構造物に適用できる。更に、既存の構造物の上に免震層を設け上部構造部を増築する場合にも適用できる。また、中間免震層が三つ以上ある中間免震構造物にも適用することができる。要は一つ以上の中間免震層を有する中間免震構造物全般に本発明を適用することができる。   The intermediate seismic isolation structure to which the present invention is applied can be applied not only to new construction, but also to repair of existing structures (seismic repair). Existing structures in the case of renovation (earthquake retrofitting) can be applied to structures with intermediate seismic isolation layers, structures with basic seismic isolation layers, and structures without seismic isolation layers. Furthermore, the present invention can also be applied to a case where a seismic isolation layer is provided on an existing structure and an upper structure portion is extended. It can also be applied to intermediate seismic isolation structures with three or more intermediate isolation layers. In short, the present invention can be applied to all intermediate isolation structures having one or more intermediate isolation layers.

また、本発明は、下部構造部の最上層及び上部構造部の最上層の少なくとも一方の応答加速度を低減させる応答加速度低減手段(制振装置や免震層等)を有していればよい。なお、下部構造部の最上層及び上部構造部の最上層の少なくとも応答加速度が大きい方の最上層の応答加速度を低減させるように応答加速度低減手段(制振装置や免震層等)を設けることが望ましい。   In addition, the present invention only needs to include response acceleration reduction means (a vibration control device, a seismic isolation layer, or the like) that reduces response acceleration of at least one of the uppermost layer of the lower structure portion and the uppermost layer of the upper structure portion. Response acceleration reduction means (vibration control device, seismic isolation layer, etc.) should be provided so as to reduce the response acceleration of the uppermost layer of the uppermost layer of the lower structure and the uppermost layer of the upper structure, which has the larger response acceleration. Is desirable.

また、下部構造部の最上層及び上部構造部の最上層の応答加速度が同じになるように、応答加速度低減手段を設けることが望ましい。或いは、下部構造部の最上層及び上部構造部の最上層の応答加速度が同じになるように、第二免震層や制振装置の諸元が設定されていることが望ましい。   It is desirable to provide response acceleration reducing means so that the response acceleration of the uppermost layer of the lower structure portion and the uppermost layer of the upper structure portion are the same. Alternatively, it is desirable that the specifications of the second seismic isolation layer and the damping device are set so that the response accelerations of the uppermost layer of the lower structure portion and the uppermost layer of the upper structure portion are the same.

また、上述の複数の実施形態及び変形例は、適宜、組み合わされて実施可能である。更に、本発明の要旨を逸脱しない範囲において種々なる態様で実施し得ることは言うまでもない   Further, the above-described plurality of embodiments and modification examples can be implemented in combination as appropriate. Furthermore, it cannot be overemphasized that it can implement with a various aspect in the range which does not deviate from the summary of this invention.

10 下部構造部
12 最上層
14 下部構造部
16 最上層
20 上部構造部
22 最上層
24 上部構造部
26 最上層
30 中部構造部(上部構造部、下部構造部)
32 最上層
34 中部構造部(上部構造部、下部構造部)
36 最上層
40 上部構造部
42 上部構造部
44 上部構造部
45 下部構造部
46 上部構造部
47 下部構造部
50 中間免震層(第一免震層、第二免震層))
60 免震装置(応答加速度低減手段)
70 制振装置(応答加速度低減手段)
100 中間免震構造物
102 基礎免震層(第二免震層)
104 中間免震層(第一免震層、第二免震層)
110 中間免震構造物
120 中間免震構造物
130 中間免震構造物
140 中間免震構造物
150 中間免震構造物
160 中間免震構造物
170 中間免震構造物
200 中間免震構造物
210 中間免震構造物
300 中間免震構造物
DESCRIPTION OF SYMBOLS 10 Lower structure part 12 Top layer 14 Lower structure part 16 Top layer 20 Upper structure part 22 Top layer 24 Upper structure part 26 Top layer 30 Middle structure part (upper structure part, lower structure part)
32 Uppermost layer 34 Middle structure part (upper structure part, lower structure part)
36 uppermost layer 40 upper structure part 42 upper structure part 44 upper structure part 45 lower structure part 46 upper structure part 47 lower structure part 50 middle isolation layer (first isolation layer, second isolation layer))
60 Seismic isolation device (response acceleration reduction means)
70 Damping device (response acceleration reduction means)
100 Intermediate seismic isolation structure 102 Base seismic isolation layer (second seismic isolation layer)
104 Middle base isolation layer (first base isolation layer, second base isolation layer)
110 Intermediate isolation structure 120 Intermediate isolation structure 130 Intermediate isolation structure 140 Intermediate isolation structure 150 Intermediate isolation structure 160 Intermediate isolation structure 170 Intermediate isolation structure 200 Intermediate isolation structure 210 Intermediate Seismic isolation structure 300 Intermediate seismic isolation structure

Claims (3)

