JP2021050590A - Vibration proof structure - Google Patents

Vibration proof structure Download PDF

Info

Publication number
JP2021050590A
JP2021050590A JP2019175805A JP2019175805A JP2021050590A JP 2021050590 A JP2021050590 A JP 2021050590A JP 2019175805 A JP2019175805 A JP 2019175805A JP 2019175805 A JP2019175805 A JP 2019175805A JP 2021050590 A JP2021050590 A JP 2021050590A
Authority
JP
Japan
Prior art keywords
seismic isolation
isolation layer
superstructure
seismic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019175805A
Other languages
Japanese (ja)
Other versions
JP7370789B2 (en
Inventor
武 中井
Takeshi Nakai
武 中井
栗野 治彦
Haruhiko Kurino
治彦 栗野
友貴 矢口
Tomoki Yaguchi
友貴 矢口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2019175805A priority Critical patent/JP7370789B2/en
Publication of JP2021050590A publication Critical patent/JP2021050590A/en
Application granted granted Critical
Publication of JP7370789B2 publication Critical patent/JP7370789B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a vibration proof building capable of realizing a high vibration proof performance while capable of utilizing an upper structure body as TMD, reducing responses of a lower structure body and the upper structure body effectively and restraining sacrifice as an architectural plan, and a control method of the vibration proof building.SOLUTION: When a mass ratio m/M is equal to or greater than 10%, and equal to or less than 100%, wherein a mass of an upper structure body 3 above an intermediate vibration proof layer 2 is m, and a mass of a lower structure body 4 below that is M. A characteristic period f (whole) of a whole rigid-connected building for connecting the upper structure body 3 and the lower structure body 4 of at least one of two directions of X, Y orthogonal in a plane, a characteristic period f (upper vibration proof) of the intermediate vibration proof layer 2 and the upper structure body 3, and a characteristic period f (lower) of the lower structure body 4 satisfy a relation of f (whole)>f (upper vibration proof)>f (lower) and utilize the upper structure body 3 as TMD.SELECTED DRAWING: Figure 1

Description

本発明は、中間免震層を利用した制震構造物及び制震構造物の制御方法に関する。 The present invention relates to a seismic control structure using an intermediate seismic isolation layer and a method for controlling the seismic control structure.

従来、例えば、オフィスビルや商業ビル、マンションなどの中高層建物には、中間階に積層ゴムなどの免震装置を介設してなる中間免震層を設け、中間免震層を境に上部構造体の固有周期を卓越周期帯域から長周期側にずらし、地震時や強風時における応答加速度を小さくするように構成したものがある(例えば、特許文献1参照)。 Conventionally, for example, in middle- and high-rise buildings such as office buildings, commercial buildings, and condominiums, an intermediate seismic isolation layer is provided on the intermediate floor via a seismic isolation device such as laminated rubber, and the upper structure is separated by the intermediate seismic isolation layer. There is a structure in which the natural period of the body is shifted from the dominant period band to the long period side to reduce the response acceleration during an earthquake or strong wind (see, for example, Patent Document 1).

このような中間免震建物(中間免震構造物)は、例えば巨大地震を受けた場合であっても、中間免震層に変形を集中させ、上部構造体の応答加速度を小さくして揺れを抑えることができる。このため、中間免震層を備えていない場合に生じ得る、建物の最弱層に損傷が生じて耐力が低下し始め、この最弱層に地震エネルギーが集中して層崩壊が生じ、他の層は健全性が確保されているにもかかわらず最弱層の被害が甚大となって補修による復旧が困難になったり、建物が崩壊に至る現象を、中間免震建物(中間免震構造物)では効果的に防止できる。 Such an intermediate seismic isolation building (intermediate seismic isolation structure), for example, even when it receives a huge earthquake, concentrates deformation on the intermediate seismic isolation layer and reduces the response acceleration of the superstructure to cause shaking. It can be suppressed. For this reason, the weakest layer of the building, which can occur when the intermediate seismic isolation layer is not provided, begins to be damaged and the bearing capacity begins to decrease, seismic energy is concentrated on this weakest layer, and layer collapse occurs, and other layers occur. An intermediate seismic isolation building (intermediate seismic isolation structure) is a phenomenon in which the weakest layer is severely damaged and it is difficult to restore it by repair, or the building collapses, even though the soundness of the layer is ensured. ) Can be effectively prevented.

ちなみに、下階層を商業施設、上階層を居住スペースにするなど、下階層と上階層の用途が異なる中高層建物に中間免震構造を適用する場合などにおいては、用途が異なる下階層と上階層の境界層に機械室、空調室を設けるとともに免震装置などを設置し、この境界層を中間免震層として階層空間の有効活用することも提案、実用化されている。 By the way, when applying the intermediate seismic isolation structure to middle-high-rise buildings with different uses for the lower and upper layers, such as using the lower layer as a commercial facility and the upper layer as a living space, the lower and upper layers have different uses. It has also been proposed and put into practical use that a machine room and an air-conditioning room are provided in the boundary layer and a seismic isolation device is installed, and this boundary layer is used as an intermediate seismic isolation layer to effectively utilize the hierarchical space.

特開2006−009477号公報Japanese Unexamined Patent Publication No. 2006-009477

ここで、建物の全高の半分よりも下方に中間免震層を設けた場合には、免震層の振動周期が下部構造体の振動周期よりも長くなりすぎるため、直下階層、すなわち、下部構造体の最上階層の応答加速度が大きくなり、下部構造体を頑強に設計する必要が生じてしまうという課題がある。
また、上部構造体においても、建物躯体の剛性を十分大きく設計しなければ、上部構造体の上部、すなわち、建物の頂部付近の応答が増幅して応答加速度が大きくなる、いわゆる「むちふり現象」が生じてしまうという課題がある。この「むちふり現象」が生じると、上部構造体の最上階層の応答が過大になり、居住性が著しく低下する。
Here, when the intermediate seismic isolation layer is provided below half of the total height of the building, the vibration cycle of the seismic isolation layer becomes too long than the vibration cycle of the lower structure, so that the floor directly below, that is, the lower structure There is a problem that the response acceleration of the uppermost layer of the body becomes large, and it becomes necessary to design the substructure robustly.
Also, in the superstructure, if the rigidity of the building frame is not designed to be sufficiently large, the response at the upper part of the superstructure, that is, near the top of the building is amplified and the response acceleration becomes large, that is, the so-called "whip-flipping phenomenon". There is a problem that When this "whip phenomenon" occurs, the response of the uppermost layer of the superstructure becomes excessive, and the habitability is significantly reduced.

