JP2006129585A - Controller for dc distribution system, and transformer controller - Google Patents

Controller for dc distribution system, and transformer controller Download PDF

Info

Publication number
JP2006129585A
JP2006129585A JP2004312876A JP2004312876A JP2006129585A JP 2006129585 A JP2006129585 A JP 2006129585A JP 2004312876 A JP2004312876 A JP 2004312876A JP 2004312876 A JP2004312876 A JP 2004312876A JP 2006129585 A JP2006129585 A JP 2006129585A
Authority
JP
Japan
Prior art keywords
power
voltage
control
converter
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004312876A
Other languages
Japanese (ja)
Other versions
JP4167215B2 (en
Inventor
Motoo Futami
Takahiro Imaizumi
Hiroshige Kawazoe
Hiroo Konishi
Yoshinori Makino
基生 二見
高宏 今泉
博雄 小西
裕成 川添
芳範 牧野
Original Assignee
Electric Power Dev Co Ltd
Hitachi Ltd
株式会社日立製作所
電源開発株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Dev Co Ltd, Hitachi Ltd, 株式会社日立製作所, 電源開発株式会社 filed Critical Electric Power Dev Co Ltd
Priority to JP2004312876A priority Critical patent/JP4167215B2/en
Publication of JP2006129585A publication Critical patent/JP2006129585A/en
Application granted granted Critical
Publication of JP4167215B2 publication Critical patent/JP4167215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To supply a load with stable DC power by keeping the voltage of a DC system within a specified value, even if power down or sudden power ripple such as sudden change of a load, etc. occurs in a DC distribution system. <P>SOLUTION: A group 1 of individual small-capacity dispersed power units or a group 2 of power storage devices are provided with individual controllers so as to detect the range of small voltage ripple of a DC distribution system thereby suppressing it. This controller controls the voltage of a DC system, making use of the power flow control between it and an AC system 7 by means of an AC system interconnector 3 only when these groups of small-capacity devices can not support it by themselves and it becomes relatively large voltage ripple. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、直流配電系統に、複数の分散電源装置、複数の電力貯蔵装置、交流系統連系装置、並びに複数の負荷電圧調整装置を接続した直流配電システムの制御装置及び直流配電システムに用いて好適な変換器制御装置に関するものである。   The present invention is used for a DC distribution system control device and a DC distribution system in which a plurality of distributed power supply devices, a plurality of power storage devices, an AC system interconnection device, and a plurality of load voltage regulators are connected to a DC distribution system. It relates to a suitable converter control device.
直流配電システムは、燃料電池等の直流分散電源装置や、蓄電池等の直流電力貯蔵装置から、交流系統やAC/DC変換器を介することなく、直流負荷に直流電力を直接配電できる直流配電系統(直流配電網)を備えたシステムである。   The DC distribution system is a DC distribution system that can directly distribute DC power to a DC load from a DC distributed power supply device such as a fuel cell or a DC power storage device such as a storage battery without going through an AC system or an AC / DC converter ( DC power distribution system).
このようなシステムの構成は、特許文献1〜3等に開示されているように、分散電源、電力貯蔵部、並びに交流系統を、それぞれDC/DC変換器やAC/DC変換器を介して、直流配電系統に接続している。   The configuration of such a system, as disclosed in Patent Documents 1 to 3, etc., distributes a distributed power source, a power storage unit, and an AC system via a DC / DC converter and an AC / DC converter, respectively. Connected to DC distribution system.
一方、このようなシステムの制御としては、特許文献2では、潮流制御手段を用いて、直流系統の余剰/不足電力に応じて交流系統連系装置を制御している。また、特許文献3では、共通制御部から通信手段を用いて、直流系統の余剰/不足電力に応じて交流系統連系装置や分散電源を制御する技術が開示されている。すなわち、いずれも、システム全体としての余剰/不足電力を判断し、その結果に基づいて、交流系統連系装置や分散電源装置を制御している。   On the other hand, as a control of such a system, in Patent Document 2, an AC grid interconnection device is controlled according to surplus / insufficient power of the DC grid using a power flow control means. Patent Document 3 discloses a technique for controlling an AC system interconnection device and a distributed power source according to surplus / insufficient power of a DC system using a communication unit from a common control unit. That is, in any case, surplus / insufficient power as a whole system is determined, and the AC grid interconnection device and the distributed power supply device are controlled based on the result.
特開2003−204682号公報(図1ほか)Japanese Patent Laid-Open No. 2003-204682 (FIG. 1 and others) 特開平6−327146号公報(図1ほか)JP-A-6-327146 (FIG. 1 and others) 特開2002−271997号公報(請求項1ほか)JP 2002-271997 A (Claim 1 and others)
前記従来技術においては、一部の分散電源の脱落や、負荷の急変等により、急激な電力変動が生じると、共通制御部からの制御が間に合わず、直流配電系統の電圧が一時的に大きく落ち込み、負荷に安定した直流電力を供給できない惧れがあった。   In the prior art, when a sudden power fluctuation occurs due to a drop in some of the distributed power supplies or a sudden change in load, the control from the common control unit is not in time, and the voltage of the DC distribution system drops temporarily. There was a fear that stable DC power could not be supplied to the load.
そこで、本発明の課題は、電源脱落や負荷急変等の急激な電力変動が生じても、直流系統の電圧を規定値内に維持し、負荷に安定した直流電力を供給できる直流配電システムの制御装置を提供することにある。   Therefore, the object of the present invention is to control a DC distribution system that can maintain a DC system voltage within a specified value and supply stable DC power to a load even if a sudden power fluctuation such as a power loss or a sudden load change occurs. To provide an apparatus.
また、本発明の他の課題は、負荷に安定した直流電力を供給できる直流配電システムの実現に好適な変換器制御装置を提供することにある。   Another object of the present invention is to provide a converter control device suitable for realizing a DC power distribution system capable of supplying stable DC power to a load.
本発明の望ましい実施態様においては、分散電源や電力貯蔵部の1つに対応するDC/DC変換器を、直流配電系統の電圧をその定格電圧に近づけるように制御する第1の電圧制御手段を備え、一方、交流系統との連系制御を行うAC/DC変換器を、直流配電系統の電圧が定格電圧から第1の差分ずれたときにそれ以上のずれを防ぐように制御する第2の電圧制御手段を備えている。   In a preferred embodiment of the present invention, there is provided a first voltage control means for controlling a DC / DC converter corresponding to one of the distributed power supply and the power storage unit so that the voltage of the DC power distribution system approaches the rated voltage. On the other hand, the AC / DC converter that controls the interconnection with the AC system is controlled to prevent further deviation when the voltage of the DC distribution system deviates from the rated voltage by the first difference. Voltage control means is provided.
ここで、第1の電圧制御手段は、直流配電系統の定格電圧を電圧指令値とし、当該分散電源又は電力貯蔵部の近傍で検出した直流配電系統の電圧を帰還する電圧制御系(AVR)を備えることが望ましい。また、第2の電圧制御手段としては、直流配電系統の電圧が第1の差分だけ上昇したときそれ以上の増大を抑制するように、AC/DC変換器を制御する電圧制御系(AVR)と、直流配電系統の検出電圧が第1の差分を超えて下降したとき、その下降の大きさに応じて交流系統から直流配電系統への潮流電力を増加させるようにAC/DC変換器を制御する電力制御系(APR)とを備えることが望ましい。   Here, the first voltage control means uses a voltage control system (AVR) that feeds back the voltage of the DC distribution system detected in the vicinity of the distributed power source or the power storage unit, using the rated voltage of the DC distribution system as a voltage command value. It is desirable to provide. The second voltage control means includes a voltage control system (AVR) that controls the AC / DC converter so as to suppress further increase when the voltage of the DC distribution system rises by the first difference. When the detection voltage of the DC power distribution system falls below the first difference, the AC / DC converter is controlled to increase the power flow from the AC system to the DC power distribution system according to the magnitude of the drop. It is desirable to provide a power control system (APR).
また、本発明の望ましい実施態様においては、複数の分散電源や電力貯蔵部のうち前記1つ以外の分散電源や電力貯蔵部は、直流配電系統の電圧がその定格電圧から第1の差分より小さな第2の差分ずれたときにそれ以上のずれを防ぐように、対応するDC/DC変換器を制御する第3の電圧制御手段を個別に備えている。ここで、第3の電圧制御手段は、直流配電系統の電圧が第2の差分だけ上昇したときに動作する電圧制御系(AVR)と、直流配電系統の電圧が第2の差分を超えて下降したとき、その下降の大きさに応じて当該分散電源又は電力貯蔵部から直流配電系統への潮流電力を増加させる電力制御系(APR)とを備えることができる。あるいは、第3の電圧制御手段は、直流配電系統の電圧が第2の差分だけ下降したときに動作する電圧制御系(AVR)と、直流配電系統の電圧が第2の差分を超えて上昇したとき、その上昇の大きさに応じて直流配電系統から当該分散電源又は電力貯蔵部への潮流電力を増加させる電力制御系(APR)とを備えることもできる。   Further, in a preferred embodiment of the present invention, the distributed power source and the power storage unit other than the one among the plurality of distributed power sources and power storage units are such that the voltage of the DC distribution system is smaller than the first difference from the rated voltage. Third voltage control means for controlling the corresponding DC / DC converter is individually provided to prevent further deviation when the second difference is deviated. Here, the third voltage control means includes a voltage control system (AVR) that operates when the voltage of the DC distribution system rises by the second difference, and the voltage of the DC distribution system drops by exceeding the second difference. Then, a power control system (APR) that increases the power flow from the distributed power source or the power storage unit to the DC power distribution system according to the magnitude of the drop can be provided. Alternatively, the third voltage control means includes a voltage control system (AVR) that operates when the voltage of the DC distribution system decreases by the second difference, and the voltage of the DC distribution system increases beyond the second difference. In some cases, a power control system (APR) that increases power flow from the DC power distribution system to the distributed power source or the power storage unit according to the magnitude of the increase can be provided.
本発明の望ましい実施態様によれば、電源脱落や負荷急変等の急激な電力変動が生じても、複数台の小容量装置で構成される分散電源装置及び/又は電力貯蔵装置の直流電力を最大限に有効利用し、直流系統の電圧を規定値内に維持して負荷に安定した直流電力を供給できる。   According to a preferred embodiment of the present invention, the DC power of a distributed power supply device and / or a power storage device composed of a plurality of small-capacity devices is maximized even if a sudden power fluctuation such as a power loss or a sudden load change occurs. It can be used effectively as much as possible, and the DC system voltage can be maintained within a specified value and stable DC power can be supplied to the load.
本発明のその他の目的と特徴は、以下に述べる実施例の説明によって明らかにする。   Other objects and features of the present invention will become apparent from the following description of the embodiments.
