JP6108370B2 - Optimal design method of low-rise centralized control system using viscous damping - Google Patents

Optimal design method of low-rise centralized control system using viscous damping Download PDF

Info

Publication number
JP6108370B2
JP6108370B2 JP2016000751A JP2016000751A JP6108370B2 JP 6108370 B2 JP6108370 B2 JP 6108370B2 JP 2016000751 A JP2016000751 A JP 2016000751A JP 2016000751 A JP2016000751 A JP 2016000751A JP 6108370 B2 JP6108370 B2 JP 6108370B2
Authority
JP
Japan
Prior art keywords
low
mass
rise
damping
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016000751A
Other languages
Japanese (ja)
Other versions
JP2016094820A (en
Inventor
磯田 和彦
和彦 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2016000751A priority Critical patent/JP6108370B2/en
Publication of JP2016094820A publication Critical patent/JP2016094820A/en
Application granted granted Critical
Publication of JP6108370B2 publication Critical patent/JP6108370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は制震構造の建物の設計手法に関わり、特に粘性減衰を用いた低層集中制震システムの最適設計法に関する。   The present invention relates to a design method for a building having a damping structure, and more particularly to an optimum design method for a low-rise concentrated damping system using viscous damping.

地震時や風荷重に対する多層構造物の応答低減手段として、構造物の低層部に制震装置を集中配置する低層集中制震システムが提唱されている。その種のシステムによれば、新築の場合には高層部に制震装置を設置する必要がないので建築計画の自由度が高まり、既存改修の場合には改修箇所が低層階に限定されるので居ながら工事が可能となり工期短縮も図れる。
この種のシステムでは低層階の層剛性が小さいほど効果的だが、実際の構造物において応答低減効果のために低層階の層剛性を低下させることは難しい(建築計画や用途、デザインなどによって建物形状が決定されるのが現状であり、構造的な有利さを追求できないため)。そのため、オイルダンパー等の制震ダンパーを多用しても大きな応答低減効果が期待できない場合も多い。
As a means for reducing the response of multi-layer structures to earthquakes and wind loads, a low-rise centralized control system has been proposed in which damping devices are centrally arranged in the low-layer part of the structure. According to this kind of system, since there is no need to install a vibration control device in the high-rise part in the case of a new construction, the degree of freedom in building planning is increased, and in the case of existing renovation, the renovation point is limited to the lower floors. Work can be done while staying and the construction period can be shortened.
In this type of system, the lower the floor rigidity of the lower floor, the more effective, but it is difficult to reduce the rigidity of the lower floor to reduce the response in an actual structure (the building shape depends on the architectural plan, application, design, etc. Is currently determined, and structural advantages cannot be pursued). For this reason, there are many cases where a large response reduction effect cannot be expected even if a large number of seismic dampers such as oil dampers are used.

近年、錘の慣性モーメントを利用して、錘を回転させることで実際の質量より桁違いに大きな慣性質量効果を発揮する慣性質量ダンパーが開発され、実用化されつつある。
そのような慣性質量ダンパーを構造物の低層部に設置して、減衰の小さい構造物であっても大きな振動抑制効果を発揮する低層集中制震システムとして、本出願人は先に塔状構造物の制振構造を提供した(特許文献1参照)。
これは、慣性質量ダンパーを低層部の層間に直列ばねを介しないで配置したもので、従前からある慣性質量ダンパーと直列ばねを用いる同調型制震機構と比較すると。慣性質量は大きくなるが応答低減効果が大きくとれる(応答倍率を低減できる)特徴がある。
In recent years, inertia mass dampers have been developed and put into practical use that exhibit inertia mass effects that are orders of magnitude greater than the actual mass by rotating the weight using the moment of inertia of the weight.
As a low-rise centralized control system that installs such an inertial mass damper in the low-rise part of the structure and exhibits a large vibration suppression effect even for a structure with low damping, the present applicant has first described a tower-like structure. (See Patent Document 1).
This is because inertia mass dampers are arranged between the lower layers without interposing a series spring, compared with a conventional tuned vibration control mechanism using an inertia mass damper and a series spring. The inertial mass increases, but the response reduction effect is significant (response magnification can be reduced).

特開2011-17140号公報JP 2011-17140 A

しかし、特許文献1において提供した低層集中制震システムは、低層部の剛性が高層部の剛性に比較して十分に大きい場合(低層部の剛性をk1、高層部の剛性をK2としたとき、k1≫k2)に限定されるものであって、一般の構造物に広く適用可能なものではない。
そのため、より一般的な構造物に拡張して広く適用することが可能な有効適切な低層集中制震システムの開発が必要とされている。
However, in the low-rise centralized vibration control system provided in Patent Document 1, when the rigidity of the low-rise part is sufficiently larger than the rigidity of the high-rise part (the rigidity of the low-rise part is k 1 and the rigidity of the high-rise part is K 2 ) At this time, it is limited to k 1 >> k 2 ) and is not widely applicable to general structures.
Therefore, it is necessary to develop an effective and appropriate low-rise concentrated control system that can be extended to more general structures and widely applied.

上記事情に鑑み、本発明は特許文献1に示されるような低層集中制震システムを一般的な構造物に拡張して適用することを可能とするべく、粘性減衰の最適諸元を定点理論により設定するようにしたものである。   In view of the above circumstances, the present invention uses a fixed point theory to determine the optimum specifications for viscous damping so that a low-rise centralized control system as shown in Patent Document 1 can be applied to general structures. It is something that is set.

すなわち、請求項1記載の発明は、減衰の小さい多層構造物を対象としてその低層部の層間に粘性減衰要素を層剛性と並列に付加することにより、前記多層構造物の応答を抑制する低層集中制震システムに適用する最適設計法であって、低層部および高層部をそれぞれ1質点系にモデル化して、低層部の質量m1、低層部の剛性k1、高層部の質量m2、高層部の剛性k2としたとき、加速度で最適化するべく前記粘性減衰要素による減衰係数c1を次式に基づいて設定することを特徴とする。 That is, the invention according to claim 1 is a low-layer concentration that suppresses the response of the multi-layer structure by adding a viscous damping element in parallel with the layer rigidity between the low-layer portions of the multi-layer structure having a small attenuation. This is an optimal design method applied to a seismic control system. The low and high layers are modeled as a single mass system, and the low layer mass m 1 , low layer stiffness k 1 , high layer mass m 2 , high layer When the stiffness k 2 of the part is set, the damping coefficient c 1 by the viscous damping element is set based on the following equation so as to be optimized by acceleration.

Figure 0006108370
Figure 0006108370

請求項2記載の発明は、減衰の小さい多層構造物を対象としてその低層部の層間に粘性減衰要素を層剛性と並列に付加することにより、前記多層構造物の応答を抑制する低層集中制震システムに適用する最適設計法であって、低層部および高層部をそれぞれ1質点系にモデル化して、低層部の質量m1、低層部の剛性k1、高層部の質量m2、高層部の剛性k2としたとき、変位で最適化するべく前記粘性減衰要素による減衰係数c1を次式に基づいて設定することを特徴とする。 The invention according to claim 2 is a low-rise centralized vibration control for suppressing a response of the multi-layer structure by adding a viscous damping element in parallel with the layer rigidity between the layers of the low-layer portion of the multi-layer structure having a small attenuation. This is an optimal design method applied to the system, where the lower layer and the upper layer are modeled as one mass system, and the mass m 1 of the lower layer, the stiffness k 1 of the lower layer, the mass m 2 of the higher layer, When the stiffness is k 2 , the damping coefficient c 1 due to the viscous damping element is set based on the following equation in order to optimize the displacement.

Figure 0006108370
Figure 0006108370

減衰の小さい多層構造物を対象としてその低層部に粘性減衰要素を設置する低層集中制震システムの設計に際して本発明を適用することにより、一般的な構造物であれば殆ど成立する条件下で粘性減衰要素の最適諸元およびその効果としての最大応答倍率を定式化でき、したがって低層集中制震システムを広範囲の構造物に広く適用することが可能となり、そのための設計作業を容易にかつ効率的に実施可能となる。   By applying the present invention to the design of a low-rise centralized control system in which a viscous damping element is installed in the lower part of a multi-layered structure with low damping, it is possible to apply viscosity under conditions that are almost valid for general structures. The optimum specifications of the damping element and the maximum response magnification as its effect can be formulated. Therefore, the low-rise concentrated control system can be widely applied to a wide range of structures, and the design work for it can be done easily and efficiently. Can be implemented.

本発明の適用対象である低層集中制震システムの参考例を示すもので、(a)は構造形態の概要図、(b)は振動モデル図である。The reference example of the low-rise concentrated control system which is an application object of the present invention is shown, (a) is a schematic diagram of a structural form, and (b) is a vibration model diagram. 本発明による最適諸元の設定例を参考例・比較例とともに示す図である。It is a figure which shows the example of a setting of the optimal specification by this invention with a reference example and a comparative example. 本発明による最適諸元の設定例による効果を参考例・比較例とともに示す図であり、(a)は加速度で最適化した場合の加速度応答倍率を示す図、(b)は変位で最適化した場合の変位応答倍率を示す図である。It is a figure which shows the effect by the example of setting of the optimal specification by this invention with a reference example and a comparative example, (a) is a figure which shows the acceleration response magnification at the time of optimizing with acceleration, (b) is optimized with displacement It is a figure which shows the displacement response magnification in the case.

図1は本発明の最適設計法を適用するべき対象である低層集中制震システムの参考例を示すもので、(a)は構造形態の概要図、(b)は振動モデル図である。
この低層集中制震システムは、実質的に特許文献1に示されている塔状構造物の制振構造と同様に、低層部1と高層部2からなる多層構造物を対象として、低層部1の層間に慣性質量ダンパー3と粘性減衰要素としてのオイルダンパー4を層剛性と並列に付加することによって、構造物全体の応答を効果的に抑制可能なものである。
FIG. 1 shows a reference example of a low-rise concentrated vibration control system to which the optimum design method of the present invention is to be applied. FIG. 1A is a schematic diagram of a structural form, and FIG. 1B is a vibration model diagram.
This low-rise centralized vibration control system is intended for a multi-layer structure composed of a low-rise part 1 and a high-rise part 2 in the same manner as the tower-like structure damping structure disclosed in Patent Document 1. By adding an inertia mass damper 3 and an oil damper 4 as a viscous damping element in parallel between the layers, the response of the entire structure can be effectively suppressed.

この最適設計法では、低層部1および高層部2をそれぞれ1質点系にモデル化して、高層部2の加速度や変位の応答倍率のピークを最小化するよう、慣性質量ダンパー3による慣性質量ψ1とオイルダンパー4(粘性減衰要素)による減衰係数c1をそれぞれ以下の手法に基づいて最適に設定する。 In this optimum design method, the low-mass portion 1 and the high-rise portion 2 are each modeled as a one-mass system, and the inertia mass ψ 1 by the inertia mass damper 3 is minimized so as to minimize the acceleration and displacement response magnification peaks of the high-rise portion 2. And the damping coefficient c 1 by the oil damper 4 (viscous damping element) are optimally set based on the following methods, respectively.

特に、この最適設計法では、対象とする多層構造物の低層部1の質量m1、低層部1の剛性k1、高層部2の質量m2、高層部2の剛性k2との間で次式の関係を満足することを条件として、慣性質量ダンパー3による慣性質量ψ1とオイルダンパー4による減衰係数c1を最適化する。
一般的な多層構造物では高層部2の剛性k2よりも低層部1の剛性k1が大きく、低層部1の質量m1よりも高層部2の質量m2の方が大きいことから、次式の条件は殆どの場合に成立し、したがって本発明は一般的な多層構造物に対して広く適用可能である。
In particular, in this optimum design method, the mass m 1 of the lower layer portion 1, the rigidity k 1 of the lower layer portion 1, the mass m 2 of the higher layer portion 2, and the rigidity k 2 of the higher layer portion 2 of the target multilayer structure On condition that the relationship of the following equation is satisfied, the inertial mass ψ 1 by the inertial mass damper 3 and the damping coefficient c 1 by the oil damper 4 are optimized.
In a general multilayer structure, the rigidity k 1 of the lower layer part 1 is larger than the rigidity k 2 of the higher layer part 2, and the mass m 2 of the higher layer part 2 is larger than the mass m 1 of the lower layer part 1. The condition of the formula is satisfied in most cases, and therefore the present invention is widely applicable to general multilayer structures.

Figure 0006108370
Figure 0006108370

この最適設計法においては、慣性質量ダンパー3およびオイルダンパー4の最適化を定点理論を用いて加速度と変位の双方について行うものであり、その最適化は上部質点(高層部2の質量m1)を対象として応答倍率の全周波数域にわたる最大値を最小化することとする(これは一般的なTMD(動吸振機構)と同様の手法である)。
なお、この参考例においては定点理論を適用することから、本体構造(主系)の減衰は無視する。
In this optimum design method, the inertial mass damper 3 and the oil damper 4 are optimized for both acceleration and displacement using a fixed point theory, and the optimization is performed for the upper mass point (mass m 1 of the high-rise part 2). The maximum value of the response magnification over the entire frequency range is minimized (this is the same method as a general TMD (dynamic vibration absorption mechanism)).
In this reference example, since the fixed point theory is applied, the attenuation of the main body structure (main system) is ignored.

以下、本発明の参考例について具体的に説明する。
本参考例の最適設計法においては、慣性質量ψ1と減衰係数c1を加速度で最適化するか、あるいは変位で最適化する。
Hereinafter, reference examples of the present invention will be specifically described.
In the optimum design method of this reference example, the inertial mass ψ 1 and the damping coefficient c 1 are optimized by acceleration or optimized by displacement.

加速度で最適化する場合、慣性質量ψ1と減衰係数c1、およびそれにより最適化された加速度についての最大応答倍率はそれぞれ次式となる。 In the case of optimization with acceleration, the following equation is used for the maximum response magnification for the inertial mass ψ 1 and the damping coefficient c 1 and the acceleration optimized thereby.

Figure 0006108370
Figure 0006108370

変位で最適化する場合、慣性質量ψ1と減衰係数c1、およびそれにより最適化された変位についての最大応答倍率はそれぞれ次式となる。 When optimizing with displacement, the inertial mass ψ 1 and the damping coefficient c 1 , and the maximum response magnification for the displacement optimized thereby are as follows:

Figure 0006108370
Figure 0006108370

なお、低層部が多層の場合は、以下により1質点系にモデル化する。
低層部の質量マトリクスM1、剛性マトリクスK1、固有値解析により求めた固有1次モードベクトルφ1、1次モード刺激係数β1とすると、質量m1、剛性k1をそれぞれ次式とする。
ここで、φ1 Tはモードベクトルφ1の転置ベクトルを表す。
If the lower layer is a multilayer, it is modeled as a one-mass system by the following.
Assuming that the lower layer mass matrix M 1 , stiffness matrix K 1 , natural primary mode vector φ 1 obtained by eigenvalue analysis, and primary mode stimulation coefficient β 1 , mass m 1 and stiffness k 1 are respectively expressed by the following equations.
Here, φ 1 T represents a transposed vector of the mode vector φ 1 .

Figure 0006108370
Figure 0006108370

また、各層に配置されるオイルダンパーによる減衰マトリクスC1、慣性質量ダンパーによる慣性質量マトリクスΨ1とし、単位のオイルダンパーの減衰係数c0、単位の慣性質量ダンパーの慣性質量ψ0とすると、最適化で求める減衰係数c1と慣性質量ψ1はそれぞれ次式とする。 It is also optimal if the damping matrix C 1 by the oil damper arranged in each layer, the inertia mass matrix Ψ 1 by the inertia mass damper, the damping coefficient c 0 of the unit oil damper, and the inertia mass ψ 0 of the unit inertia mass damper are optimal. The damping coefficient c 1 and the inertial mass ψ 1 obtained by conversion are respectively expressed by the following equations.

Figure 0006108370
Figure 0006108370

なお、単位の減衰係数c0による要素マトリクスC0、単位の慣性質量ψ0による要素マトリクスΨ0は、次式のように剛性マトリクスと同様に主対角成分に単位量、その脇に符号が逆の単位量となる。これらのマトリクスが単位のダンパーに対するマトリクスであり、これがn個ある層ではこのn倍となる。 Incidentally, element matrix C 0 by a damping coefficient c 0 of the unit, the element matrix [psi 0 by inertial mass [psi 0 units, the unit amount in the main diagonal as with stiffness matrix as the following equation, the sign on its side The reverse unit amount. These matrices are matrixes for the unit dampers, and this number becomes n times in the n layers.

Figure 0006108370
Figure 0006108370

そして、慣性質量ダンパーおよびオイルダンパーに求められる単位の慣性質量Ψ0および減衰係数c0は、それぞれ次式で求められる。 The unit inertia mass Ψ 0 and the damping coefficient c 0 required for the inertia mass damper and the oil damper are obtained by the following equations, respectively.

Figure 0006108370
Figure 0006108370

さらに、高層部が多層の場合は、以下により1質点系モデル化する。
高層部の質量マトリクスM2、剛性マトリクスK2、固有値解析により求めた固有1次モードベクトルφ2、1次モード刺激係数β2とすると、質量m2、剛性k2をそれぞれ次式とする。
Furthermore, when the high layer part is a multilayer, a one-mass system model is made as follows.
Assuming that the mass matrix M 2 , the stiffness matrix K 2 of the upper layer part, the eigen primary mode vector φ 2 obtained by eigenvalue analysis, and the primary mode stimulation coefficient β 2 , the mass m 2 and the stiffness k 2 are respectively expressed by the following equations.

Figure 0006108370
Figure 0006108370

以下、図1に示したモデルを対象として、慣性質量ダンパーを低層部の層剛性と並列に配置した場合についての最適化手法を詳細に説明する。   Hereinafter, with reference to the model shown in FIG. 1, an optimization method in the case where the inertial mass damper is arranged in parallel with the layer rigidity of the lower layer portion will be described in detail.

上述したように構造減衰は無視し、各質点の質量mi、絶対変位xi、各層の剛性ki、低層部に設ける慣性質量ψ1、付加減衰c1(粘性減衰要素としてのオイルダンパーの減衰係数)とすると、次式が成り立つ。 As described above, the structural damping is ignored, the mass m i of each mass point, the absolute displacement x i , the stiffness k i of each layer, the inertia mass ψ 1 provided in the lower layer, the additional damping c 1 (the oil damper as the viscous damping element) (Attenuation coefficient), the following equation holds.

Figure 0006108370
Figure 0006108370

変位xiのフーリエ変換をXiとすると、加振角振動数ωとして次式となる。 If the Fourier transform of the displacement x i is X i , the excitation angular frequency ω is as follows:

Figure 0006108370
Figure 0006108370

ここで、質点m2の変位は次式で表される。 Here, the displacement of the mass point m 2 is expressed by the following equation.

Figure 0006108370
Figure 0006108370

上記の条件(本発明を低層集中制震システムに適用するための条件)のもとで、質点m2の固定端に対する加速度(絶対変位)と変位の伝達関数は次式となる。 Under the above conditions (conditions for applying the present invention to the low-rise concentrated vibration control system), the acceleration (absolute displacement) of the mass m 2 with respect to the fixed end and the transfer function of the displacement are as follows.

Figure 0006108370
Figure 0006108370

よって、加速度および絶対変位の応答倍率|X2/X0|、地表に対する相対変位の応答倍率|(X2-X0)/X0|はそれぞれ次式となる。 Therefore, the acceleration and absolute displacement response magnification | X 2 / X 0 | and the relative displacement response magnification | (X 2 −X 0 ) / X 0 |

Figure 0006108370
Figure 0006108370

(1)加速度および絶対変位に関する最適化
加速度および絶対変位の応答倍率から最適化を図る。加振振動数比の2乗(ξ2)を変数としたときの応答倍率の2乗(|X2/X0|2)を対象として、定点理論を用いて慣性質量比μと減衰定数h01の最適値を求める。上記の(6)式が減衰定数h01によらず変化しない場合は下式で表される。
(1) Optimization regarding acceleration and absolute displacement Optimization is performed from the response magnification of acceleration and absolute displacement. Using the fixed-point theory for the square of the response magnification (| X 2 / X 0 | 2 ) with the square of the vibration frequency ratio (ξ 2 ) as a variable, the inertial mass ratio μ and the damping constant h Find the optimal value of 01 . When the above equation (6) does not change regardless of the attenuation constant h 01 , it is expressed by the following equation.

Figure 0006108370
Figure 0006108370

これを整理すると、ξ2に関する2次方程式となる。 If this is rearranged, it becomes a quadratic equation about ξ 2 .

Figure 0006108370
Figure 0006108370

ここで、定点(P、Q)における加振振動数を ξP、ξQ とすると、2次方程式の根の公式から次式となる。 Here, if the vibration frequencies at the fixed points (P, Q) are ξ P and ξ Q , the following equation is obtained from the root formula of the quadratic equation.

Figure 0006108370
Figure 0006108370

h01→∞としたとき、(6)式の値が2つの定点で同じとすると、次式となる。 When h 01 → ∞, assuming that the value of equation (6) is the same at the two fixed points, the following equation is obtained.

Figure 0006108370
Figure 0006108370

ξP≠ξQの条件から、次式となる。 From the condition of ξ P ≠ ξ Q , the following equation is obtained.

Figure 0006108370
Figure 0006108370

(10)式および(12)式より、慣性質量比μが次式により求められる。   From the equations (10) and (12), the inertial mass ratio μ is obtained by the following equation.

Figure 0006108370
Figure 0006108370

定点(P、Q)における加振振動数は(9)式に代入して求める。   The vibration frequency at the fixed point (P, Q) is obtained by substituting into the equation (9).

Figure 0006108370
Figure 0006108370

定点(P、Q)における応答倍率は(11)式および(14)式から下式の関係となる。   The response magnification at the fixed point (P, Q) is represented by the following equation from the equations (11) and (14).

Figure 0006108370
Figure 0006108370

減衰の最適値は、(6)式が定点で極大となるように ν=ξ2とおき、下式から計算する。 The optimum value of attenuation is calculated from the following equation by setting ν = ξ 2 so that equation (6) becomes a maximum at a fixed point.

Figure 0006108370
Figure 0006108370

(9)式および(15)式の関係を利用して(17)式を整理すると次式となる。   The following formula is obtained by rearranging formula (17) using the relationship between formula (9) and formula (15).

Figure 0006108370
Figure 0006108370

ここで、h01 2について解くと次式となる。 Here, when h 01 2 is solved, the following equation is obtained.

Figure 0006108370
Figure 0006108370

減衰は平均値として下式が得られる。   The following equation is obtained as an average value of attenuation.

Figure 0006108370
Figure 0006108370

したがって、慣性質量と減衰の最適値Ψopt、coptは次式となる。 Therefore, the optimum values of inertia mass and damping Ψ opt and c opt are as follows.

Figure 0006108370
Figure 0006108370

一般的な構造物では質量比m1/m2<1、剛性比k1/k2>1なので、m1の影響が小さく、剛性比k1/k2が大きくなるほどΨopt、coptが増大することとなる。また、低層の剛性k1が小さくなると剛性比k1/k2が小さくなるため、最適値が小さくて済む。
一方、最大応答値は(15)式から次式で得られ、質量によらず剛性比k1/k2だけで決定され、剛性比k1/k2が小さくなるほど低下することが分かる。
In a general structure, the mass ratio m 1 / m 2 <1 and the stiffness ratio k 1 / k 2 > 1, so the influence of m 1 is small, and Ψ opt and c opt increase as the stiffness ratio k 1 / k 2 increases. Will increase. Further, when the lower layer rigidity k 1 is reduced, the rigidity ratio k 1 / k 2 is reduced, and therefore the optimum value may be reduced.
On the other hand, the maximum response values obtained in the following equation (15), is determined only by the rigidity ratio k 1 / k 2 regardless of the weight, it can be seen to decrease as the stiffness ratio k 1 / k 2 becomes small.

Figure 0006108370
Figure 0006108370

また、これを生じる定点(P、Q)の振動数は(14)式より次式で求められる。   Further, the frequency of the fixed point (P, Q) that causes this is obtained by the following equation from the equation (14).

Figure 0006108370
Figure 0006108370

以上の場合についての簡単な例題を示す。m1=2000ton、m2=10000ton、k1=1000kN/mm、k2=200kN/mm の場合、最適諸元は(27)式、(28)式、(15)式より以下となる。 A simple example for the above case is shown. In the case of m 1 = 2000 tons, m 2 = 10000 tons, k 1 = 1000 kN / mm, k 2 = 200 kN / mm, the optimum specifications are as follows from the equations (27), (28), and (15).

Figure 0006108370
Figure 0006108370

(2)変位に関する最適化
変位応答倍率から最適化を図る。(7)式を対象として、定点理論を用いて慣性質量比μと減衰定数h01の最適値を求める。(7)式がh01によらず変化しない条件は下式で表される。
(2) Optimization related to displacement Optimize from the displacement response magnification. Using the equation (7) as an object, the optimum values of the inertial mass ratio μ and the damping constant h 01 are obtained using fixed point theory. The condition in which the equation (7) does not change regardless of h 01 is expressed by the following equation.

Figure 0006108370
Figure 0006108370

これを整理すると、ξ2に関する2次方程式となる。 If this is rearranged, it becomes a quadratic equation about ξ 2 .

Figure 0006108370
Figure 0006108370

ここで、定点(P、Q)における加振振動数を ξP、ξQ とすると、2次方程式の根の公式から次式となる。 Here, if the vibration frequencies at the fixed points (P, Q) are ξ P and ξ Q , the following equation is obtained from the root formula of the quadratic equation.

Figure 0006108370
Figure 0006108370

h01→∞としたとき、(7)式の値が2つの定点で同じとすると、次式となる。 When h 01 → ∞, assuming that the value of equation (7) is the same at the two fixed points, the following equation is obtained.

Figure 0006108370
Figure 0006108370

ξP≠ξQの条件から、次式となる。 From the condition of ξ P ≠ ξ Q , the following equation is obtained.

Figure 0006108370
Figure 0006108370

(30)式、(31)式、(33)式より、慣性質量比μが次式により求められる。   From the equations (30), (31), and (33), the inertial mass ratio μ is obtained by the following equation.

Figure 0006108370
Figure 0006108370

定点(P、Q)における加振振動数は(34)式を(29)式に代入して求める。   The vibration frequency at the fixed point (P, Q) is obtained by substituting the equation (34) into the equation (29).

Figure 0006108370
Figure 0006108370

定点(P、Q)における応答倍率は(32)式および(35)式から下式の関係となる。   The response magnification at the fixed point (P, Q) is represented by the following equation from the equations (32) and (35).

Figure 0006108370
Figure 0006108370

減衰の最適値は、(7)式が定点で極大となるように ν=ξ2とおき、下式から計算する。 The optimum value of attenuation is calculated from the following equation with ν = ξ 2 so that equation (7) becomes a maximum at a fixed point.

Figure 0006108370
Figure 0006108370

(29)式および(36)式の関係を利用して、h01 2について解くと次式となる。 Solving for h 01 2 using the relationship between equations (29) and (36), the following equation is obtained.

Figure 0006108370
Figure 0006108370

減衰は平均値として下式が得られる。   The following equation is obtained as an average value of attenuation.

Figure 0006108370
Figure 0006108370

したがって、慣性質量と減衰の最適値Ψopt、coptは次式となる。 Therefore, the optimum values of inertia mass and damping Ψ opt and c opt are as follows.

Figure 0006108370
Figure 0006108370

最大応答値および定点(P、Q)の振動数は(36)式および(35)式より次式で求められる。   The maximum response value and the frequency of the fixed point (P, Q) can be obtained by the following equation from the equations (36) and (35).

Figure 0006108370
Figure 0006108370

上記と同じ例題の場合、(25)式〜(27)式に対する値は次となり、加速度で最適化した場合とほぼ同じ結果になる。   In the case of the same example as above, the values for the equations (25) to (27) are as follows, which is almost the same as the case of optimization by acceleration.

Figure 0006108370
Figure 0006108370

(3)実施例=慣性質量を付加しない場合の最適化
図1に示すモデルにおいて慣性質量を付加しない場合(ψ1=0とする場合)について、加速度と変位の応答倍率から最適化を行い、慣性質量を付加した場合の応答低減効果と比較する。
(3) Example = Optimization without adding inertial mass When the inertial mass is not added in the model shown in FIG. 1 (when ψ 1 = 0), optimization is performed from the response magnification of acceleration and displacement, Compared with the response reduction effect when inertial mass is added.

ここでは、h01’=c1/2m2ω02 とし、(6)式、(7)式で μh01=h01’、ξ2μ=0 より減衰定数h01’の最適値を求める。 Here, h 01 ′ = c 1 / 2m 2 ω 02 is set, and the optimum value of the damping constant h 01 ′ is obtained from μh 01 = h 01 ′ and ξ 2 μ = 0 in Equations (6) and (7).

まず、加速度および絶対変位について最適化を図る。(6)式より次式が得られる。   First, the acceleration and absolute displacement are optimized. The following formula is obtained from the formula (6).

Figure 0006108370
Figure 0006108370

最適減衰は、上式の極大値を最小化する減衰を求める条件から、ν=ξ2、η=h012として次式で求められる。 The optimum attenuation can be obtained by the following equation as ν = ξ 2 and η = h 012 from the condition for obtaining the attenuation that minimizes the maximum value in the above equation.

Figure 0006108370
Figure 0006108370

これを連立して解けば良い。第2式がνに関する2次式となり、次式となる。   It is sufficient to solve this together. The second expression becomes a quadratic expression related to ν and becomes the following expression.

Figure 0006108370
Figure 0006108370

よって、1次モードの極大値をとるν1は次式で表される。 Therefore, ν 1 taking the maximum value of the first-order mode is expressed by the following equation.

Figure 0006108370
Figure 0006108370

(51)式を利用して(50)式の第1式をηについて整理すると次式となる。   When the first equation of the equation (50) is arranged with respect to η using the equation (51), the following equation is obtained.

Figure 0006108370
Figure 0006108370

また、最大応答倍率は(49)式、(51)式より次式で求められる。   Moreover, the maximum response magnification is calculated | required by following Formula from (49) Formula and (51) Formula.

Figure 0006108370
Figure 0006108370

上記と同じ例題で試算する。m1=2000ton、m2=10000ton、k1=1000kN/mm、k2=200kN/mm の場合、最適諸元は(52)式、(55)式より以下となる。 Calculate using the same example as above. In the case of m 1 = 2000 tons, m 2 = 10000 tons, k 1 = 1000 kN / mm, k 2 = 200 kN / mm, the optimum specifications are as follows from the equations (52) and (55).

Figure 0006108370
Figure 0006108370

(26)式および(27)式の結果と比較すると、慣性質量を付加することで減衰が半分でも最大応答倍率を1/3に低減できることがわかる。   Compared with the results of the equations (26) and (27), it can be seen that the addition of the inertial mass can reduce the maximum response magnification to 1/3 even if the attenuation is half.

なお、m1=0 の場合においては、質量比m1/m2=0であるから(51)式から求めたν1の値を(58)式、(59)式に代入すると以下となる。 In the case of m 1 = 0, since the mass ratio m 1 / m 2 = 0, the value of ν 1 obtained from the equation (51) is substituted into the equations (58) and (59) as follows. .

Figure 0006108370
Figure 0006108370

この結果と(58)式、(59)式の結果を比較すると、m1の有無による差は小さいことがわかる。 Comparing this result with the results of equations (58) and (59), it can be seen that the difference due to the presence or absence of m 1 is small.

次に、変位について最適化を図る。(7)式より次式となる。   Next, the displacement is optimized. From the equation (7), the following equation is obtained.

Figure 0006108370
Figure 0006108370

最適減衰は、加速度の場合と同様に次式で求められる。   The optimum attenuation is obtained by the following equation as in the case of acceleration.

Figure 0006108370
Figure 0006108370

これを連立して解けば良い。第2式がνに関する2次式となり、次式となる。   It is sufficient to solve this together. The second expression becomes a quadratic expression related to ν and becomes the following expression.

Figure 0006108370
Figure 0006108370

よって、1次モードの極大値をとるν1は次式で表される。 Therefore, ν 1 taking the maximum value of the first-order mode is expressed by the following equation.

Figure 0006108370
Figure 0006108370

(51)式を利用して(50)式第1式をηについて整理すると次式となる。   The following equation is obtained by rearranging the first equation of the equation (50) with respect to η using the equation (51).

Figure 0006108370
Figure 0006108370

また、最大応答倍率は(61)式、(63)式より、次式となる。   Further, the maximum response magnification is given by the following equation from equations (61) and (63).

Figure 0006108370
Figure 0006108370

上記と同じ例題で試算すると、最適諸元は(64)式、(67)式より以下となる。   When the trial calculation is performed with the same example as above, the optimum specifications are as follows from the equations (64) and (67).

Figure 0006108370
Figure 0006108370

(46)式、(47)式の結果と比較すると、慣性質量を付加することで減衰が半分でも最大応答倍率を1/3に低減できることがわかる。   Compared with the results of the equations (46) and (47), it can be seen that the addition of the inertial mass can reduce the maximum response magnification to 1/3 even if the attenuation is half.

なお、m1=0 の場合においては、質量比m1/m2=0であるから(51)式から求めたν1の値を(58)式、(59)式に代入すると以下となり、m1の有無による差は小さいことがわかる。 In the case of m 1 = 0, since the mass ratio m 1 / m 2 = 0, when the value of ν 1 obtained from the equation (51) is substituted into the equations (58) and (59), the following is obtained: It can be seen that the difference with or without m 1 is small.

Figure 0006108370
Figure 0006108370

以上で説明した各場合についての最適諸元をまとめて図2に示す。m1=0の場合、慣性質量を付加することで、最大応答倍率は付加しない場合の平方根に低減できることがわかる。 The optimum specifications for each case described above are collectively shown in FIG. When m 1 = 0, it can be seen that the maximum response magnification can be reduced to the square root without adding the inertial mass.

上記の例題で求めた応答倍率をまとめて図3に示す。(a)は加速度で最適化した場合の加速度応答倍率を示し、(b)は変位で最適化した場合の変位応答倍率を示す。いずれの場合も、減衰を付加することで応答倍率が改善されることがわかる。なお、減衰のみを付加した場合には応答倍率の最大値が11程度となるが、慣性質量を付加することで最大値が3.3倍程度と概ね平方根に低減し、共振特性が大幅に改善されることがわかる。   The response magnification obtained in the above example is shown together in FIG. (A) shows the acceleration response magnification when optimized by acceleration, and (b) shows the displacement response magnification when optimized by displacement. In either case, it can be seen that the response magnification is improved by adding attenuation. When only damping is added, the maximum value of the response magnification is about 11. However, by adding inertial mass, the maximum value is reduced to about 3.3 times, and the resonance characteristic is greatly improved. You can see that

本発明の最適設計法を低層集中制震システムの設計に際して適用することによる効果を以下に列挙する。
(1)本発明が適用する低層集中制震システムでは、低層部のみに制震ダンパー(粘性減衰要素)を配置しただけでも構造物全体の減衰性能が大幅に向上し、地震や風に対する応答が低減できる。また、外乱がおさまった後の後揺れについても大幅に抑制できる。
The effects of applying the optimum design method of the present invention in designing a low-rise centralized control system are listed below.
(1) In the low-rise centralized vibration control system to which the present invention is applied, the damping performance of the entire structure is greatly improved even if a damping damper (viscous damping element) is arranged only in the low-rise section, and the response to earthquakes and winds is improved. Can be reduced. In addition, it is possible to greatly suppress the post-swing after the disturbance has subsided.

(2)本発明の最適設計法により、一般的な構造物であれば殆ど成立する条件下で制震ダンパー(粘性減衰要素)の最適諸元およびその効果としての最大応答倍率を定式化できるので、広範囲の構造物に広く適用できる。 (2) With the optimum design method of the present invention, the optimum specifications of the damping damper (viscous damping element) and the maximum response magnification as its effect can be formulated under conditions that are generally valid for general structures. Widely applicable to a wide range of structures.

(3)従来のオイルダンパーによる粘性減衰を用いた制震機構の設計法と比較して、加速度・変位とも最大応答倍率を低減可能である。なお、最大応答倍率とは入力(地震加速度や地表での加振変位)に対する応答(上層部の質点の質量m2の加速度や地表に対する相対変位)の比の全振動数域にわたる最大値を表し、共振振動数近傍では1.0以上の値となる。共振が問題になる構造物では最大応答倍率が数十倍になるので、これが低減できるので極めて大きな効果となる。 (3) The maximum response magnification can be reduced for both acceleration and displacement, compared to the conventional design method of a vibration control mechanism using viscous damping by oil dampers. The maximum response magnification is the maximum value over the entire frequency range of the ratio of the response (the acceleration of mass m 2 of the mass of the upper layer and the relative displacement with respect to the ground surface) to the input (earthquake acceleration and excitation displacement on the ground surface). In the vicinity of the resonance frequency, the value is 1.0 or more. In a structure in which resonance is a problem, the maximum response magnification is several tens of times, which can be reduced, which is a very significant effect.

(4)従来のオイルダンパーによる粘性減衰を用いた制震機構と比較して、必要な減衰係数が小さくて済む。 (4) The required damping coefficient is small compared to the conventional vibration control mechanism using viscous damping with oil dampers.

(5)微小振幅から大振幅まで有効なパッシブ型の制振構造であり、外部エネルギーを必要としない。電気やコンピュータ制御が不要であり、単純な機構なので信頼性が高く、ローコストである。 (5) It is a passive vibration control structure that is effective from minute amplitude to large amplitude, and does not require external energy. Electricity and computer control are not required, and the simple mechanism is highly reliable and low cost.

(6)本発明が対象としている制震機構は必ずしも新設構造物に限定するものではない。既存構造物の低層部を制震改修して減衰要素を付加しても良い。このようにすることで、既存構造物を使用しながら制震補強することができる。 (6) The vibration control mechanism targeted by the present invention is not necessarily limited to a new structure. Damping elements may be added by retrofitting the lower layer of existing structures. By doing in this way, it is possible to reinforce the vibration control while using the existing structure.

(7)従来型のTMD機構は構造物の頂部近傍に設置するもので、その重量が塔状部への負荷となるが、本発明では構造物の低層部だけに減衰要素を設置するだけなので高所に大きな重量を設置する必要がなく、構造物全体への荷重負荷も小さい。 (7) The conventional TMD mechanism is installed near the top of the structure, and its weight is a load on the tower. However, in the present invention, the damping element is only installed in the lower part of the structure. It is not necessary to install a large weight at a high place, and the load on the entire structure is small.

1 低層部
2 高層部
3 慣性質量ダンパー
4 オイルダンパー(粘性減衰要素)
1 Low-rise part 2 High-rise part 3 Inertial mass damper 4 Oil damper (viscous damping element)

Claims (2)

減衰の小さい多層構造物を対象としてその低層部の層間に粘性減衰要素を層剛性と並列に付加することにより、前記多層構造物の応答を抑制する低層集中制震システムに適用する最適設計法であって、
低層部および高層部をそれぞれ1質点系にモデル化して、低層部の質量m1、低層部の剛性k1、高層部の質量m2、高層部の剛性k2としたとき、加速度で最適化するべく前記粘性減衰要素による減衰係数c1を次式に基づいて設定することを特徴とする粘性減衰を用いた低層集中制震システムの最適設計法。
Figure 0006108370
It is an optimal design method applied to a low-rise centralized control system that suppresses the response of the multi-layer structure by adding a viscous damping element in parallel with the layer rigidity for the multi-layer structure with low damping. There,
The low-rise part and the high-rise part are modeled as a single mass system, and the acceleration is optimized when the mass m 1 of the low part, the stiffness k 1 of the low part, the mass m 2 of the high part, and the stiffness k 2 of the high part An optimum design method for a low-rise centralized control system using viscous damping, characterized in that the damping coefficient c 1 by the viscous damping element is set based on the following equation.
Figure 0006108370
減衰の小さい多層構造物を対象としてその低層部の層間に粘性減衰要素を層剛性と並列に付加することにより、前記多層構造物の応答を抑制する低層集中制震システムに適用する最適設計法であって、
低層部および高層部をそれぞれ1質点系にモデル化して、低層部の質量m1、低層部の剛性k1、高層部の質量m2、高層部の剛性k2としたとき、変位で最適化するべく前記粘性減衰要素による減衰係数c1を次式に基づいて設定することを特徴とする粘性減衰を用いた低層集中制震システムの最適設計法。
Figure 0006108370
It is an optimal design method applied to a low-rise centralized control system that suppresses the response of the multi-layer structure by adding a viscous damping element in parallel with the layer rigidity for the multi-layer structure with low damping. There,
The low-rise part and the high-rise part are each modeled as a one-mass system, and are optimized by displacement when the mass m 1 of the low part, the stiffness k 1 of the low part, the mass m 2 of the high part, and the rigidity k 2 of the high part An optimum design method for a low-rise centralized control system using viscous damping, characterized in that the damping coefficient c 1 by the viscous damping element is set based on the following equation.
Figure 0006108370
JP2016000751A 2016-01-05 2016-01-05 Optimal design method of low-rise centralized control system using viscous damping Active JP6108370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016000751A JP6108370B2 (en) 2016-01-05 2016-01-05 Optimal design method of low-rise centralized control system using viscous damping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016000751A JP6108370B2 (en) 2016-01-05 2016-01-05 Optimal design method of low-rise centralized control system using viscous damping

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012160828A Division JP5870454B2 (en) 2012-07-19 2012-07-19 Optimal design method of low-rise concentrated control system using inertial mass damper

Publications (2)

Publication Number Publication Date
JP2016094820A JP2016094820A (en) 2016-05-26
JP6108370B2 true JP6108370B2 (en) 2017-04-05

Family

ID=56071561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016000751A Active JP6108370B2 (en) 2016-01-05 2016-01-05 Optimal design method of low-rise centralized control system using viscous damping

Country Status (1)

Country Link
JP (1) JP6108370B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7312343B2 (en) * 2019-05-10 2023-07-21 学校法人日本大学 How to set the specifications of the damping device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5252224B2 (en) * 2009-07-07 2013-07-31 清水建設株式会社 Damping structure of tower structure

Also Published As

Publication number Publication date
JP2016094820A (en) 2016-05-26

Similar Documents

Publication Publication Date Title
Elias et al. Distributed tuned mass dampers for multi-mode control of benchmark building under seismic excitations
Elias et al. Effectiveness of distributed tuned mass dampers for multi-mode control of chimney under earthquakes
Rahimi et al. Application of tuned mass dampers for structural vibration control: a state-of-the-art review
El-Khoury et al. Recent advances on vibration control of structures under dynamic loading
Aly Proposed robust tuned mass damper for response mitigation in buildings exposed to multidirectional wind
Elias et al. Seismic vulnerability of a non-linear building with distributed multiple tuned vibration absorbers
Aydin Optimal damper placement based on base moment in steel building frames
Aly et al. On the dynamics of a very slender building under winds: response reduction using MR dampers with lever mechanism
JP6979805B2 (en) Seismic isolation structure
CN105160100B (en) The TMD of spring mass system Optimization Design is installed
Hejazi et al. Analytical model for viscous wall dampers
Cho et al. Dynamic parameter identification of secondary mass dampers based on full‐scale tests
JP5870454B2 (en) Optimal design method of low-rise concentrated control system using inertial mass damper
Kamgar et al. Rehabilitation of tall buildings by active control system subjected to critical seismic excitation
Min et al. Performance evaluation of tuned liquid column dampers for response control of a 76-story benchmark building
Wu et al. Wind-induced response control of a television transmission tower by piezoelectric semi-active friction dampers
Aydin et al. An experimental study on the effects of different pendulum damper designs on structural behavior
JP6108370B2 (en) Optimal design method of low-rise centralized control system using viscous damping
Li et al. Seismic vibration control of atrium buildings using a truss-nonlinear inertial mass damper system
Ghorbanzadeh et al. Seismic performance assessment of semi active tuned mass damper in an MRF steel building including nonlinear soil–pile–structure interaction
Akyurek Lateral and torsional seismic vibration control for torsionally irregular buildings
Daniel et al. Allocation and sizing of multiple tuned mass dampers for seismic control of irregular structures
Rai et al. Effectiveness of multiple TSWDs for seismic response control of masonry-infilled RC framed structures
Hassani et al. Optimization of pendulum tuned mass damper in tall building under horizontal earthquake excitation
Farghaly Optimization of viscous dampers with the influence of soil structure interaction on response of two adjacent 3-D buildings under seismic load

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170228

R150 Certificate of patent or registration of utility model

Ref document number: 6108370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150