下部構造部と上部構造部との間に設けられた第一免震層と、
前記下部構造部の最上層及び前記上部構造部の最上層の少なくとも一方の応答加速度を低減させる応答加速度低減手段と、
を備える構造物。
A first seismic isolation layer provided between the lower structure and the upper structure;
Response acceleration reducing means for reducing response acceleration of at least one of the uppermost layer of the lower structure part and the uppermost layer of the upper structure part;
A structure comprising
前記応答加速度低減手段は、前記下部構造部の最上層及び前記上部構造部の最階層の少なくとも一方に設けられた制振装置を有する、
請求項1に記載の中間免震構造物。
The response acceleration reducing means includes a vibration damping device provided on at least one of the uppermost layer of the lower structure portion and the uppermost layer of the upper structure portion.
The intermediate seismic isolation structure according to claim 1.
前記応答加速度低減手段は、前記第一免震層以外の層に設けられた第二免震層を有する、
請求項1又は請求項2に記載の中間免震構造物。
The response acceleration reducing means has a second seismic isolation layer provided in a layer other than the first seismic isolation layer,
The intermediate seismic isolation structure according to claim 1 or claim 2.
JP2013187450A 2013-09-10 2013-09-10 Intermediate seismic isolation structure Active JP6308741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013187450A JP6308741B2 (en) 2013-09-10 2013-09-10 Intermediate seismic isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013187450A JP6308741B2 (en) 2013-09-10 2013-09-10 Intermediate seismic isolation structure

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2017130152A Division JP6397544B2 (en) 2017-07-03 2017-07-03 Intermediate seismic isolation structure
JP2018020347A Division JP6505272B2 (en) 2018-02-07 2018-02-07 Intermediate seismic isolation structure

Publications (2)

Publication Number Publication Date
JP2015055267A true JP2015055267A (en) 2015-03-23
JP6308741B2 JP6308741B2 (en) 2018-04-11

Family

ID=52819828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013187450A Active JP6308741B2 (en) 2013-09-10 2013-09-10 Intermediate seismic isolation structure

Country Status (1)

Country Link
JP (1) JP6308741B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071909A (en) * 2015-10-05 2017-04-13 清水建設株式会社 Multistoried base-isolated structure
JP2019218841A (en) * 2018-06-15 2019-12-26 清水建設株式会社 Structure
JP2020012253A (en) * 2018-07-13 2020-01-23 清水建設株式会社 Seismic isolation structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01263373A (en) * 1988-04-12 1989-10-19 Takenaka Komuten Co Ltd Multistory earthquake-free building
JPH11324392A (en) * 1998-05-15 1999-11-26 Dynamic Design:Kk Earthquake vibration control structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01263373A (en) * 1988-04-12 1989-10-19 Takenaka Komuten Co Ltd Multistory earthquake-free building
JPH11324392A (en) * 1998-05-15 1999-11-26 Dynamic Design:Kk Earthquake vibration control structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071909A (en) * 2015-10-05 2017-04-13 清水建設株式会社 Multistoried base-isolated structure
JP2019218841A (en) * 2018-06-15 2019-12-26 清水建設株式会社 Structure
JP7244286B2 (en) 2018-06-15 2023-03-22 清水建設株式会社 Structure
JP2020012253A (en) * 2018-07-13 2020-01-23 清水建設株式会社 Seismic isolation structure

Also Published As

Publication number Publication date
JP6308741B2 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
Elias et al. Effectiveness of tuned mass dampers in seismic response control of isolated bridges including soil-structure interaction
JP6308741B2 (en) Intermediate seismic isolation structure
JP2010007793A (en) Base isolation structure
JP6569465B2 (en) Design method of seismic isolation structure
TWI623674B (en) Support structure
JP6397544B2 (en) Intermediate seismic isolation structure
JP6378494B2 (en) Seismic isolation structure
Ghorbanzadeh et al. Seismic performance assessment of semi active tuned mass damper in an MRF steel building including nonlinear soil–pile–structure interaction
JP6063118B2 (en) Seismic isolation building
JP2018100590A (en) Intermediate base isolation structure
JP5720718B2 (en) Vibration control building
JP6241096B2 (en) Seismic isolation building and seismic isolation method
JP6143058B2 (en) Vibration control structure
JP6202711B2 (en) Building structure
JP7037320B2 (en) Vibration control building
JP2011012427A (en) Initial displacement-imparted tmd vibration control system for building
JP2017043988A (en) Vibration control building
JP6154666B2 (en) Floor structure for existing structures and repair structures
JP6364225B2 (en) Connected vibration control structure
JP7370789B2 (en) Seismic control structure, control method of seismic control structure, and design method of seismic control structure
JP7112918B2 (en) Seismic damping reinforcement method for existing buildings
JP2024013150A (en) Building connection structure and building connection method
JP5456461B2 (en) Seismic isolation structure
JP6354125B2 (en) Damping building and damping method
JP6497648B2 (en) Building vibration control structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180313

R150 Certificate of patent or registration of utility model

Ref document number: 6308741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150