以下、図を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.
図1は、本発明の第1の実施例による直流配電システムの制御装置の全体構成ブロック図である。直流配電システムは、分散電源装置群1、電力貯蔵装置群2、交流系統連系装置3、負荷電圧調整装置群4を備え、これらを直流配電系統5で連系し、DC/DC変換、もしくはAC/DC変換した直流電力を負荷8A、8B等に直接配電するシステムである。分散電源装置群1では、燃料電池等の分散電源12A、12BをそれぞれDC/DC変換器11A、11Bを介して直流配電系統5に連系し、個別制御装置100A、100Bで直流系統側電圧V1A、V1B及び/又は直流電力P1A、P1Bをそれぞれ個別に制御する。   FIG. 1 is a block diagram of the overall configuration of a control device for a DC power distribution system according to a first embodiment of the present invention. The DC power distribution system includes a distributed power supply device group 1, a power storage device group 2, an AC grid interconnection device 3, and a load voltage adjustment device group 4. These are linked by a DC distribution system 5 to perform DC / DC conversion, or This is a system that directly distributes AC / DC converted DC power to loads 8A and 8B. In the distributed power supply device group 1, distributed power supplies 12A and 12B such as fuel cells are connected to the DC power distribution system 5 through DC / DC converters 11A and 11B, respectively, and the DC power supply side voltage V1A is connected by the individual control devices 100A and 100B. , V1B and / or DC power P1A, P1B are individually controlled.
電力貯蔵装置群2では、鉛蓄電池、ナトリウム硫黄電池、電気二重層コンデンサ等の電力貯蔵部22A、22Bを、それぞれDC/DC変換器21A、21Bを介して直流配電系統5に連系している。そして、個別制御装置200A、200Bで、系統側直流電圧V2A、V2B及び/又は直流電力P2A、P2Bをそれぞれ個別に制御する。   In the power storage device group 2, power storage units 22A and 22B such as a lead storage battery, a sodium sulfur battery, and an electric double layer capacitor are connected to the DC power distribution system 5 through DC / DC converters 21A and 21B, respectively. . Then, the individual control devices 200A and 200B individually control the system side DC voltages V2A and V2B and / or the DC powers P2A and P2B.
交流系統連系装置3では、交流系統7を、AC/DC変換器31を介して直流配電系統5に連系し、個別制御装置300で系統側直流電圧V3及び/又は直流電力P3を個別に制御する。   In the AC grid interconnection device 3, the AC grid 7 is linked to the DC distribution system 5 via the AC / DC converter 31, and the system side DC voltage V 3 and / or the DC power P 3 is individually supplied by the individual control device 300. Control.
負荷電圧調整装置群4では、負荷8A、8BをそれぞれDC/DC変換器41A、41Bを介して直流配電系統5に連系し、個別制御装置400A、400Bで負荷側直流電圧V41A、V41Bをそれぞれ個別に制御する。また、それぞれの系統側直流電圧をV4A、V4B、直流電力をP4A、P4Bとする。   In the load voltage adjusting device group 4, the loads 8A and 8B are connected to the DC distribution system 5 via DC / DC converters 41A and 41B, respectively, and the load side DC voltages V41A and V41B are respectively connected to the individual control devices 400A and 400B. Control individually. Also, the system side DC voltages are V4A and V4B, and the DC power is P4A and P4B.
統括制御装置500は、電気又は光ケーブル、或いは無線等の通信網6を介して各端子の運転状態や電圧、電流等の情報を収集し、これらの情報に基づいた制御指令を各個別制御装置に伝送してシステム全体を統括的に、かつ最適に制御する。   The overall control device 500 collects information such as operation status, voltage, current, etc. of each terminal via an electric or optical cable, or a communication network 6 such as radio, and gives a control command based on these information to each individual control device. Transmit and control the entire system centrally and optimally.
次に、分散電源装置群1の個別制御機能ブロックについて説明する。   Next, individual control function blocks of the distributed power supply device group 1 will be described.
図2は、分散電源装置群1の個別制御装置の制御機能ブロック図である。ここでは、代表して個別制御装置100Aについて示すが、100B,100C,…についても同様に構成される。まず、通信網6を介して、制御に必要な電力指令値P1REFA、電圧指令値V1REFA、電圧変動検知レベルVK1A、及び起動停止指令S1Aを取り込む。また、電流検出器13Aと電圧検出器14Aから、系統側直流電流I11Aと直流電圧V1Aの検出値を取り込み、乗算部105Aにより系統側直流電力P1Aを求める。   FIG. 2 is a control function block diagram of the individual control devices of the distributed power supply device group 1. Here, the individual control device 100A is shown as a representative, but 100B, 100C,. First, the power command value P1REFA, the voltage command value V1REFA, the voltage fluctuation detection level VK1A, and the start / stop command S1A necessary for control are taken in via the communication network 6. Further, the detected values of the system side DC current I11A and the DC voltage V1A are taken in from the current detector 13A and the voltage detector 14A, and the system side DC power P1A is obtained by the multiplication unit 105A.
電圧維持部101Aでは、直流電圧V1Aと電圧変動検知レベルVK1Aから出力P1REF2Aを求める。   The voltage maintaining unit 101A obtains the output P1REF2A from the DC voltage V1A and the voltage fluctuation detection level VK1A.
電力制御系では、電力指令値P1REFAと電圧維持部101Aの出力P1REF2Aを加算器102Aで加算し、これをリミッタ103Aにより、下限をゼロに、上限をP1REFMAに制限する。このようにして補正した電力指令値を、減算部104Aで直流電力帰還値P1Aと比較し、電力制御部(APR)106Aでは、それらの偏差がゼロとなるように、例えば、比例積分(PI)制御を用いて、その出力を調整する。   In the power control system, the power command value P1REFA and the output P1REF2A of the voltage maintaining unit 101A are added by the adder 102A, and the lower limit is limited to zero and the upper limit is limited to P1REFMA by the limiter 103A. The power command value corrected in this way is compared with the DC power feedback value P1A by the subtraction unit 104A, and the power control unit (APR) 106A has, for example, proportional integration (PI) so that their deviation becomes zero. Use the control to adjust its output.
一方、電圧制御系では、電圧指令値V1REFAと直流電圧帰還値V1Aの偏差を減算部107Aで求め、電圧制御部108Aでも、同様に比例積分(PI)制御等を用いて、それらの偏差がゼロとなるようにその出力を調整する。電力制御部106Aと電圧制御部108Aの出力は、最小値選択部109Aで値の小さい方が選択され、変換器制御部110Aの指令値となる。変換器制御部110Aでは、その指令値に基づいてDC/DC変換器11Aを制御し、燃料電池等の分散電源12Aと直流配電系統5との間の潮流電力を調整する。   On the other hand, in the voltage control system, the deviation between the voltage command value V1REFA and the DC voltage feedback value V1A is obtained by the subtraction unit 107A, and the deviation is zero in the voltage control unit 108A in the same manner using proportional integration (PI) control or the like. Adjust the output so that As for the outputs of the power control unit 106A and the voltage control unit 108A, the smaller value is selected by the minimum value selection unit 109A and becomes the command value of the converter control unit 110A. The converter control unit 110A controls the DC / DC converter 11A based on the command value to adjust the power flow between the distributed power source 12A such as a fuel cell and the DC distribution system 5.
このように構成した制御系の考え方は次の通りである。まず、直流配電系統5の電圧がその定格値VRに近い状態では、この直流系統5に接続された複数の分散電源や電力貯蔵部のうち、1つだけに電圧制御部(AVR)による定格電圧への電圧制御機能(第1の電圧制御手段)を持たせ、その他は、電力制御を行わせておく。しかし、直流系統の電圧が、その定格値から所定値(第2の差分)を超えて離れようとすると、その他の分散電源や電力貯蔵部は、それらの個別の電力制御部に付加した電圧維持部の機能によって、あるいは、待機させていた電圧制御部が働いて、電圧変動を抑制する(第3の電圧制御手段が働く)のである。   The concept of the control system configured as described above is as follows. First, in a state where the voltage of the DC distribution system 5 is close to the rated value VR, only one of the plurality of distributed power sources and power storage units connected to the DC system 5 is rated voltage by the voltage control unit (AVR). A voltage control function (first voltage control means) is provided, and power control is performed for the others. However, when the voltage of the DC system tries to deviate from the rated value beyond the predetermined value (second difference), other distributed power sources and power storage units maintain the voltage added to their individual power control units. Depending on the function of the unit, or the voltage control unit which has been in standby works, voltage fluctuation is suppressed (third voltage control means works).
次に、この考えに基く制御装置の特性を、まず、分散電源装置群1から説明する。   Next, the characteristics of the control device based on this idea will be described first from the distributed power supply device group 1.
図3は、図2の分散電源装置群1の個別制御装置の特性を示す。図は、縦軸を直流電圧V1A、横軸を直流電力P1Aとし、実線は電圧指令値V1REFAと電力指令値P1REFA、及び電圧維持部101Aの出力P1REF2A、電力指令最大値P1REFMAを、○印は分散電源装置の定常時の動作点を表す。   FIG. 3 shows the characteristics of the individual control devices of the distributed power supply device group 1 of FIG. In the figure, the vertical axis represents the DC voltage V1A, the horizontal axis represents the DC power P1A, the solid line represents the voltage command value V1REFA, the power command value P1REFA, the output P1REF2A of the voltage maintaining unit 101A, and the power command maximum value P1REFMA, Represents the operating point of the power supply at normal times.
同図(A)は、電力制御を行う場合の特性である。これは、まず、直流系統の電圧がその定格値から(後述する第1の差分よりも小さい)第2の差分の範囲内にあるとき、定格電力となるような電力制御系(APR)を形成する。一方、直流系統の電圧がその定格値から第2の差分を超えてずれようとすると、それ以上のずれを防ぐように、対応するDC/DC変換器を制御する第3の電圧制御手段を個別に備えている。詳細を以下に述べる。   FIG. 6A shows characteristics when power control is performed. First, an electric power control system (APR) is formed so that the rated power is obtained when the voltage of the DC system is within the range of the second difference (smaller than the first difference described later) from the rated value. To do. On the other hand, if the voltage of the DC system tries to deviate from the rated value beyond the second difference, the third voltage control means for controlling the corresponding DC / DC converter is individually provided so as to prevent further deviation. In preparation. Details are described below.
さて、電力指令値P1REFAを定格電力値に設定するとともに、電圧指令値V1REFAを定格直流電圧VRより高く設定することにより、最小値選択部109Aの機能によって、定常時の動作点は、電力指令値P1REFA上となる。ここで、電圧維持部101Aは、直流電圧V1Aが電圧変動検知レベルVK1A(第2の差分)を超えて下降すると、その下降分に応じた補正値P1REF2Aを電力指令値P1REFAに加算して増加させている。したがって、分散電源12Aの電力許容限界値P1REFMAまでの範囲内で、直流配電系統5へ電力を供給し、その電圧低下を補っている。また、電圧制御部(AVR)108Aの機能により、直流配電系統5の電圧V1Aは、(第2の差分相当に)高く設定した電圧指令値V1REFAを超えて増大することはない。この図3(A)における電圧保持機能を、ここでは(第1の差分より小さな)第2の差分ずれたときにそれ以上のずれを防ぐように、対応するDC/DC変換器を制御する第3の電圧制御手段と称する。   Now, the power command value P1REFA is set to the rated power value, and the voltage command value V1REFA is set to be higher than the rated DC voltage VR. On P1REFA. Here, when the DC voltage V1A falls below the voltage fluctuation detection level VK1A (second difference), the voltage maintaining unit 101A adds the correction value P1REF2A corresponding to the lowered amount to the power command value P1REFA and increases it. ing. Therefore, power is supplied to the DC distribution system 5 within the range up to the power allowable limit value P1REFMA of the distributed power source 12A to compensate for the voltage drop. Further, the voltage V1A of the DC distribution system 5 does not increase beyond the set voltage command value V1REFA (corresponding to the second difference) by the function of the voltage control unit (AVR) 108A. The voltage holding function in FIG. 3 (A) is used here to control the corresponding DC / DC converter so as to prevent further deviation when the second difference (smaller than the first difference) is shifted. No. 3 voltage control means.