逆に、免震層上部の重量が建物全体重量の1割に満たない位置(全高の半分よりも相当上方)に中間免震層を設け、これをTMDとして利用しようとした場合、地震時における免震層の層間変位が過大となり、積層ゴムなどの免震装置の変形が大きくなり過ぎるという課題がある。層間変位が過大になることを防ぐためには、積層ゴムの径を大きくしたり、数を増やすなどして中間免震層の剛性を大きくすることが有効だが、これにより上部構造体を慣性質量とみなした下部構造体に対するTMD(Tuned Mass Damper)効果が失われるという不都合を招く。すなわち、免震層の上部の重量が小さすぎると、地震時における免震層の層間変位の抑制と、下部構造体に対するTMD効果を両立させることができない。なお、TMD効果とは、免震層上部躯体を「重り(慣性質量)」として捉えた際の、免震層下部躯体への振動抑制効果を言う。 Conversely, if an intermediate seismic isolation layer is provided at a position where the weight of the upper part of the seismic isolation layer is less than 10% of the total weight of the building (much above half the total height) and this is used as a TMD, it will occur during an earthquake. There is a problem that the inter-story displacement of the seismic isolation layer becomes excessive and the deformation of the seismic isolation device such as laminated rubber becomes too large. In order to prevent the interlayer displacement from becoming excessive, it is effective to increase the rigidity of the intermediate seismic isolation layer by increasing the diameter or number of laminated rubber, but this makes the superstructure the inertial mass. This causes the inconvenience of losing the TMD (Tuned Mass Damper) effect on the deemed substructure. That is, if the weight of the upper part of the seismic isolation layer is too small, it is not possible to suppress the inter-story displacement of the seismic isolation layer at the time of an earthquake and to achieve the TMD effect on the lower structure at the same time. The TMD effect refers to the vibration suppression effect on the lower skeleton of the seismic isolation layer when the upper skeleton of the seismic isolation layer is regarded as a "weight (inertial mass)".

これらの課題への対応として、建物の全高の半分よりも上方に中間免震層を設けた場合において、中間免震層に履歴型の鋼材ダンパやロック機構付きのオイルダンパを設け、地震時や強風時の大入力に対する免震層の層間変形を抑制する手法が実用化されている。 As a response to these issues, when an intermediate seismic isolation layer is installed above half the total height of the building, a historical steel damper or an oil damper with a lock mechanism is installed in the intermediate seismic isolation layer in the event of an earthquake. A method of suppressing the interlayer deformation of the seismic isolation layer with respect to a large input in strong winds has been put into practical use.

しかしながら、履歴型の鋼材ダンパやロック機構付きのオイルダンパは、中間免震層に作用するせん断力が小さいときにも中間免震層の変形を止めてしまうため、中小地震などの小入力時に上部構造体を慣性質量とみなして下部構造体の揺れを抑えるTMD効果を得ることが難しくなってしまう。 However, history-type steel dampers and oil dampers with a lock mechanism stop the deformation of the intermediate seismic isolation layer even when the shear force acting on the intermediate seismic isolation layer is small, so the upper part is used for small inputs such as small and medium-sized earthquakes. It becomes difficult to obtain the TMD effect of suppressing the shaking of the substructure by regarding the structure as an inertial mass.

ここで参考として、中間免震層を設けない場合の従来の態様の例を説明する。この場合は、構造体の全階層(多階層)の構面内などにオイルダンパなどの制震装置を設置(下部構造体に多数の制震装置を設置)して、構造体の応答の低減を図ることが考えられる。
しかしながら、この場合には、構造体に多数の制震装置が設置されるため、制震装置の施工、メンテナンスなどに多大な労力とコストを要し、さらに、構造体の全階層の構面内などに制震装置を設置するための占有スペースが必要になり建築計画の自由度が損なわれ、空間利用効率の低下、見栄えの悪化など、多くの不都合が生じてしまう。
Here, as a reference, an example of a conventional embodiment in the case where the intermediate seismic isolation layer is not provided will be described. In this case, install seismic control devices such as oil dampers in the premises of all layers (multi-level) of the structure (install a large number of seismic control devices in the lower structure) to reduce the response of the structure. It is conceivable to try.
However, in this case, since a large number of seismic control devices are installed in the structure, a great deal of labor and cost are required for the construction and maintenance of the seismic control devices, and further, within the premises of all layers of the structure. Occupied space is required to install the seismic control device, which impairs the freedom of construction planning, and causes many inconveniences such as deterioration of space utilization efficiency and deterioration of appearance.

このため、地震対策や事業継続に対する社会的ニーズが飛躍的に高まる中で、建築計画の自由度を確保しつつ、高度な耐震性能を有する制震構造物が強く望まれている。 For this reason, as social needs for earthquake countermeasures and business continuity increase dramatically, seismic control structures with high seismic performance while ensuring the degree of freedom in construction planning are strongly desired.

本発明の制震構造物の一態様は、中間免震層よりも上方の上部構造体の質量をm、下方の下部構造体の質量をMとしたとき、質量比m/Mが10%以上、100%以下であり、平面で直交するX,Yの二方向の少なくとも一方の前記上部構造体と前記下部構造体を剛結した剛結構造物全体の固有周期f(全)と、前記中間免震層及び前記上部構造体の固有周期f(上部免震)と、前記下部構造体の固有周期f(下部)とが、f(全)>f(上部免震)>f(下部)の関係を満たし、前記上部構造体をTMDとして利用するように構成する。 One aspect of the seismic isolation structure of the present invention has a mass ratio m / M of 10% or more, where m is the mass of the upper structure above the intermediate seismic isolation layer and M is the mass of the lower structure below. , 100% or less, and the natural period f (all) of the entire rigid structure that rigidly connects the superstructure and the substructure in at least one of the two directions of X and Y that are orthogonal to each other in the plane, and the intermediate isolation. The relationship between the natural period f (upper seismic isolation) of the seismic layer and the upper structure and the natural period f (lower part) of the lower structure is f (all)> f (upper seismic isolation)> f (lower part). Is satisfied, and the superstructure is configured to be used as a TMD.

