JP2006133008A - X-ray fluoroscopic device - Google Patents

X-ray fluoroscopic device Download PDF

Info

Publication number
JP2006133008A
JP2006133008A JP2004320320A JP2004320320A JP2006133008A JP 2006133008 A JP2006133008 A JP 2006133008A JP 2004320320 A JP2004320320 A JP 2004320320A JP 2004320320 A JP2004320320 A JP 2004320320A JP 2006133008 A JP2006133008 A JP 2006133008A
Authority
JP
Japan
Prior art keywords
ray
fluoroscopic
fluoroscopic object
interference
ray detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004320320A
Other languages
Japanese (ja)
Other versions
JP4704735B2 (en
Inventor
Masayuki Kamegawa
正之 亀川
Yoshio Kuni
嘉夫 國
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004320320A priority Critical patent/JP4704735B2/en
Publication of JP2006133008A publication Critical patent/JP2006133008A/en
Application granted granted Critical
Publication of JP4704735B2 publication Critical patent/JP4704735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray fluoroscopic device for enhancing work efficiency by reducing a burden on an operator since interference of a fluoroscoping object with an X-ray source, an X-ray detector, etc. is prevented from occurring in moving, turning, or tilting the fluoroscoping object. <P>SOLUTION: An optical camera 5 is provided for photographing the fluoroscoping object W. A picture image processing means 10c is provided for acquiring information on the shape and size of the fluoroscoping object W from an appearance image of the fluoroscoping object W obtained by photographing it with the optical camera in a plurality of directions. An interference monitoring means 10d is provided for monitoring, by using the information, whether the fluoroscoping object W interferes with the X-ray source 1, the X-ray detector 2, or another device/member when moving, turning, or tilting the fluoroscoping object. This restricts the motion of the fluoroscoping object before an interference occurs even if an operator moves, turns, or tilts it at will. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、産業用のX線透視装置に関し、特にアルミ鋳物などの内部欠陥等を非破壊のもとに観察するのに適したX線透視装置に関する。   The present invention relates to an industrial X-ray fluoroscopy device, and more particularly to an X-ray fluoroscopy device suitable for observing internal defects such as aluminum castings in a non-destructive manner.

アルミ鋳物などの物品の内部欠陥等を非破壊のもとに検査する装置として、従来、X線源とX線検出器の間に、被検査物(透視対象物)を固定して、X線源およびX線検出器に対して移動並びに回動、更には傾動させる機能を持った試料ステージを配置したX線透視装置が知られている(例えば特許文献1参照)。
特開2003−279502号公報
As a device for inspecting internal defects etc. of articles such as aluminum castings in a non-destructive manner, conventionally, an inspection object (perspective object) is fixed between an X-ray source and an X-ray detector, and X-rays are detected. There is known an X-ray fluoroscopic apparatus in which a sample stage having a function of moving, rotating, and tilting with respect to a source and an X-ray detector is disposed (see, for example, Patent Document 1).
JP 2003-279502 A

以上のようなX線透視装置においては、オペレータの操作により、X線源とX線検出器の間で透視対象物を種々の方向に移動させたり、回転させたり、あるいは傾動させながらX線透視像を観察し、内部欠陥の有無などを検査するのであるが、透視対象物の位置決めは、オペレータが透視対象物のX線透視像を見ながら行うか、あるいはX線源、X線検出器および試料ステージを覆うX線防護箱に形成されている観察窓から実際の透視対象物の位置、姿勢を確認しながら行っている。そして、透視対象物とX線源やX線検出器との距離を目視により注意しながら操作することによって、透視対象物の移動・回転・傾動に伴うX線源やX線検出器等の装置構成部材との衝突を防止している。   In the X-ray fluoroscopic apparatus as described above, X-ray fluoroscopy is performed while the fluoroscopic object is moved, rotated, or tilted in various directions between the X-ray source and the X-ray detector by the operation of the operator. The image is observed and the presence or absence of internal defects is inspected. The positioning of the fluoroscopic object is performed while the operator looks at the X-ray fluoroscopic image of the fluoroscopic object, or the X-ray source, X-ray detector, and This is performed while confirming the actual position and orientation of the fluoroscopic object from the observation window formed in the X-ray protective box covering the sample stage. And by operating the distance between the fluoroscopic object and the X-ray source or X-ray detector while visually observing, an apparatus such as an X-ray source or X-ray detector accompanying the movement / rotation / tilting of the fluoroscopic object Collisions with components are prevented.

そのため、オペレータは透視対象物のX線透視像から欠陥の有無などを観察する以外に、透視対象物とX線源やX線検出器との干渉ないしは衝突に気を配る必要があり、このことがオペレータの負担になり、作業能率の低下の一因となっている。
本発明はこのような実情に鑑みてなされたもので、透視対象物の移動や回転、あるいは傾動時に、透視対象物がX線源やX線検出器等に干渉(衝突)することを未然に防止することができ、もってオペレータの負担を軽減することのできるX線透視装置の提供をその課題としている。
Therefore, the operator needs to pay attention to the interference or collision between the fluoroscopic object and the X-ray source or X-ray detector, in addition to observing the presence or absence of defects from the fluoroscopic image of the fluoroscopic object. This is a burden on the operator and contributes to a decrease in work efficiency.
The present invention has been made in view of such a situation, and it is necessary to prevent the fluoroscopic object from interfering (collision) with an X-ray source, an X-ray detector or the like when the fluoroscopic object is moved, rotated, or tilted. It is an object of the present invention to provide an X-ray fluoroscopic apparatus that can prevent the burden on the operator.