一方、同図(B)は、電圧制御を任された場合、つまり、第1の電圧制御手段(AVR)を形成する場合の特性である。今度は、電力指令値P1REFAを電力指令最大値P1REFMAに設定するとともに、電圧指令値V1REFAを定格値VRに設定する。これにより、最小値選択部109Aの機能によって、定常時の動作点は、電圧指令値V1REFA上となる。   On the other hand, FIG. 5B shows characteristics when voltage control is entrusted, that is, when the first voltage control means (AVR) is formed. This time, power command value P1REFA is set to power command maximum value P1REFMA, and voltage command value V1REFA is set to rated value VR. As a result, the operating point in the steady state is on the voltage command value V1REFA by the function of the minimum value selection unit 109A.
このように、分散電源装置(12A,11A及び100A)の電力指令値P1REFA、電圧指令値V1REFA、及び定格電圧VRからの下降側への差分電圧VK1Aを任意に設定できる。したがって、役割に応じたこれらの適切な設定によって、まず、図3(A)に示すように、他の分散電源装置や電力貯蔵装置に委ねた定格電圧VRへの電圧制御機能(第1の電圧制御手段)では維持できなかった直流配電系統の電圧変動を、設定した第2の比較的小さな差分電圧の範囲内で保持するバックアップとしての機能を発揮することができる。あるいは、図3(B)に示すように、唯一の定格電圧VRへの電圧制御機能(第1の電圧制御手段)をもった分散電源装置として機能させることもできる。   As described above, the power command value P1REFA, the voltage command value V1REFA, and the differential voltage VK1A that decreases from the rated voltage VR can be arbitrarily set for the distributed power supply devices (12A, 11A, and 100A). Therefore, with these appropriate settings according to the role, first, as shown in FIG. 3A, a voltage control function (first voltage) to the rated voltage VR entrusted to other distributed power supply devices and power storage devices. The function as a backup for holding the voltage fluctuation of the DC distribution system that could not be maintained by the control means) within the set range of the second relatively small differential voltage can be exhibited. Alternatively, as shown in FIG. 3B, it is possible to function as a distributed power supply device having a voltage control function (first voltage control means) to a single rated voltage VR.
次に、電力貯蔵装置群2の個別制御装置について説明する。   Next, the individual control device of the power storage device group 2 will be described.
図4は、電力貯蔵装置群2の個別制御装置の制御機能ブロック図である。ここでは、代表して個別制御装置200Aについて示すが、200B,200C,…についても同様に構成される。図2の分散電源装置群1の個別制御機能ブロックと異なる点は、電力貯蔵装置群2が充放電動作できることから、リミッタ部203Aの下限値を−P2REFMAとしたことと、209Aを最大値選択部としたことである。その他は、図2と同様であり、各符号の先頭が1から2に変っただけで容易に理解できるので重複説明は避ける。   FIG. 4 is a control function block diagram of the individual control device of the power storage device group 2. Here, the individual control device 200A is shown as a representative, but 200B, 200C,. 2 is different from the individual control functional block of the distributed power supply device group 1 in that the power storage device group 2 can perform charge / discharge operation. Therefore, the lower limit value of the limiter unit 203A is set to −P2REFMA, and 209A is set to the maximum value selection unit. It is that. Others are the same as those in FIG. 2 and can be easily understood by changing the head of each code from 1 to 2, so that duplicated explanation is avoided.
図5は、図4の電力貯蔵装置群2の個別制御装置の特性を示す。図は、縦軸を直流電圧V2A、横軸を直流電力P2Aとし、実線は電圧指令値V2REFAと電力指令値P2REFA、及び電圧維持部201Aの出力P2REF2A、電力指令最大値±P2REFMAを、○印は電力貯蔵装置の定常時の動作点を表す。   FIG. 5 shows the characteristics of the individual control devices of the power storage device group 2 of FIG. In the figure, the vertical axis indicates the DC voltage V2A, the horizontal axis indicates the DC power P2A, the solid line indicates the voltage command value V2REFA, the power command value P2REFA, the output P2REF2A of the voltage maintaining unit 201A, and the power command maximum value ± P2REFMA. Represents the operating point of the power storage device during steady state.
同図(A)は、電力制御を行う場合の特性である。電力指令値P2REFAを定格電力値に設定するとともに、電圧指令値V2REFAを定格直流電圧VRより(第2の差分だけ)低く設定することにより、最大値選択部209Aの機能によって、定常時の動作点は、電力指令値P2REFA上となる。ここで、電圧維持部201Aは、直流電圧V2Aが電圧変動検知レベル(第2の差分相当)VK2Aを超えて上昇すると、その上昇分に応じた補正値P2REF2Aを負の電力指令値P2REFAに加算して負の方向に増加させている。したがって、貯蔵部22Aの受容電力許容限界値−P2REFMAまでの範囲内で、直流配電系統5から電力を吸収し、その電圧上昇を抑制している。また、電圧制御部(AVR)208Aの機能により、直流配電系統5の電圧V2Aは、(第2の差分だけ)低く設定した電圧指令値V2REFAを超えて下降することはない。   FIG. 6A shows characteristics when power control is performed. The power command value P2REFA is set to the rated power value, and the voltage command value V2REFA is set to be lower than the rated DC voltage VR (by the second difference). Is on the power command value P2REFA. Here, when the DC voltage V2A increases beyond the voltage fluctuation detection level (corresponding to the second difference) VK2A, the voltage maintaining unit 201A adds the correction value P2REF2A corresponding to the increase to the negative power command value P2REFA. In the negative direction. Therefore, the power is absorbed from the DC distribution system 5 within the range up to the allowable power acceptance limit value -P2REFMA of the storage unit 22A, and the voltage rise is suppressed. Further, due to the function of the voltage control unit (AVR) 208A, the voltage V2A of the DC distribution system 5 does not drop beyond the voltage command value V2REFA set low (only by the second difference).
一方、同図(B)は、電圧制御を任された場合の特性である。今度は、電力指令値P2REFAを電力指令最大値−P2REFMAに設定するとともに、電圧指令値V2REFAを定格値VRに設定する。これにより、最大値選択部209Aの機能によって、定常時の動作点は、電圧指令値V2REFA上となる。   On the other hand, FIG. 5B shows characteristics when voltage control is entrusted. This time, power command value P2REFA is set to power command maximum value−P2REFMA, and voltage command value V2REFA is set to rated value VR. As a result, the operating point in the steady state is on the voltage command value V2REFA by the function of the maximum value selection unit 209A.
この電力貯蔵部22A,22B等は、直流配電系統5との間で、電力を供給あるいは吸収の両面の制御が可能なため、図5(B)の特性に基く電力の出し入れにより、直流配電系統5の電圧をその定格電圧VRに保つ第1の電圧制御手段として好適である。したがって、電力貯蔵装置群2の中の1つの装置に第1の電圧制御手段を委ね、他の分散電源装置群1及び電力貯蔵装置群2には、定常時に電力制御を実行させるとともに、直流配電系統5の電圧が第2の差分を超えてずれるのを防止する図3(A)及び図5(B)の特性に基く第3の電圧制御手段として利用することが望ましい。   Since these power storage units 22A, 22B and the like can control power supply or absorption on both sides of the DC distribution system 5, the DC distribution system can be controlled by taking in and out the power based on the characteristics shown in FIG. This is suitable as first voltage control means for maintaining the voltage 5 at the rated voltage VR. Therefore, the first voltage control means is entrusted to one device in the power storage device group 2, and the other distributed power supply device group 1 and the power storage device group 2 are allowed to execute power control in a steady state and have a direct current distribution. It is desirable to use as the third voltage control means based on the characteristics of FIGS. 3A and 5B for preventing the voltage of the system 5 from deviating beyond the second difference.
次に、交流系統連系装置3の個別制御機能について説明する。   Next, the individual control function of the AC grid interconnection device 3 will be described.
図6は、交流系統連系装置3の個別制御装置の制御機能ブロック図である。図2の分散電源装置群1の個別制御ブロックと異なる点は、リミッタ部303の上下限値を±P3REFMとしたことだけである。その他は、図2と同様であり、各符号の先頭が1から3に変り、交流系統連系装置3は1つと仮定したため、末尾のAを削除しただけであり、それらの機能は容易に理解できる。   FIG. 6 is a control function block diagram of the individual control device of the AC grid interconnection device 3. The only difference from the individual control block of the distributed power supply device group 1 in FIG. 2 is that the upper and lower limit values of the limiter unit 303 are ± P3REFM. Others are the same as those in FIG. 2, and the head of each code is changed from 1 to 3, and it is assumed that there is one AC system interconnection device 3. Therefore, only the A at the end is deleted, and their functions are easily understood. it can.
図7は、図6の交流系統連系装置3の個別制御装置の特性を示す。図は、縦軸を直流電圧V3、横軸を直流電力P3とし、実線は電圧指令値V3REFと電力指令値P3REF、及び電圧維持部301の出力P3REF2、電力指令最大値±P3REFMを、○印は交流系統連系装置の定常時の動作点を表す。   FIG. 7 shows the characteristics of the individual control device of the AC grid interconnection device 3 of FIG. In the figure, the vertical axis indicates the DC voltage V3, the horizontal axis indicates the DC power P3, the solid line indicates the voltage command value V3REF and the power command value P3REF, the output P3REF2 of the voltage maintaining unit 301, and the power command maximum value ± P3REFM. Represents the operating point at the steady state of the AC grid interconnection device.
同図(A)は、電力制御を行う場合の特性である。電力指令値P3REFを定格電力値に設定するとともに、電圧指令値V3REFを定格直流電圧VRより第1の差分だけ高く設定することにより、定常時の動作点は、電力指令値P3REF上となる。ここで、電圧維持部の出力P3REF2には、直流電圧V3が電圧変動検知レベル(第1の差分相当)VK3を超えて下降すると、その下降分に応じた補正値P3REF2を電力指令値P3REFに加算して増加させている。したがって、交流系統連系装置の電力許容限界値P3REFMまでの範囲内で、直流配電系統5へ電力を供給し、その電圧低下を補っている。また、電圧制御部(AVR)308の機能により、直流配電系統5の電圧V3は、第1の差分だけ高く設定した電圧指令値V3REFを超えて増大することはない。   FIG. 6A shows characteristics when power control is performed. The power command value P3REF is set to the rated power value, and the voltage command value V3REF is set higher than the rated DC voltage VR by the first difference, so that the operating point in the steady state is on the power command value P3REF. Here, when the DC voltage V3 falls below the voltage fluctuation detection level (corresponding to the first difference) VK3, the correction value P3REF2 corresponding to the fall is added to the power command value P3REF in the output P3REF2 of the voltage maintaining unit. And increase it. Therefore, power is supplied to the DC distribution system 5 within the range up to the power allowable limit value P3REFM of the AC grid interconnection device to compensate for the voltage drop. Further, the voltage control unit (AVR) 308 prevents the voltage V3 of the DC distribution system 5 from increasing beyond the voltage command value V3REF set higher by the first difference.
ここで、第1の差分とは、前記第2の差分より大きく、例えば直流配電系統の許容電圧変動を±10%とすれば、±9%程度とし、最終バックアップとしての第2の電圧制御手段として用いることが望ましい。   Here, the first difference is larger than the second difference. For example, if the allowable voltage fluctuation of the DC distribution system is ± 10%, it is about ± 9%, and the second voltage control means as the final backup It is desirable to use as.