本発明の制震構造物の制御方法の一態様は、前記上部構造体と前記下部構造体の相対速度が所定の相対速度に達した時点で、前記中間免震層に設けられ、前記中間免震層の層間変形を制御するオイルダンパの減衰力を、前記所定の相対速度以下に制限するように制御する。 One aspect of the control method for the seismic control structure of the present invention is provided on the intermediate seismic isolation layer when the relative speed between the upper structure and the lower structure reaches a predetermined relative speed, and the intermediate isolation is provided. The damping force of the oil damper that controls the interlayer deformation of the seismic layer is controlled so as to be limited to the predetermined relative velocity or less.

本発明の制震構造物及び制震構造物の制御方法の一態様によれば、上部構造体をTMDとして利用して、下部構造体と上部構造体の応答を効果的に低減でき、建築計画的な犠牲を抑えつつ、高度な耐震性能を備えた制震構造物を実現することが可能になる。 According to one aspect of the seismic control structure and the control method of the seismic control structure of the present invention, the superstructure can be used as a TMD to effectively reduce the response between the substructure and the superstructure, and the building plan. It will be possible to realize a seismic control structure with high seismic performance while suppressing the cost.

一実施形態の制震構造物の一例を示す模式図である。It is a schematic diagram which shows an example of the vibration control structure of one Embodiment. 一実施形態の制震構造物の中間免震層の構成の一例を示す立面図である。It is an elevation view which shows an example of the structure of the intermediate seismic isolation layer of the seismic control structure of one embodiment. 一実施形態の制震構造物における、上部構造体と下部構造体を剛結した構造物と、上部構造体及び中間免震層と、下部構造体との各固有周期の大小関係を示す模式図である。Schematic diagram showing the magnitude relationship of each natural period between the superstructure and the substructure, the superstructure and the intermediate seismic isolation layer, and the substructure in the seismic control structure of one embodiment. Is. 一実施形態の制震構造物の中間免震層に設置されるオイルダンパの性能を示す図であり、ダンパ速度と減衰力の関係を示す図である。It is a figure which shows the performance of the oil damper installed in the intermediate seismic isolation layer of the seismic isolation structure of one Embodiment, and is the figure which shows the relationship between the damper speed and the damping force. シミュレーション結果を示す図であり、各階層の最大応答変位を示す図である。It is a figure which shows the simulation result, and is the figure which shows the maximum response displacement of each layer. シミュレーション結果を示す図であり、各階層の最大応答加速度を示す図である。It is a figure which shows the simulation result, and is the figure which shows the maximum response acceleration of each layer. シミュレーション結果を示す図であり、各階層の最大応答せん断力を示す図である。It is a figure which shows the simulation result, and is the figure which shows the maximum response shear force of each layer. 一実施形態の制震構造物の変更例を示す図であり、上部構造体から吊り下げる構造体と下部構造体から立ち上がる構造体とからなる変形抑制機構の一例を示す断面図である。It is a figure which shows the modification example of the vibration control structure of one Embodiment, and is the cross-sectional view which shows an example of the deformation suppression mechanism which consists of the structure which hangs from the superstructure and the structure which rises from a lower structure.

以下、図1から図7を参照し、本発明の一実施形態に係る制震構造物及び制震構造物の制御方法について説明する。 Hereinafter, the seismic control structure and the control method of the seismic control structure according to the embodiment of the present invention will be described with reference to FIGS. 1 to 7.

本実施形態の制震構造物1は、オフィスビル、マンション、商業ビル、複合ビルなどの中高層建物であり、図1に示すように、建物1の全高の中間階に免震層2を備え、この中間免震層2に積層ゴム等の免震装置(アイソレータ)が設置されている。例えば、中間免震層2は、中間免震層2を境に上部構造体3の柱と下部構造体4の柱の間に免震装置を介設し、この免震装置によって上部構造体3を支持して構成されている。
なお、中間免震層2は、図2に示すように、積層ゴムなどの免震装置5を複数段積層配置して構成してもよい。このとき、免震装置5の上下端の固定度を確保するために、中間梁6などを適宜設けて構成すればよい。
The seismic isolation structure 1 of the present embodiment is a middle-high-rise building such as an office building, an apartment, a commercial building, or a complex building, and as shown in FIG. 1, a seismic isolation layer 2 is provided on the middle floor of the total height of the building 1. A seismic isolation device (isolator) such as laminated rubber is installed on the intermediate seismic isolation layer 2. For example, in the intermediate seismic isolation layer 2, a seismic isolation device is interposed between the pillars of the upper structure 3 and the pillars of the lower structure 4 with the intermediate seismic isolation layer 2 as a boundary, and the superstructure 3 is provided by this seismic isolation device. It is constructed in support of.
As shown in FIG. 2, the intermediate seismic isolation layer 2 may be configured by laminating a plurality of stages of seismic isolation devices 5 such as laminated rubber. At this time, in order to secure the degree of fixation of the upper and lower ends of the seismic isolation device 5, an intermediate beam 6 or the like may be appropriately provided and configured.

本実施形態の制震構造物において、中間免震層2には、上部構造体3と下部構造体4に両端部を接続してオイルダンパが設置されている(図2中の符号7:オイルダンパ(減衰装置)参照)。本実施形態では、このオイルダンパとして、特許第5870138号公報に開示された「ハードニング油圧回路を搭載した速度制限機能付き油圧ダンパ」(以下、ハードニングオイルダンパという)が適用されている。ハードニングオイルダンパはダンパに作用する力の大きさに応じて、すなわち、上部構造体3と下部構造体4の相対速度、つまり中間免震層2の層間速度の大きさに応じて、減衰係数が増減する可変減衰性能を備えたダンパである。ハードニングオイルダンパの詳細な説明は、後述する。 In the seismic control structure of the present embodiment, an oil damper is installed in the intermediate seismic isolation layer 2 by connecting both ends to the superstructure 3 and the substructure 4 (reference numeral 7 in FIG. 2: oil). See damper (damping device)). In the present embodiment, as the oil damper, the "hydraulic damper with a speed limiting function equipped with a hardening hydraulic circuit" (hereinafter, referred to as a hardening oil damper) disclosed in Japanese Patent No. 5870138 is applied. The hardening oil damper has a damping coefficient according to the magnitude of the force acting on the damper, that is, the relative velocity between the superstructure 3 and the substructure 4, that is, the magnitude of the interlayer velocity of the intermediate seismic isolation layer 2. It is a damper with variable damping performance that increases or decreases. A detailed description of the hardening oil damper will be described later.