上記の課題を解決するため、本発明のX線透視装置は、互いに対向配置されたX線源とX線検出器と、これらの間に設けられ、透視対象物を固定するための対象物固定機構と、その試料固定機構に固定されている透視対象物を上記X線源およびX線検出器の対に対して相対的に移動および回転させる駆動機構を備えたX線透視装置において、上記対象物固定機構に固定されている透視対象物を撮影する光学カメラと、その光学カメラと上記駆動機構を用いてあらかじめ複数の方向から透視対象物を撮影した画像情報から、透視対象物の大きさ、形状に関する情報を得る画像処理手段と、その画像処理手段により得られた情報を用いて、上記駆動機構の駆動時に、透視対象物と上記X線源、X線検出器および当該装置内の他部材との干渉を監視する干渉監視手段を備えていることによって特徴づけられる(請求項1)。   In order to solve the above-described problems, an X-ray fluoroscopic apparatus of the present invention is provided with an X-ray source and an X-ray detector that are arranged to face each other, and an object fixing for fixing the fluoroscopic object. An X-ray fluoroscopic apparatus comprising a mechanism and a drive mechanism for moving and rotating a fluoroscopic object fixed to the sample fixing mechanism relative to the pair of the X-ray source and the X-ray detector. An optical camera for photographing a fluoroscopic object fixed to the object fixing mechanism, and from the image information obtained by photographing the fluoroscopic object from a plurality of directions in advance using the optical camera and the driving mechanism, the size of the fluoroscopic object, Image processing means for obtaining information on the shape, and information obtained by the image processing means, and when the drive mechanism is driven, the fluoroscopic object, the X-ray source, the X-ray detector, and other members in the apparatus Monitor interference with Characterized by that it comprises an interference monitoring means that (claim 1).

ここで、本発明においては、上記干渉監視手段が、透視対象物とX線源、X線検出器および当該装置内の他部材とが干渉する前に上記駆動機構を停止させる機能を持つ構成(請求項2)を好適に採用することができる。   Here, in the present invention, the interference monitoring means has a function of stopping the drive mechanism before the fluoroscopic object interferes with the X-ray source, the X-ray detector, and other members in the apparatus ( Claim 2) can be preferably employed.

また、本発明においては、上記干渉監視手段が、透視対象物とX線源、X線検出器および当該装置内の他部材に対してあらかじめ設定されている距離だけ接近した時点で音もしくは表示による警報を発する機能を持つ構成(請求項3)を採用することもできる。
更に、本発明においては、上記干渉監視手段が、透視対象物とX線源、X線検出器および当該装置内の他部材に対してあらかじめ設定されている距離だけ接近した時点で、上記駆動機構の駆動速度を所定速度以下に自動的に低下させる機能を持つ構成(請求項4)を採用してもよい。
Further, in the present invention, when the interference monitoring means approaches the fluoroscopic object, the X-ray source, the X-ray detector, and other members in the apparatus by a preset distance, sound or display is used. A configuration having a function of issuing an alarm (claim 3) may be employed.
Further, in the present invention, when the interference monitoring means approaches the fluoroscopic object, the X-ray source, the X-ray detector, and other members in the apparatus by a preset distance, the drive mechanism A configuration (Claim 4) having a function of automatically reducing the drive speed to a predetermined speed or less may be employed.

また、本発明においては、上記画像処理手段が、光学カメラにより複数の方向から透視対象物を撮影した画像情報から、その透視対象物を内包するサイズの円筒体を求め、上記干渉監視手段による干渉監視のための情報とする構成(請求項5)を採用することができ、あるいは同じくその画像情報から、その透視対象物を内包する際ずる直方体を求め、同様に干渉監視手段による干渉監視のための情報とする構成(請求項6)も採用することができる。   In the present invention, the image processing means obtains a cylindrical body having a size including the fluoroscopic object from image information obtained by imaging the fluoroscopic object from a plurality of directions by an optical camera, and performs interference by the interference monitoring means. A configuration (Claim 5) can be adopted as information for monitoring, or similarly, a rectangular parallelepiped that encloses the fluoroscopic object is obtained from the image information, and similarly for interference monitoring by the interference monitoring means. The structure (claim 6) as the above information can also be adopted.

本発明は、X線透視装置に透視対象物を撮影する光学カメラを設け、その光学カメラによる透視対象物の外観像から透視対象物の形状・大きさに係る情報を得て、その情報をもとに透視対象物とX線源やX線検出器、あるいは装置内の防護箱等の他部材(以下、これらを総称して装置部材と称する)との干渉を監視することにより、課題を解決しようとするものである。   The present invention provides an X-ray fluoroscopic apparatus with an optical camera for photographing a fluoroscopic object, obtains information related to the shape and size of the fluoroscopic object from an external appearance image of the fluoroscopic object by the optical camera, and stores the information. The problem is solved by monitoring the interference between the fluoroscopic object and the X-ray source, the X-ray detector, or other members such as a protective box in the apparatus (hereinafter collectively referred to as the apparatus member). It is something to try.

すなわち、透視対象物の外観を撮影する光学カメラを設けるとともに、X線源とX線検出器に対して透視対象物を相対的に移動、回転させる駆動機構を駆動し、あらかじめ複数の方向から撮影した透視対象物の外観像を用いた画像処理により、透視対象物の形状、大きさに係る情報を得ることができる。その情報を用いることにより、透視対象物が装置部材に対して干渉する限界の位置・角度等を決定することができ、干渉を監視することができる。   In other words, an optical camera for photographing the appearance of the fluoroscopic object is provided, and a driving mechanism for moving and rotating the fluoroscopic object relative to the X-ray source and the X-ray detector is driven to capture images from a plurality of directions in advance. Information relating to the shape and size of the fluoroscopic object can be obtained by image processing using the external appearance image of the fluoroscopic object. By using the information, it is possible to determine the limit position and angle at which the fluoroscopic object interferes with the apparatus member, and to monitor the interference.

