JP2006131939A - Non-oriented electromagnetic steel sheet with excellently low iron loss - Google Patents
Non-oriented electromagnetic steel sheet with excellently low iron loss Download PDFInfo
- Publication number
- JP2006131939A JP2006131939A JP2004320757A JP2004320757A JP2006131939A JP 2006131939 A JP2006131939 A JP 2006131939A JP 2004320757 A JP2004320757 A JP 2004320757A JP 2004320757 A JP2004320757 A JP 2004320757A JP 2006131939 A JP2006131939 A JP 2006131939A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- rem
- less
- iron loss
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Soft Magnetic Materials (AREA)
Abstract
Description
本発明は、モーター鉄芯などに用いられる無方向性電磁鋼板の鉄損を下げて、エネルギーロスを少なくし、電気機器の効率化を図り省エネに寄与すべく、鉄損、特に、歪取焼鈍後の鉄損に優れた無方向性電磁鋼板を提供する。 The present invention reduces the iron loss of non-oriented electrical steel sheets used for motor iron cores, etc., reduces energy loss, increases the efficiency of electrical equipment, and contributes to energy saving. Provided is a non-oriented electrical steel sheet excellent in later iron loss.
無方向性電磁鋼板は、結晶粒径が150μm程度で鉄損が最小となることが知られている。このため、製品特性の観点から、あるいは製造の簡略化、高生産性化の観点から、仕上げ焼鈍での結晶粒成長性のより良い鋼板が望まれている。 Non-oriented electrical steel sheets are known to have a minimum iron loss when the crystal grain size is about 150 μm. For this reason, from the viewpoint of product characteristics, or from the viewpoint of simplification of production and high productivity, a steel plate with better crystal grain growth in finish annealing is desired.
さらに、需要家によって鉄心の打ち抜き加工が施される際には、打ち抜き加工における打ち抜き精度は結晶粒が細かいほど良く、結晶粒径は、例えば40μm以下が好ましい。このように、結晶粒径に対する鉄損と打ち抜き加工精度の要求が相反する場合もある。 Furthermore, when the iron core is punched by a customer, the punching accuracy in the punching is better as the crystal grains are finer, and the crystal grain size is preferably, for example, 40 μm or less. As described above, there is a case where the iron loss with respect to the crystal grain size and the requirement of the punching accuracy are contradictory.
特に、この相反する要求を満たす場合は、製品板の結晶粒径を細かいまま出荷し、需要家の打ち抜き加工の後に、例えば、750℃×2時間程度の歪取り焼鈍を行って結晶粒を成長させる方策が択られている。 In particular, when satisfying this conflicting requirement, the product is shipped with the crystal grain size of the product plate kept fine, and after the punching process by the customer, for example, 750 ° C. × 2 hours of strain relief annealing is performed to grow the crystal grains Measures to be taken are selected.
近年、需要家より低鉄損材の要求ニーズが強く、また、需要家の生産性向上によって歪取り焼鈍の低温短時間化が志向されてきており、歪取り焼鈍での結晶粒成長性のより良い製品板のニーズが増大してきた。 In recent years, demands for low iron loss materials have been stronger than customers, and the improvement of customer productivity has been aimed at reducing the temperature and time of stress relief annealing. The need for good product boards has increased.
結晶粒成長を阻害する主たる要因のひとつは、鋼中に微細に分散する介在物である。製品中に含まれる介在物の個数がより多くなるほど、また大きさが小さくなるほど、結晶粒成長が阻害されることが知られている。 One of the main factors that hinders grain growth is inclusions that are finely dispersed in the steel. It is known that as the number of inclusions contained in a product increases and the size decreases, crystal grain growth is inhibited.
すなわち、ゼナー(Zener)が提示したように、介在物の球相当半径rと鋼中に占める介在物の体積占有率fで表されるr/f値がより小さいほど、結晶粒成長はより悪化する。したがって、結晶粒成長を良好化するためには、介在物の個数をより少なくすることは勿論、介在物の大きさをより粗大化させることが肝要である。 That is, as suggested by Zener, the smaller the r / f value represented by the sphere equivalent radius r of inclusions and the volume occupancy f of inclusions in the steel, the worse the grain growth. To do. Therefore, in order to improve the crystal grain growth, it is important not only to reduce the number of inclusions but also to increase the size of the inclusions.
無方向性電磁鋼板の結晶粒成長を阻害する微細介在物としては、シリカやアルミナなどの酸化物、硫化マンガンなどの硫化物、窒化アルミや窒化チタンなどの窒化物などが知られている。 As fine inclusions that inhibit crystal grain growth of non-oriented electrical steel sheets, oxides such as silica and alumina, sulfides such as manganese sulfide, and nitrides such as aluminum nitride and titanium nitride are known.
これらの微細介在物を除去あるいは必要充分なレベルにまで減少させるために、溶鋼段階で高純化を図ればよいことは自明である。しかし、微細介在物を除去、あるいは必要充分なレベルにまで減少させるために、溶鋼段階で高純化を図ることは、製鋼コストアップが避けられないので、好ましくない。 In order to remove these fine inclusions or reduce them to a necessary and sufficient level, it is obvious that high purity should be achieved at the molten steel stage. However, it is not preferable to increase the purity in the molten steel stage in order to remove fine inclusions or reduce them to a necessary and sufficient level, because an increase in steelmaking costs cannot be avoided.
そこで別法として、種々の元素を鋼に添加して介在物の無害化を図る方法がいくつか知られている。 Therefore, as another method, several methods are known in which various elements are added to steel to make inclusions harmless.
酸化物に関しては、技術進歩により、強脱酸元素であるAlを充分量添加し、酸化物の浮上除去時間を充分に採ることにより、溶鋼段階で酸化物を除去し無害化することが可能となっている。 Regarding oxides, it is possible to remove the oxides at the molten steel stage and make them harmless by adding a sufficient amount of Al, which is a strong deoxidizing element, and taking sufficient time to lift and remove the oxides. It has become.
硫化物に関しては、例えば(特許文献1)、(特許文献2)、(特許文献3)、(特許文献4)などに開示されるように、脱硫元素である希土類元素(以下、REMと記載)などの添加によってSを固定する方法が知られている。 With respect to sulfides, for example, as disclosed in (Patent Document 1), (Patent Document 2), (Patent Document 3), (Patent Document 4) and the like, a rare earth element that is a desulfurization element (hereinafter referred to as REM). A method of fixing S by adding such as is known.
また、窒化物に関しても、(特許文献5)あるいは(特許文献6)などに開示されるように、Bの添加によって粗大介在物としてNを固定する方法が知られている。 As for nitrides, as disclosed in (Patent Document 5) or (Patent Document 6), a method of fixing N as coarse inclusions by adding B is known.
上述の方法によって、酸化物、硫化物ならびに窒化物を無害化した上で、製品板に仕上げ焼鈍あるいは打ち抜き加工後の歪取り焼鈍を行った場合、結晶粒成長が部分的にばらついて、微細結晶粒と粗大結晶粒が混在するようになり、鉄損が不良となる場合があった。 When the oxides, sulfides and nitrides are rendered harmless by the above-mentioned method and the product plate is subjected to finish annealing or stress relief annealing after punching, the crystal grain growth partially varies, resulting in fine crystals. Grains and coarse crystal grains are mixed, and iron loss sometimes becomes poor.
