JP2006137924A - Electroconductive resin composition, electroconductive resin cured product, and electronic component module - Google Patents

Electroconductive resin composition, electroconductive resin cured product, and electronic component module Download PDF

Info

Publication number
JP2006137924A
JP2006137924A JP2005110079A JP2005110079A JP2006137924A JP 2006137924 A JP2006137924 A JP 2006137924A JP 2005110079 A JP2005110079 A JP 2005110079A JP 2005110079 A JP2005110079 A JP 2005110079A JP 2006137924 A JP2006137924 A JP 2006137924A
Authority
JP
Japan
Prior art keywords
conductive resin
resin composition
conductive
electronic component
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005110079A
Other languages
Japanese (ja)
Inventor
Akihiro Nomura
昭博 野村
Takashi Osawa
隆司 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2005110079A priority Critical patent/JP2006137924A/en
Publication of JP2006137924A publication Critical patent/JP2006137924A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroconductive resin cured product in which a high connection reliabilty can be acquired. <P>SOLUTION: The electroconductive resin composition for electrically connecting between conductive materials contains an electroconductive powder and a resin material which, after adsorbing on the surface of the conductive material, attains an increase amount in the work function on the above surface of the conductive material to 0.6 eV or less, consequently increasing the value of the Schottky electrical current flowing by the way of the resin material, and is characterized in that the above resin material contains an epoxy resin consisting of a straight-chained hydrocarbon and glycidyl ether. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、導体間において高い接続信頼性を得るために用いられる導電性樹脂組成物、導電性樹脂硬化物、およびそれを用いた電子部品モジュールに関する。   The present invention relates to a conductive resin composition used to obtain high connection reliability between conductors, a cured conductive resin, and an electronic component module using the same.

複数の電子部品の導体間を電気的に接続するために導電性樹脂組成物が用いられることがある。この種の用途に用いられる導電性樹脂組成物には、高い接続信頼性を求められる。   A conductive resin composition may be used to electrically connect conductors of a plurality of electronic components. The conductive resin composition used for this type of application is required to have high connection reliability.

その種の導電性樹脂組成物として、特許文献1には、導電性粉末と、樹脂材料とを含み、樹脂材料としてビスフェノール型エポキシ樹脂に、硬化された後の分子構造においてビスフェノール型エポキシ樹脂よりも並進・回転運動の少ない樹脂であるビフェニル型エポキシ樹脂と、3官能フェノール型エポキシ樹脂と、を加えた樹脂を用いる導電性接着剤が記載されている。   As such a conductive resin composition, Patent Document 1 includes a conductive powder and a resin material. The resin material is a bisphenol-type epoxy resin, and the cured molecular structure is more than that of the bisphenol-type epoxy resin. A conductive adhesive using a resin in which a biphenyl type epoxy resin and a trifunctional phenol type epoxy resin, which are resins having little translational and rotational motion, are described.

また、特許文献2には、導電粒子および樹脂を含み、導電粒子の40重量%以上が銀とスズから実質的になり銀:スズのモル比が2.5:1.5〜3.5:0.5の銀−スズ粉である導電性接着剤が記載されている。
特開2000−319622号公報 特開2002−265920号公報
Patent Document 2 includes conductive particles and a resin, and 40% by weight or more of the conductive particles are substantially composed of silver and tin, and the molar ratio of silver: tin is 2.5: 1.5 to 3.5: A conductive adhesive that is 0.5 silver-tin powder is described.
JP 2000-319622 A JP 2002-265920 A

特許文献1に記載された導電性接着剤では、上記組成を採用することにより、導体と導電性接着剤との接合強度が向上するため、導体と、導電性接着剤を硬化させた導電性接着剤硬化物との間の電気的な接続信頼性が向上するとされている。   In the conductive adhesive described in Patent Document 1, since the bonding strength between the conductor and the conductive adhesive is improved by adopting the above composition, the conductor and the conductive adhesive obtained by curing the conductive adhesive are used. It is said that the reliability of electrical connection with the cured agent is improved.

また、特許文献2に記載された導電性接着剤では、導電粒子を銀−スズの合金粉とすることで、銀のマイグレーションを抑制し、高い信頼性を得ることができるとされている。   Moreover, in the electroconductive adhesive described in patent document 2, it is supposed that silver migration can be suppressed and high reliability can be obtained by using electroconductive particles as silver-tin alloy powder.

しかしながら、特許文献1では、並進・回転運動が少ない、または反応基の数が多い樹脂を使用しているので、当該導電性接着剤の硬化物中の自由体積が大きくなると同時に、硬化反応に寄与できずに残った官能基の数が比較的多くなる。その結果、大きな自由体積によってバルク中の透湿速度が増加し、同時に吸水率が大きくなり、膨潤率が増大する。従って、導電性接着剤硬化物内においては、樹脂成分を介して流れるショットキー電流が低下するため、硬化物内の電気的な接続信頼性が低下する。つまり、導体と硬化物間の電気的な接続信頼性が向上する効果と、硬化物内の電気的な接続信頼性が低下する効果が相殺され、結果として、導体と硬化物により構成される装置としての電気的な接続信頼性は、あまり向上しないという問題があった。   However, in Patent Document 1, since a resin having a small translation / rotation motion or a large number of reactive groups is used, the free volume in the cured product of the conductive adhesive is increased and at the same time contributes to the curing reaction. The number of functional groups left unsuccessful becomes relatively large. As a result, the moisture permeability rate in the bulk increases due to the large free volume, and at the same time, the water absorption rate increases and the swelling rate increases. Therefore, since the Schottky current flowing through the resin component is reduced in the cured conductive adhesive, the electrical connection reliability in the cured product is reduced. In other words, the effect of improving the electrical connection reliability between the conductor and the cured product is offset by the effect of reducing the electrical connection reliability in the cured product, and as a result, a device composed of the conductor and the cured product. As a result, there is a problem that the reliability of electrical connection as is not so improved.

一方、前記特許文献2では、銀−スズの合金粉を配合するため、導電性接着剤硬化物中、もしくは導電性接着剤硬化物と導体間を流れるショットキー電流が低く、銀粉末を配合したものよりも抵抗値が高いという問題があった。   On the other hand, in the said patent document 2, in order to mix | blend silver-tin alloy powder, the Schottky current which flows between a conductive adhesive hardened | cured material or between a conductive adhesive hardened | cured material and a conductor is low, and mix | blended silver powder. There was a problem that the resistance value was higher than that.