干渉監視手段による具体的な動作としては、請求項2に係る発明のように、透視対象物が装置部材に干渉する前に駆動機構を自動的に停止させたり、あるいは請求項3に係る発明のように、透視対象物が装置部材に対してあらかじめ設定されている距離だけ接近した時点で音や表示で警報を発したり、更には請求項4に係る発明のように、同じく装置部材に対してあらかじめ設定されている距離だけ接近した時点で駆動装置の駆動速度を書低速度以下に自動的に低下させるなどを採用することができ、これらのいずれかの動作、あるいは任意の複数の動作を実行することにより、透視対象物が装置部材に干渉ないしは衝突することを未然に防止することができる。   As a specific operation by the interference monitoring means, as in the invention according to claim 2, the driving mechanism is automatically stopped before the fluoroscopic object interferes with the apparatus member, or the invention according to claim 3 is used. As described above, when the fluoroscopic object approaches the device member by a preset distance, an alarm is given by sound or display. When approaching a preset distance, the drive speed of the drive unit can be automatically reduced below the writing speed, etc., and any one of these operations or any multiple operations can be executed By doing so, it is possible to prevent the see-through object from interfering with or colliding with the apparatus member.

また、透視対象物の複数方向からの外観像を用いた画像処理によって得るべき透視対象物の形状、大きさに係る情報としては、請求項5に係る発明のように、透視対象物を内包するサイズの円筒体、あるいは請求項6に係る発明のように、透視対象物を内包するサイズの直方体とすると、透視対象物の回転軸に直交する複数の方向から撮影した外観像を用いた簡単な画像処理により、干渉監視のための情報を得ることができる。   In addition, as information relating to the shape and size of the fluoroscopic object to be obtained by image processing using appearance images from a plurality of directions of the fluoroscopic object, the fluoroscopic object is included as in the invention according to claim 5. When a cylindrical body having a size, or a rectangular parallelepiped having a size including a fluoroscopic object as in the invention according to claim 6, a simple appearance image using a plurality of directions photographed from a plurality of directions orthogonal to the rotation axis of the fluoroscopic object is used. Information for interference monitoring can be obtained by image processing.

本発明によれば、あらかじめ光学カメラにより複数の方向から撮影した透視対象物の外観像から、その透視対象物の形状、大きさに係る情報を得て、透視対象物とX線源やX線検出器、あるいは防護箱等の装置内の他部材との干渉を監視するので、オペレータは従来のようにX線源やX線検出器等に対する衝突に気を配る必要がなくなり、オペレータの負担を軽減し、X線透視像の観察に専念することができる結果、その作業効率を向上させることができる。   According to the present invention, information related to the shape and size of a fluoroscopic object is obtained from an external appearance image of the fluoroscopic object previously captured from a plurality of directions by an optical camera, and the fluoroscopic object, an X-ray source, and an X-ray are obtained. Because it monitors the interference with detectors or other members in the device such as a protective box, the operator does not have to pay attention to the collision with the X-ray source or the X-ray detector as in the conventional case, and the burden on the operator is reduced. As a result of being able to reduce and concentrate on observing X-ray fluoroscopic images, the work efficiency can be improved.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明の実施の形態の構成図で、機械的構成を表す模式図とシステム構成を表すブロック図とを併記して示す図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of an embodiment of the present invention, and is a diagram illustrating a schematic diagram showing a mechanical configuration and a block diagram showing a system configuration.

X線源1に水平方向に対向してX線検出器2が配置されており、これらの間に透視対象物Wを搭載するための試料ステージ3が配置されている。試料ステージ3は、X線源1からのX線光軸方向(x軸方向)、水平面上でそのx軸方向に直交するy軸方向、および鉛直のz軸方向に移動するための移動機構を内蔵しているとともに、z軸に平行な回転中心軸Rの回りに回転するための回転機構と、y軸に平行な傾動中心軸Tの回りに傾動するための傾動機構をも内蔵している。これらの各機構は、演算制御装置10の駆動制御部10aの制御下に置かれている5軸駆動装置4からの駆動信号によって駆動制御される。   An X-ray detector 2 is disposed opposite to the X-ray source 1 in the horizontal direction, and a sample stage 3 for mounting the fluoroscopic object W is disposed therebetween. The sample stage 3 has a moving mechanism for moving in the X-ray optical axis direction (x-axis direction) from the X-ray source 1, the y-axis direction orthogonal to the x-axis direction on the horizontal plane, and the vertical z-axis direction. A built-in rotation mechanism for rotating around a rotation center axis R parallel to the z axis and a tilt mechanism for tilting around a tilt center axis T parallel to the y axis are also incorporated. . Each of these mechanisms is driven and controlled by a drive signal from a 5-axis drive device 4 placed under the control of the drive control unit 10a of the arithmetic control device 10.

演算制御装置10は実際にはコンピュータとその周辺機器によって構成されており、インストールされているプログラムに基づく機能を実現するように動作するのであるが、図1では説明の便宜上、主たる機能ごとのブロック図で表している。演算制御装置10には、他に、透視画像形成部10b,画像処理部10cおよび干渉監視部10dを有しているとともに、透視対象物WのX線透視像や警報等を表示するための表示器22と、試料ステージ3を移動、回転、傾動させるべくオペレータが操作するための操作部23が接続されている。   The arithmetic and control unit 10 is actually composed of a computer and its peripheral devices, and operates so as to realize functions based on installed programs. In FIG. 1, for convenience of explanation, a block for each main function is provided. This is shown in the figure. In addition to the fluoroscopic image forming unit 10b, the image processing unit 10c, and the interference monitoring unit 10d, the arithmetic and control unit 10 includes a display for displaying an X-ray fluoroscopic image of the fluoroscopic object W, an alarm, and the like. The instrument 22 is connected to an operation unit 23 for an operator to operate, rotate, and tilt the sample stage 3.

X線検出器2はイメージインテンシファイアとCCDとを組み合わせたもの、もしくはパネル型検出器であって、その出力はキャプチャーボード等の画像データ取込回路21aを介して演算制御装置10の透視画像形成部10bに取り込まれ、表示器22に透視対象物WのX線透視像として表示される。   The X-ray detector 2 is a combination of an image intensifier and a CCD, or a panel type detector, and its output is a fluoroscopic image of the arithmetic control device 10 via an image data capturing circuit 21a such as a capture board. It is taken into the forming unit 10 b and displayed on the display 22 as an X-ray fluoroscopic image of the fluoroscopic object W.

X線源1に隣接してCCDカメラ5が配置されている。このCCDカメラ5は、試料ステージ3上の透視対象物Wをほぼ水平方向から撮影することができ、このCCDカメラ5の出力は、画像データ取込回路21bを介して演算装置10の画像処理部10cに取り込まれる。この画像処理部10cでは、以下に示すように複数の方向からCCDカメラ5により撮影した透視対象物Wの外観像から、当該透視対象物Wの形状・大きさに係る情報を得て、干渉監視部10dに供給する。干渉監視部10dでは、その情報を基に、透視対象物WがX線源1、X線検出器2、あるいはその他のX線防護箱(図示略)などの装置部材に対して干渉する限界の試料ステージ3の位置や角度を決定し、駆動制御部10aから5軸駆動装置4に供給される制御信号に制限を加え、あるいは表示器22に警報表示を行わせる。   A CCD camera 5 is disposed adjacent to the X-ray source 1. The CCD camera 5 can photograph the fluoroscopic object W on the sample stage 3 from a substantially horizontal direction, and the output of the CCD camera 5 is an image processing unit of the arithmetic unit 10 via an image data capturing circuit 21b. 10c. The image processing unit 10c obtains information related to the shape and size of the fluoroscopic object W from the appearance image of the fluoroscopic object W photographed by the CCD camera 5 from a plurality of directions as described below, and performs interference monitoring. Supplied to the unit 10d. In the interference monitoring unit 10d, based on the information, there is a limit that the fluoroscopic object W interferes with an apparatus member such as the X-ray source 1, the X-ray detector 2, or other X-ray protective box (not shown). The position and angle of the sample stage 3 are determined, the control signal supplied from the drive control unit 10a to the 5-axis drive device 4 is limited, or an alarm is displayed on the display unit 22.

次に、以上の本発明の実施の形態の動作について述べる。
まず、透視対象物Wを試料ステージ3上に固定した後、試料ステージ3が規定位置において傾動角度0の状態で、5軸駆動装置4に制御信号を供給して試料ステージ3を回転軸Rの回りに所定の微小角度ずつ回転させ、各回転角度においてCCDカメラ5により透視対象物Wを撮影する。これにより、図2に示すように、複数の方向からの透視対象物Wを撮影した外観像P1 ,P2 ・・Pn が求められることになり、これらの外観像を用いて、画像処理装置10cでは、透視対象物Wを内包する円筒体を求める。この円筒体のサイズは、図3に示すように、各方向から撮影した透視対象物Wの外観像を重畳させ、その重畳画像の最大幅を直径2r、最大高さを高さhとする円筒体Cpであり、簡単な画像処理によって求めることができる。この情報は、試料ステージ3上での円筒体Cpの位置情報を含めたものとされる。この試料ステージ3上での円筒体Cpの位置情報は、CCDカメラ5による透視対象物Wの撮影視野を、試料ステージ3の試料搭載面を含めたものとすることによって容易に得ることができる。
Next, the operation of the above embodiment of the present invention will be described.
First, after the fluoroscopic object W is fixed on the sample stage 3, a control signal is supplied to the five-axis drive device 4 with the sample stage 3 at a specified position and at a tilt angle of 0, and the sample stage 3 is set to the rotation axis R. The target object W is rotated around the camera by a predetermined minute angle, and the fluoroscopic object W is photographed by the CCD camera 5 at each rotation angle. As a result, as shown in FIG. 2, appearance images P 1 , P 2 ... P n obtained by photographing the fluoroscopic object W from a plurality of directions are obtained, and image processing is performed using these appearance images. In the apparatus 10c, a cylindrical body containing the fluoroscopic object W is obtained. As shown in FIG. 3, the size of this cylindrical body is a cylinder in which the appearance image of the fluoroscopic object W taken from each direction is superimposed, the maximum width of the superimposed image is 2r in diameter, and the maximum height is height h. The body Cp, which can be obtained by simple image processing. This information includes the position information of the cylindrical body Cp on the sample stage 3. The positional information of the cylindrical body Cp on the sample stage 3 can be easily obtained by setting the field of view of the fluoroscopic object W by the CCD camera 5 including the sample mounting surface of the sample stage 3.

なお、CCDカメラ5による透視対象物Wの撮影に際しては、あらかじめ試料ステージ3上に透視対象物Wを搭載していない状態で撮影して、背景画像として登録しておき、透視対象物Wの撮影結果からその背景画像を差し引くことにより、エッジ検出を行いやすくなって好ましい。   When the fluoroscopic object W is photographed by the CCD camera 5, the fluoroscopic object W is photographed in advance in a state where the fluoroscopic object W is not mounted on the sample stage 3, registered as a background image, and the fluoroscopic object W is photographed. By subtracting the background image from the result, it is preferable to easily perform edge detection.

このようにして求められた円筒体Cpは、干渉監視部10dに送られ、この干渉監視部10dでは、操作部23の操作によりオペレータが試料ステージ3を駆動する際に、透視対象物WがX線源1やX線検出器2、あるいは防護箱等(以下、装置部材と総称)に対する干渉を防止すべくその動作を制限等するための情報として用いる。   The cylindrical body Cp thus obtained is sent to the interference monitoring unit 10d. In the interference monitoring unit 10d, when the operator drives the sample stage 3 by operating the operation unit 23, the fluoroscopic object W is X It is used as information for limiting the operation of the radiation source 1, the X-ray detector 2, the protection box or the like (hereinafter referred to as “device member”) in order to prevent interference.

すなわち、干渉監視部10dでは、各装置部材の位置と試料ステージ3の形状・寸法を記憶しており、これらが相互に干渉するような動作を制限することに加えて、オペレータが操作部23を操作して、画像処理部10cで求められた透視対象物Wの形状・寸法に係る情報である円筒体Cpが装置部材に干渉するような操作を行っても、駆動制御部10aに指令を発して、円筒体Cpが装置部材に干渉する手前で自動的に試料テーブル3の駆動を停止する。また、円筒体Cpが装置部材に対してあらかじめ設定されている距離に達した時点で、Beep音を発生したり、あるいは表示器22に警報を表示して、オペレータにその旨を報知すると同時に、試料ステージ3の駆動速度を低速度に切り換える。   That is, in the interference monitoring unit 10d, the position of each device member and the shape / dimension of the sample stage 3 are stored, and in addition to restricting the operation in which these interfere with each other, the operator operates the operation unit 23. Even if the operation is performed so that the cylindrical body Cp, which is information related to the shape and dimensions of the fluoroscopic object W obtained by the image processing unit 10c, interferes with the apparatus member, a command is issued to the drive control unit 10a. Thus, the driving of the sample table 3 is automatically stopped before the cylindrical body Cp interferes with the apparatus member. Further, when the cylindrical body Cp reaches a preset distance with respect to the apparatus member, a beep sound is generated, or an alarm is displayed on the display 22 to notify the operator accordingly, The driving speed of the sample stage 3 is switched to a low speed.

ここで、試料ステージ3を傾動させたときの干渉の監視については、図4に示すように、装置部材、例えばX線検出器2から試料ステージ3の中心との距離がxの状態で、試料ステージ3を傾動中心軸Tの回りにθだけ傾動させたとき、円筒体CpとX線検出器2との最接近距離dは、傾動中心軸Tと試料ステージ3の試料搭載面までの距離をz0 、円筒体Cpの高さおよび半径を前記したようにhおよびrとしたとき、
d=x−(h+z0 )sinθ−rcosθ ・・(1)
で求めることができる。
Here, regarding the monitoring of the interference when the sample stage 3 is tilted, as shown in FIG. 4, the distance between the apparatus member, for example, the X-ray detector 2 and the center of the sample stage 3 is x. When the stage 3 is tilted about the tilt center axis T by θ, the closest distance d between the cylindrical body Cp and the X-ray detector 2 is the distance between the tilt center axis T and the sample mounting surface of the sample stage 3. When z 0 and the height and radius of the cylindrical body Cp are h and r as described above,
d = x− (h + z 0 ) sin θ−r cos θ (1)
Can be obtained.

以上の制限動作により、オペレータは、警報が発生するまでの間、衝突を考慮することなく、操作部23の操作により試料ステージ3を随意に移動・回転・傾動させることができる。ここで、円筒体Cpは透視対象物Wの内包するものであって、透視対象物Wの姿勢によってはより装置部材に対して大きな間隙が生じている場合もある。そこで、警報が発生しても、装置部材により接近させる必要がある場合には、警報を解除して、オペレータの意志のもとに接近させることができるようにしておくことが望ましい。   By the above limiting operation, the operator can arbitrarily move, rotate, and tilt the sample stage 3 by operating the operation unit 23 without considering a collision until an alarm is generated. Here, the cylindrical body Cp is included in the fluoroscopic object W, and depending on the attitude of the fluoroscopic object W, there may be a larger gap with respect to the apparatus member. Therefore, even if an alarm is generated, if it is necessary to approach the apparatus member, it is desirable to release the alarm so that it can be approached based on the will of the operator.

ここで、以上の実施の形態においては、透視対象物Wの形状・寸法に係る情報として、透視対象物Wを内包する円筒体Cpを採用したが、これに代えて、図5に例示するように、透視対象物Wを内包する直方体とすることもできる。この直方体Rpの高さhrは、図2に示した各透視対象物外観像の最大高さ、他の2辺のうちの1辺wこは最大幅、もう1辺drは最小幅である。   Here, in the above embodiment, the cylindrical body Cp that includes the fluoroscopic object W is adopted as the information relating to the shape and dimensions of the fluoroscopic object W, but instead of this, as illustrated in FIG. Moreover, it can also be set as the rectangular parallelepiped which encloses the fluoroscopic target object W. The height hr of the rectangular parallelepiped Rp is the maximum height of each perspective object appearance image shown in FIG. 2, one side w of the other two sides is the maximum width, and the other side dr is the minimum width.

このような直方体Rpを透視対象物Wの形状・寸法に係る情報として用いる場合、試料ステージ3の回転中心軸Rの回りの回転角度によっては、直方体Rpの各面のほか、稜線が、また、傾動角度によっては頂点が、装置部材との干渉監視に用いられ、透視対象物の形状によっては円筒体を用いる場合に比して、より装置部材に対して接近させるまで警報を発生しないようにすることができる。   When such a rectangular parallelepiped Rp is used as information relating to the shape and dimensions of the fluoroscopic object W, depending on the rotation angle around the rotation center axis R of the sample stage 3, in addition to each surface of the rectangular parallelepiped Rp, Depending on the tilt angle, the apex is used for monitoring the interference with the device member, and depending on the shape of the fluoroscopic object, the alarm is not generated until the device member is closer than when the cylindrical body is used. be able to.

更に、透視対象物の形状によっては、図6例示するように、上下2つの円筒体Cp1,Cp2を組み合わせたもの、あるいは2つの直方体を組み合わせたもの等を、透視対象物の形状・寸法に係る情報として用いることもできる。特に、透視対象物の概略の形状的特徴があらかじめ判明している場合には、このような2つの円筒体ないしは直方体を組み合わせたものを比較的簡単に透視対象物の形状・寸法に係る情報として用いることができる。   Furthermore, depending on the shape of the fluoroscopic object, as illustrated in FIG. 6, a combination of two upper and lower cylindrical bodies Cp1, Cp2 or a combination of two rectangular parallelepipeds depends on the shape and dimensions of the fluoroscopic object. It can also be used as information. In particular, when the general shape characteristics of the fluoroscopic object are known in advance, a combination of such two cylindrical bodies or rectangular parallelepipeds can be used as information relating to the shape and dimensions of the fluoroscopic object relatively easily. Can be used.

本発明の実施の形態の構成図で、機械的構成を表す模式図とシステム構成を表すブロック図とを併記して示す図である。In the configuration diagram of the embodiment of the present invention, a schematic diagram showing a mechanical configuration and a block diagram showing a system configuration are shown together. 本発明の実施の形態においてCCDカメラ5により複数の方向から透視対象物Wを撮影した画像の例の説明図である。It is explanatory drawing of the example of the image which image | photographed the fluoroscopic target object W from several directions with CCD camera 5 in embodiment of this invention. 本発明の実施の形態の画像処理部10cにより透視対象物Wの形状・寸法に係る情報として求められる円筒体の例の説明図である。It is explanatory drawing of the example of the cylindrical body calculated | required as the information which concerns on the shape and dimension of the see-through | perspective object W by the image process part 10c of embodiment of this invention. 本発明の実施の形態において試料ステージ3を傾動させたときの円筒体Cpと装置部材との距離の計算例の説明図である。It is explanatory drawing of the example of calculation of the distance of the cylindrical body Cp and an apparatus member when tilting the sample stage 3 in embodiment of this invention. 本発明の他の実施の形態により透視対象物の形状・寸法に係る情報として求められる直方体の例の説明図である。It is explanatory drawing of the example of the rectangular parallelepiped calculated | required as information which concerns on the shape and dimension of a fluoroscopic target object by other embodiment of this invention. 本発明の更に他の実施の形態により透視対象物の形状・寸法に係る情報として求められる円筒体を2つ用いた形状の例の説明図である。It is explanatory drawing of the example of the shape using two cylindrical bodies calculated | required as information which concerns on the shape and dimension of a fluoroscopic target object by further another embodiment of this invention.

符号の説明Explanation of symbols

1 X線源
2 X線検出器
3 試料ステージ
4 5軸駆動装置
10 演算制御装置
10a 駆動制御部
10b 透視画像形成部
10c 画像処理部
10d 干渉監視部
21a,21b 画像データ取込回路
22 表示器
23 操作部¥
W 透視対象物
DESCRIPTION OF SYMBOLS 1 X-ray source 2 X-ray detector 3 Sample stage 4 5-axis drive device 10 Arithmetic control device 10a Drive control part 10b Perspective image formation part 10c Image processing part 10d Interference monitoring part 21a, 21b Image data capture circuit 22 Display 23 Operation part ¥
W Perspective object

Claims (6)

互いに対向配置されたX線源とX線検出器と、これらの間に設けられ、透視対象物を固定するための対象物固定機構と、その試料固定機構に固定されている透視対象物を上記X線源およびX線検出器の対に対して相対的に移動および回転させる駆動機構を備えたX線透視装置において、
上記対象物固定機構に固定されている透視対象物を撮影する光学カメラと、その光学カメラと上記駆動機構を用いてあらかじめ複数の方向から透視対象物を撮影した画像情報から、透視対象物の大きさ、形状に関する情報を得る画像処理手段と、その画像処理手段により得られた情報を用いて、上記駆動機構の駆動時に、透視対象物と上記X線源、X線検出器および当該装置内の他部材との干渉を監視する干渉監視手段を備えていることを特徴とするX線透視装置。
An X-ray source and an X-ray detector arranged opposite to each other, an object fixing mechanism for fixing the see-through object, and a see-through object fixed to the sample fixing mechanism are described above. In an X-ray fluoroscopic apparatus provided with a drive mechanism that moves and rotates relative to a pair of an X-ray source and an X-ray detector,
The size of the fluoroscopic object is determined from an optical camera that images the fluoroscopic object fixed to the object fixing mechanism, and image information obtained by imaging the fluoroscopic object in advance from a plurality of directions using the optical camera and the driving mechanism. The image processing means for obtaining information on the shape, and the information obtained by the image processing means are used to drive the fluoroscopic object, the X-ray source, the X-ray detector, and the apparatus when the drive mechanism is driven. An X-ray fluoroscopy device comprising interference monitoring means for monitoring interference with other members.
上記干渉監視手段が、透視対象物とX線源、X線検出器および当該装置内の他部材とが干渉する前に上記駆動機構を停止させることを特徴とする請求項1に記載のX線透視装置。   2. The X-ray according to claim 1, wherein the interference monitoring unit stops the drive mechanism before the fluoroscopic object interferes with an X-ray source, an X-ray detector, and another member in the apparatus. Fluoroscopy device. 上記干渉監視手段が、透視対象物とX線源、X線検出器および当該装置内の他部材に対してあらかじめ設定されている距離だけ接近した時点で音もしくは表示による警報を発することを特徴とする請求項1または2に記載のX線透視装置。   The interference monitoring means emits a warning by sound or display when approaching a fluoroscopic object, an X-ray source, an X-ray detector, and other members in the apparatus by a preset distance. The X-ray fluoroscope according to claim 1 or 2. 上記干渉監視手段が、透視対象物とX線源、X線検出器および当該装置内の他部材に対してあらかじめ設定されている距離だけ接近した時点で、上記駆動機構の駆動速度を所定速度以下に自動的に低下させることを特徴とする請求項1、2または3に記載のX線透視装置。   When the interference monitoring means approaches the fluoroscopic object, the X-ray source, the X-ray detector, and other members in the apparatus by a preset distance, the drive speed of the drive mechanism is less than a predetermined speed. The X-ray fluoroscopic apparatus according to claim 1, wherein the X-ray fluoroscopic apparatus is automatically lowered. 上記画像処理手段が、光学カメラにより複数の方向から透視対象物を撮影した画像情報から、その透視対象物を内包するサイズの円筒体を求め、上記干渉監視手段による干渉監視のための情報とすることを特徴とする請求項1、2、3または4に記載のX線透視装置。   The image processing means obtains a cylindrical body having a size including the fluoroscopic object from image information obtained by photographing the fluoroscopic object from a plurality of directions by an optical camera, and uses the obtained information as information for interference monitoring by the interference monitoring means. The X-ray fluoroscopy device according to claim 1, 2, 3 or 4. 上記画像処理手段が、光学カメラにより複数の方向から透視対象物を撮影した画像情報から、その透視対象物を内包するサイズの直方体を求め、上記干渉監視手段による干渉監視のための情報とすることを特徴とする請求項1、2、3または4に記載のX線透視装置。   The image processing means obtains a rectangular parallelepiped having a size including the fluoroscopic object from image information obtained by photographing the fluoroscopic object from a plurality of directions by an optical camera, and uses it as information for interference monitoring by the interference monitoring means. The X-ray fluoroscopy device according to claim 1, 2, 3, or 4.
JP2004320320A 2004-11-04 2004-11-04 X-ray fluoroscope Active JP4704735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004320320A JP4704735B2 (en) 2004-11-04 2004-11-04 X-ray fluoroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004320320A JP4704735B2 (en) 2004-11-04 2004-11-04 X-ray fluoroscope

Publications (2)

Publication Number Publication Date
JP2006133008A true JP2006133008A (en) 2006-05-25
JP4704735B2 JP4704735B2 (en) 2011-06-22

Family

ID=36726683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004320320A Active JP4704735B2 (en) 2004-11-04 2004-11-04 X-ray fluoroscope

Country Status (1)

Country Link
JP (1) JP4704735B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241312A (en) * 2007-03-26 2008-10-09 Shimadzu Corp X-ray generatior
JP2010156607A (en) * 2008-12-26 2010-07-15 Sony Corp X-ray tomographic imaging apparatus and x-ray tomographic imaging method
CN105300832A (en) * 2015-08-12 2016-02-03 解海龙 Fault diagnosis method for weight-loss fly ash carbon content on-line detection device
JP2016537620A (en) * 2013-10-21 2016-12-01 エクスロン インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングYxlon International Gmbh Method for determining a hazardous area between a test object and an X-ray inspection system
JP2019007780A (en) * 2017-06-22 2019-01-17 リョーエイ株式会社 Method for inspecting product with x-ray ct
JP2019128162A (en) * 2018-01-19 2019-08-01 株式会社ミツトヨ X-ray ct device for measurement and interference prevention method therefor
US20200326289A1 (en) * 2019-04-11 2020-10-15 Rigaku Corporation Method acquiring projection image, control apparatus, control program, processing apparatus, and processing program
CN113805242A (en) * 2021-08-25 2021-12-17 浙江大华技术股份有限公司 Security check machine ray source control method and device, computer equipment and storage medium

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258048A (en) * 1993-03-05 1994-09-16 Toshiba Corp Object input device
JPH07223482A (en) * 1993-06-22 1995-08-22 Ishikawajima Harima Heavy Ind Co Ltd Vehicle and device for x-ray inspection
JPH08166359A (en) * 1994-12-15 1996-06-25 Hitachi Medical Corp System for inspecting article unsuitable to handle at garbage-disposal facility
JPH1071142A (en) * 1996-06-25 1998-03-17 Siemens Ag Device for medical use
JPH10124704A (en) * 1996-08-30 1998-05-15 Sanyo Electric Co Ltd Device for preparing stereoscopic model and method therefor and medium for recording program for preparing stereoscopic model
JP2000146869A (en) * 1998-11-16 2000-05-26 Hitachi Ltd Article inspection method and device
JP2000172878A (en) * 1998-12-09 2000-06-23 Sony Corp Device and method for processing information and distribution medium
JP2000298106A (en) * 1999-04-14 2000-10-24 Hitachi Ltd X-ray ct using system
JP2001101410A (en) * 1999-09-28 2001-04-13 Suzuki Motor Corp Transformation matrix data generating method, correction jig and three-dimensional measuring system
JP2001153818A (en) * 1999-11-29 2001-06-08 Toshiba Fa Syst Eng Corp Device and method for computed tomography
JP2001204720A (en) * 2000-01-28 2001-07-31 Shimadzu Corp X-ray examination device
JP2001353141A (en) * 2000-06-14 2001-12-25 Toshiba Medical System Co Ltd X-ray DIAGNOSTIC INSTRUMENT
JP2002186607A (en) * 2000-12-20 2002-07-02 Shimadzu Corp X-ray ct apparatus
JP2002219118A (en) * 2000-11-22 2002-08-06 Shimadzu Corp Fluoroscopic photographing unit
JP2003135440A (en) * 2001-10-30 2003-05-13 Shimadzu Corp X-ray photographing device loaded with arm
JP2003172610A (en) * 2001-12-07 2003-06-20 Brother Ind Ltd Three-dimensional color/shape-detecting apparatus and three-dimensional scanner
JP2003240736A (en) * 2002-02-21 2003-08-27 Shimadzu Corp X-ray section testing method and apparatus thereof
JP2003269936A (en) * 2002-03-19 2003-09-25 Sanyo Electric Co Ltd Automatic size-measuring method
JP2003334186A (en) * 2002-05-20 2003-11-25 Shimadzu Corp X-ray diagnostic apparatus
WO2004003530A1 (en) * 2002-06-28 2004-01-08 General Electric Company Methods and systems for inspecting aircraft fuselage frames
JP2004012407A (en) * 2002-06-11 2004-01-15 Hitachi Ltd Transparent imaging serving system, and x-ray ct / dr photographing service system

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258048A (en) * 1993-03-05 1994-09-16 Toshiba Corp Object input device
JPH07223482A (en) * 1993-06-22 1995-08-22 Ishikawajima Harima Heavy Ind Co Ltd Vehicle and device for x-ray inspection
JPH08166359A (en) * 1994-12-15 1996-06-25 Hitachi Medical Corp System for inspecting article unsuitable to handle at garbage-disposal facility
JPH1071142A (en) * 1996-06-25 1998-03-17 Siemens Ag Device for medical use
JPH10124704A (en) * 1996-08-30 1998-05-15 Sanyo Electric Co Ltd Device for preparing stereoscopic model and method therefor and medium for recording program for preparing stereoscopic model
JP2000146869A (en) * 1998-11-16 2000-05-26 Hitachi Ltd Article inspection method and device
JP2000172878A (en) * 1998-12-09 2000-06-23 Sony Corp Device and method for processing information and distribution medium
JP2000298106A (en) * 1999-04-14 2000-10-24 Hitachi Ltd X-ray ct using system
JP2001101410A (en) * 1999-09-28 2001-04-13 Suzuki Motor Corp Transformation matrix data generating method, correction jig and three-dimensional measuring system
JP2001153818A (en) * 1999-11-29 2001-06-08 Toshiba Fa Syst Eng Corp Device and method for computed tomography
JP2001204720A (en) * 2000-01-28 2001-07-31 Shimadzu Corp X-ray examination device
JP2001353141A (en) * 2000-06-14 2001-12-25 Toshiba Medical System Co Ltd X-ray DIAGNOSTIC INSTRUMENT
JP2002219118A (en) * 2000-11-22 2002-08-06 Shimadzu Corp Fluoroscopic photographing unit
JP2002186607A (en) * 2000-12-20 2002-07-02 Shimadzu Corp X-ray ct apparatus
JP2003135440A (en) * 2001-10-30 2003-05-13 Shimadzu Corp X-ray photographing device loaded with arm
JP2003172610A (en) * 2001-12-07 2003-06-20 Brother Ind Ltd Three-dimensional color/shape-detecting apparatus and three-dimensional scanner
JP2003240736A (en) * 2002-02-21 2003-08-27 Shimadzu Corp X-ray section testing method and apparatus thereof
JP2003269936A (en) * 2002-03-19 2003-09-25 Sanyo Electric Co Ltd Automatic size-measuring method
JP2003334186A (en) * 2002-05-20 2003-11-25 Shimadzu Corp X-ray diagnostic apparatus
JP2004012407A (en) * 2002-06-11 2004-01-15 Hitachi Ltd Transparent imaging serving system, and x-ray ct / dr photographing service system
WO2004003530A1 (en) * 2002-06-28 2004-01-08 General Electric Company Methods and systems for inspecting aircraft fuselage frames

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241312A (en) * 2007-03-26 2008-10-09 Shimadzu Corp X-ray generatior
JP2010156607A (en) * 2008-12-26 2010-07-15 Sony Corp X-ray tomographic imaging apparatus and x-ray tomographic imaging method
JP2016537620A (en) * 2013-10-21 2016-12-01 エクスロン インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングYxlon International Gmbh Method for determining a hazardous area between a test object and an X-ray inspection system
CN105300832A (en) * 2015-08-12 2016-02-03 解海龙 Fault diagnosis method for weight-loss fly ash carbon content on-line detection device
JP2019007780A (en) * 2017-06-22 2019-01-17 リョーエイ株式会社 Method for inspecting product with x-ray ct
JP2019128162A (en) * 2018-01-19 2019-08-01 株式会社ミツトヨ X-ray ct device for measurement and interference prevention method therefor
JP7082492B2 (en) 2018-01-19 2022-06-08 株式会社ミツトヨ X-ray CT device for measurement and its interference prevention method
US20200326289A1 (en) * 2019-04-11 2020-10-15 Rigaku Corporation Method acquiring projection image, control apparatus, control program, processing apparatus, and processing program
JP2020173175A (en) * 2019-04-11 2020-10-22 株式会社リガク Projection image capturing method, control device, control program, processing device, and processing program
US11543367B2 (en) 2019-04-11 2023-01-03 Rigaku Corporation Method acquiring projection image, control apparatus, control program, processing apparatus, and processing program
JP7217943B2 (en) 2019-04-11 2023-02-06 株式会社リガク Projection image capturing method, control device, control program, processing device and processing program
CN113805242A (en) * 2021-08-25 2021-12-17 浙江大华技术股份有限公司 Security check machine ray source control method and device, computer equipment and storage medium

Also Published As

Publication number Publication date
JP4704735B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
US7477723B2 (en) X-ray fluoroscope
US7016465B2 (en) X-ray CT apparatus
JP4577312B2 (en) X-ray CT apparatus and X-ray CT method
JP3891285B2 (en) X-ray fluoroscope
JP4704735B2 (en) X-ray fluoroscope
JP5292791B2 (en) X-ray inspection equipment
JP2006343193A (en) X-ray fluoroscope
JP4715409B2 (en) X-ray inspection equipment
JP4327477B2 (en) X-ray fluoroscope
JP4821987B2 (en) X-ray CT system
JP4636258B2 (en) X-ray equipment
JP4586987B2 (en) X-ray CT system
JP4433182B2 (en) X-ray fluoroscope
JP5251264B2 (en) X-ray CT system
JP5549407B2 (en) X-ray inspection equipment
JP2007322384A (en) X-ray tomographic imaging unit and method
JP4788272B2 (en) X-ray tomographic imaging apparatus and X-ray tomographic imaging method
JP4792918B2 (en) X-ray inspection equipment
JP4674553B2 (en) X-ray inspection equipment
JP2008218342A (en) Electron microscope
JP4228821B2 (en) X-ray fluoroscope
JP2007158089A (en) Device of inspecting semiconductor wafer
JP2004361099A (en) X-ray photographing equipment
JP2021185342A (en) X-ray diffraction measurement device
JPH06119991A (en) Tv fluoroscopic method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100622

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110310

R151 Written notification of patent or utility model registration

Ref document number: 4704735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151