この原因は、焼鈍段階において、製品板の一部分に微細な炭化チタン(以下、TiCと記載)が生成し、結晶粒の成長を阻害するためであることが、以下に具体的に述べるように明らかであった。 The reason for this is that fine titanium carbide (hereinafter referred to as TiC) is formed in a part of the product plate in the annealing stage and inhibits the growth of crystal grains, as will be described in detail below. Met.
製品板の仕上げ焼鈍あるいは打ち抜き加工後の歪取り焼鈍は、通常、1000℃以下の比較的低温で処理される場合が多く、なかでも、歪取り焼鈍は、製品板の表面コーティングの損耗を防ぐために750℃程度とさらに低温であり、そのような低温で結晶粒を充分に成長させるため、1時間以上の長時間にわたる焼鈍を余儀なくされている。 Finish annealing of product plates or strain relief annealing after punching is usually processed at a relatively low temperature of 1000 ° C or less, and in particular, strain relief annealing is used to prevent wear on the surface coating of product plates. The temperature is as low as about 750 ° C., and in order to sufficiently grow crystal grains at such a low temperature, annealing for a long time of 1 hour or more is forced.
このような低温かつ長時間の焼鈍では、製品板の温度が全面で常に一定であることは極めて希であり、一部はより低温となり、別の一部はより高温となり、ばらつきが避けられない。 In such low temperature and long time annealing, it is extremely rare that the temperature of the product plate is always constant over the entire surface, some become lower temperature, and another part becomes higher temperature, and variation is inevitable. .
ところで、電磁鋼において、TiCの生成温度が700〜800℃の範囲内にあることが、別途検討により明らかである。低温かつ長時間の焼鈍において、ばらつきの中で高温となった部分は、TiCの生成温度を超えるためTiCは生成せず、高温であるが故に結晶粒成長速度も速く、従って結晶粒は粗大化する。 By the way, in the electromagnetic steel, it is clear by separate examination that the generation temperature of TiC is in the range of 700 to 800 ° C. In the annealing at low temperature for a long time, the portion where the temperature is high among the variations exceeds the generation temperature of TiC, so TiC is not generated, and because of the high temperature, the crystal grain growth rate is fast, so the crystal grains become coarse To do.
一方、ばらつきの中で低温であった部分は、TiCの生成温度以下となって、焼鈍中にTiCが生成することが起こり得る。低温下で生成するTiCは、低温の故に充分な大きさに成長することができず、微細となり、長時間の焼鈍中の結晶粒成長を妨げる。 On the other hand, the portion of the variation that was at a low temperature becomes lower than the TiC generation temperature, and TiC may be generated during annealing. TiC produced at a low temperature cannot grow to a sufficient size due to the low temperature, becomes fine, and hinders crystal grain growth during long-time annealing.
生成するTiCは微細であるため、鋼中に含有されるTi量とC量が高々数ppm程度であっても、結晶粒成長を阻害するに足る個数のTiCが生成することとなる。さらに、低温であるが故に結晶粒の成長速度も遅いため、微細TiCによって結晶粒成長が阻害される効果がより強くなり、従って、結晶粒は成長せず微細となる。 Since TiC to be produced is fine, even if the amount of Ti and C contained in the steel is at most about several ppm, TiC is produced in a number sufficient to inhibit crystal grain growth. Further, since the growth rate of the crystal grains is slow because of the low temperature, the effect of inhibiting the crystal grain growth by the fine TiC becomes stronger, so that the crystal grains do not grow and become fine.
このように、焼鈍温度の不可避的なばらつきにより、TiC有無のばらつきが発生し、ひいては結晶粒成長のばらつきが発生することになるのである。 As described above, due to the inevitable variation in the annealing temperature, variation in the presence or absence of TiC occurs, and as a result, variation in crystal grain growth occurs.
本発明は、焼鈍中に微細TiCが析出することを防止することにより、結晶粒を充分に粗大成長させ、低鉄損化することが可能な無方向性電磁鋼板を提供することを目的とする。 An object of the present invention is to provide a non-oriented electrical steel sheet capable of sufficiently growing crystal grains and reducing iron loss by preventing the precipitation of fine TiC during annealing. .
本発明の要旨は次の通りである。
(1)質量%で、C:0.01%以下、Si:0.1%以上7.0%以下、Al:0.1%以上3.0%以下、Mn:0.1%以上2.0%以下、N:0.005%以下、Ti:0.02%以下、REM:0.05%以下、S:0.005%以下、O:0.005%以下を含有し、残部が鉄および不可避的不純物からなり、かつ、[S]で示されたSの質量%と、[O]で示されたOの質量%と、[REM]で示されたREMの質量%と、[Ti]で示されたTiの質量%と、[N]で示されたNの質量%が、[1式]ならびに[2式]を満たすことを特徴とする鉄損に優れた無方向性電磁鋼板。
[REM]2×[O]2×[S]≧1×10-15 [1式]
([REM]2×[O]2×[S])÷([Ti]×[N])≧1×10-10 [2式]
The gist of the present invention is as follows.
(1) By mass%, C: 0.01% or less, Si: 0.1% to 7.0%, Al: 0.1% to 3.0%, Mn: 0.1% to 2. 0% or less, N: 0.005% or less, Ti: 0.02% or less, REM: 0.05% or less, S: 0.005% or less, O: 0.005% or less, with the balance being iron And an inevitable impurity, and the mass% of S indicated by [S], the mass% of O indicated by [O], the mass% of REM indicated by [REM], and [Ti The non-oriented electrical steel sheet excellent in iron loss, wherein the mass% of Ti shown by [N] and the mass% of N shown by [N] satisfy [Formula 1] and [Formula 2]. .
[REM] 2 × [O] 2 × [S] ≧ 1 × 10 −15 [1 set]
([REM] 2 × [O] 2 × [S]) ÷ ([Ti] × [N]) ≧ 1 × 10 −10 [2 formulas]
(2)さらに、質量%で、P:0.1%以下、Cu:0.5%以下、CaまたはMg:0.05%以下、Cr:20%以下、Ni:1.0%以下、SnおよびSbの一種または二種の合計:0.3%以下、Zr:0.01%以下、V:0.01%以下、B:0.005%以下、の一種以上を含有することを特徴とする前記(1)に記載の鉄損に優れた無方向性電磁鋼板。 (2) Further, in mass%, P: 0.1% or less, Cu: 0.5% or less, Ca or Mg: 0.05% or less, Cr: 20% or less, Ni: 1.0% or less, Sn And one or more of Sb: 0.3% or less, Zr: 0.01% or less, V: 0.01% or less, B: 0.005% or less, The non-oriented electrical steel sheet excellent in iron loss according to (1).
本発明により、無方向性電磁鋼板中に析出する微細なTiCを充分に抑制でき、仕上げ焼鈍や歪取り焼鈍段階での結晶粒成長を良好化することが可能となり、充分良好な磁気特性が得られ、需要家のニーズを満たしつつ省エネに貢献できる。 According to the present invention, fine TiC precipitated in the non-oriented electrical steel sheet can be sufficiently suppressed, and it becomes possible to improve the crystal grain growth at the stage of finish annealing and strain relief annealing, thereby obtaining sufficiently good magnetic properties. It can contribute to energy saving while meeting the needs of consumers.
以下に、本発明の作用メカニズムについて、詳細に説明する。前述の通り、電磁鋼中の硫化物を無害化するにあたってREMを用いる技術、すなわち、REM添加によりSを固定して硫化物系介在物を減少させる技術は、従来から知られている。 Below, the action mechanism of this invention is demonstrated in detail. As described above, a technique using REM for detoxifying sulfides in electromagnetic steel, that is, a technique for reducing sulfide inclusions by fixing S by adding REM is conventionally known.