本実施形態の制震構造物1は、図1及び図3に示すように、中間免震層2よりも上方の上部構造体3の質量をm、下方の下部構造体4の質量をMとしたとき、質量比m/Mが10%以上、100%以下(0.1≦m/M≦1)であり、平面で直交するX,Yの二方向の少なくとも一方の上部構造体3と下部構造体4を剛結した剛結構造物全体の固有周期f(全)と、中間免震層2及び上部構造体3の固有周期f(上部免震)と、下部構造体4の固有周期f(下部)とが、
f(全)>f(上部免震)>f(下部)
の関係を満たし、上部構造体3をTMD(慣性質量)として利用するように構成されている。なお、中間免震層2及び上部構造体3の固有周期f(上部免震)は、上部構造体3を完全剛体と仮定したときの、実質的な中間免震層2の固有周期を意味する。
In the seismic control structure 1 of the present embodiment, as shown in FIGS. 1 and 3, the mass of the upper structure 3 above the intermediate seismic isolation layer 2 is m, and the mass of the lower structure 4 below is M. When the mass ratio m / M is 10% or more and 100% or less (0.1 ≦ m / M ≦ 1), the upper structure 3 and the lower part in at least one of the two directions of X and Y orthogonal to each other in the plane. The natural period f (all) of the entire rigid structure in which the structure 4 is rigidly connected, the natural period f (upper seismic isolation) of the intermediate seismic isolation layer 2 and the upper structure 3, and the natural period f of the lower structure 4 (upper seismic isolation). (Bottom) and
f (all)> f (upper seismic isolation)> f (lower)
The superstructure 3 is configured to be used as a TMD (inertial mass). The natural period f (upper seismic isolation) of the intermediate seismic isolation layer 2 and the upper structure 3 means a substantial natural period of the intermediate seismic isolation layer 2 when the upper structure 3 is assumed to be a completely rigid body. ..

本実施形態の制震構造物1は、中間免震層2の減衰定数hがh≧40%とされ、通常の中間免震層における減衰定数20〜30%程度よりも大きく設定されている。 In the seismic control structure 1 of the present embodiment, the damping constant h of the intermediate seismic isolation layer 2 is set to h ≧ 40%, which is set to be larger than the damping constant of about 20 to 30% in the normal intermediate seismic isolation layer.

従来の中間免震層を備えた構造物においては、上部構造体の質量mが下部構造体の質量Mよりも小さすぎると、大地震や強風時に中間免震層の変形(層間変位)が大きくなりすぎ、設計可能なストロークに収めながら、上部構造体の質量mをTMD(慣性質量)として利用して下部構造体に対する十分な制震効果を発揮させることが難しくなってしまう。
逆に、上部構造体の質量mが下部構造体の質量Mより大きくなると、中間免震層直下の下部構造体の頂部の応答加速度が大きくなってしまう。
In a conventional structure provided with an intermediate seismic isolation layer, if the mass m of the superstructure is too smaller than the mass M of the lower structure, the deformation (interlayer displacement) of the intermediate seismic isolation layer is large during a large earthquake or strong wind. It becomes too much, and it becomes difficult to exert a sufficient seismic isolation effect on the lower structure by using the mass m of the upper structure as TMD (inertial mass) while keeping the stroke within the designable stroke.
On the contrary, when the mass m of the upper structure is larger than the mass M of the lower structure, the response acceleration of the top of the lower structure immediately below the intermediate seismic isolation layer becomes large.

これに対し、本願の発明者らは、鋭意研究によって、上部構造体3と下部構造体4の質量比m/Mを10%以上、100%以下にすることによって、上記の両課題を解消し、上部構造体3の質量mをTMD(慣性質量)として利用して下部構造体4に対する十分な制震効果を得るとともに、中間免震層2の直下の下部構造体4の頂部の応答加速度を好適に抑えることが可能であることを見出した。 On the other hand, the inventors of the present application have solved both of the above problems by making the mass ratio m / M of the superstructure 3 and the substructure 4 10% or more and 100% or less by diligent research. , The mass m of the superstructure 3 is used as TMD (inertial mass) to obtain a sufficient seismic control effect on the substructure 4, and the response acceleration of the top of the substructure 4 directly below the intermediate seismic isolation layer 2 is obtained. It has been found that it can be suppressed suitably.

本実施形態の制震構造物1においては、f(全)>f(上部免震)>f(下部)としている。 In the vibration control structure 1 of the present embodiment, f (all)> f (upper seismic isolation)> f (lower part).

ここで、免震構造物の一般的な考え方においては、免震装置の積層ゴムの硬さを調節するなどすれば、f(上部免震)を選択することができ、f(上部免震)>f(全)>f(下部)としたり、f(全)>f(下部)>f(上部免震)とすることもできる。 Here, in the general idea of a seismic isolation structure, f (upper seismic isolation) can be selected by adjusting the hardness of the laminated rubber of the seismic isolation device, and f (upper seismic isolation). > F (all)> f (lower part) or f (all)> f (lower part)> f (upper seismic isolation).

しかしながら、中間免震層の固有周期(f(上部免震))を長くしすぎると、大地震や強風時に中間免震層の変形(層間変位)が大きくなりすぎ、設計可能なストロークに収めながら、上部構造体の質量mをTMDとして利用して下部構造体に対する十分な制震効果を発揮させることが難しくなってしまう。 However, if the natural period (f (upper seismic isolation)) of the intermediate seismic isolation layer is made too long, the deformation of the intermediate seismic isolation layer (interlayer displacement) becomes too large during a large earthquake or strong wind, and the stroke can be designed. , It becomes difficult to exert a sufficient seismic isolation effect on the lower structure by using the mass m of the upper structure as TMD.

逆に、中間免震層の固有周期(f(上部免震))を短くしすぎると、TMDとしての上部構造体の下部構造体との間に大きな同調ずれが生じてしまい、TMDとしての制震効果が低減、喪失し、下部構造体の揺れを抑制できなくなってしまう。 On the contrary, if the natural period (f (upper seismic isolation)) of the intermediate seismic isolation layer is made too short, a large synchronization deviation will occur between the upper structure as the TMD and the lower structure as the TMD. The seismic effect is reduced or lost, and the shaking of the substructure cannot be suppressed.

これに対し、本願の発明者らは、鋭意研究によって、上部構造体3と下部構造体4の質量比m/Mを10%以上、100%以下にすることに加え、f(全)>f(上部免震)>f(下部)とすることによって、上部構造体3の質量mをTMDに利用し、十分で確実に下部構造体4に対する制震効果を得ることが可能で、且つ中間免震層2の直下の下部構造体4の頂部の応答加速度を好適に抑えることができることを見出した。 On the other hand, the inventors of the present application, in addition to making the mass ratio m / M of the superstructure 3 and the substructure 4 10% or more and 100% or less by diligent research, f (total)> f. By setting (upper seismic isolation)> f (lower part), the mass m of the superstructure 3 can be used for TMD, and a sufficient and reliable seismic control effect on the lower structure 4 can be obtained, and an intermediate seismic isolation can be obtained. It has been found that the response acceleration of the top of the substructure 4 immediately below the seismic layer 2 can be suitably suppressed.

したがって、本実施形態の制震構造物1によれば、中間免震層2によって上部構造体3の揺れを抑制することができ、上部構造体3をTMDとして効果的に利用することで、下部構造体4の応答(加速度、変位)を抑制でき、中間免震層2を境に上下の上部構造体3と下部構造体4の両者の揺れを効果的に抑制することが可能になる。 Therefore, according to the seismic control structure 1 of the present embodiment, the intermediate seismic isolation layer 2 can suppress the shaking of the upper structure 3, and by effectively using the upper structure 3 as the TMD, the lower part can be used. The response (acceleration, displacement) of the structure 4 can be suppressed, and the shaking of both the upper and lower upper structures 3 and the lower structure 4 can be effectively suppressed with the intermediate seismic isolation layer 2 as a boundary.

従来の中間免震層を備えた構造物では、大地震時や強風時に中間免震層の層間変位、すなわち上部構造体の揺れが大きくなり、上部構造体の居住性が悪くなってしまう。上部構造体の揺れを抑えようとすると、今度は下部構造体、特に中間免震層直下の応答が大きくなってしまうという課題があった。しかし、本実施形態のように、上部構造体3と下部構造体4の質量比m/Mを10%以上、100%以下にすることに加え、f(全)>f(上部免震)>f(下部)とすることによって、このような課題を解決することができ、制震、免震性能に優れた制震構造物1を実現することが可能になる。 In the conventional structure provided with the intermediate seismic isolation layer, the inter-story displacement of the intermediate seismic isolation layer, that is, the shaking of the superstructure becomes large at the time of a large earthquake or a strong wind, and the habitability of the superstructure deteriorates. When trying to suppress the shaking of the upper structure, there was a problem that the response of the lower structure, especially directly under the intermediate seismic isolation layer, became large. However, as in the present embodiment, in addition to setting the mass ratio m / M of the upper structure 3 and the lower structure 4 to 10% or more and 100% or less, f (all)> f (upper seismic isolation)>. By setting f (lower part), such a problem can be solved, and it becomes possible to realize a seismic control structure 1 having excellent seismic control and seismic isolation performance.

言い換えれば、本実施形態の制震構造物1においては、必ずしも下部構造体4に制震装置を設置することを要さず、上部構造体3と下部構造体4の質量比m/Mを10%以上、100%以下にすることに加え、f(全)>f(上部免震)>f(下部)とすることによって、優れた制震、免震性能に加え、施工性、メンテナンス性、経済性、空間利用性、意匠性などに優れた制震構造物1を実現することが可能になる。 In other words, in the seismic isolation structure 1 of the present embodiment, it is not always necessary to install the seismic isolation device in the lower structure 4, and the mass ratio m / M of the upper structure 3 and the lower structure 4 is 10 In addition to making% or more and 100% or less, by setting f (all)> f (upper seismic isolation)> f (lower), in addition to excellent seismic control and seismic isolation performance, workability and maintainability, It becomes possible to realize the seismic isolation structure 1 having excellent economic efficiency, space utilization, design, and the like.

これにより、例えば、上部構造体3が居住スペース、下部構造体4が商業スペースなど、上部構造体3と下部構造体4の用途が異なる場合には、境界層を中間免震層とすることで、大地震時や強風時の上部構造体3の揺れを抑制して好適に居住性を確保すること、下部構造体4の揺れを抑制することの両立を図ることが可能になる。 As a result, when the uses of the superstructure 3 and the substructure 4 are different, for example, the superstructure 3 is a living space and the substructure 4 is a commercial space, the boundary layer can be used as an intermediate seismic isolation layer. It is possible to suppress the shaking of the superstructure 3 at the time of a large earthquake or a strong wind to appropriately secure the habitability, and to suppress the shaking of the lower structure 4 at the same time.

本実施形態の制震構造物1においては、中間免震層2の層間変位が積層ゴムなどの免震装置の許容ストロークを超えるおそれがある場合に、中間免震層2にオイルダンパなどの減衰装置を設置したり、減衰装置の設置台数を増やすなどして、中間免震層2の減衰定数hを従来よりも大きくし、h≧40%にすることが好ましい。 In the seismic isolation structure 1 of the present embodiment, when the interlayer displacement of the intermediate seismic isolation layer 2 may exceed the allowable stroke of the seismic isolation device such as laminated rubber, the intermediate seismic isolation layer 2 is damped by an oil damper or the like. It is preferable that the damping constant h of the intermediate seismic isolation layer 2 is made larger than before so that h ≧ 40% by installing the device or increasing the number of damping devices installed.

また、中間免震層2に設置する減衰装置は、減衰定数を変えることができる可変減衰装置(アクティブダンパを含む)とすることが好ましく、さらに、本実施形態の制震構造物1のように、ハードニングオイルダンパを適用することがより好ましい。 Further, the damping device installed in the intermediate seismic isolation layer 2 is preferably a variable damping device (including an active damper) capable of changing the damping constant, and further, as in the vibration control structure 1 of the present embodiment. , It is more preferable to apply a hardening oil damper.

ハードニングオイルダンパとは、油圧ダンパの油圧室間に調圧弁と付加油圧弁を並列に接続し、調圧弁をピストンの荷重が一定荷重以下のときに開放状態に保ち、一定荷重を超えたときに閉鎖状態にする一方、付加油圧弁を常に開放状態に保つことで、ピストンの荷重が一定荷重を超え、油圧ダンパの減衰係数が付加油圧弁の減衰係数のみになるときに、油圧ダンパが発生する抵抗力を急激に上昇させ、油圧ダンパの剛性を一時的にほぼ無限大近くにして、油圧ダンパにハードニング特性を付与するものである。 The hardening oil damper is when the pressure regulating valve and the additional hydraulic valve are connected in parallel between the hydraulic chambers of the hydraulic damper, and the pressure regulating valve is kept open when the load of the piston is less than a certain load and exceeds a certain load. By keeping the additional hydraulic valve in the open state at all times, the hydraulic damper is generated when the load of the piston exceeds a certain load and the damping coefficient of the hydraulic damper is only the damping coefficient of the additional hydraulic valve. The resistance force to be applied is rapidly increased, the rigidity of the hydraulic damper is temporarily made close to infinity, and the hydraulic damper is given a hardening characteristic.

そして、本実施形態の制震構造物1及び制震構造物1の制御方法では、図4に示すように、中小地震などの小入力時において、上部構造体3の下部構造体4に対するTMD効果が良好に得られる減衰力が発現するようにハードニングオイルダンパの制御を行う。そして大地震や強風などの大入力時には、上部構造体3と下部構造体4の相対速度が予め設定した所定の速度に達するときに、減衰力が急激に上昇するように制御を行う。また、所定の速度を一時的に超えてから再度所定の速度を下回る場合は、再び上部構造体3の下部構造体4に対するTMD効果が良好に得られる減衰力が発現するように戻す制御を行う。 Then, in the control method of the seismic control structure 1 and the seismic control structure 1 of the present embodiment, as shown in FIG. 4, the TMD effect on the lower structure 4 of the upper structure 3 at the time of a small input such as a small and medium-sized earthquake. The hardening oil damper is controlled so that the damping force that can be obtained well is exhibited. Then, at the time of a large input such as a large earthquake or a strong wind, when the relative speed of the superstructure 3 and the substructure 4 reaches a predetermined speed set in advance, the damping force is controlled to increase sharply. Further, when the speed temporarily exceeds the predetermined speed and then falls below the predetermined speed again, the control is performed to return the damping force for obtaining the TMD effect to the lower structure 4 of the upper structure 3 to be exhibited again. ..

具体的に、大地震や強風などの大入力時には、上部構造体3と下部構造体4の相対速度は、上部構造体3が中立位置にある状態、すなわち上部構造体3に生じる加速度および応力が0(ゼロ)に近い状態で最大となる。本実施形態の制震構造物1においては、この相対速度が所定の値を超えた状態でオイルダンパの減衰力をハードニングさせ、中間免震層2の層間速度の上昇を抑える。上部構造体3と下部構造体4の相対速度が所定の値を超えた状態で減衰力をハードニングさせるように制御を行うことによって、上部構造体3の加速度および応力レベルを過度に大きくすることなく、制震構造物1を設計することが可能になる。 Specifically, at the time of a large input such as a large earthquake or a strong wind, the relative velocity between the superstructure 3 and the substructure 4 is the state in which the superstructure 3 is in the neutral position, that is, the acceleration and stress generated in the superstructure 3. It becomes maximum when it is close to 0 (zero). In the vibration control structure 1 of the present embodiment, the damping force of the oil damper is hardened in a state where the relative speed exceeds a predetermined value, and the increase in the interlayer speed of the intermediate seismic isolation layer 2 is suppressed. To make the acceleration and stress level of the superstructure 3 excessively large by controlling the damping force to be hardened when the relative velocity of the superstructure 3 and the lower structure 4 exceeds a predetermined value. It becomes possible to design the seismic control structure 1 without any problem.

本実施形態では、このように制震構造物1を構成、制御することによって、大地震や強風などの大入力時に、上部構造体3と下部構造体4の相対速度が予め設定した所定の速度に達するとともに減衰力が急激に上昇し、上部構造体3の応答(運動エネルギー、加速度、変位)を制限、抑制することが可能になる。また、上部構造体3の加速度および応力レベルを過度に大きくすることなく制震構造物1を設計することが可能になる。 In the present embodiment, by configuring and controlling the vibration control structure 1 in this way, the relative speeds of the upper structure 3 and the lower structure 4 are set to predetermined speeds at the time of a large input such as a large earthquake or a strong wind. The damping force rises sharply as it reaches, and it becomes possible to limit and suppress the response (kinetic energy, acceleration, displacement) of the superstructure 3. Further, it becomes possible to design the vibration control structure 1 without excessively increasing the acceleration and stress levels of the superstructure 3.

上部構造体3と下部構造体4の相対速度が予め設定した所定の速度より小さい中小地震などの小入力時には、上部構造体3がTMDとして最も効果を発揮できる減衰定数に設定されるため、下部構造体4の揺れを効果的に抑制することができる。 When the relative velocity of the superstructure 3 and the substructure 4 is smaller than a predetermined velocity set in advance for a small input such as a small or medium-sized earthquake, the superstructure 3 is set to the damping constant that is most effective as a TMD. The shaking of the structure 4 can be effectively suppressed.

<実施例>
ここで、本実施形態の制震構造物1の優位性を確認するために行ったシミュレーションについて説明を行う。
<Example>
Here, a simulation performed to confirm the superiority of the vibration control structure 1 of the present embodiment will be described.

本シミュレーションでは、A本実施形態の制震建物と、B従来の各層間に減衰装置を設置した制震建物と、C中間免震層や制震装置を備えていない建物と、の3つのモデルに対して、同じ長周期地震動を入力し、各建物の階層毎の最大応答水平変位、最大応答水平加速度、最大応答せん断力を求め、比較を行った。なお、中間免震層や制震装置の有無以外の建物モデルの条件は同一である。 In this simulation, there are three models: A seismic control building of this embodiment, B conventional seismic control building with damping devices installed between each layer, and C building without intermediate seismic isolation layer and seismic control device. The same long-period seismic motion was input to the above, and the maximum response horizontal displacement, maximum response horizontal acceleration, and maximum response shear force for each floor of each building were obtained and compared. The conditions of the building model are the same except for the presence or absence of the intermediate seismic isolation layer and the vibration control device.

図5、図6、図7に示す通り、従来の制震建物と比較し、本実施形態の制震建物では、最大応答水平変位、最大応答水平加速度、最大応答せん断力が、上部構造体、下部構造体ともに著しく低減する、すなわち、免震・耐震性能が大幅に向上することが確認された。 As shown in FIGS. 5, 6 and 7, in the seismic isolation building of the present embodiment, the maximum response horizontal displacement, the maximum response horizontal acceleration, and the maximum response shearing force are higher than those of the conventional seismic isolation building. It was confirmed that both the substructures were significantly reduced, that is, the seismic isolation and seismic resistance performance was significantly improved.

したがって、本実施形態の制震構造物1及び制震構造物1の制御方法は、層間に減衰装置を設置した従来の制震構造と比較すると、建築計画の自由度を確保しつつ、より良い応答低減効果を発揮できることがわかる。 Therefore, the control method of the seismic control structure 1 and the seismic control structure 1 of the present embodiment is better than the conventional seismic control structure in which the damping device is installed between the layers while ensuring the degree of freedom in the construction plan. It can be seen that the response reduction effect can be exhibited.

これにより、効果的で好適に、中間免震層2によって上部構造体3の揺れを抑制することができるとともに、上部構造体3をTMDとして効果的に利用して、下部構造体4の応答(加速度、変位)を抑制できる。すなわち、従来の制震構造と比較し、より一層効果的で好適に、中間免震層2を境に上下の上部構造体3と下部構造体4の両者の揺れを抑制することが可能になる。 As a result, the intermediate seismic isolation layer 2 can effectively and preferably suppress the shaking of the superstructure 3, and the superstructure 3 can be effectively used as the TMD to respond to the substructure 4 ( Acceleration, displacement) can be suppressed. That is, as compared with the conventional seismic control structure, it is possible to suppress the shaking of both the upper and lower superstructures 3 and 4 with the intermediate seismic isolation layer 2 as a boundary, more effectively and preferably. ..

よって、本実施形態の制震構造物1及び制震構造物1の制御方法によれば、上部構造体3をTMDとして利用して、下部構造体4と上部構造体3の応答を効果的に低減でき、建築計画の自由度を確保しつつ、従来よりも格別顕著で高度な耐震性能を備えた制震構造物1を実現することが可能になる。 Therefore, according to the seismic control structure 1 and the control method of the seismic control structure 1 of the present embodiment, the upper structure 3 is used as a TMD to effectively respond to the lower structure 4 and the upper structure 3. It is possible to reduce the number of seismic structures 1 and realize a seismic control structure 1 that is exceptionally remarkable and has a higher level of seismic performance than before, while ensuring the degree of freedom in construction planning.

以上、本発明に係る制震構造物及び制震構造物の制御方法の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 Although one embodiment of the seismic control structure and the control method of the seismic control structure according to the present invention has been described above, the present invention is not limited to the above one embodiment and does not deviate from the gist thereof. It can be changed as appropriate.

例えば、本実施形態では、適用対象構造物が中高層建物であるものとして説明を行ったが、中間免震層を備え、中間免震層を境に上部構造体と下部構造体を備えていればよく、特に適用対象構造物を中高層建物に限定しなくてもよい。 For example, in the present embodiment, the structure to be applied is assumed to be a middle-high-rise building, but if an intermediate seismic isolation layer is provided and an upper structure and a lower structure are provided with the intermediate seismic isolation layer as a boundary. Often, the structure to be applied does not have to be limited to mid-to-high-rise buildings.

また、上部構造体や下部構造体に制震装置などを設けてもよい。 Further, a vibration control device or the like may be provided in the upper structure or the lower structure.

さらに、中間免震層2の最大層間変位量を制限(規制)するストッパー(変形抑制機構)を備えて構成してもよい。
例えば、図8に示すように、エレベータシャフト、階段等の上部構造体3から中間免震層2に吊り下げる必要がある構造体(上部構造体3から下方に突出する構造体:変形抑制機構)5を、想定外の大入力時に、下部構造体4から立ち上がる構造体(変形抑制機構)6に衝突させ、構造体5が構造体6にぶつかって止まることによって中間免震層2の最大層間変位量を制限するように構成してもよい。この場合には、他用途、他目的の構造体を利用するなどして変形抑制機構を構成することができる。
Further, a stopper (deformation suppressing mechanism) that limits (regulates) the maximum amount of inter-story displacement of the intermediate seismic isolation layer 2 may be provided.
For example, as shown in FIG. 8, a structure that needs to be suspended from the upper structure 3 such as an elevator shaft and a staircase to the intermediate seismic isolation layer 2 (a structure protruding downward from the upper structure 3: deformation suppressing mechanism). The 5 is made to collide with the structure (deformation suppressing mechanism) 6 rising from the lower structure 4 at the time of an unexpectedly large input, and the structure 5 collides with the structure 6 and stops, so that the maximum inter-story displacement of the intermediate seismic isolation layer 2 is displaced. It may be configured to limit the amount. In this case, the deformation suppressing mechanism can be configured by using a structure for another purpose or another purpose.

1 制震構造物
2 中間免震層
3 上部構造体
4 下部構造体
5 上部構造体から吊り下げる構造体(変形抑制機構)
6 下部構造体から立ち上がる構造体(変形抑制機構)
1 Seismic isolation structure 2 Intermediate seismic isolation layer 3 Superstructure 4 Substructure 5 Structure suspended from the superstructure (deformation suppression mechanism)
6 Structure that rises from the lower structure (deformation suppression mechanism)

Claims (4)

中間免震層よりも上方の上部構造体の質量をm、下方の下部構造体の質量をMとしたとき、質量比m/Mが10%以上、100%以下であり、
平面で直交するX,Yの二方向の少なくとも一方の前記上部構造体と前記下部構造体を剛結した剛結構造物全体の固有周期f(全)と、前記中間免震層及び前記上部構造体の固有周期f(上部免震)と、前記下部構造体の固有周期f(下部)とが、
f(全)>f(上部免震)>f(下部)
の関係を満たし、
前記上部構造体をTMDとして利用するように構成されている、
制震構造物。
When the mass of the upper structure above the intermediate seismic isolation layer is m and the mass of the lower structure below is M, the mass ratio m / M is 10% or more and 100% or less.
The natural period f (all) of the entire rigid structure that rigidly connects the superstructure and the superstructure in at least one of the two directions of X and Y orthogonal to each other in a plane, the intermediate seismic isolation layer, and the superstructure. The natural period f (upper seismic isolation) of the lower structure and the natural period f (lower part) of the lower structure are
f (all)> f (upper seismic isolation)> f (lower)
Meet the relationship,
The superstructure is configured to be used as a TMD.
Seismic control structure.
前記中間免震層に設けられ、前記中間免震層の層変形を制御するオイルダンパとして、減衰力がハードニングするハードニングオイルダンパを備える、
請求項1に記載の制震構造物。
As an oil damper provided in the intermediate seismic isolation layer and controlling the layer deformation of the intermediate seismic isolation layer, a hardening oil damper for hardening the damping force is provided.
The vibration control structure according to claim 1.
請求項1または請求項2に記載の制震構造物を制御する方法であって、
前記上部構造体と前記下部構造体の相対速度が所定の相対速度に達した時点で、前記中間免震層に設けられ、前記中間免震層の層間変形を制御するオイルダンパの減衰力を、前記所定の相対速度以下に制限するように制御する、
制震構造物の制御方法。
The method for controlling the vibration control structure according to claim 1 or 2.
When the relative speed between the upper structure and the lower structure reaches a predetermined relative speed, the damping force of the oil damper provided in the intermediate seismic isolation layer and controlling the interlayer deformation of the intermediate seismic isolation layer is applied. Controlled to be limited to or less than the predetermined relative speed,
Control method of seismic control structure.
前記上部構造体から吊り下げる構造体と前記下部構造体から立ち上がる構造体とを変形抑制機構として利用し、前記上部構造体から吊り下げる構造体を、前記下部構造体から立ち上げた構造体にぶつけることで、想定外の大入力時に前記中間免震層の最大層間変位量を制限する、
請求項3に記載の制震構造物の制御方法。
The structure suspended from the upper structure and the structure rising from the lower structure are used as deformation suppressing mechanisms, and the structure suspended from the upper structure is hit against the structure raised from the lower structure. This limits the maximum interlayer displacement of the intermediate seismic isolation layer at the time of unexpectedly large input.
The method for controlling a seismic control structure according to claim 3.
JP2019175805A 2019-09-26 2019-09-26 Seismic control structure, control method of seismic control structure, and design method of seismic control structure Active JP7370789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019175805A JP7370789B2 (en) 2019-09-26 2019-09-26 Seismic control structure, control method of seismic control structure, and design method of seismic control structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019175805A JP7370789B2 (en) 2019-09-26 2019-09-26 Seismic control structure, control method of seismic control structure, and design method of seismic control structure

Publications (2)

Publication Number Publication Date
JP2021050590A true JP2021050590A (en) 2021-04-01
JP7370789B2 JP7370789B2 (en) 2023-10-30

Family

ID=75158116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019175805A Active JP7370789B2 (en) 2019-09-26 2019-09-26 Seismic control structure, control method of seismic control structure, and design method of seismic control structure

Country Status (1)

Country Link
JP (1) JP7370789B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002455A (en) * 2005-06-22 2007-01-11 Fujita Corp Vibration control device
JP2014141825A (en) * 2013-01-24 2014-08-07 Starts Cam Kk Vibration control building and design method for the same
JP2015169294A (en) * 2014-03-10 2015-09-28 鹿島建設株式会社 Hydraulic damper with speed limiting function having hardening hydraulic circuit
JP2017071908A (en) * 2015-10-05 2017-04-13 清水建設株式会社 Multistoried base-isolated structure
JP2019049171A (en) * 2017-09-12 2019-03-28 株式会社竹中工務店 Base-isolation structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002455A (en) * 2005-06-22 2007-01-11 Fujita Corp Vibration control device
JP2014141825A (en) * 2013-01-24 2014-08-07 Starts Cam Kk Vibration control building and design method for the same
JP2015169294A (en) * 2014-03-10 2015-09-28 鹿島建設株式会社 Hydraulic damper with speed limiting function having hardening hydraulic circuit
JP2017071908A (en) * 2015-10-05 2017-04-13 清水建設株式会社 Multistoried base-isolated structure
JP2019049171A (en) * 2017-09-12 2019-03-28 株式会社竹中工務店 Base-isolation structure

Also Published As

Publication number Publication date
JP7370789B2 (en) 2023-10-30

Similar Documents

Publication Publication Date Title
JP6979805B2 (en) Seismic isolation structure
JP5567094B2 (en) Long-period building
JP2010007793A (en) Base isolation structure
JP2021050590A (en) Vibration proof structure
JP6709600B2 (en) Multi-layer seismic isolation structure
JP4391335B2 (en) Intermediate seismic isolation structure of existing buildings
JP5918282B2 (en) Long-period building
JP6308741B2 (en) Intermediate seismic isolation structure
JP3139675B2 (en) Construction method of vibration control structure
JP6397544B2 (en) Intermediate seismic isolation structure
JP3677706B2 (en) Seismic isolation and control structure
Sandoval et al. Study of structural control in coupled buildings
JP7145746B2 (en) steel building
CN112575944A (en) Inertia reinforced floating floor structure system
JP7037320B2 (en) Vibration control building
JP7465702B2 (en) Seismic isolation device and design method
JP2011038294A (en) Additional mass seismic response control building
JPS62273374A (en) Dynamic earthquakeproof method and device utilizing weight of building body
JP6505272B2 (en) Intermediate seismic isolation structure
JP7107759B2 (en) Damping structure
JP5131553B2 (en) Damping structure
JP7097204B2 (en) Vibration control system
CN214461612U (en) Inertia reinforced floating floor structure system
JP6497648B2 (en) Building vibration control structure
Murata et al. Compact TMD (tuned mass damper) for long‐period earthquakes in an existing high rise building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231018

R150 Certificate of patent or registration of utility model

Ref document number: 7370789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150