一方、同図(B)は、本発明の実施例では用いることのない、第1の電圧制御手段としての電圧制御を任されたと仮定した場合の特性である。電力指令値P3REFを電力指令最大値P3REFMに設定するとともに、電圧指令値V3REFを定格値VRに設定する。これにより、最小値選択部109Aの機能によって、定常時の動作点は、電圧指令値V3REF上とすることができる。   On the other hand, FIG. 5B shows the characteristics when it is assumed that the voltage control as the first voltage control means, which is not used in the embodiment of the present invention, is entrusted. The power command value P3REF is set to the power command maximum value P3REFM, and the voltage command value V3REF is set to the rated value VR. As a result, the operating point in the steady state can be set on the voltage command value V3REF by the function of the minimum value selection unit 109A.
これら図6,7においては、図2,3に対応する形で、AVRとAPRを構成し、最小値選択部でそれらの出力を選ぶようにしたが、図4,5に対応する形で、AVRとAPRを構成し、最大値選択部でそれらの出力を選ぶようにしても同様の機能を達成できる。すなわち、AC/DC変換器31と、電圧指令V3REFを入力し、前記AC/DC変換器31の直流側の検出電圧V3を帰還値とする電圧制御系(AVR)308と、電力指令P3REFを入力し、前記直流系統5からAC/DC変換器31への潮流電力P3を帰還値とするとともに、直流側の検出電圧V3が所定値を超えて上昇したとき、その上昇の大きさに応じて電力指令を増大させる電圧維持機能系(電圧維持部)301を含む電力制御系(APR)306と、これら電圧制御系(AVR)308と電力制御系(APR)306のうち大きい方の出力に応じてAC/DC変換器31を制御する制御装置300を備えるのである。   6 and 7, AVR and APR are configured in a form corresponding to FIGS. 2 and 3, and their outputs are selected by the minimum value selection unit, but in a form corresponding to FIGS. The same function can be achieved by configuring AVR and APR and selecting their outputs by the maximum value selection unit. That is, the AC / DC converter 31 and the voltage command V3REF are input, and the voltage control system (AVR) 308 using the detection voltage V3 on the DC side of the AC / DC converter 31 as a feedback value and the power command P3REF are input. The power flow P3 from the DC system 5 to the AC / DC converter 31 is used as a feedback value. When the detection voltage V3 on the DC side rises above a predetermined value, the power depends on the magnitude of the rise. A power control system (APR) 306 including a voltage maintenance function system (voltage maintenance unit) 301 that increases a command, and a larger one of the voltage control system (AVR) 308 and the power control system (APR) 306 according to the larger output A control device 300 for controlling the AC / DC converter 31 is provided.
この結果、図5(A)に似た電力制御時の特性が得られることは容易に理解できる。   As a result, it can be easily understood that the power control characteristic similar to that shown in FIG.
このように、交流系統連系装置(7,31,300)の電力指令値P3REF、電圧指令値V3REF、及び定格電圧VRからの下降側又は上昇側への第1の差分電圧VK3を任意に設定できる。したがって、これらの適切な設定によって、分散電源装置群や電力貯蔵装置群で維持できなかった直流配電系統の電圧変動を、所望の電圧レベルで保持する最終バックアップとして機能させることができる。   As described above, the power command value P3REF, the voltage command value V3REF, and the first differential voltage VK3 from the rated voltage VR to the descending side or the ascending side are arbitrarily set in the AC grid interconnection device (7, 31, 300). it can. Therefore, with these appropriate settings, voltage fluctuations in the DC distribution system that could not be maintained in the distributed power supply device group or the power storage device group can be made to function as a final backup for holding at a desired voltage level.
次に、負荷電圧調整装置群の個別制御について説明する。   Next, individual control of the load voltage adjusting device group will be described.
図8は、負荷電圧調整装置群4の個別制御装置の制御機能ブロック図である。ここでは、代表して個別制御装置400Aについて示すが、400B,400C,…についても同様に構成される。まず、通信網6を介して、制御に必要な電圧指令値V4REFA及び起動停止指令S4Aを取り込む。また、負荷側直流電圧V41Aを、電圧検出器44Aを介して、それぞれ制御装置400Aに取り込み、減算部407Aで電圧指令値V4REFAとの偏差を求める。電圧制御部(AVR)408Aでは、例えば、比例積分(PI)制御を用いて、その偏差がゼロとなるように、変換器制御部410Aを通してDC/DC変換器41Aを制御する。すなわち、これは、負荷電圧V41Aが電圧指令値V4REFAとなるように制御する単純な電圧制御系(AVR)を構成している。   FIG. 8 is a control function block diagram of the individual control devices of the load voltage adjusting device group 4. Here, the individual control device 400A is shown as a representative, but 400B, 400C,. First, the voltage command value V4REFA and the start / stop command S4A necessary for control are taken in via the communication network 6. Further, the load side DC voltage V41A is taken into the control device 400A via the voltage detector 44A, and the deviation from the voltage command value V4REFA is obtained by the subtractor 407A. The voltage control unit (AVR) 408A controls the DC / DC converter 41A through the converter control unit 410A using, for example, proportional integration (PI) control so that the deviation becomes zero. That is, this constitutes a simple voltage control system (AVR) that controls the load voltage V41A to be the voltage command value V4REFA.
図9は、図8の負荷電圧調整装置群4の個別制御装置の直流配電系統側から見た特性図である。図は、縦軸を系統側直流電圧V4A、横軸を直流電力P4Aとし、実線は負荷側直流電圧制御の特性を、○印は負荷電圧調整装置の定常時の動作点を表す。負荷電圧調整装置群4は、負荷側の直流電圧V41Aを常に一定に制御していることから、直流系統側から見ると、負荷8Aの消費電力に応じて電力値が変化する特性として表すことができる。また、負荷側からの売電(逆潮流)を考慮すれば、その特性範囲は、図9の第1象現すなわち発電領域まで広がる。   FIG. 9 is a characteristic diagram seen from the DC power distribution system side of the individual control device of the load voltage adjusting device group 4 of FIG. In the figure, the vertical axis represents the system side DC voltage V4A, the horizontal axis represents the DC power P4A, the solid line represents the characteristics of the load side DC voltage control, and the ◯ represents the operating point of the load voltage regulator at the steady state. Since the load voltage adjustment device group 4 always controls the DC voltage V41A on the load side to be constant, it can be expressed as a characteristic in which the power value changes according to the power consumption of the load 8A when viewed from the DC system side. it can. Further, when considering the power sale (reverse power flow) from the load side, the characteristic range extends to the first quadrant of FIG. 9, that is, the power generation region.
最後に、本発明の一実施例の動作について説明する。   Finally, the operation of one embodiment of the present invention will be described.
図10は、本発明の一実施例による直流配電システムの電圧制御動作の一例図である。図は、左よりそれぞれ、図3(A)に示した分散電源装置群1の電力制御特性、図5に示した電力貯蔵装置群2の電力及び電圧制御特性、図7(A)に示した交流系統連系装置3電力制御特性、並びに図9の負荷電圧調整装置群4の電圧制御特性である。縦軸の直流電圧は、各装置の代表端子の電圧で表している。また、横軸の直流電力は、分散電源装置群1、電力貯蔵装置群2、及び負荷電圧調整装置群4については、小容量の装置が複数台設置される想定のため、各直流電力の総和Σで表している。太い実線は各端子の制御特性、○印は各装置群の定常時の動作点を表している。   FIG. 10 is an example of a voltage control operation of the DC power distribution system according to the embodiment of the present invention. From the left, FIG. 7A shows the power control characteristics of the distributed power supply device group 1 shown in FIG. 3A, the power and voltage control characteristics of the power storage device group 2 shown in FIG. 5, and FIG. It is the voltage control characteristic of AC system interconnection apparatus 3 electric power control characteristic, and the load voltage regulator apparatus group 4 of FIG. The DC voltage on the vertical axis is represented by the voltage at the representative terminal of each device. Further, since the DC power on the horizontal axis is assumed to be a plurality of small-capacity devices for the distributed power supply device group 1, the power storage device group 2, and the load voltage adjustment device group 4, the sum of the DC powers. It is represented by Σ. The thick solid line represents the control characteristics of each terminal, and the circles represent the operating points of each device group during steady state.
ここでは、直流配電系統5の定格電圧VRへ向けての第1の電圧制御手段(AVR)としての機能を、図4の電力貯蔵部22AとDC/DC変換器21A及びその個別制御装置200Aに委ねた場合について示したものである。   Here, the function as the first voltage control means (AVR) toward the rated voltage VR of the DC distribution system 5 is applied to the power storage unit 22A, the DC / DC converter 21A and its individual control device 200A in FIG. It shows the case of entrusting.
同図(A)は、第1の分散電源が脱落し、発電電力P1Aが不足した場合の各装置のバックアップ動作を示したものであり、順を追って説明する。   FIG. 4A shows the backup operation of each device when the first distributed power supply is dropped and the generated power P1A is insufficient, and will be described in order.
まず、2つの分散電源12A,12Bも健全であるとき、特性a,bで運転しており、これらは図示する電力P1A+P1Bを受け持っている。また、2つの電力貯蔵部22A,22Bも、それぞれ特性c,dにより、これらは図示する電力P2A+P2Bを受け持っている。さらに、交流系統連系装置31は、特性eにより、待機状態にある。一方、直流配電系統5に接続された負荷8A,8Bは、図示する電力P4A+P4Bを消費中である。   First, when the two distributed power sources 12A and 12B are healthy, they are operating with the characteristics a and b, and these are in charge of the electric power P1A + P1B shown in the figure. Further, the two power storage units 22A and 22B are also responsible for the power P2A + P2B shown in the figure due to the characteristics c and d, respectively. Furthermore, the AC grid interconnection device 31 is in a standby state due to the characteristic e. On the other hand, the loads 8A and 8B connected to the DC power distribution system 5 are consuming the illustrated power P4A + P4B.
ここで、第1の分散電源12Aが脱落し、発電電力P1Aが小さく、あるいはゼロになったものとする。この直流配電系統5での仮定により、定格電圧VRへの第1の電圧制御手段(AVR機能)を受け持つ電力貯蔵装置群2の個別制御装置200Aが、その特性c上に沿って、矢印fのように出力電力を増大する。また、分散電源装置群1の中で健全な第2の分散電源12Bは、第2の差分に相当する設定値VK1B(=VK1A)を下回る電圧降下に伴ない、その特性b上を矢印gに沿って発電電力を増加する。また、電力貯蔵装置群2の中で、定格電圧VRへの電圧制御を受け持っていない電力貯蔵部22Bでも、バックアップを開始する。すなわち、図5(A)の低め(第2の差分相当)に設定された電圧指令値V2REFB(=V2REFA)を下回る電圧降下に伴ない、AVR制御系が動作し、その特性d上を矢印hに沿って放電電力を増加し、電圧を支えようとする。   Here, it is assumed that the first distributed power supply 12A is dropped and the generated power P1A is small or zero. According to the assumption in the DC power distribution system 5, the individual control device 200A of the power storage device group 2 responsible for the first voltage control means (AVR function) to the rated voltage VR is indicated by the arrow f along the characteristic c. So as to increase the output power. In addition, the second distributed power supply 12B that is healthy in the distributed power supply device group 1 has an arrow g on its characteristic b as the voltage drops below the set value VK1B (= VK1A) corresponding to the second difference. Increase the generated power along. Moreover, backup is also started in the power storage unit 22B that does not take charge of voltage control to the rated voltage VR in the power storage device group 2. That is, the AVR control system operates with a voltage drop below the voltage command value V2REFB (= V2REFA) set to a lower value (corresponding to the second difference) in FIG. The discharge power is increased along the line to try to support the voltage.