ここで、REMとは、原子番号が57のランタンから71のルテシウムまでの15元素に原子番号が21のスカンジウムと原子番号が39のイットリウムを加えた合計17元素の総称である。 Here, REM is a generic name for a total of 17 elements including 15 elements from lanthanum having an atomic number of 57 to lutesium having an atomic number of 57 plus scandium having an atomic number of 21 and yttrium having an atomic number of 39.
発明者が、この度、電磁鋼へのREM添加によって起こる現象を仔細に検討した結果、以下に示す事実が明らかとなった。すなわち、鋼中のREM、O、S、TiならびにNの成分値を適正な範囲内とすることにより、鋼中でREMオキシサルファイドを形成させ、かつ、REMオキシサルファイドの表面上にTiNを複合析出させてTiを固定し、焼鈍中のTiCの生成を防止できるような、各成分値の適正範囲が存在することが判明した。 As a result of careful study of the phenomenon caused by the addition of REM to electromagnetic steel, the inventor has revealed the following facts. That is, by setting the component values of REM, O, S, Ti and N in the steel within an appropriate range, REM oxysulfide is formed in the steel, and TiN is compositely precipitated on the surface of the REM oxysulfide. Thus, it has been found that there is an appropriate range of each component value that can fix Ti and prevent the formation of TiC during annealing.
これについて、以下に詳細に説明する。REMは鋼中で種々の元素と反応して介在物を形成するが、その一例として、REMオキシサルファイドや、REMサルファイド、あるいは、REMオキサイドなどがある。これらの結晶構造とTiNの結晶構造には類似する点が多いので、鋼中にこれらのREM介在物が存在した場合、図2に示すように、REM介在物に対して幾何学的に整った形で、TiNが複合析出する場合がある。 This will be described in detail below. REM reacts with various elements in steel to form inclusions, and examples thereof include REM oxysulfide, REM sulfide, and REM oxide. Since there are many similarities between these crystal structures and the crystal structure of TiN, when these REM inclusions are present in the steel, they are geometrically arranged with respect to the REM inclusions as shown in FIG. In some cases, TiN may be compositely deposited.
TiNの生成開始温度は1200〜1300℃の範囲であり、また、TiCの生成開始温度は700〜800℃の範囲であることが、別途検討により明らかであるので、一旦、TiNとしてTiが固定されると、製品板の仕上げ焼鈍あるいは打ち抜き加工後の歪取り焼鈍では、TiNが溶解してTiCが生成することはない。 Since it is clear from examination that the TiN production start temperature is in the range of 1200 to 1300 ° C and the TiC production start temperature is in the range of 700 to 800 ° C, Ti is once fixed as TiN. In this case, TiN is not dissolved and TiC is not generated in finish annealing of the product plate or strain relief annealing after punching.
ところで、REM介在物の中でも、REMオキシサルファイドの結晶格子構造と、TiNの結晶格子構造は、特に類似する点が多いため、この複合析出がより強固となり、Tiをより強固に固定することができる。よって、鋼中にREMオキシサルファイドを選択的に生成させることが、焼鈍中のTiCの生成をより確実に防止するために重要である。 By the way, among the REM inclusions, the crystal lattice structure of REM oxysulfide and the crystal lattice structure of TiN have many similarities in particular, so this composite precipitation becomes stronger and Ti can be more firmly fixed. . Therefore, it is important to selectively generate REM oxysulfide in steel in order to more reliably prevent the generation of TiC during annealing.
REMオキシサルファイドの生成を左右する要件は、構成元素たるREMとOとSの溶解度積に関連すると考えられ、鋼中のREM量、O量ならびにS量の積の形で表される値が、所定の値を上回ることが必要であると推察される。 The requirements that govern the generation of REM oxysulfide are considered to be related to the solubility product of REM and O and S, which are constituent elements, and the values expressed in the form of the product of REM, O and S in steel are as follows: It is inferred that it is necessary to exceed a predetermined value.
一方、Tiに関しては、TiNが生成し十分に成長することが必要であり、特に、鋼中のTiをTiNとして固定しきるために、TiNの成長に足るTiとNが鋼中に充分含有されることが必要である。ここで、TiNの生成を左右する要件は、構成元素たるTiとNの溶解度積に関連すると考えられる。 On the other hand, regarding Ti, it is necessary that TiN is generated and sufficiently grown. In particular, Ti and N sufficient for TiN growth are sufficiently contained in the steel in order to fix Ti in the steel as TiN. It is necessary. Here, it is considered that the requirement that affects the generation of TiN is related to the solubility product of Ti and N as constituent elements.
但し、鋼中のTi量やN量が過剰な場合には、鋼中の全てのTiならびにNがTiNとしてREMオキシサルファイド上に固定されるわけではなく、TiNを形成し損ねた余剰Tiが残存し、それによりTiCが生成することが起こり得る。従って、TiとNの溶解度積は、REMとOとSの溶解度積に対して、ある一定値以下の比率に押さえる必要がある。 However, if the amount of Ti or N in the steel is excessive, not all Ti and N in the steel are fixed on the REM oxysulfide as TiN, and excess Ti that failed to form TiN remains. Thus, TiC can be generated. Accordingly, the solubility product of Ti and N needs to be suppressed to a certain ratio or less with respect to the solubility product of REM, O, and S.
以上に鑑み、発明者が鋭意検討の結果、[S]で示されたSの質量%と、[O]で示されたOの質量%と、[REM]で示されたREMの質量%と、[Ti]で示されたTiの質量%と、[N]で示されたNの質量%が、[1式]ならびに[2式]を満たす場合に、鋼中にREMオキシサルファイドが生成され、かつ、REMオキシサルファイドの表面上にTiNが複合析出され、TiがTiNとして固定され、TiCの生成が抑制されることを見出した。
[REM]2×[O]2×[S]≧1×10-15 [1式]
([REM]2×[O]2×[S])÷([Ti]×[N])≧1×10-10 [2式]
In view of the above, as a result of intensive studies by the inventors, the mass% of S indicated by [S], the mass% of O indicated by [O], and the mass% of REM indicated by [REM] , REM oxysulfide is produced in the steel when the mass% of Ti shown by [Ti] and the mass% of N shown by [N] satisfy [Formula 1] and [Formula 2]. And it discovered that TiN compound-deposited on the surface of REM oxysulfide, Ti was fixed as TiN, and the production | generation of TiC was suppressed.
[REM] 2 × [O] 2 × [S] ≧ 1 × 10 −15 [1 set]
([REM] 2 × [O] 2 × [S]) ÷ ([Ti] × [N]) ≧ 1 × 10 −10 [2 formulas]
以下に、上記で述べた適正な成分範囲について、具体的に、表1と図1を用いて説明する。 Hereinafter, the appropriate component ranges described above will be specifically described with reference to Table 1 and FIG.
質量%で、C:0.0026%、Si:3.0%、Al:0.59%、Mn:0.21%を含有し、O、S、Ti、NならびにREMの含有量を表1に示す通りに種々変更した鋼を連続鋳造し、熱間圧延し、熱延板焼鈍し、厚さ0.35mmに冷間圧延し、850℃×30秒の仕上げ焼鈍を施し、絶縁皮膜を塗布して製品板を作成した。このときの製品板の結晶粒径は、いずれも、30〜33μmの範囲内にあった。 In mass%, C: 0.0026%, Si: 3.0%, Al: 0.59%, Mn: 0.21%, and contents of O, S, Ti, N and REM are shown in Table 1. As shown in Fig. 3, variously modified steels are continuously cast, hot-rolled, hot-rolled sheet annealed, cold-rolled to a thickness of 0.35 mm, finish annealed at 850 ° C for 30 seconds, and an insulating film is applied. And made a product board. The crystal grain size of the product plate at this time was in the range of 30 to 33 μm.