このように、電気的な接続信頼性を高めるために接合強度鋸有情やマイグレーションの抑制を図った結果としてショットキー電流の低下を招き、結果的には電気的な接続信頼性の向上に結びついていないというのが現状である。   In this way, as a result of suppression of joint strength sawing and migration in order to increase electrical connection reliability, the Schottky current is reduced, and as a result, electrical connection reliability is improved. There is no current situation.

そこで本発明は、樹脂成分を介して流れるショットキー電流に着目し、ショットキー電流の値を大きくすることで電気的な接続信頼性の向上を図ることを目的とする。さらにまた、硬化物内においても高い接続信頼性を得ることのできる導電性樹脂硬化物、およびそれを用いた電子部品モジュールを提供することを目的とする。   Therefore, the present invention focuses on the Schottky current flowing through the resin component and aims to improve the electrical connection reliability by increasing the value of the Schottky current. Furthermore, it aims at providing the conductive resin hardened | cured material which can acquire high connection reliability also in hardened | cured material, and an electronic component module using the same.

ショットキー電流は、導電性樹脂の被着体である導体金属表面の仕事関数に依存し、該仕事関数は、導電性樹脂等の被着体が導体金属表面に吸着することで、大小さまざまな値に変化すること、また、前記仕事関数が小さくなると、ショットキー電流の値が大きくなることが知られている。   The Schottky current depends on the work function of the surface of the conductive metal that is the adherend of the conductive resin, and the work function is varied in size by adsorbing the adherend such as the conductive resin on the surface of the conductive metal. It is known that the value of the Schottky current increases as the value changes, and as the work function decreases.

そこで、本発明者らはこれに着目して鋭意研究した結果、導体表面に吸着後に、導体表面の仕事関数の増加量が小さい樹脂材料を用いることで、導体に対して高い接続信頼性を得ることのできる導電性樹脂組成物を提供できることを見出した。   Therefore, as a result of diligent research focusing on this, the present inventors have obtained high connection reliability with respect to the conductor by using a resin material with a small increase in the work function of the conductor surface after adsorption onto the conductor surface. It has been found that a conductive resin composition that can be provided is provided.

上記目的を達成するため、本発明に係る導電性樹脂組成物は、導体間を電気的に接続するための導電性樹脂組成物であって、導電性粉末と、導体表面に吸着した後に、前記導体表面の仕事関数の増加量が0.6eV以下となる樹脂材料と、を含むことを特徴とする。   In order to achieve the above object, a conductive resin composition according to the present invention is a conductive resin composition for electrically connecting conductors, and after adsorbing the conductive powder and the conductor surface, And a resin material having an increase in work function on the conductor surface of 0.6 eV or less.

また、本発明に係る導電性樹脂組成物は、前記樹脂材料は、直鎖の炭化水素とグリシジルエーテルとからなる[化1]で表される(式中nは、3〜10の整数を示す)エポキシ樹脂を含むことを特徴とする。   In the conductive resin composition according to the present invention, the resin material is represented by [Chemical Formula 1] consisting of a linear hydrocarbon and glycidyl ether (where n represents an integer of 3 to 10). ) An epoxy resin is included.

なお、[化1]式中でnが3に満たない場合には、架橋点の濃度が高くなって応力が大きくなり、高い接着力が得られなくなるので好ましくない。また、nが10を超える場合には、樹脂硬化物自体の強度が弱くなるため好ましくない。   In addition, when n is less than 3 in the [Chemical Formula 1] formula, the concentration of the cross-linking points is increased, the stress is increased, and a high adhesive force cannot be obtained. Moreover, when n exceeds 10, since the intensity | strength of resin cured material itself becomes weak, it is unpreferable.

あるいは、本発明に係る導電性樹脂組成物は、前記樹脂材料は、分子構造中に[化2]で表される官能基とグリシジルエーテルとを含むエポキシ樹脂を含むことを特徴とする。   Alternatively, the conductive resin composition according to the present invention is characterized in that the resin material includes an epoxy resin containing a functional group represented by [Chemical Formula 2] and glycidyl ether in the molecular structure.

また、本発明に係る導電性樹脂組成物は、前記樹脂材料は、分子構造中にシクロヘキサンとグリシジルエーテルとを含む[化3]で表されるエポキシ樹脂を含むことを特徴とする。   Moreover, the conductive resin composition according to the present invention is characterized in that the resin material includes an epoxy resin represented by [Chemical Formula 3] containing cyclohexane and glycidyl ether in a molecular structure.

さらにまた、本発明に係る導電性樹脂組成物は、さらに窒素を有する有機物を含むことを特徴とする。   Furthermore, the conductive resin composition according to the present invention further includes an organic substance containing nitrogen.

窒素を有する有機物としては、脂肪族アミンおよびポリアミンの中から選ばれる少なくとも1種であることが好ましく、より具体的には、1−アミノデカン、ジ−n−ブチルアミン、トリエチルアミン、テトラエチレンペンタミンから選択される少なくとも一種であることが好ましい。   The organic substance having nitrogen is preferably at least one selected from aliphatic amines and polyamines, and more specifically, selected from 1-aminodecane, di-n-butylamine, triethylamine, and tetraethylenepentamine. It is preferable that it is at least one kind.

また、本発明に係る導電性樹脂硬化物は、請求項1ないし請求項8のうちいずれか一項に記載の導電性樹脂組成物を硬化させてなることを特徴とする。   Moreover, the conductive resin cured product according to the present invention is obtained by curing the conductive resin composition according to any one of claims 1 to 8.

また、本発明に係る電子部品モジュールは、第1の素体と該第1の素体の表面に形成された第1の外部導体とを備える第1の電子部品と、第2の素体と該第2の素体の表面に形成された第2の外部導体とを備える第2の電子部品と、前記第1の外部導体と前記第2の外部導体とを電気的に接続する請求項9に記載の導電性樹脂硬化物と、を備えることを特徴とする。   An electronic component module according to the present invention includes a first electronic component including a first element body and a first outer conductor formed on a surface of the first element body, a second element body, The second electronic component including a second outer conductor formed on the surface of the second element body is electrically connected to the first outer conductor and the second outer conductor. The conductive resin cured product described in 1. above.

