JP2014141825A - Vibration control building and design method for the same - Google Patents

Vibration control building and design method for the same Download PDF

Info

Publication number
JP2014141825A
JP2014141825A JP2013010830A JP2013010830A JP2014141825A JP 2014141825 A JP2014141825 A JP 2014141825A JP 2013010830 A JP2013010830 A JP 2013010830A JP 2013010830 A JP2013010830 A JP 2013010830A JP 2014141825 A JP2014141825 A JP 2014141825A
Authority
JP
Japan
Prior art keywords
building
seismic
wave
floor
isolation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013010830A
Other languages
Japanese (ja)
Other versions
JP6274726B2 (en
Inventor
Hirotaka Sekido
博高 関戸
Yoshihiro Nonomura
嘉洋 野々村
Kazunari Sakai
和成 酒井
Tsutomu Nakanishi
力 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STARTS CAM KK
Original Assignee
STARTS CAM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STARTS CAM KK filed Critical STARTS CAM KK
Priority to JP2013010830A priority Critical patent/JP6274726B2/en
Publication of JP2014141825A publication Critical patent/JP2014141825A/en
Application granted granted Critical
Publication of JP6274726B2 publication Critical patent/JP6274726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a vibration control building with improved vibration control effect and a design method for the same at a relatively low cost.SOLUTION: A vibration control building 1 comprises a vibration control weight 60 which is installed on a roof thereof through a seismic isolation device 20. The seismic isolation device 20 has sliding support means 30, a restoration spring 40, and an oil damper 50. Vibration of a building beneath the seismic isolation device can be reduced because a weight of the vibration control weight 60 on the seismic isolation device 20 plays a role similar to a counter mass.

Description

本発明は、地震の振動を抑制する制震建物に関し、特に、マスダンパー型の制震建物であって、建物の寸法や構造に即した制震を行う制震建物及び制震建物の設計方法に関する。   The present invention relates to a vibration control building that suppresses vibration of an earthquake, and more particularly to a mass damper type vibration control building that performs vibration control according to the size and structure of the building and a method for designing the vibration control building About.

本願発明者らは、現在までにマンションやオフィスビル等の中間層(5〜15階)の免震建物を開示してきた(特許文献1、2参照)。特許文献1の免震建物は、基礎上のグラウンドレベルに複数の免震支承手段を分散して配置し、建物の最下段の床の一段下のグラウンドレベルに別の床面を形成し、この別の床面と建物の最下段の床との間の空間を、居室や収納空間として利用可能な床下空間とした建物である。特許文献2の免震建物は、上部階と下部階との間に免震装置を設けた中間層免震建物であって、免震最下階の床スラブの厚さを上部階の床スラブよりも厚くして、免震最下階の床スラブの重量を増加させて上部階の重心を下げたものである。   The inventors of the present application have disclosed a seismic isolation building of an intermediate layer (5 to 15 floors) such as a condominium and an office building so far (see Patent Documents 1 and 2). In the base-isolated building of Patent Document 1, a plurality of base-isolated support means are distributed and arranged on the ground level on the foundation, and another floor surface is formed on the ground level one level below the bottom floor of the building. In this building, the space between another floor and the bottom floor of the building is an underfloor space that can be used as a living room or storage space. The base-isolated building of Patent Document 2 is an intermediate-layer base-isolated building with a base isolation device between the upper floor and the lower floor, and the thickness of the floor slab on the lowermost floor is set to the floor slab on the upper floor. The center of gravity of the upper floor is lowered by increasing the weight of the floor slab on the base isolation base.

特許第4898207号公報Japanese Patent No. 4898207 特許第4914940号公報Japanese Patent No. 4914940

前者の建物は、免震装置のメンテナンス性や建物内の空間の利用度を向上させることができる。後者の建物は、デッドスペースを活用して免震最下階の床スラブの厚さを厚くして重量を増加させることにより、上部階の重心を下げることができ、地震発生時に免震装置にかかる引抜力を低減することができる。   The former building can improve the maintainability of the seismic isolation device and the utilization of the space in the building. In the latter building, the center of gravity of the upper floor can be lowered by using dead space to increase the weight by increasing the thickness of the floor slab on the bottom floor of the base isolation so that it can be used as a base isolation device when an earthquake occurs. Such pulling force can be reduced.

本発明は上記の手法とは異なる手法を用いて、比較的低コストで、制震効果を高めた制震建物や制震建物の設計方法等を提供することを目的とする。   It is an object of the present invention to provide a seismic control building, a seismic control building design method, and the like that have improved seismic control effects at a relatively low cost using a method different from the above method.

本発明の制震建物は、 建物の屋上に免震装置を介して制震錘、屋上屋、屋上庭園、保水層、プール、水槽、防火水槽、池、ドッグラン、広告塔・広告板、設備機器、発電装置、蓄電池及び/又は蓄熱器を設けるか、あるいは、 建物の最上層階を含む上層階部分とその下の階との間に免震装置を設け、 地震時における前記建物の揺れを低減したことを特徴とする。   The seismic control building of the present invention includes seismic control weights, a rooftop rooftop, a rooftop garden, a water retention layer, a pool, a water tank, a fire prevention water tank, a pond, a dog run, an advertising tower / advertising board, and equipment on the rooftop of the building Install a power generator, storage battery and / or heat accumulator, or install a seismic isolation device between the upper floor including the top floor of the building and the floor below it to reduce shaking of the building during an earthquake It is characterized by that.

建物の屋上に免震装置を配置し、免震装置上に屋上屋・水槽・設備機器などを載せるか、あるいは、建物の最上層階を含む上層階部分(例えば15階建ての建物の15階部分)を免震装置上に載せる。これらの場合、いずれも、免震装置上の重量がカウンターマスのような役割を果たして、免震装置下の建物の揺れを小さくできる。
「地震時における建物の揺れを低減」の詳細については、シミュレーション例を用いつつ後述する。なお、力学モデル上は、免震装置は、バネ要素+ダンパー要素となり、具体的には、滑り支承、復元バネ、オイルダンパー等で構成される。
Place the seismic isolation device on the roof of the building and place the rooftop, aquarium, equipment, etc. on the seismic isolation device, or the upper floor part including the top floor of the building (for example, the 15th floor of a 15-story building) Place the part) on the seismic isolation device. In any of these cases, the weight on the seismic isolation device plays a role like a counter mass, and the shaking of the building under the seismic isolation device can be reduced.
The details of “reducing building shaking during an earthquake” will be described later using a simulation example. In the dynamic model, the seismic isolation device is a spring element + damper element, and specifically includes a sliding bearing, a restoring spring, an oil damper, and the like.

屋上屋とはマンションのオーナールーム、シェルター、防災倉庫などを含み、設備機器とは空調機器、電源機器、キュービクル(変電機器)などを含む。   Rooftops include condominium owner rooms, shelters, disaster prevention warehouses, etc., and equipment includes air conditioning equipment, power supply equipment, cubicles (transformers), and the like.

本発明においては、 前記免震装置が、建物の平面視で複数箇所に分散配置された滑り支承、復元バネ及びダンパーを有し、 前記復元バネ及び/又はダンパーの特性及び/又は個数を調整することにより、前記免震装置の水平面におけるX方向及びY方向特性を変え得ることが好ましい。   In the present invention, the seismic isolation device has sliding bearings, restoration springs and dampers dispersedly arranged at a plurality of locations in a plan view of the building, and adjusts the characteristics and / or number of the restoration springs and / or dampers. It is preferable that the X direction and Y direction characteristics in the horizontal plane of the seismic isolation device can be changed.

復元バネの設置個数を、建物の方向(例えば壁方向とラーメン方向)により変える。あるいは、バネ線の径やピッチの異なるものを建物の方向別に配置する。これにより、免震装置の、水平面内のXY各方向特性を変えることができる。例えば、剛性の高い壁方向(図1のX方向)にはバネ定数の高いものを配置する、あるいは、バネ数を増やし、剛性の低いラーメン方向(図1のY方向)には、逆にバネ定数の低いものを配置する、あるいは、バネ数を減らすことにより、前記XY方向の各々にほぼ均等に十分な制震性能を発揮させることができる。   The number of restoring springs installed is changed according to the building direction (for example, the wall direction and the ramen direction). Alternatively, the spring wires having different diameters and pitches are arranged according to the direction of the building. Thereby, the XY each direction characteristic in a horizontal surface of a seismic isolation apparatus can be changed. For example, a highly rigid wall direction (X direction in FIG. 1) is arranged with a high spring constant, or the number of springs is increased, and a low rigidity noodle direction (Y direction in FIG. 1) is reversed with a spring. By arranging a low constant number or reducing the number of springs, sufficient damping performance can be exhibited almost uniformly in each of the XY directions.

なお、支承手段を滑り支承とし、復元バネやダンパーをほとんど与圧のない状態で装備することにより、復元バネやダンパーの取外し点検・修理・取替えが容易となる。また、復元バネ・ダンパーの取り付け部周辺にクッションを設けておき、想定以上の規模の地震が発生したときの対策や、装置の故障時のフェールセーフを図ることもできる。   In addition, it is easy to remove, inspect, repair, and replace the restoring spring and the damper by installing the restoring spring and the damper with almost no pressure as the sliding means is a sliding bearing. In addition, a cushion can be provided around the area where the restoring spring / damper is attached, so that countermeasures can be taken when an earthquake of a magnitude greater than expected occurs, and fail-safe can be achieved when the device fails.

本発明においては、 前記建物が、階数5〜15で強化コンクリート(RC)製の制震構造であり、 前記免震装置の上の構造体(上構造体)の固有周期Tuと、前記免震装置の下の構造体(下構造体)の固有周期Tbの比(上下固有周期比)を、Tb/Tu=0.01〜0.04とすると、鉄骨の超高層建物ではない、中高層(5階〜15階)のRCビルにおいて、良好な制震効果を得ることができる。   In the present invention, the building is a damped structure made of reinforced concrete (RC) with 5 to 15 stories, the natural period Tu of the structure (upper structure) above the seismic isolation device, and the seismic isolation When the ratio of the natural period Tb (upper and lower natural period ratio) of the structure (lower structure) under the device is Tb / Tu = 0.01 to 0.04, it is not a super-high-rise building of steel frame (5 In the RC building on the 15th to 15th floors, a good seismic control effect can be obtained.

本発明においては、 前記上構造体の質量Wuと前記下構造体の質量Wbの比(上下質量比)を、Wu/Wb=0.05〜0.07とすると、中高層(5階〜15階)のRCビルにおいて、特に良好な制震効果を得ることができる。   In the present invention, when the ratio of the mass Wu of the upper structure to the mass Wb of the lower structure (up / down mass ratio) is Wu / Wb = 0.05 to 0.07, the middle to high level (5th to 15th floors) Especially good vibration control effect can be obtained in the RC building.

本発明の制震建物の設計方法は、上記に記載の制震建物の設計方法であって、 前記建物が、階数5〜15で強化コンクリート(RC)製の制震構造であり、 該建物の建設場所において発生が想定される想定地震波について地震応答解析を行い、 その解析結果に応じて前記復元バネ及び/又はダンパーの仕様変更又は増減を行うか、 あるいは、前記解析結果によって明らかになった前記建物の弱点を補う詳細設計を行うことを特徴とする。   A design method for a vibration control building according to the present invention is the design method for a vibration control building described above, wherein the building is a vibration control structure made of reinforced concrete (RC) having 5 to 15 floors, Perform seismic response analysis on the assumed seismic wave that is expected to occur at the construction site, and change or increase / decrease the specifications of the restoring spring and / or damper according to the analysis result, or the analysis result revealed above It is characterized by a detailed design that compensates for the weak points of the building.

地震応答解析は、一般に、超高層の建物(高さ60m以上、17階以上)の設計後の検査基準の認可のために行われているもので、本発明の対象となる中高層(5階〜15階)の建物については行われていない。本発明では、中高層の建物にも地震応答解析を行い、その結果を踏まえた設計を行うので、制震に対して信頼性の高い建物を提供できる。
なお、想定地震波とは、告示波(八戸波)、告示波(ELCENTRO波)、告示波(ランダム位相波)、サイト波(東京湾北部NS)、サイト波(東京湾北部EW)などを示す。
Seismic response analysis is generally performed for the approval of inspection standards after design of super high-rise buildings (height 60 m or higher, 17 floors or higher). This is not done for buildings on the 15th floor). In the present invention, since the seismic response analysis is performed also on the middle- and high-rise buildings and the design is performed based on the result, it is possible to provide a highly reliable building against the vibration control.
Note that the assumed seismic wave indicates a notification wave (Hachinohe wave), a notification wave (ELCENTRO wave), a notification wave (random phase wave), a site wave (NS in Tokyo Bay Northern NS), a site wave (Tokyo Bay Northern EW), and the like.

弱点を補う詳細設計とは、弾性限を超えない範囲内でも、特に変形量の大きい階やせん断力係数の大きい階に、これらを抑制するような対策を施す設計であり、具体的には、揺れの大きい階の梁や柱の寸法を変更したり、鉄筋量を増やす設計である。これにより、さらに建物の信頼性を高めることができる。   The detailed design that compensates for weakness is a design that takes measures to suppress these, especially in the floor with a large amount of deformation and the floor with a large shear force coefficient, even within a range that does not exceed the elastic limit. It is designed to change the dimensions of beams and columns on the floor with large shaking and increase the amount of reinforcing bars. Thereby, the reliability of a building can further be improved.

本発明の制震建物の制震性能の調整方法は、 上記に記載の制震建物の制震性能の調整方法であって、 該建物の建設後に、該建物の固有周期を測定し、 その測定結果に応じて前記復元バネ及び/又はダンパーの取り換え、増減、及び/又は、調整を行うことを特徴とする。   The adjustment method of the vibration control performance of the vibration control building according to the present invention is the adjustment method of the vibration control performance of the vibration control building described above, and after the construction of the building, the natural period of the building is measured, and the measurement The restoring spring and / or the damper is replaced, increased or decreased and / or adjusted according to the result.

建物の固有周期を所定の値(設計時に想定した免震固有周期)となるように調整することにより、良好な免震効果を発揮できる。
なお、チューニング方法は、前述の建物の水平方向におけるX方向とY方向における調整と同様に、復元バネのバネ径やピッチを変えて行うことができる。
A good seismic isolation effect can be achieved by adjusting the natural period of the building to a predetermined value (the seismic isolation period assumed at the time of design).
The tuning method can be performed by changing the spring diameter and pitch of the restoring spring, similarly to the adjustment in the X direction and Y direction in the horizontal direction of the building described above.

本発明においては、 前記建物が、階数5〜15で強化コンクリート(RC)製の制震構造であり、 前記想定地震波が、告示波(八戸波)、告示波(ELCENTRO波)、告示波(ランダム位相波)、サイト波(東京湾北部NS)、サイト波(東京湾北部EW)の内の1以上であり、 前記解析結果における建物の各階が受ける地震の力を弾性限度以下とすることが好ましい。   In the present invention, the building has a damped structure made of reinforced concrete (RC) with 5 to 15 stories, and the assumed seismic wave is a notification wave (Hachinohe wave), a notification wave (ELCENTRO wave), a notification wave (random) Phase wave), site wave (northern Tokyo Bay NS), and site wave (northern Tokyo Bay EW), and it is preferable that the earthquake force received by each floor of the building in the analysis result is less than the elastic limit. .

建物が階数5〜15で強化コンクリート(RC)製の制震構造の場合、上記想定地震波の地震が発生すると、一般的には建物の各階が受ける地震の力(せん断力係数)はいずれかの階で弾性限度を超える。しかし、本発明では、設計段階において建物の各階が受ける地震の力を弾性限度以下とするので、建物躯体の補修作業等を行うことなく耐用年数を長くできる。   When a building has 5-15 floors and a reinforced concrete (RC) seismic control structure, the earthquake force (shearing force coefficient) generally received by each floor of the building is any The elastic limit is exceeded on the floor. However, in the present invention, since the earthquake force received by each floor of the building at the design stage is set below the elastic limit, the service life can be extended without performing repair work on the building frame.

本発明の制震建物は、前記に記載の方法によって設計されているか、制震性能が調整されていることを特徴とする。   The seismic control building of the present invention is characterized by being designed by the method described above or having seismic control performance adjusted.

以上の説明から明らかなように、本発明によれば、建物の屋上に免震装置を介して屋上屋や水槽等の設備を設けるなどにより、免震装置上の重量がカウンターマスのような役割を果たすので、免震装置下の建物の揺れを小さくできる。また、免震装置の配置や種類を、建物の方向(例えば壁方向とラーメン方向)により変えれば、免震装置の水平面内のXY方向特性を変えることができる。   As is clear from the above description, according to the present invention, the weight on the seismic isolation device plays a role like a counter mass by providing facilities such as a rooftop roof and a water tank via the seismic isolation device on the roof of the building. Therefore, the shaking of the building under the seismic isolation device can be reduced. Further, if the arrangement and type of the seismic isolation device are changed depending on the direction of the building (for example, the wall direction and the ramen direction), the XY direction characteristics in the horizontal plane of the seismic isolation device can be changed.

本発明の実施の形態に係る制震建物の免震装置の配置を説明する平面図である。It is a top view explaining arrangement | positioning of the seismic isolation apparatus of the damping building which concerns on embodiment of this invention. 図1のA−A矢視図である。It is an AA arrow line view of FIG. 図3(A)は図1のB−B矢視図、図3(B)は図1のC−C矢視図である。3A is a view taken along the line BB in FIG. 1, and FIG. 3B is a view taken along the line CC in FIG. 図4(A)は滑り支承の構造を説明する断面図であり、図4(B)はオイルダンパーの構造を説明する断面図である。4A is a cross-sectional view illustrating the structure of the sliding bearing, and FIG. 4B is a cross-sectional view illustrating the structure of the oil damper. 本発明の実施の形態に係る制震建物の設計工程の一例を説明するフローチャートである。It is a flowchart explaining an example of the design process of the damping building which concerns on embodiment of this invention. 建物の壁方向におけるシミュレーション結果を示すグラフであり、図6(A)は変形量、図6(B)はせん断力係数を示す。It is a graph which shows the simulation result in the wall direction of a building, FIG. 6 (A) shows a deformation amount and FIG. 6 (B) shows a shear force coefficient. 建物のラーメン方向におけるシミュレーション結果を示すグラフであり、図7(A)は変形量、図7(B)はせん断力係数を示す。It is a graph which shows the simulation result in the ramen direction of a building, Drawing 7 (A) shows the amount of deformation, and Drawing 7 (B) shows the shear force coefficient. 想定地震波に対するシミュレーション結果を示すグラフであり、図8(A)は変形量、図8(B)はせん断力係数を示す。It is a graph which shows the simulation result with respect to an assumed seismic wave, FIG. 8 (A) shows a deformation amount and FIG. 8 (B) shows a shear force coefficient. 想定地震波に対するシミュレーション結果(加速度)を示すグラフである。It is a graph which shows the simulation result (acceleration) with respect to an assumed earthquake wave.

以下、本発明の実施の形態について、図面を参照しつつ詳細に説明する。
図1〜図3を参照して、本発明の第1の実施の形態に係る制震建物について説明する。図1は建物の平面図、図2は図1の建物の最上階とその下の階との間の空間を示すA−A矢視図、図3(A)は図1の建物の最上階とその下の階との間の空間を示すB−B矢視図、図3(B)はC−C矢視図である。
この建物1は、図1に示すように、平面形状が略長方形の、強化コンクリート製の8階建てのマンションであり、各階には、ワンルームの部屋が2部屋並んで形成されている。建物の長手方向に延びる側の面はコンクリート製の壁構造3となっている。壁構造3には、窓となる開口4が複数箇所に形成されている。短手方向に延びる側の一方の面7にはバルコニー8が設けられており、その反対側の面7には、1階から8階まで延びる屋外避難階段9が設けられている。さらに、1階から8階まで、エレベータシャフトが貫通して設けられている。
図1において、建物の長手方向をX方向、短手方向をY方向とする。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
With reference to FIGS. 1-3, the seismic control building which concerns on the 1st Embodiment of this invention is demonstrated. 1 is a plan view of the building, FIG. 2 is an AA arrow view showing a space between the top floor of the building in FIG. 1 and the floor below it, and FIG. 3A is the top floor of the building in FIG. FIG. 3B is a CC arrow view showing a space between the floor and the lower floor, and FIG. 3B is a CC arrow view.
As shown in FIG. 1, the building 1 is an eight-story condominium made of reinforced concrete having a substantially rectangular plan shape, and two rooms of one room are formed side by side on each floor. The side surface extending in the longitudinal direction of the building is a concrete wall structure 3. In the wall structure 3, openings 4 serving as windows are formed at a plurality of locations. A balcony 8 is provided on one surface 7 on the side extending in the short direction, and an outdoor escape staircase 9 extending from the first floor to the eighth floor is provided on the opposite surface 7. Further, elevator shafts are provided through the first to eighth floors.
In FIG. 1, let the longitudinal direction of a building be an X direction, and let a transversal direction be a Y direction.

図2に示すように、建物1の屋上には、免震機構20を介して、制震錘60が配置されている。制震錘60は、地震時にカウンターマスとして作用するものであり、この例では鉄筋コンクリート版である。免震機構20は、複数の滑り支承手段30及び復元バネ40と、ダンパー50であり、建物1の屋上の外周に設けられた塀11に囲まれた空間内に配置されるとともに、図1に示すように、建物1の平面視において複数箇所に分散して配置されている。   As shown in FIG. 2, a seismic control weight 60 is disposed on the roof of the building 1 via a seismic isolation mechanism 20. The seismic control weight 60 acts as a counter mass at the time of an earthquake, and is a reinforced concrete plate in this example. The seismic isolation mechanism 20 includes a plurality of sliding support means 30, a restoring spring 40, and a damper 50. The seismic isolation mechanism 20 is disposed in a space surrounded by the fence 11 provided on the outer periphery of the roof of the building 1 and is shown in FIG. As shown, the building 1 is distributed in a plurality of locations in plan view.

図4を参照して、滑り支承手段30とダンパー(オイルダンパー)50の構造の一例を説明する。図4(A)は滑り支承手段の側断面図であり、図4(B)はオイルダンパーの側断面図である。
図4(A)に示すように、滑り支承手段30は、コンクリート版60の下面に取り付けられた滑り板31と、この滑り板31に接触する滑り支承33とからなる。滑り板31は、例えばフッ素樹脂等でコーティングされたステンレス鋼板である。滑り支承33は、鋼材等で作製されたブロック34と、ブロック34の上面に設けられた、フッ素樹脂等でコーティングされた滑り材36からなる。後述するように、ブロック34は、屋上に設けられたコンクリート製のブロック(台)13にボルト等により固定される。滑り支承手段30は、コンクリート版60の重量を支持するとともに、地震時には水平方向に変形し、地震エネルギーを吸収する。
An example of the structure of the sliding support means 30 and the damper (oil damper) 50 will be described with reference to FIG. 4A is a side sectional view of the sliding support means, and FIG. 4B is a side sectional view of the oil damper.
As shown in FIG. 4A, the sliding support means 30 includes a sliding plate 31 attached to the lower surface of the concrete plate 60 and a sliding support 33 that contacts the sliding plate 31. The sliding plate 31 is a stainless steel plate coated with, for example, a fluororesin. The sliding support 33 includes a block 34 made of steel or the like, and a sliding material 36 provided on the upper surface of the block 34 and coated with a fluororesin or the like. As will be described later, the block 34 is fixed to a concrete block (base) 13 provided on the roof by a bolt or the like. The sliding support means 30 supports the weight of the concrete plate 60 and is deformed in the horizontal direction during an earthquake to absorb the earthquake energy.

図4(B)に示すように、オイルダンパー50は、作動油が充填されたシリンダ51、ピストン53及びピストンロッド54を有する。ピストン53には調圧弁55とリリーフ弁56とが備えられている。オイルダンパー50は、地震エネルギーを吸収し、地震の揺れを収束させる。   As shown in FIG. 4B, the oil damper 50 includes a cylinder 51, a piston 53, and a piston rod 54 filled with hydraulic oil. The piston 53 is provided with a pressure regulating valve 55 and a relief valve 56. The oil damper 50 absorbs seismic energy and converges the shaking of the earthquake.

図1〜図3を参照して、滑り支承手段及び復元バネ、オイルダンパーの配置を説明する。
図1に示すように、滑り支承手段30は、平面視において、建物1の屋上の四隅に配置されている。図2や図3(A)に示すように、屋上の四隅のやや内寄りの位置には、上方に突出した直方体状のコンクリート製ブロック(台)13が設けられている。滑り支承手段30は、各台30と、コンクリート版60との間に配置されている。そして、図4(A)に示すように、滑り板31がコンクリート版60の下面に固定されており、ブロック34が各台13に固定されて、滑り板31が滑り材36に接触している。前述のように、滑り支承手段30は、地震時に水平方向に変形する。
With reference to FIGS. 1-3, arrangement | positioning of a sliding support means, a restoring spring, and an oil damper is demonstrated.
As shown in FIG. 1, the sliding support means 30 are arranged at the four corners on the roof of the building 1 in plan view. As shown in FIGS. 2 and 3A, rectangular concrete blocks (bases) 13 projecting upward are provided at positions slightly inward of the four corners of the roof. The sliding support means 30 is disposed between each table 30 and the concrete plate 60. As shown in FIG. 4A, the sliding plate 31 is fixed to the lower surface of the concrete plate 60, the block 34 is fixed to each table 13, and the sliding plate 31 is in contact with the sliding material 36. . As described above, the sliding support means 30 is deformed in the horizontal direction during an earthquake.

復元バネ40は、図1に示すように、平面視において、建物1のX方向(この例では建物の長手方向)及びY方向(この例では建物の短手方向)に延びる軸にほぼ対称に配置されているが、X方向とY方向で、配置されるバネの数が異なる。詳細には、X方向に延びる各壁3、4のやや内側の滑り支承手段30の間に、X方向に延びる2個の復元バネ40Aが、直列に配置されている。さらに、建物1の中央付近にも、X方向に延びる2個の復元バネ40Aが、並列に配置されている。また、建物1の中央付近に、Y方向に延びる4個の復元バネ40Bが、2個ずつ直列に配置されている。復元バネ40は、復元力により滑り支承手段30の変形を元に戻す、すなわち、コンクリート版60を元の位置に戻す作用を有する。   As shown in FIG. 1, the restoring spring 40 is substantially symmetrical with respect to an axis extending in the X direction (in this example, the longitudinal direction of the building) and the Y direction (in this example, the short direction of the building) of the building 1 in plan view. Although arranged, the number of springs arranged differs between the X direction and the Y direction. Specifically, two restoring springs 40A extending in the X direction are arranged in series between the sliding support means 30 slightly inside the walls 3 and 4 extending in the X direction. Further, near the center of the building 1, two restoring springs 40 </ b> A extending in the X direction are arranged in parallel. In addition, in the vicinity of the center of the building 1, four restoring springs 40 </ b> B extending in the Y direction are arranged in series two by two. The restoring spring 40 has an action of restoring the deformation of the sliding support means 30 by restoring force, that is, returning the concrete plate 60 to its original position.

X方向に延びる壁沿いに配置された復元バネ40Aは、図2に示すように、一方の端部が、屋上の四隅の内寄りに設けられた台13にブラケットを介して係止され、もう一方の端部は、コンクリート版の下面から下方に突出した直方体状のブロック(アゴ)61にブラケットを介して係止されている。各ブラケットは、台やアゴに埋め込まれてボルトで固定されている。
建物の中央付近に配置された、Y方向に延びる復元バネ40Bは、図3(B)に示すように、一端がコンクリート版60の下面から突出したアゴ61にブラケットを介して係止され、もう一方の端部は、屋上から上方に突出した台13に係止されている。建物の中央付近の、X方向に延びる復元バネ40Aも同様にアゴと台との間に取り付けられている。
As shown in FIG. 2, the restoring spring 40A arranged along the wall extending in the X direction has one end locked to a base 13 provided in the four corners of the roof via a bracket. One end is locked via a bracket to a rectangular parallelepiped block (ago) 61 protruding downward from the lower surface of the concrete plate. Each bracket is embedded in a base or jaw and fixed with bolts.
As shown in FIG. 3B, the restoring spring 40B arranged in the vicinity of the center of the building and extending in the Y direction is locked to the jaw 61 protruding from the lower surface of the concrete plate 60 via a bracket. One end is locked to a base 13 protruding upward from the roof. A restoring spring 40A extending in the X direction near the center of the building is similarly attached between the jaw and the base.

オイルダンパー50も、図1に示すように、平面視において、建物のX方向及びY方向に延びる軸に対称に配置されている。すなわち、X方向に延びる各壁のやや内側の、復元バネ40Aの間に、1個のオイルダンパー50が、X方向に延びるように配置されている。また、Y方向に延びる壁のやや内側の、滑り支承手段30の間に、1個のオイルダンパー50がY方向に延びるように配置されている。   As shown in FIG. 1, the oil damper 50 is also arranged symmetrically with respect to an axis extending in the X direction and the Y direction of the building in plan view. That is, one oil damper 50 is disposed so as to extend in the X direction between the restoring springs 40A slightly inside each wall extending in the X direction. Further, one oil damper 50 is arranged so as to extend in the Y direction between the sliding support means 30 slightly inside the wall extending in the Y direction.

X方向に延びる壁沿いに配置されたオイルダンパー50は、図2に示すように、シリンダ51又はピストンロッド54の一方が、コンクリート版60の下面から突出するアゴ61にブラケットを介して係止され、もう一方が、建物1の屋上から突出するブロック状の台13にブラケットを介して係止されている。
Y方向の壁沿いに配置されたオイルダンパー50は、図3(A)に示すように、シリンダ51及びピストンロッド54の一方が、建物1の屋上から突出するブロック状の台13にブラケットを介して係止されて、もう一方が、コンクリート版60の下面から突出するアゴ61にブラケットを介して係止されている。
As shown in FIG. 2, the oil damper 50 arranged along the wall extending in the X direction has one of the cylinder 51 and the piston rod 54 locked to a jaw 61 protruding from the lower surface of the concrete plate 60 via a bracket. The other is locked to a block-like table 13 protruding from the roof of the building 1 via a bracket.
As shown in FIG. 3A, the oil damper 50 arranged along the wall in the Y direction has one of a cylinder 51 and a piston rod 54 interposed on a block-like table 13 projecting from the roof of the building 1 via a bracket. The other is locked to the jaw 61 protruding from the lower surface of the concrete plate 60 via a bracket.

さらに、図2に示すように、コンクリート版60の下面に設けられたアゴ61の、屋上に設けられた台13に対向する面には、クッション70が設けられている。このようなクッション70は、この位置だけではなく、台13やアゴ61の適宜な位置に設けることもできる。このようなクッション70は、想定以上の規模の地震が発生したときや、他の装置の故障時のフェールセーフを図るためのものである。   Further, as shown in FIG. 2, a cushion 70 is provided on the surface of the jaw 61 provided on the lower surface of the concrete plate 60 that faces the table 13 provided on the roof. Such a cushion 70 can be provided not only at this position but also at an appropriate position of the base 13 and the jaw 61. Such a cushion 70 is for the purpose of fail-safe when an earthquake larger than expected or when another device fails.

上記のように、この例では、オイルダンパー50は、建物のX方向及びY方向において、同じ数(2個)ずつ配置されているが、復元バネ40はX方向とY方向とで数が異なり、X方向には6個(復元バネ40A)、Y方向には4個(復元バネ40B)配置されている。建物においては、壁構造を有する方向(壁方向、この例ではX方向)は比較的剛性が高く、ラーメン方向(この例ではY方向)は比較的剛性が弱いとされている。そこで、剛性の低い方向であるY方向の復元バネの個数を減らす、あるいは、バネ定数の低いものに変更する。これにより、X方向とY方向の両方向において、均等で十分な制震機能を発揮させることができる。   As described above, in this example, the same number (two) of oil dampers 50 are arranged in the X direction and the Y direction of the building, but the number of restoring springs 40 is different in the X direction and the Y direction. , Six in the X direction (restoration spring 40A) and four in the Y direction (restoration spring 40B). In a building, the direction having a wall structure (wall direction, X direction in this example) is relatively high in rigidity, and the rigid frame direction (Y direction in this example) is relatively low in rigidity. Therefore, the number of restoring springs in the Y direction, which is the direction of low rigidity, is reduced or changed to one having a low spring constant. Thereby, an equal and sufficient seismic control function can be exhibited in both the X direction and the Y direction.

また、支承手段を滑り支承とし、復元バネやオイルダンパーをほとんど与圧のない状態で装備すると、復元バネやダンパーの取外し点検・修理・取替えが容易となる。   In addition, if the support means is a sliding support and is equipped with a restoring spring and an oil damper with almost no pressure, it is easy to remove, inspect, repair, and replace the restoring spring and the damper.

なお、復元バネ40の数を増加する必要がある場合に備えて、免震装置20が配置される空間内に、バネの設置可能スペースを開けておいたり、予めコンクリート版60にアゴ61を設けておいたり、屋上に台13を設けておくことが好ましい。   In case the number of restoring springs 40 needs to be increased, a space where springs can be installed is opened in the space where the seismic isolation device 20 is arranged, or the jaw 61 is provided in the concrete plate 60 in advance. It is preferable to provide a table 13 on the roof.

そして、建物の屋上に免震装置(オイルダンパー、復元バネ)を介して制震錘を配置することにより、免震装置上の制震錘の重量がカウンターマスのような役割を果たして、免震装置下の建物の揺れを小さくできる。この例では、制震錘としてコンクリート版を使用したが、実際には、屋上屋(オーナールーム、シェルター、防災倉庫等)、屋上庭園、保水層、プール、水槽、防火水槽、池、ドッグラン、広告塔・広告板、設備機器(空調装置、電源装置等)等とすると、屋上空間を有効活用できるとともに制震機能を持たせることができる。言い換えれば、屋上に上記のような付帯施設がある場合、これらを制震錘に含めることができる。   And by placing the damping weight on the roof of the building via the seismic isolation device (oil damper, restoring spring), the weight of the damping weight on the seismic isolation device plays a role like a counter mass, The shaking of the building under the device can be reduced. In this example, a concrete plate was used as the seismic weight, but in reality, rooftops (owner rooms, shelters, disaster prevention warehouses, etc.), rooftop gardens, water reservoirs, pools, water tanks, fire tanks, ponds, dog runs, advertisements Towers, billboards, and equipment (air conditioners, power supplies, etc.) can effectively use the rooftop space and have a vibration control function. In other words, if there are incidental facilities as described above on the roof, these can be included in the vibration control weight.

制震錘の質量(Wu)と、建物の質量(Wb)の比(上下質量比)(Wu/Wb)は、0.05〜0.07であり、この範囲で、5階から15階建てのRC建物において良好な制震効果を得ることができる。   The ratio of the mass of the damping mass (Wu) to the mass of the building (Wb) (up / down mass ratio) (Wu / Wb) is 0.05 to 0.07. A good seismic control effect can be obtained in RC buildings.

また、制震錘の固有周期(Tu)と、建物の固有周期Tbの比(上下固有周期比)(Tb/Tu)は、0.01〜0.04であり、この範囲で、5階から15階建てのRC建物において良好な制震効果を得ることができる。   In addition, the ratio of the natural period (Tu) of the vibration control weight and the natural period Tb of the building (vertical natural period ratio) (Tb / Tu) is 0.01 to 0.04. A good seismic control effect can be obtained in a 15-story RC building.

次に、図5を参照して本発明の制震建物の設計工程の一例を説明する。図5は、設計工程の一例のフローチャートである。
まず、ステップS1で、建物の基本設計を行う。基本設計では、建物の基本的な構造を、平面図や立面図に起こす。次に、ステップS2で、実施設計を行う。実施設計では、一般的な耐震設計、杭や基礎の設計を行うとともに、前述の制震の設定を行う。具体的には、免震機構のオイルダンパーや復元バネの配置を決定したり、免震機構の上方の部分(屋上屋など)と下方の建物との質量比や固有周期比を前述の通りに設定する。
Next, an example of the design process of the vibration control building according to the present invention will be described with reference to FIG. FIG. 5 is a flowchart of an example of the design process.
First, in step S1, a basic design of a building is performed. In basic design, the basic structure of a building is raised in a plan or elevation. Next, implementation design is performed in step S2. In the implementation design, general seismic design, pile and foundation design are performed, and the above-mentioned seismic control is set. Specifically, the arrangement of the oil damper and the restoring spring of the seismic isolation mechanism is determined, and the mass ratio and natural period ratio between the upper part (such as the rooftop) and the lower building of the seismic isolation mechanism are as described above. Set.

次に、ステップS3で、設計された建物の地震応答解析(シミュレーション)を行う。地震応答解析は、一般に、超高層の建物(高さ60m以上、17階以上)の設計後の検査基準の認可のために行われているもので、本発明の対象となる中高層(5階〜15階)の建物については行われていないが、本発明では、中高層の建物についても地震応答解析を行う。そして、ステップS4で、地震応答解析の結果を判定し、想定地震波に対して、全ての階で弾性限を超えないことを確認する。弾性限とは、建物に力が作用して元の状態に戻らなくなる限界を示す。その結果、全ての階で弾性限を超えず、さらに、弱点とみられる特徴(例えば、特定の階だけ変形量やせん断力係数が特に大きいなど)が存在しなければ、ステップS5に進んで、建物の施工を行う。ステップS4で、弾性限を超える階が存在したり、弱点とみられる特徴が顕著であれば、ステップS6に進んで、これらの結果を踏まえた詳細設計を行う。詳細設計では、例えば、変形量が顕著に大きい階に対しては、梁や柱の寸法を変更したり、鉄筋量を増やす。また、せん断力係数が特に大きい階に対しては、柱や梁の鉄筋の量を増やす。この詳細設計を、ステップS3の地震応答解析の結果が良好(想定される地震波に対して、全ての階で弾性限を超えない、顕著な特徴が見当たらない)と判定されるまで行う。   Next, in step S3, an earthquake response analysis (simulation) of the designed building is performed. Seismic response analysis is generally performed for the approval of inspection standards after design of super high-rise buildings (height 60 m or higher, 17 floors or higher). The 15th floor building is not performed, but in the present invention, the seismic response analysis is also performed on the middle and high-rise buildings. Then, in step S4, the result of the earthquake response analysis is determined, and it is confirmed that the elastic limit is not exceeded on all floors with respect to the assumed earthquake wave. The elastic limit indicates a limit at which a force is applied to the building and the original state cannot be restored. As a result, if the floor does not exceed the elastic limit on all floors and there are no features that are regarded as weak points (for example, the amount of deformation or shear force coefficient is particularly large only on specific floors), the process proceeds to step S5. Perform construction. In step S4, if there is a floor exceeding the elastic limit, or if a characteristic that is considered to be a weak point is remarkable, the process proceeds to step S6, and a detailed design based on these results is performed. In the detailed design, for example, for a floor having a significantly large amount of deformation, the dimensions of beams and columns are changed or the amount of reinforcing bars is increased. For floors with particularly large shear force coefficients, the amount of column and beam reinforcement is increased. This detailed design is performed until it is determined that the result of the seismic response analysis in step S3 is good (not exceeding the elastic limit at all floors and no remarkable feature is found for the assumed seismic wave).

ステップS5の施工に次いでステップS7で躯体が完成した後、ステップS8で完成した建物の固有周期を実測する。具体的には、完成した建物の屋上に加速度センサを設置して、常時微動(建物周りの交通振動や風による振動)を測定し、測定値をスペクトル解析して、建物の固有周期を算出する。そして、ステップS9で、測定された周期が、設計時に想定した周期の許容範囲内(例えば、想定周期の±10%内)かどうかを判定する。許容範囲内であれば建物が完成となる。ステップS9で、固有値が許容範囲外(想定周期から10%程度外れる場合)の場合は、ステップS10に進んで建物のチューニングを行う。チューニング方法は、復元バネをバネ定数の異なるものに変更するか、復元バネの個数を変更し、測定結果に見合った固有周期とする。バネの調整のみでは難しい微小調整は、免震装置の上方の部分(制震錘等)の厚みを変更する。このチューニングを、固有周期が許容範囲内となるまで行う。   After the construction in step S5, after the building is completed in step S7, the natural period of the building completed in step S8 is measured. Specifically, an accelerometer is installed on the roof of the completed building to measure microtremors (traffic vibration around the building and vibrations due to wind), and to analyze the measured spectrum to calculate the natural period of the building. . In step S9, it is determined whether or not the measured cycle is within an allowable range of the cycle assumed at the time of design (for example, within ± 10% of the assumed cycle). If it is within the allowable range, the building is completed. In step S9, if the eigenvalue is outside the allowable range (when it is out of the estimated period by about 10%), the process proceeds to step S10 to tune the building. The tuning method is to change the restoring springs to those having different spring constants or change the number of restoring springs so that the natural period matches the measurement result. For fine adjustments that are difficult only by adjusting the spring, the thickness of the upper part of the seismic isolation device (such as a seismic weight) is changed. This tuning is performed until the natural period is within the allowable range.

このように、本発明では、中高層の建物にも地震応答解析を行い、その結果を踏まえた設計を行うので、制震に対して信頼性の高い建物を提供できる。また、弾性限を超えない範囲内でも、特に変形量の大きい階やせん断力係数の大きい階に、これらを抑制するような対策を施すので、さらに信頼性を高めることができる。   As described above, in the present invention, since the seismic response analysis is also performed on the middle- and high-rise buildings and the design is performed based on the result, it is possible to provide a highly reliable building against the vibration control. Further, even within a range that does not exceed the elastic limit, a measure that suppresses these is particularly applied to a floor having a large deformation amount and a floor having a large shearing force coefficient, so that the reliability can be further improved.

また、建物の屋上に図1のような制震錘を設けた場合、建物自体の屋根(屋上)は降雨や紫外線を受けないので、防水層の経年劣化を抑制できる。また、建物自体の最上階の太陽光線による熱負荷を低減できる。   Moreover, when the vibration control weight as shown in FIG. 1 is provided on the roof of the building, the roof (roof) of the building itself is not subjected to rain or ultraviolet rays, so that the waterproof layer can be prevented from aging. Moreover, the heat load by the sunlight of the top floor of the building itself can be reduced.

次に、図1の建物の制震性能を検証するために、地震応答解析(シミュレーション)を行った結果を説明する。図6は建物の壁方向、図7はラーメン方向を示し、各図の(A)は各階の変形量、(B)は建物が受ける地震の力(せん断力係数)を示す。各グラフの縦軸は階数、横軸は、(A)では各階の変形(mm)、(B)ではせん断力係数を示す。各グラフの黒い丸のプロットは告示波(ELCENTRO波)、黒い四角のプロットはサイト波(東京湾北部NS)、黒い菱形のプロットはサイト波(東京湾北部EW)を示す。比較例として、制震錘を備えていない図1の耐震建物を挙げる。実線は、本実施例、破線は比較例を示す。以下にシミュレーションに用いた条件を示す。
制震錘の重量(Wu):80トン、
建物の重量(Wb):1350トン、
建物の減衰定数:0.02、
制震錘の建物に対する重量比(Wu/Wb):0.06、
制震錘の固有振動の周期(Tu):1.48sec、
建物の固有振動の周期(Tb):0.209sec、
建物の固有周期と制震錘の固有周期の比(Tb/Ts):0.1414、
滑り支承の摩擦係数:0.01〜0.1、
復元バネのバネ定数:10〜500N/mm、
オイルダンパーの減衰係数:25〜500kN‐s/m。
Next, in order to verify the seismic performance of the building shown in FIG. 1, the results of an earthquake response analysis (simulation) will be described. 6 shows the wall direction of the building, FIG. 7 shows the ramen direction, (A) in each figure shows the deformation amount of each floor, and (B) shows the earthquake force (shearing force coefficient) that the building receives. In each graph, the vertical axis indicates the number of floors, and the horizontal axis indicates the deformation (mm) of each floor in (A) and the shear force coefficient in (B). In each graph, a black circle plot represents a notification wave (ELCENTRO wave), a black square plot represents a site wave (NS in northern Tokyo Bay), and a black diamond plot represents a site wave (Tokyo Bay northern EW). As a comparative example, consider the earthquake resistant building of FIG. A solid line indicates the present embodiment, and a broken line indicates a comparative example. The conditions used for the simulation are shown below.
Seismic weight (Wu): 80 tons,
Building weight (Wb): 1350 tons,
Building attenuation constant: 0.02,
Weight ratio of damping mass to building (Wu / Wb): 0.06,
Period of natural vibration of the damping mass (Tu): 1.48 sec,
Period of natural vibration of building (Tb): 0.209 sec,
Ratio of natural period of building to natural period of seismic control weight (Tb / Ts): 0.1414,
Friction coefficient of sliding bearing: 0.01 to 0.1
Spring constant of restoring spring: 10 to 500 N / mm,
Damping coefficient of oil damper: 25-500 kN-s / m.

各グラフから、どの地震波に対しても、本実施例(実線)の建物は比較例(破線)に比べて、変形、地震力とも大きく低減されていることがわかる。
まず、壁方向においては、図6(A)ので示す変形量は、本実施例、比較例とも、建物の二次振動モードや建物の振動特性と地震波の特性との関係等によって、2階が最大となるように増減しており、3階から上層階となるほど低減されているが、いずれの階も本実施例の方が変形量が小さい。また、低い階ほど比較例との差が大きく、本実施例の効果が大きく現れている。また、図6(B)で示すせん断力係数は、本実施例では、7階をピークにして増減している。一方、比較例においては、階数が高くなるに従って大きくなり、6階以上(グラフの実線の四角で囲んだ部分)で弾性限界を超えている。
From each graph, it can be seen that for any seismic wave, the building of this example (solid line) is greatly reduced in both deformation and seismic force as compared to the comparative example (dashed line).
First, in the wall direction, the amount of deformation shown in FIG. 6A depends on the secondary vibration mode of the building, the relationship between the vibration characteristics of the building and the characteristics of the seismic wave, etc. Although it is increased or decreased so as to become the maximum, the level is reduced as the level increases from the third floor to the upper floor, but the deformation amount is smaller in the present embodiment on any floor. In addition, the lower the floor, the greater the difference from the comparative example, and the effect of the present example appears greatly. In addition, the shear force coefficient shown in FIG. 6B increases and decreases with the seventh floor as a peak in this embodiment. On the other hand, in the comparative example, the floor becomes larger as the floor number becomes higher, and exceeds the elastic limit at the sixth floor or more (portion surrounded by the solid line square of the graph).

図7(A)のラーメン方向における変形量は、図6の壁方向の変形量よりも大きくなっており、各波とも建物の中層階が最大となるように増減しており、中階層で比較例との差が大きくなっている。グラフ中の破線で示される直線は層間変形角が1/90程度のラインを示すが、本実施例では、全ての階においてこのラインよりも小さくなっている。また、せん断力係数は、本実施例では、上階層(6階〜7階)が最大となるように増減している。一方、比較例においては、階数が高くなるに従って徐々に大きくなっていき、図の実線で囲んだ部分で示すように、7階以上で弾性限界を超えている。   The amount of deformation in the ramen direction of FIG. 7A is larger than the amount of deformation in the wall direction of FIG. 6, and each wave is increased or decreased so that the middle floor of the building is maximized. The difference from the example is large. A straight line indicated by a broken line in the graph indicates a line having an interlayer deformation angle of about 1/90, but in this embodiment, it is smaller than this line on all floors. Further, in this embodiment, the shear force coefficient is increased or decreased so that the upper hierarchy (sixth to seventh floors) is maximized. On the other hand, in the comparative example, it gradually increases as the number of floors increases, and exceeds the elastic limit at the 7th floor or higher as shown by the part surrounded by the solid line in the figure.

このように地震応答解析の結果、本実施例では変形量、建物が受ける地震の力とも、比較例に比べて低減されることが確認された。具体的には、変形量の低減率は33〜68%であり、せん断力係数は全ての階で弾性限を超えておらず、低減率は32〜42%であった。   As described above, as a result of the earthquake response analysis, it was confirmed that the deformation amount and the earthquake force applied to the building are reduced in this example as compared with the comparative example. Specifically, the deformation reduction rate was 33 to 68%, the shear force coefficient did not exceed the elastic limit at all floors, and the reduction rate was 32 to 42%.

次に、建物の建設場所において発生が想定される想定地震波を、本発明の建物のモデルに入力して地震応答解析を行った結果を、図8、図9を参照して説明する。   Next, the results of an earthquake response analysis performed by inputting an assumed seismic wave assumed to occur at a building construction site into the building model of the present invention will be described with reference to FIGS.

想定される地震波としては、告示波(八戸波)、告示波(ELCENTRO波)、告示波(ランダム位相波)、サイト波(東京湾北部NS)、サイト波(東京湾北部EW)を使用した。
図8(A)は変形量、図8(B)はせん断力係数、図9は加速度を示す。いずれも建物の壁方向における結果を示す。各グラフの縦軸は階数、横軸は、各々、各階の変形(mm)、せん断力係数、加速度(cm/S)を示す。比較例として、本発明の制震機構を備えていない耐震建物を挙げる。以下にモデルの条件を示す。
建物の階数:5階(4階建て建物の屋上(5階)に免震装置を介して屋上屋(オーナールーム)を設けたもの、各グラフの縦軸の4(階)と5(階)の間に免震装置が存在する)、
オーナールーム重量(Wu):145トン、
建物の重量(Wb):2400トン、
建物の減衰定数:0.02〜0.03、
制震錘の建物に対する重量比(Wu/Wb):0.06、
制震錘の固有振動の周期(Tu):1.06sec、
建物の固有振動の周期(Tb):0.15sec、
建物の固有周期と制震錘の固有周期の比(Tb/Tu):0.1414、
滑り支承の数:4〜10、
滑り支承の摩擦係数:0.01〜0.1、
復元バネの数:X方向(長手方向)2〜20、Y方向(短手方向)2〜20、
復元バネのバネ定数:10〜500N/mm、
オイルダンパーの数:X方向(長手方向)2〜4、Y方向(短手方向)2〜4、
オイルダンパーの減衰係数:25〜500kN‐s/m。
As an assumed seismic wave, a notification wave (Hachinohe wave), a notification wave (ELCENTRO wave), a notification wave (random phase wave), a sight wave (NS in Tokyo Bay north), and a sight wave (EW in North Tokyo Bay) were used.
8A shows the amount of deformation, FIG. 8B shows the shear force coefficient, and FIG. 9 shows the acceleration. Both show the results in the wall direction of the building. In each graph, the vertical axis represents the number of floors, and the horizontal axis represents the deformation (mm), the shear force coefficient, and the acceleration (cm / S 2 ) of each floor. As a comparative example, a seismic building that does not have the seismic control mechanism of the present invention is cited. The model conditions are shown below.
Number of floors: 5th floor (4 floor building (5th floor) with a rooftop (owner room) installed via a seismic isolation device, 4 (floor) and 5 (floor) on the vertical axis of each graph There is a seismic isolation device between)
Owner room weight (Wu): 145 tons,
Building weight (Wb): 2400 tons,
Building attenuation constant: 0.02-0.03,
Weight ratio of damping mass to building (Wu / Wb): 0.06,
Period of natural vibration of the damping mass (Tu): 1.06 sec,
Period of natural vibration of building (Tb): 0.15 sec,
Ratio of natural period of building and natural period of seismic weight (Tb / Tu): 0.1414,
Number of sliding bearings: 4-10,
Friction coefficient of sliding bearing: 0.01 to 0.1
Number of restoring springs: X direction (longitudinal direction) 2-20, Y direction (short direction) 2-20,
Spring constant of restoring spring: 10 to 500 N / mm,
Number of oil dampers: X direction (longitudinal direction) 2-4, Y direction (short direction) 2-4,
Damping coefficient of oil damper: 25-500 kN-s / m.

図8(A)のグラフからわかるように、本発明の建物では、全ての地震波に対して、4階まで(下方の建物の全階)の変形量は、上階に行くほどやや増加しているが、比較例に比べてその量や増加率は低く、低減率は最大で31%であった。なお、5階(屋上屋)の変形量が大きいのは、その下方に設置した免震装置の水平方向へのずれによるものであり、実際に人間が5階にいた場合にはほとんど変形を感じない。   As can be seen from the graph of FIG. 8 (A), in the building of the present invention, the amount of deformation up to the fourth floor (all floors of the lower building) increases slightly toward the upper floor for all seismic waves. However, the amount and increase rate were low compared with the comparative example, and the reduction rate was 31% at the maximum. The large amount of deformation on the 5th floor (rooftop) is due to the horizontal displacement of the seismic isolation device installed below it, and when the person is actually on the 5th floor, it feels almost deformed. Absent.

図8(B)のグラフから、本発明では、全ての地震波において、せん断力係数は各階で大きく変化しておらず、いずれの階でも弾性限(図の実線で示す)を超えていないとともに、比較例に比べて低減されている。せん断力係数の低減率は、最大で59%であった。一方、比較例では、階数が高くなるに従い大きくなる傾向があり、波の種類によっては、ほとんどの階で弾性限を超える場合がある。   From the graph of FIG. 8B, in the present invention, in all the seismic waves, the shear force coefficient does not change greatly at each floor and does not exceed the elastic limit (shown by the solid line in the figure) at any floor, It is reduced compared to the comparative example. The reduction rate of the shear force coefficient was 59% at the maximum. On the other hand, in the comparative example, it tends to increase as the number of floors increases, and depending on the type of wave, the elastic limit may be exceeded on almost all floors.

図9のグラフから、本発明の建物では、全ての地震波に対して、4階まで(下方の建物の全階)の加速度は、上階に行くほどやや増加しているが、比較例に比べてその量や増加率は低い。また、免震装置の上方の5階の加速度は顕著に低減されている。最上階一方、比較例では、加速度は上の階ほど高くなる傾向がある。   From the graph of FIG. 9, in the building of the present invention, the acceleration up to the fourth floor (all floors of the lower building) increases slightly toward the upper floor for all seismic waves, but compared to the comparative example. The amount and rate of increase are low. In addition, the acceleration on the fifth floor above the seismic isolation device is significantly reduced. On the other hand, in the comparative example, the acceleration tends to be higher in the upper floor.

以上のシミュレーション結果から、本発明の制震建物は、想定される地震波に対して、各階の変形量やせん断力計数を低減できる可能性を有することが確認された。   From the above simulation results, it was confirmed that the damping building of the present invention has a possibility of reducing the deformation amount and shear force count of each floor with respect to the assumed seismic wave.

1 建物 3 壁構造
4 開口 7 短手方向に延びる面
11 塀 13 台
20 免震機構 30 滑り支承手段
31 滑り板 33 滑り支承
34 ブロック 36 滑り材
40 復元バネ 50 オイルダンパー
51 シリンダ 53 ピストン
54 ピストンロッド 55 調圧弁
56 リリーフ弁
60 制震錘 61 アゴ
DESCRIPTION OF SYMBOLS 1 Building 3 Wall structure 4 Opening 7 Short surface 11 短 13 Base 20 Seismic isolation mechanism 30 Sliding bearing means 31 Sliding plate 33 Sliding bearing 34 Block 36 Sliding material 40 Restoring spring 50 Oil damper 51 Cylinder 53 Piston 54 Piston rod 55 Pressure regulating valve 56 Relief valve 60 Damping weight 61 Ago

Claims (8)

建物の屋上に免震装置を介して制震錘、屋上屋、屋上庭園、保水層、プール、水槽、防火水槽、池、ドッグラン、広告塔・広告板、設備機器、発電装置、蓄電池及び/又は蓄熱器を設けるか、あるいは、
建物の最上層階を含む上層階部分とその下の階との間に免震装置を設け、
地震時における前記建物の揺れを低減したことを特徴とする制震建物。
Seismic control weights, rooftops, rooftop gardens, water-retaining layers, pools, water tanks, fireproof water tanks, ponds, dog runs, advertising towers / advertising boards, equipment, power generators, storage batteries and / or rooftops via seismic isolation devices Install a regenerator, or
A seismic isolation device is installed between the upper floor including the top floor of the building and the floor below it.
A seismic building characterized by reducing the shaking of the building during an earthquake.
前記免震装置が、建物の平面視で複数箇所に分散配置された滑り支承、復元バネ及びダンパーを有し、
前記復元バネ及び/又はダンパーの特性及び/又は個数を調整することにより、前記免震装置の水平面におけるX方向及びY方向特性を変え得ることを特徴とする請求項1記載の制震建物。
The seismic isolation device has a sliding bearing, a restoring spring and a damper distributed and arranged at a plurality of locations in a plan view of the building,
The seismic control building according to claim 1, wherein the X direction and Y direction characteristics in the horizontal plane of the seismic isolation device can be changed by adjusting the characteristics and / or the number of the restoring springs and / or dampers.
前記建物が、階数5〜15で強化コンクリート(RC)製の制震構造であり、
前記免震装置の上の構造体(上構造体)の固有周期Tuと、前記免震装置の下の構造体(下構造体)の固有周期Tbの比(上下固有周期比)が、
Tb/Tu=0.01〜0.04
であることを特徴とする請求項1又は2記載の制震建物。
The building is a seismic structure made of reinforced concrete (RC) with 5 to 15 floors,
The ratio (vertical natural period ratio) of the natural period Tu of the structure (upper structure) above the base isolation device and the natural period Tb of the structure (lower structure) below the base isolation device is
Tb / Tu = 0.01-0.04
The seismic control building according to claim 1, wherein the building is a seismic control building.
前記上構造体の質量Wuと前記下構造体の質量Wbの比(上下質量比)が、
Wu/Wb=0.05〜0.07
であることを特徴とする請求項3記載の制震建物。
The ratio (up / down mass ratio) of the mass Wu of the upper structure and the mass Wb of the lower structure is:
Wu / Wb = 0.05-0.07
The seismic control building according to claim 3, wherein:
請求項1〜4いずれか1項記載の制震建物の設計方法であって、
前記建物が、階数5〜15で強化コンクリート(RC)製の制震構造であり、
該建物の建設場所において発生が想定される想定地震波について地震応答解析を行い、
その解析結果に応じて前記復元バネ及び/又はダンパーの仕様変更又は増減を行うか、
あるいは、前記解析結果によって明らかになった前記建物の弱点を補う詳細設計を行うことを特徴とする制震建物の設計方法。
A method for designing a vibration-damping building according to any one of claims 1 to 4,
The building is a seismic structure made of reinforced concrete (RC) with 5 to 15 floors,
Perform an earthquake response analysis on the assumed seismic waves that are expected to occur at the construction site of the building,
Depending on the analysis result, the restoration spring and / or the damper specification change or increase or decrease,
Alternatively, a design method for a seismic control building, wherein detailed design is performed to compensate for the weak point of the building that is clarified by the analysis result.
請求項1〜4いずれか1項記載の制震建物の制震性能の調整方法であって、
該建物の建設後に、該建物の固有周期を測定し、
その測定結果に応じて前記復元バネ及び/又はダンパーの取り換え、増減、及び/又は、調整を行うことを特徴とする制震建物の制震性能の調整方法。
A method for adjusting the vibration control performance of the vibration control building according to any one of claims 1 to 4,
After construction of the building, measure the natural period of the building,
A method for adjusting seismic performance of a seismic control building, wherein the restoring spring and / or the damper is replaced, increased or decreased and / or adjusted according to the measurement result.
前記建物が、階数5〜15で強化コンクリート(RC)製の制震構造であり、
前記想定地震波が、告示波(八戸波)、告示波(ELCENTRO波)、告示波(ランダム位相波)、サイト波(東京湾北部NS)、サイト波(東京湾北部EW)の内の1以上であり、
前記解析結果における建物の各階が受ける地震の力を弾性限度以下とすることを特徴とする請求項5又は6に記載の制震建物の設計方法。
The building is a seismic structure made of reinforced concrete (RC) with 5 to 15 floors,
The assumed seismic wave is one or more of a notification wave (Hachinohe wave), a notification wave (ELCENTRO wave), a notification wave (random phase wave), a sight wave (north of Tokyo Bay NS), and a sight wave (north of Tokyo Bay EW). Yes,
The method of designing a seismic control building according to claim 5 or 6, wherein an earthquake force received by each floor of the building in the analysis result is set to be equal to or less than an elastic limit.
請求項5、6又は7記載の方法によって設計されているか、制震性能が調整されていることを特徴とする制震建物。   8. A seismic control building, which is designed by the method according to claim 5, 6 or 7, or the seismic control performance is adjusted.
JP2013010830A 2013-01-24 2013-01-24 Seismic control building and design method of seismic control building Active JP6274726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013010830A JP6274726B2 (en) 2013-01-24 2013-01-24 Seismic control building and design method of seismic control building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013010830A JP6274726B2 (en) 2013-01-24 2013-01-24 Seismic control building and design method of seismic control building

Publications (2)

Publication Number Publication Date
JP2014141825A true JP2014141825A (en) 2014-08-07
JP6274726B2 JP6274726B2 (en) 2018-02-07

Family

ID=51423326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013010830A Active JP6274726B2 (en) 2013-01-24 2013-01-24 Seismic control building and design method of seismic control building

Country Status (1)

Country Link
JP (1) JP6274726B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105526306A (en) * 2015-11-24 2016-04-27 沈阳航空航天大学 Wide-band flexible floating raft vibration isolation system and design method thereof
JP2017053135A (en) * 2015-09-09 2017-03-16 千博産業株式会社 Vibration control structure of building
JP2021050590A (en) * 2019-09-26 2021-04-01 鹿島建設株式会社 Vibration proof structure
KR102647958B1 (en) * 2023-04-26 2024-03-14 김주연 out-door billboard
KR102647959B1 (en) * 2023-04-26 2024-03-14 김주연 out-door billboard

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281872A (en) * 1990-03-30 1991-12-12 Mitsui Constr Co Ltd Structure of damping device with heat accumulating function
JPH1193458A (en) * 1997-09-22 1999-04-06 Shimizu Corp Method for controlling vibration of building and earthquake resisting structure
JP2000170411A (en) * 1998-12-03 2000-06-20 Ohbayashi Corp Vibration control structure of building with design structure on roof
JP2002070359A (en) * 2000-08-29 2002-03-08 Mori Bill Kk Seismic control building structure
JP2011038294A (en) * 2009-08-10 2011-02-24 Asahi Kasei Homes Co Additional mass seismic response control building
JP4914940B1 (en) * 2011-02-15 2012-04-11 スターツCam株式会社 Middle-rise base-isolated building

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281872A (en) * 1990-03-30 1991-12-12 Mitsui Constr Co Ltd Structure of damping device with heat accumulating function
JPH1193458A (en) * 1997-09-22 1999-04-06 Shimizu Corp Method for controlling vibration of building and earthquake resisting structure
JP2000170411A (en) * 1998-12-03 2000-06-20 Ohbayashi Corp Vibration control structure of building with design structure on roof
JP2002070359A (en) * 2000-08-29 2002-03-08 Mori Bill Kk Seismic control building structure
JP2011038294A (en) * 2009-08-10 2011-02-24 Asahi Kasei Homes Co Additional mass seismic response control building
JP4914940B1 (en) * 2011-02-15 2012-04-11 スターツCam株式会社 Middle-rise base-isolated building

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053135A (en) * 2015-09-09 2017-03-16 千博産業株式会社 Vibration control structure of building
CN105526306A (en) * 2015-11-24 2016-04-27 沈阳航空航天大学 Wide-band flexible floating raft vibration isolation system and design method thereof
CN105526306B (en) * 2015-11-24 2019-02-01 沈阳航空航天大学 A kind of broadband flexibility buoyant raft shock-resistant system and its design method
JP2021050590A (en) * 2019-09-26 2021-04-01 鹿島建設株式会社 Vibration proof structure
JP7370789B2 (en) 2019-09-26 2023-10-30 鹿島建設株式会社 Seismic control structure, control method of seismic control structure, and design method of seismic control structure
KR102647958B1 (en) * 2023-04-26 2024-03-14 김주연 out-door billboard
KR102647959B1 (en) * 2023-04-26 2024-03-14 김주연 out-door billboard

Also Published As

Publication number Publication date
JP6274726B2 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
Zhou et al. Recent progress and application on seismic isolation energy dissipation and control for structures in China
JP6274726B2 (en) Seismic control building and design method of seismic control building
TWI472670B (en) Method and structure for damping movement in buildings
Li et al. Advances in structural control in civil engineering in China
JP6979805B2 (en) Seismic isolation structure
SK286842B6 (en) Method of protecting buildings and objects from dynamic forces caused by acceleration foundation plate, for instance due to earthquake and apparatus for making the same
JP4689386B2 (en) Building with seismic isolation piloti floor
JP2010203192A (en) Connected seismic control structure
CN203799620U (en) Wind-resistant and vibration isolation structure of roof advertising board
Hameed et al. Seismic performance of low to medium rise reinforced concrete buildings using passive energy dissipation devices
Valente Improving the seismic performance of precast buildings using dissipative devices
Mazzolani Passive control technologies for seismic‐resistant buildings in Europe
Rai et al. Effectiveness of multiple TSWDs for seismic response control of masonry-infilled RC framed structures
Kim et al. Seismic performance of tubular structures with buckling restrained braces
JP4990729B2 (en) Seismic isolation building
JP6190643B2 (en) Vibration control device
JP2011038294A (en) Additional mass seismic response control building
Farmanbordar et al. Seismic assessment of base-isolated nuclear power plants
Antonucci et al. Shaking table testing of an RC frame with dissipative bracings
JP6108370B2 (en) Optimal design method of low-rise centralized control system using viscous damping
JPH08233029A (en) Base isolation and damper device by bag
JP3713646B2 (en) Seismic isolation structure
Tallapalem et al. Analysis of Multi-Storey Building in Different Seismic Zones of India
Kurokawa et al. Seismic design of a tall building with energy dissipation damper for the attenuation of torsional vibration
Shih et al. Vibration control and shock absorption techniques for Hi‐Tech manufacturing plants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180109

R150 Certificate of patent or registration of utility model

Ref document number: 6274726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250