次に、これら製品板に、従来一般的に行われるより短時間の750℃×1.5時間の歪取り焼鈍を施した。その後に、介在物、結晶粒径ならびに磁気特性の調査を行った。結果を表1ならびに図1に示す。 Next, these product plates were subjected to strain relief annealing at 750 ° C. for 1.5 hours, which is shorter than conventionally performed. Thereafter, the inclusions, crystal grain size and magnetic properties were investigated. The results are shown in Table 1 and FIG.
No.1からNo.4に示すように、鋼の[REM]2×[O]2×[S]値が[1式]の範囲内にあり、かつ、([REM]2×[O]2×[S])÷([Ti]×[N])値が[2式]の範囲内にある場合には、歪取り焼鈍を施した後の結晶粒径は59〜72μmと充分に粒成長し、磁気特性(鉄損:W15/50)は、1.87〜1.94W/kgと良好であった。 No. 1 to No. As shown in FIG. 4, the [REM] 2 × [O] 2 × [S] value of the steel is in the range of [1 formula], and ([REM] 2 × [O] 2 × [S]) ÷ ([Ti] × [N]) When the value is in the range of [Formula 2], the crystal grain size after the strain relief annealing is sufficiently grown as 59 to 72 μm, and the magnetic properties ( The iron loss (W15 / 50) was as good as 1.87 to 1.94 W / kg.
これらの鋼中にはREMオキシサルファイドが存在し、また、図2に示すように、REMオキシサルファイドの表面上にTiNが複合析出していた。また、焼鈍後で、TiCは発生していなかった。以上の結果により、製品の成分値が本発明の範囲内にあった場合には、鋼中のREMがREMオキシサルファイドを形成し、その上にTiNが複合析出してTiが固定されたことにより、TiCの生成が防止されたことが明らかであった。 In these steels, REM oxysulfide was present, and as shown in FIG. 2, TiN was compositely precipitated on the surface of REM oxysulfide. Further, TiC was not generated after annealing. From the above results, when the component value of the product is within the range of the present invention, REM in the steel forms REM oxysulfide, and TiN is compound-deposited thereon to fix Ti. It was clear that the formation of TiC was prevented.
No.5からNo.7に示す例は、[REM]2×[O]2×[S]値が[1式]の範囲外にある場合である。これらの鋼中にはREMオキシサルファイドは観察されなかった。また、TiCが観察され、これにより結晶粒成長が阻害され、歪取り焼鈍を施した後の結晶粒径は34〜36μmに留まり、W15/50値は2.3W/kg前後であり不良であった。 No. 5 to No. The example shown in 7 is a case where the [REM] 2 × [O] 2 × [S] value is outside the range of [Formula 1]. REM oxysulfide was not observed in these steels. Further, TiC was observed, which inhibited the crystal grain growth, the crystal grain size after strain relief annealing remained at 34 to 36 μm, and the W15 / 50 value was around 2.3 W / kg, which was poor. It was.
この場合、鋼中にREMオキシサルファイドが生成せず、よって、REMオキシサルファイドの表面上にTiNが複合析出してTiを固定することがなく、TiはTiCとして歪取り焼鈍中に生成し、結晶粒成長を阻害した。以上によって、[REM]2×[O]2×[S]値が[1式]の範囲内にあることが必要であることが明らかとなった。 In this case, REM oxysulfide is not generated in the steel, and thus TiN does not precipitate on the surface of REM oxysulfide to fix Ti, and Ti is generated during strain relief annealing as TiC. Inhibited grain growth. From the above, it has become clear that the [REM] 2 × [O] 2 × [S] value needs to be within the range of [Formula 1].
No.8からNo.10に示す例は、[REM]2×[O]2×[S]値が[1式]の範囲内にあり、かつ、([REM]2×[O]2×[S])÷([Ti]×[N])値が[2式]の範囲外にある場合である。これらの鋼中にはREMオキシサルファイドが観察された。しかし、REMオキシサルファイドの表面にTiNは観察されなかった。また、TiCが観察され、これにより結晶粒成長が阻害され、歪取り焼鈍を施した後の結晶粒径は37〜41μmに留まり、W15/50値は2.2〜2.3W/kg程度であり不良であった。 No. 8 to No. In the example shown in FIG. 10, the [REM] 2 × [O] 2 × [S] value is in the range of [Expression 1], and ([REM] 2 × [O] 2 × [S]) ÷ ( [Ti] × [N]) The value is out of the range of [Formula 2]. REM oxysulfide was observed in these steels. However, TiN was not observed on the surface of REM oxysulfide. In addition, TiC is observed, which inhibits crystal grain growth, and the crystal grain size after strain relief annealing remains at 37 to 41 μm, and the W15 / 50 value is about 2.2 to 2.3 W / kg. It was bad.
この場合、鋼中にREMオキシサルファイドが生成したものの、その表面にTiNを複合析出させてTiを固定するには至らず、TiはTiCとして歪取り焼鈍中に生成し、結晶粒成長を阻害した。以上によって、[REM]2×[O]2×[S]値が[1式]の範囲内にあり、かつ、([REM]2×[O]2×[S])÷([Ti]×[N])値が[2式]の範囲内にあることが必要であることが明らかとなった。 In this case, although REM oxysulfide was generated in the steel, TiN was not deposited on the surface by complex precipitation of TiN, and Ti was not fixed as TiC, and Ti was generated during strain relief annealing and inhibited grain growth. . As described above, the [REM] 2 × [O] 2 × [S] value is within the range of [Expression 1], and ([REM] 2 × [O] 2 × [S]) ÷ ([Ti] It became clear that the value of [× [N]) needs to be within the range of [Expression 2].
なお、ここで特記すべきは、例えば、比較例No.5などのように、Ti量が少ない場合に却ってTiCが生成する場合があることである。従来知見によると、Ti量は極力少ないほうが好ましいので、多大な労力を払ってでも鋼中へのTiの混入防止が必要とされていたが、本発明を用いた場合には、低Ti化に対する多大な労力を必要とせず、場合によっては積極的にTiを添加して、不可避的に混入するTi量よりも鋼中のTi量を高めるなどして、REMオキシサルファイドの表面上にTiNを積極的に複合析出せしめ、これによりTiを固定し、焼鈍中にTiCが析出することをなくし、良好な製品特性を安定的に得ることが可能となる。 It should be noted that, for example, Comparative Example No. In other words, TiC may be generated when the amount of Ti is small, such as 5. According to the conventional knowledge, it is preferable that the amount of Ti is as small as possible. Therefore, even if a great deal of effort is required, it is necessary to prevent Ti from being mixed into the steel. TiN is actively added on the surface of REM oxysulfide by adding Ti in some cases and increasing the amount of Ti in steel rather than the amount of Ti inevitably mixed. Thus, it is possible to perform composite precipitation, thereby fixing Ti, eliminating TiC precipitation during annealing, and stably obtaining good product characteristics.
なお、以上の結果は、歪取り焼鈍を従来一般的に行われているより短時間で行った結果であるが、従来レベルの歪取り焼鈍を行った場合には、微細介在物のピン止め作用による結晶粒成長差がより顕著化するので、以上述べた結晶粒成長性、ならびに鉄損の適不適が一層明確になることは言うまでもない。 Note that the above results are the results of performing strain relief annealing in a shorter time than is conventionally performed, but when conventional strain relief annealing is performed, the pinning action of fine inclusions Needless to say, the above-described crystal grain growth property and the suitability of iron loss are further clarified.