本発明の導電性樹脂組成物は、導体表面に吸着後に、導体表面の仕事関数の増加量が小さい樹脂材料を含むため、導電性接着剤組成物を硬化させた導電性樹脂硬化物の内部および導電性樹脂硬化物と導体との間において、電気的な接続信頼性を高めることができる。   Since the conductive resin composition of the present invention includes a resin material having a small increase in work function on the conductor surface after being adsorbed on the conductor surface, the inside of the cured conductive resin obtained by curing the conductive adhesive composition and Electrical connection reliability can be increased between the cured conductive resin and the conductor.

より具体的には、(1)直鎖の炭化水素とグリシジルエーテルをとからなる[化1]で表されるエポキシ樹脂、(2)分子構造中に[化2]で示される官能基とグリシジルエーテルとを含むエポキシ樹脂、(3)分子構造中にシクロヘキサンとグリシジルエーテルとを含む[化3]で表されるエポキシ樹脂、のうち少なくとも一種を含むことにより、導体表面に吸着後に導体表面の仕事関数の増加量を小さくすることができ、電気的な接続信頼性を高めることができる。   More specifically, (1) an epoxy resin represented by [Chemical Formula 1] composed of a linear hydrocarbon and glycidyl ether, and (2) a functional group represented by [Chemical Formula 2] and glycidyl in the molecular structure. An epoxy resin containing an ether, and (3) an epoxy resin represented by [Chemical Formula 3] containing cyclohexane and glycidyl ether in the molecular structure. The increase amount of the function can be reduced, and the electrical connection reliability can be improved.

さらに、上記(1)〜(3)の樹脂材料に加えて窒素を有する有機物を含むことにより、導体表面の仕事関数の増加量をさらに小さくすることができる。導体表面の仕事関数の増加量を小さくするためには、窒素を有する化合物としては脂肪族アミンあるいはポリアミンが効果的であり、さらに具体的には、1−アミノデカン、ジ−n−ブチルアミン、トリエチルアミン、テトラエチレンペンタミンが効果的である。   Furthermore, the increase in the work function of the conductor surface can be further reduced by including an organic substance having nitrogen in addition to the resin materials (1) to (3). In order to reduce the increase in the work function of the conductor surface, an aliphatic amine or polyamine is effective as the nitrogen-containing compound. More specifically, 1-aminodecane, di-n-butylamine, triethylamine, Tetraethylenepentamine is effective.

以下において図を参照しつつ、本発明の導電性樹脂組成物、導電性樹脂硬化物、および電子部品モジュールについて説明する。   Hereinafter, the conductive resin composition, the cured conductive resin, and the electronic component module of the present invention will be described with reference to the drawings.

図1は、本発明の導電性樹脂硬化物を用いた試験用基板を示す平面図である。図1(a)は基板表面から見た平面図であり、図1(b)は基板裏面から見た平面図である。また、図2は、図1(a)中のA―A線に沿って切断したときの断面図である。   FIG. 1 is a plan view showing a test substrate using the cured conductive resin of the present invention. FIG. 1A is a plan view seen from the front surface of the substrate, and FIG. 1B is a plan view seen from the back surface of the substrate. FIG. 2 is a cross-sectional view taken along line AA in FIG.

試験用基板は、本体となる基板3と、基板3の表面に形成された下地電極4および電極2と、電極2表面に形成された導電性樹脂硬化物1と、を備える。   The test substrate includes a substrate 3 serving as a main body, a base electrode 4 and an electrode 2 formed on the surface of the substrate 3, and a cured conductive resin 1 formed on the surface of the electrode 2.

基板3は例えばガラス−エポキシ複合材料などからなり、基板3にはスルーホール5が形成されている。また、スルーホール5を介して基板上下面に渡るように電極2が形成されている。   The substrate 3 is made of, for example, a glass-epoxy composite material, and a through hole 5 is formed in the substrate 3. Further, the electrode 2 is formed so as to extend over the upper and lower surfaces of the substrate through the through hole 5.

導電性樹脂硬化物1は、本発明の導電性樹脂組成物を硬化させたものである。導電性樹脂硬化物1は、例えば、スクリーン印刷により基板3上に導電性樹脂組成物を塗布し、導電性樹脂組成物を熱硬化させることにより形成される。   The cured conductive resin 1 is obtained by curing the conductive resin composition of the present invention. The cured conductive resin 1 is formed, for example, by applying a conductive resin composition on the substrate 3 by screen printing and thermally curing the conductive resin composition.

下地電極4および電極2は例えばCu,Ag,Au,Sn,Niなどからなり、無電解めっきなど周知のプロセスにより形成することができる。   The base electrode 4 and the electrode 2 are made of, for example, Cu, Ag, Au, Sn, Ni, etc., and can be formed by a known process such as electroless plating.

本発明に係る導電性樹脂硬化物2を用いて上記のように試験用基板を構成することにより、電極2,2間の電気的な接続の信頼性が高い試験用基板を得ることができる。   By configuring the test substrate as described above using the cured conductive resin 2 according to the present invention, a test substrate having high reliability of electrical connection between the electrodes 2 and 2 can be obtained.

なお、導電性樹脂硬化物1、電極2、および下地電極4の形成方法については、特に上記方法に限定されるものではない。   In addition, about the formation method of the conductive resin hardened | cured material 1, the electrode 2, and the base electrode 4, it does not specifically limit to the said method.

図3は、本発明の導電性樹脂硬化物を用いた電子部品モジュールを示す概略断面図である。図3に示すように、電子部品モジュール100は、積層セラミックコンデンサ110と、積層セラミックコンデンサ110を実装するためのプリント回路基板120と、を備える。   FIG. 3 is a schematic cross-sectional view showing an electronic component module using the cured conductive resin of the present invention. As shown in FIG. 3, the electronic component module 100 includes a multilayer ceramic capacitor 110 and a printed circuit board 120 for mounting the multilayer ceramic capacitor 110.