これらの個別制御は速やかに動作し、この範囲内で電圧変動が収まれば、交流系統連系装置31のバックアップ動作は必要なく、動作することはない。   These individual controls operate quickly, and if the voltage fluctuation falls within this range, the backup operation of the AC grid interconnection device 31 is unnecessary and does not operate.
しかし、上記の小回りの利く複数の分散電源装置群1や電力貯蔵装置群2で支えきれず、直流配電系統5の電圧が第1の差分相当の設定値VK3を下回ったとする。すると、交流系統連系装置31の電力制御部(APR)内の電圧維持部301の機能により、その特性e上を矢印jに沿って交流系統7から直流配電系統5への潮流電力を増加させる。   However, it is assumed that the plurality of distributed power supply device groups 1 and the power storage device groups 2 that are small and efficient can not be supported, and the voltage of the DC distribution system 5 is lower than the set value VK3 corresponding to the first difference. Then, by the function of the voltage maintaining unit 301 in the power control unit (APR) of the AC grid interconnection device 31, the power flow from the AC grid 7 to the DC distribution grid 5 is increased along the arrow j on the characteristic e. .
このようにして、不足電力が、複数の分散電源装置群1や電力貯蔵装置群2の総容量を越えた場合にのみ、最終のバックアップとして交流系統連系装置3の個別制御装置300が動作し、交流系統から直流系統に電力を融通して直流電圧を維持することとなる。   In this way, the individual control device 300 of the AC grid interconnection device 3 operates as the final backup only when the insufficient power exceeds the total capacity of the plurality of distributed power supply device groups 1 and the power storage device groups 2. The power is interchanged from the AC system to the DC system to maintain the DC voltage.
図10(B)は、負荷の消費電力ΣP4が急激に減少した場合の各装置のバックアップ動作を示したものである。まず、電圧制御を行っている電力貯蔵装置群2の個別制御装置200Aが、その特性c上の矢印kに沿って直流電力P2Aを絞込み、さらに充電(電力吸収)方向に動作して電圧を定格値VRに維持する。直流系統の余剰電力が電力指令最大値−P2REFMAを超えた場合は、電圧が上昇し始める。まず、分散電源12Aの、例えば数%高く設定された電圧指令V1REFAに達すると、そのAVR動作により特性a上を矢印mに沿って発電電力を絞り込む。次に、電力貯蔵装置群2の個別制御装置200Bの設定電圧VK2Bに達すると、特性d上を矢印nに沿って放電電力を絞り込み、さらには、充電(電力吸収)方向に動作して電圧上昇を抑制する。さらに電圧が上昇し、第2の分散電源12Bの設定電圧指令値V1REFBに達すると、特性b上を矢印pに沿ってその発電電力を絞り込む。   FIG. 10B shows the backup operation of each device when the power consumption ΣP4 of the load decreases rapidly. First, the individual control device 200A of the power storage device group 2 performing voltage control narrows down the DC power P2A along the arrow k on the characteristic c, and further operates in the charging (power absorption) direction to rate the voltage. Maintain the value VR. When the surplus power of the DC system exceeds the power command maximum value −P2REFMA, the voltage starts to rise. First, when the voltage command V1REFA set, for example, several percent higher, of the distributed power source 12A is reached, the generated power is narrowed along the arrow m on the characteristic a by the AVR operation. Next, when the set voltage VK2B of the individual control device 200B of the power storage device group 2 is reached, the discharge power is narrowed down on the characteristic d along the arrow n, and further, the voltage rises by operating in the charging (power absorption) direction. Suppress. When the voltage further rises and reaches the set voltage command value V1REFB of the second distributed power supply 12B, the generated power is narrowed down along the characteristic p on the characteristic b along the arrow p.
これらの個別制御は速やかに動作し、この範囲内で電圧変動が収まれば、交流系統連系装置31のバックアップ動作は必要なく、動作することはない。   These individual controls operate quickly, and if the voltage fluctuation falls within this range, the backup operation of the AC grid interconnection device 31 is unnecessary and does not operate.
しかし、上記の小回りの利く複数の分散電源装置群1や電力貯蔵装置群2で支えきれず、直流配電系統5の高めに設定された電圧指令値V3REFを上回ったとする。すると、交流系統連系装置31の電圧制御部(AVR)が働き、その特性e上を矢印qに沿って、交流系統7への潮流電力を増大させ、直流配電系統5の電圧上昇を抑制する。   However, it is assumed that the plurality of distributed power supply device groups 1 and the power storage device groups 2 that are small and efficient can not be supported and exceed the voltage command value V3REF set higher in the DC distribution system 5. Then, the voltage control unit (AVR) of the AC grid interconnection device 31 works, increases the power flow to the AC grid 7 along the arrow q on the characteristic e, and suppresses the voltage rise of the DC distribution grid 5. .
このようにして、余剰電力が、複数の分散電源装置群1の発電電力を絞込み、かつ、電力貯蔵装置群2で吸収できる総容量を越えた場合にのみ、最終のバックアップとして交流系統連系装置3の個別制御装置300が動作し、直流系統から交流系統に電力を吸収して直流電圧を維持することとなる。   In this way, only when the surplus power narrows the generated power of the plurality of distributed power supply device groups 1 and exceeds the total capacity that can be absorbed by the power storage device group 2, the AC grid interconnection device as a final backup. The three individual control devices 300 operate, and the DC voltage is maintained by absorbing power from the DC system to the AC system.
以上の実施例において、電圧変動検知レベル及び電力制御時の電圧指令値の設定方法としては、例えば、直流系統の最大電圧変動範囲を定格直流電圧VRの±10%に規定すると、分散電源装置群1、電力貯蔵装置群2については、出力応答の早い装置が優先して動作できるように、例えば±5%前後で段階的に差分を設けて電圧変動検知レベル及び電力制御時の電圧指令値を設定することが望ましい。また、個々の装置が小容量のため、DC/DC変換器のスイッチングによって発生する電圧リプルや直流配電系統5の抵抗分による電圧ドロップ等を考慮しつつ、その規定値以内でなるべく多くの台数が動作できるように設定することが望ましい。一方、交流系統連系装置3の電圧変動検知レベル及び電力制御時の電圧指令値は、最終バックアップという位置付けから分散電源装置群1、電力貯蔵装置群2の設定値よりも大きく、例えば±8〜9%として、規定値±10%以内に維持できるように設定する。   In the above embodiment, as a method of setting the voltage fluctuation detection level and the voltage command value at the time of power control, for example, if the maximum voltage fluctuation range of the DC system is defined as ± 10% of the rated DC voltage VR, the distributed power supply device group 1. For the power storage device group 2, for example, a voltage difference detection level and a voltage command value at the time of power control are set by providing a stepwise difference around ± 5% so that a device with a fast output response can operate with priority. It is desirable to set. In addition, since each device has a small capacity, as many units as possible are within the specified value, taking into account voltage ripple generated by switching of the DC / DC converter and voltage drop due to the resistance of the DC distribution system 5. It is desirable to set it so that it can operate. On the other hand, the voltage fluctuation detection level of the AC grid interconnection device 3 and the voltage command value at the time of power control are larger than the set values of the distributed power supply device group 1 and the power storage device group 2 from the position of final backup, for example, ± 8 to 9% is set so that it can be maintained within the specified value ± 10%.
以上の実施例によれば、分散電源、電力貯蔵部、及び交流系統連系装置を備えた直流配電システムにおいて、電源脱落や負荷急変等の急激な電力変動時に、複数台の分散電源や電力貯蔵部により系統電圧を規定値内に維持し、負荷に安定した直流電力を供給できる。   According to the above embodiment, in a DC power distribution system including a distributed power source, a power storage unit, and an AC grid interconnection device, a plurality of distributed power sources and power storage units can be used in the event of sudden power fluctuations such as power loss or sudden load change. The system voltage can be maintained within a specified value by the unit, and stable DC power can be supplied to the load.
本発明の第1の実施例による直流配電システムの全体構成ブロック図。1 is an overall configuration block diagram of a DC power distribution system according to a first embodiment of the present invention. 図1の分散電源装置群1の個別制御装置の制御機能ブロック図。FIG. 2 is a control function block diagram of individual control devices of the distributed power supply device group 1 of FIG. 1. 図2の分散電源装置群1の個別制御装置の電力−電圧特性図。FIG. 3 is a power-voltage characteristic diagram of an individual control device of the distributed power supply device group 1 of FIG. 2. 図1の電力貯蔵装置群2の個別制御装置の制御機能ブロック図。The control function block diagram of the separate control apparatus of the electric power storage apparatus group 2 of FIG. 図4の電力貯蔵装置群2の個別制御装置の電力−電圧特性図。FIG. 5 is a power-voltage characteristic diagram of an individual control device of the power storage device group 2 of FIG. 4. 図1の交流系統連系装置3の個別制御装置の制御機能ブロック図。The control function block diagram of the separate control apparatus of the alternating current grid connection apparatus 3 of FIG. 図6の交流系統連系装置3の個別制御装置の電力−電圧特性図。FIG. 7 is a power-voltage characteristic diagram of the individual control device of the AC grid interconnection device 3 of FIG. 6. 図1の負荷電圧調整装置群4の個別制御装置の制御機能ブロック図。FIG. 2 is a control function block diagram of an individual control device of a load voltage adjusting device group 4 in FIG. 1. 図8の負荷電圧調整装置群4の個別制御装置の電力−電圧特性図。FIG. 9 is a power-voltage characteristic diagram of an individual control device of the load voltage adjusting device group 4 of FIG. 8. 本発明の一実施例による直流配電システムの電圧制御動作の一例図。An example figure of voltage control operation of a direct-current power distribution system by one example of the present invention.
符号の説明Explanation of symbols
1…分散電源装置群、2…電力貯蔵装置群、3…交流系統連系装置、4…負荷電圧調整装置群、5…直流配電系統、6…通信網、7…交流系統、8A,B…負荷、11A,11B,21A,21B,41A,41B…DC/DC変換器、31…AC/DC変換器、100A,100B,200A,200B,300,400A,400B…個別制御装置、12A,12B…分散電源、22A,22B…電力貯蔵部、500…統括制御装置、13A,23A,33…電流検出器、14A,24A,34,44A…電圧検出器、101A,201A,301…電圧維持部、103A,203A,303…電力指令リミッタ部、106A,206A,306…電力制御部、108A,208A,308,408A…電圧制御部、109A,309…最小値選択部、209A…最大値選択部、110A,210A,310,410A…変換器制御部。   DESCRIPTION OF SYMBOLS 1 ... Distributed power supply device group, 2 ... Power storage device group, 3 ... AC system interconnection device, 4 ... Load voltage regulator device group, 5 ... DC distribution system, 6 ... Communication network, 7 ... AC system, 8A, B ... Load, 11A, 11B, 21A, 21B, 41A, 41B ... DC / DC converter, 31 ... AC / DC converter, 100A, 100B, 200A, 200B, 300, 400A, 400B ... Individual control device, 12A, 12B ... Distributed power source, 22A, 22B ... Power storage unit, 500 ... Overall control device, 13A, 23A, 33 ... Current detector, 14A, 24A, 34, 44A ... Voltage detector, 101A, 201A, 301 ... Voltage maintenance unit, 103A , 203A, 303 ... power command limiter unit, 106A, 206A, 306 ... power control unit, 108A, 208A, 308, 408A ... voltage control unit, 109A, 309 ... Small value selecting unit, 209A ... maximum value selection unit, 110A, 210A, 310,410A ... converter control unit.

Claims (11)

  1. 直流電力を発電する分散電源及び/又は直流電力を充放電する電力貯蔵部と、この分散電源及び/又は電力貯蔵部と直流配電系統との間に接続され、それら間の潮流制御を行うDC/DC変換器と、AC/DC変換器を含み前記直流配電系統を交流系統に連系しそれら間の潮流制御を行う交流系統連系装置とを備えた直流配電システムにおいて、前記分散電源及び/又は電力貯蔵部のうちの1つに対応して設けられ、直流配電系統の検出電圧をこの直流配電系統の定格電圧に近づけるように、対応する前記DC/DC変換器を制御する第1の電圧制御手段と、直流配電系統の検出電圧がその定格電圧から第1の差分ずれたときにそれ以上のずれを防ぐように、前記AC/DC変換器を制御する第2の電圧制御手段を備えたことを特徴とする直流配電システムの制御装置。   A distributed power source that generates DC power and / or a power storage unit that charges and discharges DC power, and a DC / DC that is connected between the distributed power source and / or power storage unit and the DC power distribution system and controls power flow between them. In a DC power distribution system comprising a DC converter and an AC system interconnection device that includes an AC / DC converter and connects the DC power distribution system to an AC system and controls power flow between them, the distributed power source and / or A first voltage control provided corresponding to one of the power storage units and controlling the corresponding DC / DC converter so as to bring the detected voltage of the DC distribution system close to the rated voltage of the DC distribution system. And a second voltage control means for controlling the AC / DC converter so as to prevent further deviation when the detected voltage of the DC distribution system deviates from the rated voltage by the first difference. Directly characterized by The control device of the power distribution system.
  2. 請求項1において、前記第1の電圧制御手段は、前記直流配電系統の定格電圧を電圧指令値とし、当該分散電源及び/又は電力貯蔵部の近傍で検出した直流配電系統の電圧を帰還する電圧制御系(AVR)を備えたことを特徴とする直流配電システムの制御装置。   2. The voltage according to claim 1, wherein the first voltage control means uses the rated voltage of the DC distribution system as a voltage command value and feeds back the voltage of the DC distribution system detected in the vicinity of the distributed power source and / or the power storage unit. A control device for a DC power distribution system, comprising a control system (AVR).
  3. 請求項1において、前記第2の電圧制御手段は、直流配電系統の検出電圧が第1の差分だけ上昇したときそれ以上の増大を抑制するように、前記AC/DC変換器を制御する電圧制御系(AVR)と、直流配電系統の検出電圧が第1の差分を超えて下降したとき、その下降の大きさに応じて前記交流系統から前記直流配電系統への潮流電力を増加させるように前記AC/DC変換器を制御する電力制御系(APR)とを備えたことを特徴とする直流配電システムの制御装置。   The voltage control for controlling the AC / DC converter according to claim 1, wherein the second voltage control means controls the AC / DC converter so as to suppress further increase when the detection voltage of the DC distribution system increases by the first difference. When the detected voltage of the system (AVR) and the DC distribution system falls below the first difference, the power flow from the AC system to the DC distribution system is increased according to the magnitude of the decrease. A control device for a DC power distribution system, comprising: a power control system (APR) for controlling an AC / DC converter.
  4. 請求項1において、前記直流配電系統に接続された複数の分散電源及び/又は電力貯蔵部と、これらの分散電源及び/又は電力貯蔵部にそれぞれ対応する複数のDC/DC変換器を備えたことを特徴とする直流配電システムの制御装置。   2. A plurality of distributed power sources and / or power storage units connected to the DC power distribution system according to claim 1, and a plurality of DC / DC converters respectively corresponding to the distributed power sources and / or power storage units. A control device for a DC power distribution system.
  5. 請求項4において、複数の分散電源及び/又は電力貯蔵部のうち前記1つ以外の分散電源及び/又は電力貯蔵部は、直流配電系統の検出電圧がその定格電圧から前記第1の差分より小さな第2の差分ずれたときにそれ以上のずれを防ぐように、対応するDC/DC変換器を制御する第3の電圧制御手段を個別に備えたことを特徴とする直流配電システムの制御装置。   5. The distributed power source and / or power storage unit other than the one among a plurality of distributed power sources and / or power storage units according to claim 4, wherein the detected voltage of the DC distribution system is smaller than the first difference from the rated voltage. 3. A control apparatus for a DC power distribution system, comprising third voltage control means for individually controlling a corresponding DC / DC converter so as to prevent further deviation when the second difference is deviated.
  6. 請求項5において、前記第3の電圧制御手段は、直流配電系統の検出電圧が第2の差分だけ上昇したときに動作する電圧制御系(AVR)と、直流配電系統の検出電圧が第2の差分を超えて下降したとき、その下降の大きさに応じて当該分散電源及び/又は電力貯蔵部から前記直流配電系統への潮流電力を増加させる電力制御系(APR)とを備えたことを特徴とする直流配電システムの制御装置。   6. The voltage control system (AVR) that operates when the detected voltage of the DC distribution system rises by the second difference, and the detected voltage of the DC distribution system is the second voltage control means according to claim 5. And a power control system (APR) that increases power flow from the distributed power source and / or power storage unit to the DC distribution system according to the magnitude of the drop when the difference falls below the difference. Control device for DC power distribution system.
  7. 請求項5において、前記第3の電圧制御手段は、直流配電系統の検出電圧が第2の差分だけ下降したときに動作する電圧制御系(AVR)と、直流配電系統の検出電圧が第2の差分を超えて上昇したとき、その上昇の大きさに応じて前記直流配電系統から当該分散電源及び/又は電力貯蔵部への潮流電力を増加させる電力制御系(APR)とを備えたことを特徴とする直流配電システムの制御装置。   6. The voltage control system (AVR) that operates when the detected voltage of the DC distribution system drops by the second difference, and the detected voltage of the DC distribution system is the second voltage control means according to claim 5. A power control system (APR) that increases the power flow from the DC power distribution system to the distributed power source and / or the power storage unit according to the magnitude of the increase when the difference exceeds the difference is provided. Control device for DC power distribution system.
  8. DC/DC変換器と、電圧指令を入力し、前記DC/DC変換器が接続される一方の直流系統の検出電圧を帰還値とする電圧制御系(AVR)と、電力指令を入力し、前記DC/DC変換器から前記直流系統への潮流電力を帰還値とするとともに、前記直流系統の検出電圧が所定値を超えて下降したとき、その下降の大きさに応じて前記電力指令を増大させる電圧維持機能系を含む電力制御系(APR)と、これら電圧制御系(AVR)と電力制御系(APR)のうち小さい方の出力に応じて前記DC/DC変換器を制御する制御装置を備えたことを特徴とする変換器制御装置。   A DC / DC converter and a voltage command are input, a voltage control system (AVR) having a detection voltage of one DC system connected to the DC / DC converter as a feedback value, and a power command are input. The power flow from the DC / DC converter to the DC system is used as a feedback value, and when the detection voltage of the DC system drops below a predetermined value, the power command is increased according to the magnitude of the drop. A power control system (APR) including a voltage maintenance function system, and a control device that controls the DC / DC converter according to a smaller output of the voltage control system (AVR) and the power control system (APR). A converter control device characterized by that.
  9. DC/DC変換器と、電圧指令を入力し、前記DC/DC変換器が接続される一方の直流系統の検出電圧を帰還値とする電圧制御系(AVR)と、電力指令を入力し、前記直流系統から前記DC/DC変換器への潮流電力を帰還値とするとともに、前記直流系統の検出電圧が所定値を超えて上昇したとき、その上昇の大きさに応じて前記電力指令を増大させる電圧維持機能系を含む電力制御系(APR)と、これら電圧制御系(AVR)と電力制御系(APR)のうち大きい方の出力に応じて前記DC/DC変換器を制御する制御装置を備えたことを特徴とする変換器制御装置。   A DC / DC converter and a voltage command are input, a voltage control system (AVR) having a detection voltage of one DC system connected to the DC / DC converter as a feedback value, and a power command are input. The power flow from the DC system to the DC / DC converter is used as a feedback value, and when the detection voltage of the DC system rises above a predetermined value, the power command is increased according to the magnitude of the rise. A power control system (APR) including a voltage maintenance function system, and a control device that controls the DC / DC converter according to the larger output of the voltage control system (AVR) and the power control system (APR) A converter control device characterized by that.
  10. AC/DC変換器と、電圧指令を入力し、前記AC/DC変換器の直流側の検出電圧を帰還値とする電圧制御系(AVR)と、電力指令を入力し、前記AC/DC変換器から前記直流側への潮流電力を帰還値とするとともに、前記直流側の検出電圧が所定値を超えて下降したとき、その下降の大きさに応じて前記電力指令を増大させる電圧維持機能系を含む電力制御系(APR)と、これら電圧制御系(AVR)と電力制御系(APR)のうち小さい方の出力に応じて前記AC/DC変換器を制御する制御装置を備えたことを特徴とする変換器制御装置。   An AC / DC converter, a voltage command, a voltage control system (AVR) that uses a detection voltage on the DC side of the AC / DC converter as a feedback value, a power command, and the AC / DC converter A voltage maintaining function system for setting the power command to the DC side as a feedback value and increasing the power command according to the magnitude of the decrease when the detected voltage on the DC side drops below a predetermined value. And a control device that controls the AC / DC converter according to the smaller output of the voltage control system (AVR) and the power control system (APR). Converter control device.
  11. AC/DC変換器と、電圧指令を入力し、前記AC/DC変換器の直流側の検出電圧を帰還値とする電圧制御系(AVR)と、電力指令を入力し、直流系統から前記AC/DC変換器への潮流電力を帰還値とするとともに、前記直流側の検出電圧が所定値を超えて上昇したとき、その上昇の大きさに応じて前記電力指令を増大させる電圧維持機能系を含む電力制御系(APR)と、これら電圧制御系(AVR)と電力制御系(APR)のうち大きい方の出力に応じて前記AC/DC変換器を制御する制御装置を備えたことを特徴とする変換器制御装置。
    An AC / DC converter and a voltage command are input, and a voltage control system (AVR) using a detection voltage on the DC side of the AC / DC converter as a feedback value, and a power command are input, and the AC / DC converter receives the AC / DC converter from the DC system. Including a voltage maintaining function system that uses the power flow to the DC converter as a feedback value and increases the power command according to the magnitude of the rise when the detected voltage on the DC side rises above a predetermined value A power control system (APR) and a control device that controls the AC / DC converter according to the larger output of the voltage control system (AVR) and the power control system (APR) are provided. Converter control device.
JP2004312876A 2004-10-27 2004-10-27 DC power distribution system control device and converter control device Active JP4167215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004312876A JP4167215B2 (en) 2004-10-27 2004-10-27 DC power distribution system control device and converter control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004312876A JP4167215B2 (en) 2004-10-27 2004-10-27 DC power distribution system control device and converter control device

Publications (2)

Publication Number Publication Date
JP2006129585A true JP2006129585A (en) 2006-05-18
JP4167215B2 JP4167215B2 (en) 2008-10-15

Family

ID=36723668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004312876A Active JP4167215B2 (en) 2004-10-27 2004-10-27 DC power distribution system control device and converter control device

Country Status (1)

Country Link
JP (1) JP4167215B2 (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108101A (en) * 2006-10-26 2008-05-08 Nec Computertechno Ltd Power supply control system and method, electronic apparatus, and program
JP2008301653A (en) * 2007-06-01 2008-12-11 Fuji Electric Assets Management Co Ltd Electric power generating system
JP2009146827A (en) * 2007-12-17 2009-07-02 Panasonic Electric Works Co Ltd Dc receptacle
JP2009153301A (en) * 2007-12-20 2009-07-09 Panasonic Electric Works Co Ltd Dc distribution system
JP2010068652A (en) * 2008-09-11 2010-03-25 Osaka Gas Co Ltd Dc power feeding system and power storage device
JP2010068625A (en) * 2008-09-10 2010-03-25 Chugoku Electric Power Co Inc:The Control device and control method of dc transmission/distribution system and program
WO2010082981A2 (en) 2009-01-16 2010-07-22 Zbb Energy Corporation Method and apparatus for controlling a hybrid power system
JP2010246257A (en) * 2009-04-06 2010-10-28 Toshihisa Shirakawa Direct current electricity management system and far-infrared laser hot-water supply system
WO2011030558A1 (en) * 2009-09-10 2011-03-17 Abe Rikiya Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
JP2011062067A (en) * 2009-08-12 2011-03-24 Lightech Kenkyusho:Kk Dc power distribution system
WO2011162025A1 (en) * 2010-06-22 2011-12-29 シャープ株式会社 Dc power distribution system
JP2012010531A (en) * 2010-06-28 2012-01-12 Sharp Corp Dc power distribution system
JP2012010530A (en) * 2010-06-27 2012-01-12 Rikiya Abe Multiple terminal type electric power conversion device, electric power system and control program of the same
WO2012057032A1 (en) * 2010-10-26 2012-05-03 シャープ株式会社 Direct current power supply system
JP2012514962A (en) * 2008-12-12 2012-06-28 エービービー リサーチ リミテッド System and apparatus for transmitting power to a ship
WO2012093538A1 (en) * 2011-01-06 2012-07-12 シャープ株式会社 Dc power supply system
CN102593819A (en) * 2012-03-13 2012-07-18 江苏元中直流微电网有限公司 DC micro power grid system
JP2012161190A (en) * 2011-02-01 2012-08-23 Tabuchi Electric Co Ltd Photovoltaic power generation system
JP2012205406A (en) * 2011-03-25 2012-10-22 Sanyo Electric Co Ltd Voltage control device and power supply device
JP2013051833A (en) * 2011-08-31 2013-03-14 Nichicon Corp Multiple power conditioner system
KR101305003B1 (en) * 2012-04-05 2013-09-05 삼성중공업 주식회사 Power distribution system, propulsion system, and dynamic positioning system including the same
JP2014027760A (en) * 2012-07-26 2014-02-06 Mitsubishi Electric Corp Power conversion device and power generation system
WO2014061259A1 (en) * 2012-10-19 2014-04-24 日本電気株式会社 Electric power router, electric power network system, electric power interchange method, and program for controlling operation of electric power router
WO2014103351A1 (en) * 2012-12-28 2014-07-03 オムロン株式会社 Power control device, power control method, program, and energy management system
JP2014128047A (en) * 2012-12-25 2014-07-07 Sumitomo Electric Ind Ltd Storage battery converter, power supply system, and method for controlling power supply
JP2014527791A (en) * 2011-07-19 2014-10-16 ゼットビービー エナジー コーポレーション Method and apparatus for controlling a hybrid power system
CN104124880A (en) * 2013-04-23 2014-10-29 Abb技术有限公司 Distributed controllers for power electronics converter
JP2015039247A (en) * 2009-10-27 2015-02-26 阿部 力也 Multi-terminal power conversion/distribution device, electrical equipment, distribution network system and method of operating the same
AU2014202377B2 (en) * 2009-09-10 2015-04-30 The University Of Tokyo Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
JP2015154691A (en) * 2014-02-19 2015-08-24 田淵電機株式会社 Power conversion device
CN104871399A (en) * 2012-12-10 2015-08-26 日本电气株式会社 Power router, power network system, method for controlling operation of power router, and non-temporary computer-readable medium storing program for controlling operation of power router
JP2015192529A (en) * 2014-03-28 2015-11-02 株式会社三社電機製作所 Power Conditioner
JP2015204652A (en) * 2014-04-11 2015-11-16 株式会社明電舎 power conversion system
WO2016021371A1 (en) * 2014-08-05 2016-02-11 ソニー株式会社 Dc power transmission device, dc power reception device, and dc power transmission system
JP2016144332A (en) * 2015-02-03 2016-08-08 三菱電機株式会社 DC power supply system
KR20160099914A (en) * 2015-02-13 2016-08-23 울산과학기술원 Power control apparatus using DC bus signal based on switching frequency modulation type in DC Grid system and method thereof
WO2016204214A1 (en) * 2015-06-19 2016-12-22 株式会社 東芝 Storage battery control device and dc power transmission system
US9800051B2 (en) 2015-09-03 2017-10-24 Ensync, Inc. Method and apparatus for controlling energy flow between dissimilar energy storage devices
TWI620397B (en) * 2017-02-03 2018-04-01 東芝三菱電機產業系統股份有限公司 Uninterruptible power supply device
JP2018088811A (en) * 2013-11-14 2018-06-07 ソニー株式会社 Power supply system, power control device, power supply method, and power control method
JP6419394B1 (en) * 2017-12-25 2018-11-07 三菱電機株式会社 Power converter
WO2019103059A1 (en) * 2017-11-21 2019-05-31 国立研究開発法人理化学研究所 Direct-current bus control system
WO2021054074A1 (en) * 2019-09-20 2021-03-25 富士電機株式会社 Control device, system, control method, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106169748A (en) * 2016-07-23 2016-11-30 芜湖格利特新能源科技有限公司 A kind of AC bus photovoltaic generation micro-grid system

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108101A (en) * 2006-10-26 2008-05-08 Nec Computertechno Ltd Power supply control system and method, electronic apparatus, and program
JP2008301653A (en) * 2007-06-01 2008-12-11 Fuji Electric Assets Management Co Ltd Electric power generating system
JP2009146827A (en) * 2007-12-17 2009-07-02 Panasonic Electric Works Co Ltd Dc receptacle
JP2009153301A (en) * 2007-12-20 2009-07-09 Panasonic Electric Works Co Ltd Dc distribution system
JP4670864B2 (en) * 2007-12-20 2011-04-13 パナソニック電工株式会社 DC power distribution system
JP2010068625A (en) * 2008-09-10 2010-03-25 Chugoku Electric Power Co Inc:The Control device and control method of dc transmission/distribution system and program
JP2010068652A (en) * 2008-09-11 2010-03-25 Osaka Gas Co Ltd Dc power feeding system and power storage device
JP2012514962A (en) * 2008-12-12 2012-06-28 エービービー リサーチ リミテッド System and apparatus for transmitting power to a ship
AU2009337086B2 (en) * 2009-01-16 2013-06-13 Ensync, Inc. Method and apparatus for controlling a hybrid power system
WO2010082981A3 (en) * 2009-01-16 2010-09-16 Zbb Energy Corporation Method and apparatus for controlling a hybrid power system
US9093862B2 (en) 2009-01-16 2015-07-28 Zbb Energy Corporation Method and apparatus for controlling a hybrid power system
WO2010082981A2 (en) 2009-01-16 2010-07-22 Zbb Energy Corporation Method and apparatus for controlling a hybrid power system
US8008808B2 (en) * 2009-01-16 2011-08-30 Zbb Energy Corporation Method and apparatus for controlling a hybrid power system
CN102308452B (en) * 2009-01-16 2013-06-12 Zbb能源公司 Method and apparatus for controlling a hybrid power system
JP2010246257A (en) * 2009-04-06 2010-10-28 Toshihisa Shirakawa Direct current electricity management system and far-infrared laser hot-water supply system
JP2011062067A (en) * 2009-08-12 2011-03-24 Lightech Kenkyusho:Kk Dc power distribution system
CN102484369B (en) * 2009-09-10 2015-12-16 国立大学法人东京大学 Multiterminal subtype power-converting device, multiterminal subtype electric power are subject to device and electric power networks system
US9013902B2 (en) 2009-09-10 2015-04-21 The University Of Tokyo Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
CN102484369A (en) * 2009-09-10 2012-05-30 阿部力也 Multi-Terminal Power Conversion Device, Multi-Terminal Power Transfer Device, And Power Network System
WO2011030558A1 (en) * 2009-09-10 2011-03-17 Abe Rikiya Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
EP2477297A4 (en) * 2009-09-10 2015-04-01 Univ Tokyo Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
EP2477297A1 (en) * 2009-09-10 2012-07-18 Rikiya Abe Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
AU2010293719B2 (en) * 2009-09-10 2014-02-06 The University Of Tokyo Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
AU2010293719C1 (en) * 2009-09-10 2014-07-10 The University Of Tokyo Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
AU2014202377B2 (en) * 2009-09-10 2015-04-30 The University Of Tokyo Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
JP2015039247A (en) * 2009-10-27 2015-02-26 阿部 力也 Multi-terminal power conversion/distribution device, electrical equipment, distribution network system and method of operating the same
JP5584763B2 (en) * 2010-06-22 2014-09-03 シャープ株式会社 DC power distribution system
EP2587623A1 (en) * 2010-06-22 2013-05-01 Sharp Kabushiki Kaisha Dc power distribution system
WO2011162025A1 (en) * 2010-06-22 2011-12-29 シャープ株式会社 Dc power distribution system
EP2587623A4 (en) * 2010-06-22 2014-04-30 Sharp Kk Dc power distribution system
JP2012010530A (en) * 2010-06-27 2012-01-12 Rikiya Abe Multiple terminal type electric power conversion device, electric power system and control program of the same
JP2012010531A (en) * 2010-06-28 2012-01-12 Sharp Corp Dc power distribution system
WO2012057032A1 (en) * 2010-10-26 2012-05-03 シャープ株式会社 Direct current power supply system
JP2012095418A (en) * 2010-10-26 2012-05-17 Sharp Corp Dc power supply system
WO2012093538A1 (en) * 2011-01-06 2012-07-12 シャープ株式会社 Dc power supply system
JP2012147508A (en) * 2011-01-06 2012-08-02 Sharp Corp Dc feeding system
JP2012161190A (en) * 2011-02-01 2012-08-23 Tabuchi Electric Co Ltd Photovoltaic power generation system
JP2012205406A (en) * 2011-03-25 2012-10-22 Sanyo Electric Co Ltd Voltage control device and power supply device
JP2014527791A (en) * 2011-07-19 2014-10-16 ゼットビービー エナジー コーポレーション Method and apparatus for controlling a hybrid power system
JP2013051833A (en) * 2011-08-31 2013-03-14 Nichicon Corp Multiple power conditioner system
CN102593819A (en) * 2012-03-13 2012-07-18 江苏元中直流微电网有限公司 DC micro power grid system
KR101305003B1 (en) * 2012-04-05 2013-09-05 삼성중공업 주식회사 Power distribution system, propulsion system, and dynamic positioning system including the same
JP2014027760A (en) * 2012-07-26 2014-02-06 Mitsubishi Electric Corp Power conversion device and power generation system
JPWO2014061259A1 (en) * 2012-10-19 2016-09-05 阿部 力也 Power router, power network system, power interchange method, and power router operation control program
AU2013333292B2 (en) * 2012-10-19 2015-12-03 Rikiya Abe Power router, power network system, power interchange method, and operation control program of power router
WO2014061259A1 (en) * 2012-10-19 2014-04-24 日本電気株式会社 Electric power router, electric power network system, electric power interchange method, and program for controlling operation of electric power router
CN104756342A (en) * 2012-10-19 2015-07-01 日本电气株式会社 Electric power router, electric power network system, electric power interchange method, and program for controlling operation of electric power router
CN104871399A (en) * 2012-12-10 2015-08-26 日本电气株式会社 Power router, power network system, method for controlling operation of power router, and non-temporary computer-readable medium storing program for controlling operation of power router
JP2014128047A (en) * 2012-12-25 2014-07-07 Sumitomo Electric Ind Ltd Storage battery converter, power supply system, and method for controlling power supply
JP2017085892A (en) * 2012-12-25 2017-05-18 住友電気工業株式会社 Conversion device for storage battery, power supply system and power supply control method
WO2014103351A1 (en) * 2012-12-28 2014-07-03 オムロン株式会社 Power control device, power control method, program, and energy management system
JP2014131413A (en) * 2012-12-28 2014-07-10 Omron Corp Power control device, power control method, program, and energy management system
CN104124880A (en) * 2013-04-23 2014-10-29 Abb技术有限公司 Distributed controllers for power electronics converter
JP2018088811A (en) * 2013-11-14 2018-06-07 ソニー株式会社 Power supply system, power control device, power supply method, and power control method
JP2015154691A (en) * 2014-02-19 2015-08-24 田淵電機株式会社 Power conversion device
JP2015192529A (en) * 2014-03-28 2015-11-02 株式会社三社電機製作所 Power Conditioner
JP2015204652A (en) * 2014-04-11 2015-11-16 株式会社明電舎 power conversion system
WO2016021371A1 (en) * 2014-08-05 2016-02-11 ソニー株式会社 Dc power transmission device, dc power reception device, and dc power transmission system
US10326270B2 (en) 2014-08-05 2019-06-18 Sony Corporation DC power transmission device, DC power reception device, and DC power transmission system
JP2016144332A (en) * 2015-02-03 2016-08-08 三菱電機株式会社 DC power supply system
KR20160099914A (en) * 2015-02-13 2016-08-23 울산과학기술원 Power control apparatus using DC bus signal based on switching frequency modulation type in DC Grid system and method thereof
KR101723024B1 (en) * 2015-02-13 2017-04-06 울산과학기술원 Power control apparatus using DC bus signal based on switching frequency modulation type in DC Grid system and method thereof
WO2016204214A1 (en) * 2015-06-19 2016-12-22 株式会社 東芝 Storage battery control device and dc power transmission system
US9800051B2 (en) 2015-09-03 2017-10-24 Ensync, Inc. Method and apparatus for controlling energy flow between dissimilar energy storage devices
TWI620397B (en) * 2017-02-03 2018-04-01 東芝三菱電機產業系統股份有限公司 Uninterruptible power supply device
WO2019103059A1 (en) * 2017-11-21 2019-05-31 国立研究開発法人理化学研究所 Direct-current bus control system
JP6419394B1 (en) * 2017-12-25 2018-11-07 三菱電機株式会社 Power converter
WO2019130375A1 (en) * 2017-12-25 2019-07-04 三菱電機株式会社 Electrical power conversion device
WO2021054074A1 (en) * 2019-09-20 2021-03-25 富士電機株式会社 Control device, system, control method, and program

Also Published As

Publication number Publication date
JP4167215B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
Karimi et al. Decentralized method for load sharing and power management in a PV/battery hybrid source islanded microgrid
CA2841052C (en) Method and apparatus for controlling a hybrid power system
JP2017063608A (en) Method and system for controlling operation of solar power generator
Sebastián et al. Effective active power control of a high penetration wind diesel system with a Ni–Cd battery energy storage
US9318947B2 (en) Automatic AC bus voltage regulation for power distribution grids
RU2565235C2 (en) Regulating contribution of secondary power supply sources to distribution network
US7531911B2 (en) Reactive power control for operating a wind farm
US7880334B2 (en) Power supply control for power generator
JP4170565B2 (en) Power fluctuation smoothing apparatus and control method of distributed power supply system including the same
JP5028517B2 (en) DC power supply system
Schonbergerschonberger et al. DC-bus signaling: A distributed control strategy for a hybrid renewable nanogrid
US10355487B2 (en) Photovoltaic system
AU2011320054B2 (en) Method for integrating controls for captive power generation facilities with controls for metallurgical facilities
KR101412742B1 (en) Stand-alone Microgrid Control System and Method
US6428917B1 (en) Regulating the maximum output current of a fuel cell stack
US9042141B2 (en) Control of energy storage system inverter system in a microgrid application
US5666275A (en) Control system for power conversion system
JP2013051879A (en) Electrical power system
US6602627B2 (en) Uninterruptible power supplies using fuel cells
US8803363B2 (en) Method and system for regulating power of an electricity grid system
JP6086867B2 (en) Fuel cell control apparatus and method
EP1912305B1 (en) Control method of sodium-sulfur battery
CN103166280B (en) Power-supply management system and method for managing power supply
ES2354887T3 (en) METHOD AND CONTROL SYSTEM OF ALTERNATIVE ENERGY SYSTEM.
JP5311153B2 (en) Power control apparatus and power control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070206

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080731

R150 Certificate of patent or registration of utility model

Ref document number: 4167215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5