また、REMの元素であれば、1種だけ用いても、あるいは2種以上の元素を組み合わせて用いても、本願発明の範囲内であれば上記の効果は発揮される。 Moreover, even if it uses only 1 type, or it uses it combining 2 or more types of elements if it is an element of REM, said effect will be exhibited if it is in the range of this invention.
次に、本発明における成分組成の好ましい含有量の限定理由について説明する。
[C]:Cは、磁気特性に有害となるばかりか、Cの析出による磁気時効が著しくなるので、上限を0.01質量%とした。下限は0質量%を含む。
Next, the reason for limiting the preferable content of the component composition in the present invention will be described.
[C]: C is not only harmful to magnetic properties, but also magnetic aging due to precipitation of C becomes remarkable, so the upper limit was made 0.01 mass%. The lower limit includes 0% by mass.
[Si]:Siは鉄損を減少させる元素である。下限の0.1質量%より少ないと鉄損が悪化する。また、上限の7.0質量%を超えると加工性が著しく不良となるため、上限を7.0質量%とした。 [Si]: Si is an element that reduces iron loss. When less than the lower limit of 0.1% by mass, the iron loss is worsened. Further, if the upper limit of 7.0% by mass is exceeded, the workability becomes extremely poor, so the upper limit was set to 7.0% by mass.
なお、Siは鋼中のTiの活量を上げる効果を有するため、Si量の下限値については、Siがより高いとTi析出物の生成がより活発化し、REMオキシサルファイドへのTiNの複合析出がより促進され、REMオキシサルファイド1個あたりに固定されるTi量が増加し、鋼中の微細なTi析出物の個数密度がより減少する。この効果はSi量の概ね二乗に比例するため、Si量はより高いほうが好ましい。 Since Si has the effect of increasing the activity of Ti in the steel, the lower limit of the Si amount is that the higher the Si, the more active the formation of Ti precipitates, and the combined precipitation of TiN on REM oxysulfide. Is promoted, the amount of Ti fixed per REM oxysulfide increases, and the number density of fine Ti precipitates in the steel further decreases. Since this effect is approximately proportional to the square of the Si amount, it is preferable that the Si amount be higher.
具体的には、鋼中における径100nm以下の微細Ti析出物の個数密度が、Si量が2.2質量%の場合に1×109個/mm3以下となり、Si量が2.5質量%の場合に5×108個/mm3以下となる。よって、Si量の下限値として、2.2質量%以上であることが好ましく、2.5質量%以上であればさらに好ましい。 Specifically, the number density of fine Ti precipitates having a diameter of 100 nm or less in steel is 1 × 10 9 pieces / mm 3 or less when the Si amount is 2.2 mass%, and the Si amount is 2.5 mass. %, 5 × 10 8 pieces / mm 3 or less. Therefore, the lower limit of the Si amount is preferably 2.2% by mass or more, and more preferably 2.5% by mass or more.
また、Si量の上限としてより好ましい値は、冷延性がより良好な4.0質量%である。上限値が3.5質量%であれば、冷延性が一層良好となって一層好ましい。 Further, a more preferable value as the upper limit of the Si amount is 4.0% by mass with better cold rolling properties. If the upper limit is 3.5% by mass, the cold rolling property is further improved, which is more preferable.
[Al]:AlはSi同様に鉄損を減少させる元素である。下限の0.1質量%未満では鉄損が悪化し、上限の3.0質量%を超えるとコストの増加が著しい。 Alの下限は、鉄損の観点から、好ましくは0.2質量%、より好ましくは0.3質量%、さらに好ましくは0.6質量%とする。 [Al]: Al is an element that reduces iron loss in the same manner as Si. If the lower limit is less than 0.1% by mass, the iron loss deteriorates, and if it exceeds the upper limit of 3.0% by mass, the cost increases remarkably. The lower limit of Al is preferably 0.2% by mass, more preferably 0.3% by mass, and still more preferably 0.6% by mass from the viewpoint of iron loss.
[Mn]:Mnは鋼板の硬度を増加させ、打抜性を改善するために、0.1質量%以上添加する。なお、上限の2.0質量%は経済的理由によるものである。 [Mn]: Mn is added in an amount of 0.1% by mass or more in order to increase the hardness of the steel sheet and improve the punchability. The upper limit of 2.0% by mass is due to economic reasons.
[N]:Nは、AlNやTiNなどの窒化物となり鉄損を悪化させる。本発明によってREM介在物にTiNとして固定されるものの、その実用上の上限として0.005質量%とした。なお、上記の理由により、上限として好ましくは0.003質量%、より好ましくは0.0025質量%、さらに好ましくは0.002質量%である。 [N]: N becomes a nitride such as AlN or TiN and deteriorates the iron loss. Although it is fixed as TiN to the REM inclusion according to the present invention, the practical upper limit is set to 0.005 mass%. For the above reason, the upper limit is preferably 0.003% by mass, more preferably 0.0025% by mass, and still more preferably 0.002% by mass.
また、前記の理由により、Nはできる限り少ないほうが好ましいが、0質量%に限りなく近づけるには工業的な制約が大きいため、下限を0質量%超とする。なお、実用上の下限として0.001質量%を目安とし、0.0005質量%まで下げると、窒化物が抑制されてより好ましく、0.0001質量%まで下げると、さらに好ましい。 For the above reasons, it is preferable that N is as small as possible. However, since there are large industrial restrictions to make it as close as possible to 0% by mass, the lower limit is made more than 0% by mass. As a practical lower limit, 0.001% by mass is taken as a guide, and if it is reduced to 0.0005% by mass, nitride is suppressed, more preferably, and if it is reduced to 0.0001% by mass, it is more preferable.
[Ti]:TiはTiCなどの微細介在物を生成し、粒成長性を悪化させ、鉄損を悪化させる。本発明により、REMオキシサルファイドにTiNとして固定されるものの、その実用上の上限として0.02質量%とした。なお、上記の理由により、上限として好ましくは0.01質量%、より好ましくは0.005質量%である。 [Ti]: Ti produces fine inclusions such as TiC, which deteriorates grain growth and iron loss. According to the present invention, although TiN is fixed to REM oxysulfide, the practical upper limit is 0.02% by mass. For the above reason, the upper limit is preferably 0.01% by mass, more preferably 0.005% by mass.
なお、Tiは粒成長性を悪化させる元素であるために少ないほうが好ましく、下限は0質量%超であるが、前述の通り、Ti量が過少な場合には、REMオキシサルファイドへの固定効果が発揮されない場合があり得る。 In addition, since Ti is an element that deteriorates the grain growth property, it is preferable that the amount is small. The lower limit is more than 0% by mass. However, as described above, when the amount of Ti is too small, the effect of fixing to REM oxysulfide has an effect. It may not be demonstrated.
よって、Ti量が前記の評価式[2式]を満たすとき、Ti量が0.0012質量%を超えておれば、REMオキシサルファイドへの固定効果がより確実になるため好ましく、さらに0.0015質量%を超えればより好ましく、さらに0.002質量%以上であれば一層好ましく、さらに0.0025質量%以上であればより一層好ましい。 Therefore, when the amount of Ti satisfies the above-described evaluation formula [Formula 2], it is preferable that the amount of Ti exceeds 0.0012% by mass because the effect of fixing to REM oxysulfide becomes more reliable, and further 0.0015 More preferably, it is more preferably 0.002% by mass or more, and even more preferably 0.0025% by mass or more.