積層セラミックコンデンサ110は、セラミック素体111と、セラミック素体111表面に形成された外部導体112と、を備える。誘電体セラミックスからなるセラミック素体111の内部には、図示しないが内部電極が形成されており、内部電極が外部導体112に電気的に接続していて、2つの外部導体112間に容量が発生するように構成されている。外部導体112の表面は、例えばSnやAuで形成されている。   The multilayer ceramic capacitor 110 includes a ceramic body 111 and an external conductor 112 formed on the surface of the ceramic body 111. An internal electrode (not shown) is formed inside the ceramic body 111 made of dielectric ceramics, and the internal electrode is electrically connected to the external conductor 112, and a capacitance is generated between the two external conductors 112. Is configured to do. The surface of the outer conductor 112 is made of, for example, Sn or Au.

プリント回路基板120は、樹脂基板121と、樹脂基板121表面に形成された外部導体122と、を備える。外部導体122の表面は、例えばSnやAuで形成されている。   The printed circuit board 120 includes a resin substrate 121 and an external conductor 122 formed on the surface of the resin substrate 121. The surface of the outer conductor 122 is made of, for example, Sn or Au.

外部導体112および外部導体122は、本発明の導電性樹脂硬化物130を介して電気的に接続されている。   The outer conductor 112 and the outer conductor 122 are electrically connected through the cured conductive resin 130 of the present invention.

電子部品モジュールを上記のように構成することにより、積層セラミックコンデンサ110の外部導体112とプリント回路基板120の外部導体122との間の電気的な接続の信頼性が高い電子部品モジュールを得ることができる。   By configuring the electronic component module as described above, it is possible to obtain an electronic component module with high reliability of electrical connection between the outer conductor 112 of the multilayer ceramic capacitor 110 and the outer conductor 122 of the printed circuit board 120. it can.

なお、本実施例では、第1の電子部品として積層セラミックコンデンサを用いているが、その他のチップ部品や半導体部品を用いることもできる。また、第2の電子部品としてプリント回路基板を用いているが、セラミック多層基板などを用いることもできる。さらに、基板上にチップ部品を搭載するようなモジュールだけでなく、本発明の導電性樹脂硬化物を用いて導体間を電気的に接続する構造を有するものであれば、どのような形態のモジュールであってもよい。   In the present embodiment, a multilayer ceramic capacitor is used as the first electronic component, but other chip components and semiconductor components can also be used. Further, although a printed circuit board is used as the second electronic component, a ceramic multilayer board or the like can also be used. Further, not only a module in which chip components are mounted on a substrate, but also any type of module as long as it has a structure for electrically connecting conductors using the cured conductive resin of the present invention. It may be.

以下、本発明における実験例について説明する。   Hereinafter, experimental examples in the present invention will be described.

実験例1Experimental example 1

(1)導電性樹脂組成物の調製
まず、導電性粉末として、平均粒径1.9μmの球状銀粉末を準備した。次に、直鎖の炭化水素とグリシジルエーテルとからなる[化1]で表される(式中nは、3〜10の整数を示す)エポキシ樹脂として、1,6−ヘキサンジオールジグリシジルエーテル([化1]においてn=6)を準備した。また、分子構造中に[化2]で表される官能基とグリシジルエーテルとを含むエポキシ樹脂として、[化4]で示されるターシャルブチル型エポキシ樹脂と[化5]で示されるフェノールノボラック型エポキシ樹脂、[化3]で示される1,4−シクロヘキサンジメタノールジグリシジルエーテル、[化6]で示されるグリシジルアミン型エポキシ樹脂(本発明の範囲外)を準備した。さらに、アミンアダクト化合物として、エポキシ−アミンアダクト化合物(味の素ファインテクノ製、商品名:MY−HK)を準備した。
(1) Preparation of conductive resin composition First, spherical silver powder having an average particle size of 1.9 µm was prepared as the conductive powder. Next, 1,6-hexanediol diglycidyl ether (wherein n represents an integer of 3 to 10) represented by [Chemical Formula 1] composed of a linear hydrocarbon and glycidyl ether is used. In [Chemical Formula 1], n = 6) was prepared. Moreover, as an epoxy resin containing a functional group represented by [Chemical Formula 2] and glycidyl ether in the molecular structure, a tertiary butyl type epoxy resin represented by [Chemical Formula 4] and a phenol novolac type represented by [Chemical Formula 5] An epoxy resin, 1,4-cyclohexanedimethanol diglycidyl ether represented by [Chemical Formula 3], and a glycidylamine type epoxy resin represented by [Chemical Formula 6] (outside the scope of the present invention) were prepared. Furthermore, an epoxy-amine adduct compound (manufactured by Ajinomoto Fine Techno, trade name: MY-HK) was prepared as an amine adduct compound.

次に、これらの出発材料を後掲の表1に示す割合で混合した後、ミキサーを用いて30分攪拌し、5種類の導電性樹脂組成物を得た。
(2)接触抵抗の評価
接触抵抗の測定用に、図4に示す測定用基板10を用意した。測定用基板10は、長さ40mm×幅10mm×厚さ1mmのCu板11と、Cu板11上に形成された、導電性樹脂硬化物からなる測定用パターン12とからなる。
Next, these starting materials were mixed in the proportions shown in Table 1 below, and then stirred for 30 minutes using a mixer to obtain five types of conductive resin compositions.
(2) Evaluation of Contact Resistance For measurement of contact resistance, a measurement substrate 10 shown in FIG. 4 was prepared. The measurement substrate 10 includes a Cu plate 11 having a length of 40 mm, a width of 10 mm, and a thickness of 1 mm, and a measurement pattern 12 formed on the Cu plate 11 and made of a cured conductive resin.

この測定用基板10の作製方法について説明する。まず、Cu板11を用意して、超音波洗浄機を用いて10分間、表面の洗浄を行った。次に、(1)で得られた5種類の導電性樹脂組成物の各々を、洗浄済みのCu板11の表面に、図4に示すように、スクリーン印刷を用いて塗布した後、オーブン中、150℃で2時間加熱することで、Cu板11上に導電性樹脂硬化物からなる測定用パターン12を形成した。   A method for manufacturing the measurement substrate 10 will be described. First, a Cu plate 11 was prepared, and the surface was cleaned for 10 minutes using an ultrasonic cleaner. Next, each of the five types of conductive resin compositions obtained in (1) was applied to the surface of the cleaned Cu plate 11 using screen printing as shown in FIG. The measurement pattern 12 made of a cured conductive resin was formed on the Cu plate 11 by heating at 150 ° C. for 2 hours.

次に、マイクロオームメーターを用いて、図5に示す測定用パターン12の測定パッド21,22間、測定パッド22,23間、測定パッド23,24間、測定パッド24,25間、測定パッド25,26間の抵抗値(mΩ)を測定した。また、金属顕微鏡を用いて、図6に矢印で模式的に示す、隣接する測定用パターン12間の距離(mm)を測定した。   Next, using a micro ohm meter, between the measurement pads 21 and 22 of the measurement pattern 12 shown in FIG. 5, between the measurement pads 22 and 23, between the measurement pads 23 and 24, between the measurement pads 24 and 25, and between the measurement pads 25. , 26 was measured for resistance (mΩ). Moreover, the distance (mm) between the adjacent patterns 12 for a measurement typically shown with the arrow in FIG. 6 was measured using the metal microscope.

そして、隣接する測定用パターン12の距離(mm)に対する測定パッド21〜26間の抵抗値(mΩ)との関係(例えば、図6の最も左の測定用パターン12とそれに隣接する測定用パターン12の距離(mm)に対応する抵抗値は、図5の測定パッド21,22間の抵抗値(mΩ)である。)を、最小二乗法を用いて直線近似し、距離0(mm)における抵抗値(mΩ)を求め、さらにこれを1/2倍にした値を接触抵抗値(mΩ)とした。
(3)仕事関数の評価
最初に、アセトン中に(1)で作製した導電性樹脂組成物に用いたエポキシ樹脂の各々を1wt%溶解させ、エポキシ樹脂溶液を得た。次に、前記エポキシ樹脂溶液中に、前記Cu板を浸漬させ、10分間、超音波分散を行った。前記超音波分散後、エポキシ樹脂溶液に浸漬させた状態で、12時間、静置した。次に、エポキシ樹脂溶液から、前記Cu板を取り出し、空気中で24時間乾燥させた。
The relationship between the distance (mm) between the adjacent measurement patterns 12 and the resistance value (mΩ) between the measurement pads 21 to 26 (for example, the leftmost measurement pattern 12 in FIG. 6 and the measurement pattern 12 adjacent thereto). The resistance value corresponding to the distance (mm) is the resistance value (mΩ) between the measurement pads 21 and 22 in FIG. 5) using a least-square method to obtain a resistance at a distance of 0 (mm). A value (mΩ) was obtained, and a value obtained by halving the value was defined as a contact resistance value (mΩ).
(3) Evaluation of work function First, 1 wt% of each of the epoxy resins used in the conductive resin composition prepared in (1) was dissolved in acetone to obtain an epoxy resin solution. Next, the Cu plate was immersed in the epoxy resin solution, and ultrasonic dispersion was performed for 10 minutes. After the ultrasonic dispersion, the sample was allowed to stand for 12 hours in a state immersed in an epoxy resin solution. Next, the Cu plate was taken out of the epoxy resin solution and dried in the air for 24 hours.

次に、大気雰囲気型紫外光電子分析装置(理研計器製、設備名:AC−2)を用いて、前記Cu板の仕事関数を測定した。測定の際には、前記エポキシ樹脂溶液に浸漬したCu板と、浸漬させなかったCu板とをそれぞれ測定し、以下の式(1)に示す計算式を用いて、仕事関数の増加量を算出した。   Next, the work function of the Cu plate was measured using an air atmosphere type ultraviolet photoelectron analyzer (manufactured by Riken Keiki Co., Ltd., equipment name: AC-2). In the measurement, each of the Cu plate immersed in the epoxy resin solution and the Cu plate not immersed in the epoxy resin solution were measured, and the amount of increase in work function was calculated using the calculation formula shown in the following equation (1). did.

仕事関数の増加量=(エポキシ樹脂溶液に浸漬したCu板の仕事関数)−(エポキシ樹脂溶液に浸漬させなかったCu板の仕事関数)…(1)
前記式1で得られた仕事関数の増加量を、各エポキシ樹脂の吸着による「仕事関数の変化量」とした。
Increase amount of work function = (work function of Cu plate immersed in epoxy resin solution) − (work function of Cu plate not immersed in epoxy resin solution) (1)
The amount of increase in work function obtained by Equation 1 was defined as “work function change amount” due to adsorption of each epoxy resin.

(1)で調製した導電性樹脂組成物の組成およびその各々について(2)、(3)の方法で測定した仕事関数の変化量と接触抵抗値を表1に示す。なお表1において試料番号に*を付した試料番号5は本発明の範囲外の比較例である。   Table 1 shows the composition of the conductive resin composition prepared in (1) and the work function variation and the contact resistance value measured by the methods (2) and (3) for each of the compositions. In Table 1, sample number 5 with * added to the sample number is a comparative example outside the scope of the present invention.

表1から明らかなように、試料番号1〜4については、仕事関数の増加量が0.6eV以下と小さいため、接触抵抗値が低くなっている。一方、試料番号5については、仕事関数の増加量が0.6eVを超えるため、接触抵抗値が高くなっている。   As apparent from Table 1, the contact resistance values of sample numbers 1 to 4 are low because the increase in work function is as small as 0.6 eV or less. On the other hand, for sample number 5, the increase in the work function exceeds 0.6 eV, so the contact resistance value is high.

実験例2Experimental example 2

(1)導電性樹脂組成物の調製
まず、出発材料として、平均粒径1.9μmの球状銀粉末、1,6−ヘキサンジオールジグリシジルエーテル、[化4]に示したターシャルブチル型エポキシ樹脂、[化3]に示した1,4−シクロヘキサンジメタノールジグリシジルエーテルおよびエポキシ−アミンアダクト化合物(味の素ファインテクノ製、商品名:MY−HK)を準備した。さらに、窒素を有する有機物として、テトラエチレンペンタミン、1−アミノデカン、ジ−n−ブチルアミン、トリエチルアミンを準備した。さらに、窒素を有する有機物との比較のためにポリブタジエンを用意した。
(1) Preparation of conductive resin composition First, as starting materials, spherical silver powder having an average particle diameter of 1.9 μm, 1,6-hexanediol diglycidyl ether, and the tertiary butyl type epoxy resin shown in [Chemical Formula 4] 1,4-cyclohexanedimethanol diglycidyl ether shown in [Chemical Formula 3] and an epoxy-amine adduct compound (manufactured by Ajinomoto Fine Techno Co., Ltd., trade name: MY-HK) were prepared. Furthermore, tetraethylenepentamine, 1-aminodecane, di-n-butylamine, and triethylamine were prepared as organic substances having nitrogen. Furthermore, polybutadiene was prepared for comparison with organic substances having nitrogen.

なお、[化4]に示したターシャルブチル型エポキシ樹脂については、ターシャルブチル基([化2]に示した官能基)がベンゼン環のいずれの炭素原子と結合していてもよい。   In addition, in the tertiary butyl type epoxy resin shown in [Chemical Formula 4], the tertiary butyl group (functional group shown in [Chemical Formula 2]) may be bonded to any carbon atom of the benzene ring.

次に、これらの出発材料を下記の表2に示す割合で混合した後、ミキサーを用いて30分攪拌し、試料番号6〜10の導電性樹脂組成物を得た。なお、窒素を有する有機物の添加量は、樹脂材料(1,6−ヘキサンジオールジグリシジルエーテル、[化4]に示したターシャルブチル型エポキシ樹脂、[化3]に示した1,4−シクロヘキサンジメタノールジグリシジルエーテルおよびエポキシ−アミンアダクト化合物)の合計を100重量部としたときの割合で示されている。なお、ポリブタジエンは窒素を有する有機物ではないが、便宜上、窒素を有する有機物の欄に記載した。また、窒素を有する有機物を添加したことの効果を検証するため、窒素を有する有機物を含有しない実験例1で用いた試料番号1を再度作製した。
(2)接触抵抗および仕事関数の評価
基板を表面がITO(In23−SnO2)によってコーティングされたガラス基板に替えた以外は実験例1と同様の条件で、導電性樹脂組成物の接触抵抗および基板の仕事関数を評価した。
Next, after mixing these starting materials in the ratio shown in Table 2 below, the mixture was stirred for 30 minutes using a mixer to obtain conductive resin compositions of sample numbers 6 to 10. The addition amount of the organic substance having nitrogen is the resin material (1,6-hexanediol diglycidyl ether, tertiary butyl epoxy resin shown in [Chemical Formula 4], 1,4-cyclohexane shown in [Chemical Formula 3]. The total amount of dimethanol diglycidyl ether and epoxy-amine adduct compound) is 100 parts by weight. In addition, although polybutadiene is not an organic substance containing nitrogen, it is described in the column of an organic substance containing nitrogen for convenience. Moreover, in order to verify the effect of adding the organic substance containing nitrogen, the sample number 1 used in Experimental Example 1 not containing the organic substance containing nitrogen was produced again.
(2) Evaluation of contact resistance and work function The conductive resin composition was tested under the same conditions as in Experimental Example 1 except that the substrate was replaced with a glass substrate whose surface was coated with ITO (In 2 O 3 —SnO 2 ). Contact resistance and substrate work function were evaluated.

試料番号1,6〜10の組成と仕事関数の変化量および接触抵抗値を表2に示す。なお、表2において試料番号に*を付した試料番号10は本発明の範囲外の比較例である。   Table 2 shows the composition of Sample Nos. 1, 6 to 10, the amount of change in work function, and the contact resistance value. In Table 2, sample number 10 with * added to the sample number is a comparative example outside the scope of the present invention.

試料番号1と試料番号6〜9との比較から明らかなように、窒素を有する有機物を含有させることによって仕事関数の増加量をさらに低減することができ、その結果として接触抵抗値を低減できた。ポリブタジエンを含有させた試料番号10は、試料番号1と比較して仕事関数の増加量が大きくなり、接触抵抗値の増大を招いた。   As is clear from the comparison between Sample No. 1 and Sample Nos. 6 to 9, the increase in work function can be further reduced by containing an organic substance having nitrogen, and as a result, the contact resistance value can be reduced. . In Sample No. 10 containing polybutadiene, the amount of increase in work function was larger than that in Sample No. 1, and the contact resistance value was increased.

また、試料番号11,12から明らかなように、1,6−ヘキサンジオールジグリシジルエーテル以外の本発明の範囲内のエポキシ樹脂に対しても、窒素を有する有機物を含有させてもよい。試料番号11,12ともに仕事関数の増加量を低く抑えることができ、接触抵抗を低減できた。   As is clear from Sample Nos. 11 and 12, an epoxy resin other than 1,6-hexanediol diglycidyl ether within the scope of the present invention may contain an organic substance having nitrogen. In Sample Nos. 11 and 12, the increase in work function could be kept low, and the contact resistance could be reduced.

さらにまた、試料番号13から明らかなように、本発明の範囲内のエポキシ樹脂を2種類以上混合して用い、さらに窒素を有する有機物を含有させても仕事関数の増加量を低減させることができた。   Furthermore, as apparent from Sample No. 13, the amount of increase in work function can be reduced by using a mixture of two or more epoxy resins within the scope of the present invention and further containing an organic substance containing nitrogen. It was.

なお、希釈溶剤を除いた導電性樹脂組成物において、導電性粉末は78〜95重量%、直鎖の炭化水素とグリシジルエーテルとからなる[化1]で表される(式中nは、3〜10の整数を示す)エポキシ樹脂は1〜20重量%、分子構造中に[化2]で表される官能基とグリシジルエーテルとを含むエポキシ樹脂は1〜20)重量%の割合で含まれることが好ましい。また、窒素を有する有機物は、導電性樹脂組成物に含まれるすべての樹脂100重量部に対して、0.001〜20重量部含まれることが好ましい。   In the conductive resin composition excluding the diluting solvent, the conductive powder is represented by [Chemical Formula 1] consisting of 78 to 95% by weight of linear hydrocarbon and glycidyl ether (where n is 3 Epoxy resin containing 1 to 20% by weight, and an epoxy resin containing a functional group represented by [Chemical Formula 2] and glycidyl ether in the molecular structure in an amount of 1 to 20)% by weight. It is preferable. Moreover, it is preferable that 0.001-20 weight part of the organic substance which has nitrogen is contained with respect to 100 weight part of all the resin contained in a conductive resin composition.

また、導電性樹脂組成物に用いられる金属粉末の形状は、球状、フレーク状、針状等のいかなる形状のものであっても、本発明と同様の効果が得られる。また、金属粉末の種類については、本実施例に記載のAg、Cu、またはNiの少なくとも1種からなる金属粉末であることが好ましい。   Moreover, even if the shape of the metal powder used for the conductive resin composition is any shape such as a spherical shape, a flake shape, and a needle shape, the same effect as the present invention can be obtained. Moreover, about the kind of metal powder, it is preferable that it is a metal powder which consists of at least 1 sort (s) of Ag, Cu, or Ni as described in a present Example.

また、本発明では分子構造中に[化2]で表される官能基とグリシジルエーテルとからなるエポキシ樹脂として[化4]や[化5]に示すエポキシ樹脂を用いたが、他の分子構造中に[化2]で表される官能基とグリシジルエーテルとからなるエポキシ樹脂を用いても、本発明と同様の効果が得られる。   In the present invention, the epoxy resin represented by [Chemical Formula 4] or [Chemical Formula 5] is used as an epoxy resin composed of a functional group represented by [Chemical Formula 2] and glycidyl ether in the molecular structure. Even when an epoxy resin composed of a functional group represented by [Chemical Formula 2] and glycidyl ether is used, the same effect as in the present invention can be obtained.

さらには、本発明ではアミンアダクト化合物として、エポキシ−アミンアダクト化合物(味の素ファインテクノ製、商品名:MY−HK)を用いたが、他のアミンアダクト化合物を用いても、本発明と同様の効果が得られる。なお、言うまでもなく、他のいかなる硬化剤や硬化促進剤を配合しても良い。また、必要に応じて、有機溶剤、反応性希釈剤、レオロジー調整剤、消泡剤などの添加剤を配合しても構わない。   Furthermore, in the present invention, an epoxy-amine adduct compound (manufactured by Ajinomoto Fine Techno Co., Ltd., trade name: MY-HK) is used as the amine adduct compound. Is obtained. Needless to say, any other curing agent or curing accelerator may be blended. Moreover, you may mix | blend additives, such as an organic solvent, a reactive diluent, a rheology regulator, and an antifoamer, as needed.

実施例1の試験用基板を示す平面図である。3 is a plan view showing a test substrate of Example 1. FIG. 図1中のA−A線に沿った断面図である。It is sectional drawing along the AA line in FIG. 実施例2の電子部品モジュールを示す概略断面図である。6 is a schematic cross-sectional view showing an electronic component module of Example 2. FIG. 測定用基板を示す平面図である。It is a top view which shows the board | substrate for a measurement. 測定用基板の測定用パターンを拡大して示す模式図である。It is a schematic diagram which expands and shows the measurement pattern of the measurement substrate. 測定用基板の測定用パターンを拡大して示す模式図である。It is a schematic diagram which expands and shows the measurement pattern of the measurement substrate.

符号の説明Explanation of symbols

1 導電性樹脂硬化物
2 電極
3 基板
4 下地電極
5 スルーホール
100 電子部品モジュール
110 積層セラミックコンデンサ
111 セラミック素体
112 外部電極
120 プリント回路基板
121 樹脂基板
122 外部電極
130 導電性樹脂硬化物
10 測定用基板
11 Cu板
12 測定用パターン
21〜26 測定パッド
DESCRIPTION OF SYMBOLS 1 Conductive resin cured material 2 Electrode 3 Substrate 4 Base electrode 5 Through hole 100 Electronic component module 110 Multilayer ceramic capacitor 111 Ceramic body 112 External electrode 120 Printed circuit board 121 Resin substrate 122 External electrode 130 Conductive resin cured material 10 For measurement Substrate 11 Cu plate 12 Measurement pattern 21-26 Measurement pad

Claims (10)

導体間を電気的に接続するための導電性樹脂組成物であって、
導電性粉末と、
導体表面に吸着した後に、前記導体表面の仕事関数の増加量が0.6eV以下となる樹脂材料と、を含むことを特徴とする導電性樹脂組成物。
A conductive resin composition for electrically connecting conductors,
Conductive powder;
A conductive resin composition comprising: a resin material having an increase in work function of the conductor surface of 0.6 eV or less after being adsorbed on the conductor surface.
前記樹脂材料は、直鎖の炭化水素とグリシジルエーテルとからなる[化1]で表される(式中nは、3〜10の整数を示す)エポキシ樹脂を含むことを特徴とする請求項1に記載の導電性樹脂組成物。
The resin material includes an epoxy resin represented by [Chemical Formula 1] composed of a linear hydrocarbon and glycidyl ether (wherein n represents an integer of 3 to 10). The conductive resin composition described in 1.
前記樹脂材料は、分子構造中に[化2]で表される官能基とグリシジルエーテルとを含むエポキシ樹脂を含むことを特徴とする請求項1に記載の導電性樹脂組成物。
The conductive resin composition according to claim 1, wherein the resin material includes an epoxy resin including a functional group represented by [Chemical Formula 2] and glycidyl ether in a molecular structure.
前記樹脂材料は、分子構造中にシクロヘキサンとグリシジルエーテルとを含む[化3]で表されるエポキシ樹脂を含むことを特徴とする請求項1に記載の導電性樹脂組成物。
The conductive resin composition according to claim 1, wherein the resin material includes an epoxy resin represented by [Chemical Formula 3] including cyclohexane and glycidyl ether in a molecular structure.
さらに窒素を有する有機物を含むことを特徴とする請求項1ないし請求項3のうちいずれか一項に記載の導電性樹脂組成物。   The conductive resin composition according to any one of claims 1 to 3, further comprising an organic substance containing nitrogen. 前記窒素を有する有機物は、脂肪族アミンおよびポリアミンの中から選ばれる少なくとも1種であることを特徴とする請求項5に記載の導電性樹脂組成物。   6. The conductive resin composition according to claim 5, wherein the organic substance having nitrogen is at least one selected from aliphatic amines and polyamines. 前記脂肪族アミンは、1−アミノデカン、ジ−n−ブチルアミン、およびトリエチルアミンの中から選ばれる少なくとも1種であることを特徴とする請求項6に記載の導電性樹脂組成物。   The conductive resin composition according to claim 6, wherein the aliphatic amine is at least one selected from 1-aminodecane, di-n-butylamine, and triethylamine. 前記ポリアミンは、テトラエチレンペンタミンであることを特徴とする請求項6に記載の導電性樹脂組成物。   The conductive resin composition according to claim 6, wherein the polyamine is tetraethylenepentamine. 請求項1ないし請求項8のうちいずれか一項に記載の導電性樹脂組成物を硬化させてなることを特徴とする導電性樹脂硬化物。   A conductive resin cured product obtained by curing the conductive resin composition according to any one of claims 1 to 8. 第1の素体と該第1の素体の表面に形成された第1の外部導体とを備える第1の電子部品と、
第2の素体と該第2の素体の表面に形成された第2の外部導体とを備える第2の電子部品と、
前記第1の外部導体と前記第2の外部導体とを電気的に接続する請求項9に記載の導電性樹脂硬化物と、を備えることを特徴とする電子部品モジュール。

A first electronic component comprising a first element body and a first outer conductor formed on the surface of the first element body;
A second electronic component comprising a second element body and a second outer conductor formed on the surface of the second element body;
An electronic component module comprising: the cured conductive resin according to claim 9 that electrically connects the first outer conductor and the second outer conductor.

JP2005110079A 2004-07-01 2005-04-06 Electroconductive resin composition, electroconductive resin cured product, and electronic component module Pending JP2006137924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005110079A JP2006137924A (en) 2004-07-01 2005-04-06 Electroconductive resin composition, electroconductive resin cured product, and electronic component module

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004195901 2004-07-01
JP2004298929 2004-10-13
JP2005110079A JP2006137924A (en) 2004-07-01 2005-04-06 Electroconductive resin composition, electroconductive resin cured product, and electronic component module

Publications (1)

Publication Number Publication Date
JP2006137924A true JP2006137924A (en) 2006-06-01

Family

ID=36618935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005110079A Pending JP2006137924A (en) 2004-07-01 2005-04-06 Electroconductive resin composition, electroconductive resin cured product, and electronic component module

Country Status (1)

Country Link
JP (1) JP2006137924A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001863A (en) * 2006-06-26 2008-01-10 Sumitomo Bakelite Co Ltd Liquid resin composition and semiconductor device manufactured by using the liquid resin composition
CN110475767A (en) * 2017-03-29 2019-11-19 Dic株式会社 Epoxy resin, manufacturing method, composition epoxy resin and its solidfied material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124972A (en) * 1982-12-29 1984-07-19 Nitto Electric Ind Co Ltd Conductive resin composition for seal excellent in adhesion to oily surface
JPH08176409A (en) * 1994-12-26 1996-07-09 Sumitomo Bakelite Co Ltd Conductive resin paste
JP2003147046A (en) * 2001-11-12 2003-05-21 Sumitomo Bakelite Co Ltd Resin paste for semiconductor and semiconductor device
JP2003168323A (en) * 2001-11-30 2003-06-13 Mitsui Chemicals Inc Anisotropic conductive paste and its using method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124972A (en) * 1982-12-29 1984-07-19 Nitto Electric Ind Co Ltd Conductive resin composition for seal excellent in adhesion to oily surface
JPH08176409A (en) * 1994-12-26 1996-07-09 Sumitomo Bakelite Co Ltd Conductive resin paste
JP2003147046A (en) * 2001-11-12 2003-05-21 Sumitomo Bakelite Co Ltd Resin paste for semiconductor and semiconductor device
JP2003168323A (en) * 2001-11-30 2003-06-13 Mitsui Chemicals Inc Anisotropic conductive paste and its using method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001863A (en) * 2006-06-26 2008-01-10 Sumitomo Bakelite Co Ltd Liquid resin composition and semiconductor device manufactured by using the liquid resin composition
CN110475767A (en) * 2017-03-29 2019-11-19 Dic株式会社 Epoxy resin, manufacturing method, composition epoxy resin and its solidfied material

Similar Documents

Publication Publication Date Title
KR101170395B1 (en) Conductive adhesive compositions with electrical stability and good impact resistance for use in electronics devices
KR100804840B1 (en) Electroconductive paste and substrate using the same for mounting electronic parts
TW201011088A (en) Conductive adhesive and LED substrate using it
KR20110049466A (en) Conductive paste and the manufacturing method thereof and the electric device comprising thereof
JP5979237B2 (en) Conductive adhesive
KR20150100621A (en) Conductive adhesive composition and electronic element using same
JP3837858B2 (en) Conductive adhesive and method of using the same
TWI381036B (en) Then the film
JP4595646B2 (en) Epoxy resin composition
JP4482945B2 (en) Electronic component module
JP2002204052A (en) Circuit connecting material and method for connecting circuit terminal using the same as well as connecting structure
JP2007317563A (en) Circuit connecting adhesive
JP2006137924A (en) Electroconductive resin composition, electroconductive resin cured product, and electronic component module
US6749774B2 (en) Conductive adhesive and connection structure using the same
JP2007204673A (en) Epoxy resin composition, electroconductive adhesive by using the same and anisotropic electroconductive film
JP4748158B2 (en) Conductive resin cured product and electronic component module
JP2001262110A (en) Anisotropic conductive adhesive and electronic device product
JP2005317491A (en) Conductive paste and electronic component mounting substrate using it
JP2006104273A (en) Electroconductive adhesive and electroconductive film, and printed wiring board obtained using the same
JPH07252460A (en) Adhesive
JPH1030082A (en) Adhesive
JP2002222833A (en) Conductive adhesive, and electronic component package and its manufacturing method
JP2000207942A (en) Aerotropic conductive adhesive
JP2009076271A (en) Conductive paste and electrode using it
JP2005109316A (en) Inorganic material of high dielectric constant, and high dielectric constant composite material using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412