[REM]:REMはオキシサルファイドを形成してSを固定し、微細サルファイドの生成を防止または抑制する。また、TiNの複合生成サイトとなり、Tiの固定効果を発揮する。このため、Ti量に応じた所用量を上回る含有量が必要となるが、0.001質量%以上であれば、前述の効果がより確実となって好ましく、0.002質量%以上がより好ましく、0.0025質量%以上がさらに好ましく、0.003質量%以上が一層好ましい。なお、上限値の0.05質量%は経済的な理由による。 [REM]: REM forms oxysulfide to fix S, and prevents or suppresses the formation of fine sulfide. Moreover, it becomes a TiN composite production site and exerts a Ti fixing effect. For this reason, a content exceeding the prescribed amount according to the amount of Ti is required. However, if it is 0.001% by mass or more, the above-mentioned effect is more surely preferable, and 0.002% by mass or more is more preferable. 0.0025% by mass or more is more preferable, and 0.003% by mass or more is more preferable. The upper limit of 0.05% by mass is due to economic reasons.
[S]:SはMnS等の硫化物となり、粒成長性を悪化させ、鉄損を悪化させる。本発明によりREMオキシサルファイドとして固定されるものの、その実用上の上限として0.005質量%とした。 [S]: S becomes a sulfide such as MnS, which deteriorates grain growth and iron loss. Although fixed as REM oxysulfide according to the present invention, the practical upper limit was set to 0.005 mass%.
また、前記の理由により、Sはできる限り少ないほうが好ましいが、0質量%に限りなく近づけるには工業的な制約が大きく、またREMオキシサルファイドの形成に必要であるため、下限を0質量%超とし、経済性などを考慮した実用上の下限として0.0005質量%を目安とする。 For the above reasons, it is preferable that S is as small as possible. However, industrial restrictions are large to bring it as close as possible to 0% by mass, and since it is necessary for the formation of REM oxysulfide, the lower limit is more than 0% by mass. As a practical lower limit in consideration of economy and the like, 0.0005% by mass is a guide.
[O]:Oは0.005質量%より多く含有されると、酸化物が多数生成し、この酸化物によって磁壁移動や結晶粒成長が阻害される。よって、0.005質量%以下とすることが好ましい。 [O]: When O is contained in an amount of more than 0.005% by mass, a large number of oxides are generated, and domain wall movement and crystal grain growth are inhibited by the oxides. Therefore, it is preferable to set it as 0.005 mass% or less.
また、前記の理由により、Oはできる限り少ないほうが好ましいが、0質量%に限りなく近づけるには工業的な制約が大きく、またREMオキシサルファイドの形成に必要であるため、下限を0質量%超とし、経済性などを考慮した実用上の下限として0.0005質量%を目安とする。 For the reasons described above, it is preferable that O be as small as possible. However, industrial restrictions are large in order to make it as close as possible to 0% by mass, and since it is necessary for the formation of REM oxysulfide, the lower limit is more than 0% by mass. As a practical lower limit in consideration of economy and the like, 0.0005% by mass is a guide.
以上、述べてきた成分以外の元素で、本願の鋼の効果を大きくさまたげるものでなければ、含有していても良い。 As long as it is an element other than the components described above and does not greatly interfere with the effect of the steel of the present application, it may be contained.
以下に、選択元素について説明する。なお、これらの含有量の下限値は、すべて0質量%超とする。 Below, a selective element is demonstrated. In addition, all the lower limits of these content shall be over 0 mass%.
[P]:Pは材料の強度を高め、加工性を改善する。但し、過剰な場合は冷延性を損ねるため、0.1質量%以下が好ましい。 [P]: P increases the strength of the material and improves workability. However, if excessive, the cold rolling property is impaired, so 0.1% by mass or less is preferable.
[Cu]:Cuは耐食性を向上させ、また固有抵抗を高めて鉄損を改善する。但し、過剰な場合は製品板の表面にヘゲ疵などが発生して表面品位を損ねるため、0.5質量%以下が好ましい。 [Cu]: Cu improves corrosion resistance and increases specific resistance to improve iron loss. However, if the amount is excessive, scabs or the like are generated on the surface of the product plate and the surface quality is impaired, so 0.5 mass% or less is preferable.
[Ca]および[Mg]:CaおよびMgは脱硫元素であり、鋼中のSと反応してサルファイドを形成し、Sを固定する。しかし、REMと異なり、TiNを複合して析出させる効果は小さい。添加量を多くすれば脱硫効果が強化されるが、上限の0.05質量%を超えると、過剰なCaおよびMgのサルファイドにより粒成長が妨げられる。よって、0.05質量%以下が好ましい。 [Ca] and [Mg]: Ca and Mg are desulfurization elements, react with S in steel to form sulfide, and fix S. However, unlike REM, the effect of compounding and depositing TiN is small. If the addition amount is increased, the desulfurization effect is enhanced, but if the upper limit of 0.05% by mass is exceeded, grain growth is hindered by excess Ca and Mg sulfide. Therefore, 0.05 mass% or less is preferable.
[Cr]:Crは耐食性を向上させ、また固有抵抗を高めて鉄損を改善する。但し、過剰な添加はコスト高となるため、20質量%を上限とした。 [Cr]: Cr improves the corrosion resistance and increases the specific resistance to improve the iron loss. However, excessive addition increases the cost, so 20 mass% was made the upper limit.
[Ni]:Niは磁気特性に有利な集合組織を発達させ、鉄損を改善する。但し、過剰な添加はコスト高となるため、1.0質量%を上限とした。 [Ni]: Ni develops a texture favorable to magnetic properties and improves iron loss. However, excessive addition increases the cost, so 1.0 mass% was made the upper limit.
[Sn]および[Sb]:SnまたはSbは偏析元素であり、磁気特性を悪化させる(111)面の集合組織を阻害し、磁気特性を改善する。これらは1種だけ用いても、あるいは2種を組み合わせて用いても、上記の効果を発揮する。但し、0.3質量%を超えると冷延性が悪化するため、0.3質量%を上限とした。 [Sn] and [Sb]: Sn or Sb is a segregating element, which inhibits the texture of the (111) plane that deteriorates the magnetic properties and improves the magnetic properties. Even if these are used alone or in combination of the two, the above-described effects can be exhibited. However, if it exceeds 0.3% by mass, the cold rollability deteriorates, so 0.3% by mass was made the upper limit.
[Zr]:Zrは微量でも結晶粒成長を阻害し、歪取り焼鈍後の鉄損を悪化させる。よって、できる限り低減して、0.01質量%以下とすることが好ましい。 [Zr]: Zr inhibits crystal grain growth even in a small amount, and worsens iron loss after strain relief annealing. Therefore, it is preferable to reduce it as much as possible to 0.01% by mass or less.
[V]:Vは窒化物あるいは炭化物を形成し、磁壁移動や結晶粒成長を阻害する。このため、0.01質量%以下とすることが好ましい。 [V]: V forms nitrides or carbides and inhibits domain wall movement and crystal grain growth. For this reason, it is preferable to set it as 0.01 mass% or less.
[B]:Bは粒界偏析元素であり、また窒化物を形成する。この窒化物によって粒界移動が妨げられ、鉄損が悪化する。よって、できる限り低減して、0.005質量%以下とすることが好ましい。 [B]: B is a grain boundary segregation element and forms a nitride. Grain boundary movement is hindered by this nitride, and iron loss deteriorates. Therefore, it is preferable to reduce as much as possible to 0.005 mass% or less.
以上の他にも公知の元素を添加することが可能であり、例えば、磁気特性を改善する元素としてBi、Geなどを用いることができ、これらを所要の磁気特性に応じて適宜選択すればよい。 In addition to the above, known elements can be added. For example, Bi, Ge, or the like can be used as an element for improving magnetic characteristics, and these may be appropriately selected according to required magnetic characteristics. .
次に、本発明における好ましい製造条件ならびにその規定理由について説明する。まず製鋼段階において、転炉や2次精錬炉などの常法により精錬する際、スラグの酸化度、すなわち、スラグ中のFeO+MnOの質量比を1.0〜3.0%の範囲内とすることが好ましい。 Next, preferable manufacturing conditions and the reason for the definition in the present invention will be described. First, at the steelmaking stage, when refining by a conventional method such as a converter or secondary refining furnace, the oxidation degree of slag, that is, the mass ratio of FeO + MnO in the slag should be in the range of 1.0 to 3.0%. Is preferred.
この理由は、スラグの酸化度が1.0%未満であれば、電磁鋼のSi範囲内では、Siの影響によりTiの活量が上がるため、スラグからの覆Tiを有効に防止し難く、鋼中のTi量が不必要に上がり、また、スラグの酸化度が3.0%超であれば、スラグからの酸素供給によって溶鋼中のREMオキシサルファイドが不必要に酸化されてREMオキサイドとなり、鋼中Sの固定が不十分となるからである。 The reason for this is that if the degree of oxidation of the slag is less than 1.0%, within the Si range of the electromagnetic steel, the activity of Ti rises due to the influence of Si, so it is difficult to effectively prevent the covered Ti from the slag, If the amount of Ti in the steel rises unnecessarily, and if the oxidation degree of the slag exceeds 3.0%, the REM oxysulfide in the molten steel is unnecessarily oxidized to REM oxide by supplying oxygen from the slag, This is because the fixing of S in the steel becomes insufficient.
さらに、製鋼段階において、スラグの塩基度、すなわち、スラグ中のSiO2の質量%に対するCaOの質量%の比率を、0.5から5の範囲内とすることが好ましい。 Furthermore, in the steelmaking stage, the basicity of the slag, that is, the ratio of the mass% of CaO to the mass% of SiO2 in the slag is preferably in the range of 0.5 to 5.
この理由は、スラグの塩基度が0.5未満であれば、スラグからの覆Tiが多くなって、鋼中のTi量が不必要に上がり易くなるため、Tiを固定するために所要のREM添加量が多くなり、また、スラグの塩基度が5を超えると、スラグからの覆Sが多くなって、鋼中のS量が不必要に上がり易くなるため、Sを固定するために所要のREM添加量が多くなり、いずれも経済的に不利になるからである。 The reason for this is that if the basicity of the slag is less than 0.5, the amount of Ti covered from the slag increases, and the amount of Ti in the steel tends to rise unnecessarily. Therefore, the REM required for fixing Ti is required. When the amount of addition increases and the basicity of the slag exceeds 5, the cover S from the slag increases, and the amount of S in the steel tends to increase unnecessarily, so that it is necessary to fix S. This is because the amount of REM added is increased and both are economically disadvantageous.
さらに、また、炉材耐火物などを吟味して外来性の酸化源を極力排除することも重要である。さらに、また、REM添加時に不可避的に生成するREMオキサイドの浮上に足る時間を保つため、REM添加から鋳造までの時間を10分以上おくことが好ましい。以上述べた対策によって、所望の組成範囲内の溶鋼を溶製した後、連続鋳造、ないし、インゴット鋳造によりスラブ等の鋳片を鋳造する。 Furthermore, it is also important to examine the furnace material refractories and the like to eliminate foreign oxidation sources as much as possible. Furthermore, in order to maintain a sufficient time for the REM oxide that is inevitably generated when REM is added, the time from REM addition to casting is preferably 10 minutes or more. After the molten steel in the desired composition range is melted by the measures described above, a slab or other slab is cast by continuous casting or ingot casting.
この後、さらに、熱間圧延し、必要に応じて熱延板焼鈍し、一回または中間焼鈍を挟む二回以上の冷間圧延により製品厚に仕上げ、次いで、仕上げ焼鈍し、絶縁皮膜を塗布する。以上述べた方法により、製品板中の介在物を、本発明範囲内に制御することが可能となる。 After this, it is further hot-rolled, hot-rolled sheet annealed as necessary, finished to product thickness by one or more cold rollings sandwiching intermediate annealing, then finish-annealed and coated with insulating film To do. By the method described above, the inclusions in the product plate can be controlled within the scope of the present invention.
質量%で、C:0.0026%、Si:3.0%、Al:0.59%、Mn:0.21%を含有し、O、S、Ti、NならびにREMの含有量を表1に示す通りに種々変更した鋼を連続鋳造し、熱間圧延し、熱延板焼鈍し、厚さ0.35mmに冷間圧延した。 In mass%, C: 0.0026%, Si: 3.0%, Al: 0.59%, Mn: 0.21%, and contents of O, S, Ti, N and REM are shown in Table 1. As shown in Fig. 4, continuously changed steel was continuously cast, hot-rolled, hot-rolled sheet annealed, and cold-rolled to a thickness of 0.35 mm.
次いで、850℃×30秒の仕上げ焼鈍を施し絶縁皮膜を塗布して製品板を製造し、さらに、750℃×1.5時間の歪取り焼鈍を施した後に、製品板中の介在物調査、結晶粒径調査、ならびに、25cmエプスタイン法による磁気特性調査を行った。介在物調査は、レプリカ法によって介在物を抽出した後にTEMを用いて観察し、結晶粒径は、板厚断面を鏡面研磨し、ナイタールエッチングを施して結晶粒を現出させて平均結晶粒径を測定した。 Next, finish annealing at 850 ° C. × 30 seconds is applied and an insulating film is applied to produce a product plate. Further, after 750 ° C. × 1.5 hours of strain relief annealing, investigation of inclusions in the product plate, A crystal grain size survey and a magnetic property survey by 25 cm Epstein method were conducted. The inclusion investigation was conducted by extracting the inclusions by the replica method and observing them using a TEM. The crystal grain size was determined by mirror polishing the plate thickness cross section and performing nital etching to reveal the crystal grains. The diameter was measured.
前記の表1から明らかなように、本発明に準拠する製品板は結晶粒成長ならびに鉄損値に関して良好な結果が得られた。一方、本発明範囲外の製品板は結晶粒成長ならびに鉄損値が劣る結果が得られた。 As apparent from Table 1 above, the product plate according to the present invention has obtained good results with respect to crystal grain growth and iron loss values. On the other hand, the product plate outside the range of the present invention was inferior in crystal grain growth and iron loss value.
以上説明した通り、無方向性電磁鋼板中に内包される介在物を適正に制御することにより、簡易な焼鈍でも安定して良好な磁気特性が得られ、特に、簡易な歪取り焼鈍でも安定して良好な磁気特性を得ることが可能となり、需要家のニーズを満たしつつ省エネに貢献できる。 As explained above, by properly controlling the inclusions contained in the non-oriented electrical steel sheet, good magnetic properties can be obtained stably even with simple annealing, and particularly stable even with simple strain relief annealing. This makes it possible to obtain good magnetic properties and contribute to energy saving while meeting the needs of consumers.
Claims (2)
[REM]2×[O]2×[S]≧1×10-15 [1式]
([REM]2×[O]2×[S])÷([Ti]×[N])≧1×10-10 [2式] In mass%, C: 0.01% or less, Si: 0.1% to 7.0%, Al: 0.1% to 3.0%, Mn: 0.1% to 2.0% N: 0.005% or less, Ti: 0.02% or less, REM: 0.05% or less, S: 0.005% or less, O: 0.005% or less, the balance being iron and inevitable It consists of impurities and is represented by the mass% of S indicated by [S], the mass% of O indicated by [O], the mass% of REM indicated by [REM], and indicated by [Ti]. A non-oriented electrical steel sheet excellent in iron loss, characterized in that the mass% of Ti and the mass% of N indicated by [N] satisfy [Formula 1] and [Formula 2].
[REM] 2 × [O] 2 × [S] ≧ 1 × 10 −15 [1 set]
([REM] 2 × [O] 2 × [S]) ÷ ([Ti] × [N]) ≧ 1 × 10 −10 [2 formulas]
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004320757A JP4280223B2 (en) | 2004-11-04 | 2004-11-04 | Non-oriented electrical steel sheet with excellent iron loss |
RU2007120509/02A RU2362829C2 (en) | 2004-11-04 | 2005-09-28 | Random-orientation electrotechnical steel sheet, improved from side of losses in mandrel |
KR1020077010067A KR100912974B1 (en) | 2004-11-04 | 2005-09-28 | Non-oriented magnetic steel sheet with low iron loss |
US11/666,844 US7662242B2 (en) | 2004-11-04 | 2005-09-28 | Non-oriented electrical steel superior in core loss |
EP05790122A EP1816226B1 (en) | 2004-11-04 | 2005-09-28 | Non-oriented electrical steel sheet superior in core loss. |
DE602005027481T DE602005027481D1 (en) | 2004-11-04 | 2005-09-28 | NON-ORIENTED ELECTRIC STEEL PLATE WITH EXCELLENT IRON LOSS. |
PCT/JP2005/018392 WO2006048989A1 (en) | 2004-11-04 | 2005-09-28 | Non-oriented magnetic steel sheet excellent in iron loss |
CN2005800375660A CN101052735B (en) | 2004-11-04 | 2005-09-28 | Non-oriented electromagnetic steel sheet with excellently low iron loss |
TW094134240A TWI279447B (en) | 2004-11-04 | 2005-09-30 | Non-oriented electrical steel sheet excellent in core loss |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004320757A JP4280223B2 (en) | 2004-11-04 | 2004-11-04 | Non-oriented electrical steel sheet with excellent iron loss |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006131939A true JP2006131939A (en) | 2006-05-25 |
JP4280223B2 JP4280223B2 (en) | 2009-06-17 |
Family
ID=36725749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004320757A Active JP4280223B2 (en) | 2004-11-04 | 2004-11-04 | Non-oriented electrical steel sheet with excellent iron loss |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4280223B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008285721A (en) * | 2007-05-17 | 2008-11-27 | Nippon Steel Corp | Nonoriented silicon steel sheet having excellent blanking workability and core loss, and method for producing the same |
JP2011080140A (en) * | 2009-09-14 | 2011-04-21 | Nippon Steel Corp | Thin cast slab for non-oriented silicon steel sheet excellent in magnetic characteristic, and method for manufacturing non-oriented silicon steel sheet |
EP2316978A1 (en) * | 2008-07-24 | 2011-05-04 | Nippon Steel Corporation | Cast slab of non-oriented magnetic steel and method for producing the same |
EP2078572A4 (en) * | 2006-10-23 | 2016-03-23 | Nippon Steel & Sumitomo Metal Corp | Method for manufacturing non-oriented electrical sheet having excellent magnetic properties |
JP7536676B2 (en) | 2021-02-10 | 2024-08-20 | キオクシア株式会社 | Anodizing apparatus and anodizing method |
-
2004
- 2004-11-04 JP JP2004320757A patent/JP4280223B2/en active Active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2078572A4 (en) * | 2006-10-23 | 2016-03-23 | Nippon Steel & Sumitomo Metal Corp | Method for manufacturing non-oriented electrical sheet having excellent magnetic properties |
JP2008285721A (en) * | 2007-05-17 | 2008-11-27 | Nippon Steel Corp | Nonoriented silicon steel sheet having excellent blanking workability and core loss, and method for producing the same |
EP2316978A1 (en) * | 2008-07-24 | 2011-05-04 | Nippon Steel Corporation | Cast slab of non-oriented magnetic steel and method for producing the same |
EP2316978A4 (en) * | 2008-07-24 | 2014-04-30 | Nippon Steel & Sumitomo Metal Corp | Cast slab of non-oriented magnetic steel and method for producing the same |
JP2011080140A (en) * | 2009-09-14 | 2011-04-21 | Nippon Steel Corp | Thin cast slab for non-oriented silicon steel sheet excellent in magnetic characteristic, and method for manufacturing non-oriented silicon steel sheet |
JP7536676B2 (en) | 2021-02-10 | 2024-08-20 | キオクシア株式会社 | Anodizing apparatus and anodizing method |
Also Published As
Publication number | Publication date |
---|---|
JP4280223B2 (en) | 2009-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100912974B1 (en) | Non-oriented magnetic steel sheet with low iron loss | |
KR102095142B1 (en) | Non-oriented electrical steel sheet and production method thereof | |
JP4568190B2 (en) | Non-oriented electrical steel sheet | |
KR100742420B1 (en) | Non-oriented electromagnetic steel sheet excellent in iron loss and its manufacturing method | |
JP4510911B2 (en) | Method for producing high-frequency non-oriented electrical steel slabs | |
JP4681689B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
WO2013046661A1 (en) | Non-grain-oriented magnetic steel sheet | |
KR102057126B1 (en) | Grain-oriented electrical steel sheet and method for manufacturing the same | |
JP5360336B1 (en) | Non-oriented electrical steel sheet | |
TW200403346A (en) | Nonoriented magnetic steel sheet, member for rotary machine and rotary machine | |
JP5263012B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP4280197B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP4280224B2 (en) | Non-oriented electrical steel sheet with excellent iron loss | |
JP4280223B2 (en) | Non-oriented electrical steel sheet with excellent iron loss | |
JP3456295B2 (en) | Melting method of steel for non-oriented electrical steel sheet | |
JP4267437B2 (en) | Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing and its manufacturing method | |
JP5098430B2 (en) | Non-oriented electrical steel sheet excellent in punching workability and iron loss and manufacturing method | |
JP4276613B2 (en) | Non-oriented electrical steel sheet and ladle refining method for molten steel for non-oriented electrical steel sheet | |
JPH0967653A (en) | Nonoriented silicon steel sheet excellent in core loss characteristics | |
JP7492163B2 (en) | Non-oriented electrical steel sheet, manufacturing method thereof, and hot-rolled steel sheet | |
WO2021045212A1 (en) | Grain-oriented electromagnetic steel plate and production method therefor | |
WO2022219742A1 (en) | Hot-rolled steel sheet for non-oriented electrical steel sheet and method for manufacturing same | |
US20230366058A1 (en) | Non-oriented electrical steel sheet, method for producing same, and hot-rolled steel sheet | |
CN113166874A (en) | Oriented electrical steel sheet and method for manufacturing the same | |
JPH11229097A (en) | Nonoriented silicon steel sheet reduced in core loss |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080325 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080526 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090303 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090313 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4280223 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140319 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |