WO2021200902A1 - Direct-current bus control system - Google Patents

Direct-current bus control system Download PDF

Info

Publication number
WO2021200902A1
WO2021200902A1 PCT/JP2021/013467 JP2021013467W WO2021200902A1 WO 2021200902 A1 WO2021200902 A1 WO 2021200902A1 JP 2021013467 W JP2021013467 W JP 2021013467W WO 2021200902 A1 WO2021200902 A1 WO 2021200902A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
charge
bus
discharge
target value
Prior art date
Application number
PCT/JP2021/013467
Other languages
French (fr)
Japanese (ja)
Inventor
克彦 津野
藤井 克司
佳代 小池
和田 智之
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Priority to JP2022512265A priority Critical patent/JPWO2021200902A1/ja
Publication of WO2021200902A1 publication Critical patent/WO2021200902A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells

Definitions

  • This disclosure relates to a DC bus control system.
  • the generated power fluctuates greatly depending on the weather, season, location, etc. Therefore, in order to maintain the voltage of the DC bus to which the power supply system is connected within a predetermined allowable range, the power supply of a solar cell, a wind power generator, etc. is supplied to the DC bus via a power converter having a wide input range and a large capacity. It is desirable to connect to. However, in that case, increasing the capacity of the power converter leads to an increase in size, complexity, and cost of the entire system.
  • Patent Document 1 The applicant has proposed a control system for efficiently controlling the power fluctuation of the DC bus caused by the fluctuation of the input power supply and the load (Patent Document 1).
  • the main stabilizer controls the DC bus voltage based on the storage amount index to control the power storage device such as a fuel cell or a water electrolysis cell.
  • the storage amount index used here is the charge rate (SOC) of the power storage device in the main stabilizer, and is obtained as a value obtained by integrating the charge / discharge current by calculation.
  • SOC charge rate
  • the power storage device used in the main stabilizer generally cannot extract all of the energy used for charging by electric discharge. Moreover, it is not possible to accurately determine the ratio of energy taken out by electric discharge. For this reason, there is a discrepancy between the amount of electricity stored (calculated value) used for control and the actual amount of electricity stored. As a result, each time the main stabilizer repeatedly charges and discharges the power storage device, the discrepancy between the power storage amount of the power storage device and the calculated value increases. Saturates the amount of electricity stored. As a result, the DC bus cannot be controlled and the system cannot operate.
  • the accurate value of the amount of electricity stored can be obtained by stopping charging and discharging, but continuous operation will be hindered.
  • the present invention can efficiently control the power fluctuation of the DC bus caused by the fluctuation of the input power supply and the load, and avoids the depletion of the stored amount of the main stabilizer and the stop of the control due to saturation.
  • the purpose is to provide a control system capable of continuous operation in a long-term and stable manner.
  • One aspect of the present invention is a DC bus control system that controls power fluctuations of a DC bus that connects an input power source and a load, and mainly includes a first charge / discharge element and a first power converter.
  • the first power converter comprises a stabilizer and a second charge / discharge element, a charge element, or at least one quasi-stabilizer having a discharge element and a second power converter, wherein the first power converter is a bus voltage.
  • a target value is obtained, and DC power is bidirectionally transferred between the first charge / discharge element and the DC bus so that the voltage of the DC bus matches the bus voltage target value.
  • the second power converter obtains a current target value according to the difference between the threshold value for charging or discharging the second charging / discharging element, the charging element, or the discharging element and the voltage of the DC bus, and obtains the current target value.
  • DC power is transferred between the second charge / discharge element, charge element, or discharge element and the DC bus so that a current equal to the value flows through the second charge / discharge element, charge element, or discharge element.
  • the first power converter has a target value corresponding to a first charge / discharge amount index of the first charge / discharge element and the first charge / discharge element of the first charge / discharge element.
  • the bus voltage target value is obtained based on a second storage amount index obtained by a method different from the quantity index.
  • the present invention it is possible to efficiently control the power fluctuation of the DC bus caused by the fluctuation of the input power supply and the load, and to control the storage amount of the main stabilizer to be constant for a long period of time. Therefore, it is possible to provide a control system capable of continuous operation over a long period of time and stably.
  • FIG. 1 is an overall configuration diagram of a DC bus control system according to this embodiment.
  • the DC bus control system shown in FIG. 1 includes a photovoltaic power generation system 10 and a wind power generation system 20 which are renewable energy power supply systems as input power sources. These power generation systems 10 and 20 are connected in parallel, and the output side thereof is connected to the DC bus 70.
  • the photovoltaic power generation system 10 includes a solar cell 11 and a power converter 12, and the wind power generation system 20 includes a wind power generator 21 and a power converter 22.
  • the input power supply may be arbitrary.
  • energy such as wave power or geothermal power may be used in addition to the above-mentioned ones, or hydraulic (small hydraulic) power generation, tidal power generation, tidal power generation, temperature. It may be a power supply system such as differential power generation. Further, these combinations may be used, including those described above.
  • the number of power supply systems connected in parallel with each other is not particularly limited.
  • the main stabilizer 30 and the metastabilizers 40, 50, and 60 are connected to the DC bus 70, and the load 90 is connected to the DC bus 70.
  • the main stabilizer 30 sets a variable bus voltage target value within a predetermined allowable range centered on the reference bus voltage (reference voltage of the DC bus 70), and the output voltage on the DC bus 70 side is the bus voltage target value.
  • the power converter 32 is operated so as to match the above, and the power storage device 31 is charged / discharged.
  • the semi-stabilizing device 40 calculates an input / output current target value based on the difference between the charge / discharge threshold value and the voltage of the DC bus, and powers the input / output current so as to match the input / output current target value.
  • the converter 42 is operated to control the charge / discharge of the power storage device 41.
  • the power storage devices 31 and 41 are, for example, a battery (secondary battery), an electric double layer capacitor, a capacitor, a flywheel, a redox flow battery, or the like.
  • the power converters 32 and 42 are, for example, an isolated DC / DC converter or a chopper, and can transfer and receive DC power in both directions as shown by arrows.
  • the power converter 52 performs DC / DC conversion so that the input / output current matches the input / output current target value calculated based on the difference between the charge threshold value and the voltage of the DC bus.
  • DC power is supplied to the water electrolysis cell 51 (a kind of charging operation), and water is electrolyzed to generate hydrogen gas and oxygen gas.
  • the quasi-stabilizer 60 supplies the DC power generated by the electrochemical reaction of the fuel cell 61 to the DC bus 70 via the power converter 62 (a kind of discharge operation), but at that time, the discharge threshold value.
  • the power converter 62 performs DC / DC conversion so that the input / output current matches the input / output current target value calculated based on the difference between the voltage and the voltage of the DC bus.
  • a CH system is obtained by electrochemically reducing carbon dioxide.
  • a means for producing bonds (CH4, C2H4, etc.) or alcohol, or a means for producing ammonia by reducing nitrogen may be used, and as an alternative to the fuel cell 61, a fuel cell using alcohol or the like or a chemical substance may be used. It may be a power generation means for rotating a turbine or the like by burning (hydrogen, CH system, alcohol, ammonia, etc.).
  • FIG. 2 is another configuration example of the metastability device.
  • the metastability device 50A having an integral structure may be used in which the above-mentioned metastabilization devices 50 and 60 share the hydrogen storage device 53.
  • the power storage devices 31 and 41 are capable of absorbing (charging) and discharging (discharging) DC power. Further, the water electrolysis cell 51 (and the hydrogen storage device 53 in FIG. 2) converts DC power into gas and stores it, and the fuel cell 61 (and the hydrogen storage device 53) converts gas into DC power for power generation. Operation is possible.
  • the power storage devices 31 and 41 constitute a charging / discharging element, the water electrolysis cell 51 (and the hydrogen storage device 53) constitutes a charging element, and the fuel cell 61 (and the hydrogen storage device 53) constitutes a discharging element.
  • each of the stabilizers 30, 40, 50, and 60 is regarded as a power buffer that transfers DC power to and from the DC bus 70 by the operation of the power converters 32, 42, 52, and 62, respectively. be able to.
  • the main stabilizing device 30 and the semi-stabilizing device 40 are power buffers having a charging / discharging function
  • the semi-stabilizing device 50 is a power buffer having a charging function
  • the semi-stabilizing device 60 is a power buffer having a discharging function.
  • the number of main stabilizers 30 having a bus voltage target value setting function may be one, but only the required number of metastabilizers may be provided according to the number of parallel power supply systems and the required power of the load 90. ..
  • the monitoring / indicating device 80 collects state information (voltage, current, temperature, etc.) of each of the power generation systems 10 and 20, the main stabilizing device 30, and the semi-stabilizing devices 40, 50, and 60, and monitors and operates the state. In addition to monitoring, operation commands (start / stop commands, etc.) for each part, charge / discharge threshold commands, etc. are generated based on these monitoring results.
  • Various monitoring signals and commands can be transmitted / received between the monitoring / instruction device 80 and each of the above-described units by wire or wirelessly.
  • the load 90 may be a DC load such as a DC motor, or a DC / AC converter that converts DC power into AC power and an AC load thereof. Further, an AC power system may be connected to the DC bus 70 via a DC / AC converter.
  • a solar power generation system 10 and a wind power generation system 20 are provided as input power sources.
  • the photovoltaic power generation system 10 and the wind power generation system 20 have a common function in that the generated power using renewable energy is converted into DC power by the power converters 12 and 22 and supplied to the DC bus 70. Therefore, in the following, the solar power generation system 10 will be described as an example.
  • FIG. 3 is a block diagram showing a configuration example of the power converter 12 in the photovoltaic power generation system 10.
  • the power converter 12 includes a DC / DC converter 12A and a control circuit 12B.
  • the DC / DC converter 12A converts the DC output voltage of the solar cell 11 into a DC voltage of a predetermined size by the operation of the semiconductor switching element and outputs it to the DC bus 70.
  • the DC / DC converter 12A is composed of a boost chopper. There is.
  • the output voltage and current of the solar cell 11 are detected by the voltage detector 12a and the current detector 12b, and these detected values are input to the MPPT control unit 12c. ..
  • the MPPT control unit 12c searches for the maximum output point of the solar cell 11 by a mountain climbing method or the like and outputs it to the voltage / current control unit 12d.
  • the voltage / current control unit 12d sends a drive pulse generated by PWM (pulse width modulation) control or the like to the drive circuit 12e, and the drive circuit 12e is a semiconductor switching element of the DC / DC converter 12A based on the drive pulse. On and off.
  • PWM pulse width modulation
  • the voltage of the DC bus 70 is detected by the voltage detector 12f, and this bus voltage detection value is input to the comparison unit 12g together with the bus voltage target value sent from the main stabilizer 30 described later.
  • the comparison unit 12g generates a control signal according to the deviation between the bus voltage detection value and the bus voltage target value, and outputs the control signal to the voltage / current control unit 12d.
  • the voltage / current control unit 12d calculates a drive pulse that matches the bus voltage detection value with the bus voltage target value based on the control signal. For example, the bus voltage detection value sets the bus voltage target value. If it exceeds, the control operation is performed so as to reduce the output voltage of the DC / DC converter 12A (including stopping the operation).
  • FIG. 4 is a block diagram showing a configuration example of the power converter 32 in the main stabilizer 30.
  • the power converter 32 includes a DC / DC converter 32A and a control circuit 32B.
  • the DC / DC converter 32A has a function of bidirectionally transmitting and receiving DC power between the DC bus 70 and the power storage device 31 to control charging and discharging of the power storage device 31, and is an insulated type equipped with a semiconductor switching element. It is composed of a DC / DC converter, a chopper, and the like. A sensor 31a for detecting voltage / current and temperature is installed in the power storage device 31.
  • control circuit 32B The configuration of the control circuit 32B is as follows.
  • the voltage of the DC bus 70 is detected by the voltage detector 32a, and the bus voltage target value calculation unit 32b calculates the bus voltage target value according to the first storage amount index of the power storage device 31.
  • the calculation method of the bus voltage target value will be described later.
  • a charge rate SOC: State of Charge
  • SOC State of Charge
  • the offset integration unit 32c calculates the cumulative deviation of the bus voltage target value based on the difference (offset) between the second storage amount index of the power storage device 31 and the target value of the second storage amount index.
  • the second storage amount index is an index of the storage amount of the power storage device 31 obtained by a method different from the first storage amount index. For example, the terminal voltage (battery voltage) of the power storage device 31 detected by the sensor 31a. Can be used.
  • the target value of the second storage amount index can be the value of the second storage amount index corresponding to the predetermined storage amount or the storage rate.
  • the predetermined storage amount or storage rate may be appropriately determined according to the requirements of the system. For example, it is conceivable to adopt a storage amount of 50% of the full charge, but the storage amount is not limited to this.
  • the predetermined storage amount or storage rate is 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, fully charged. It may be 80%, or may be appropriately determined according to the purpose and application within the range of 47% to 54%, 45% to 55%, 40% to 60%, and 30% to 70% of the full charge. ..
  • the offset integration unit 32c obtains the above-mentioned cumulative deviation as a value corresponding to the integrated value of the difference between the second storage amount index and the target value, for example. More specifically, the cumulative deviation is obtained as a value obtained by multiplying a value obtained by integrating the difference between the second storage amount index and the target value by a predetermined gain.
  • the cumulative deviation may be obtained as a value obtained by integrating the difference between the second storage amount index and the target value of the storage amount index only when the magnitude of the charge / discharge current of the power storage device 31 is smaller than a predetermined value.
  • the predetermined value for example, if the magnitude of the charge / discharge current of the power storage device 31 is smaller than that value, the second power storage amount index (for example, terminal voltage) accurately represents the power storage amount of the power storage device 31. It is determined as a value that can be expected.
  • the deviation between the bus voltage target value and the bus voltage detection value is calculated by the subtractor 32d, and the cumulative deviation is added to the voltage deviation by the adder 32e.
  • the output of the subtractor 32d is a new bus voltage target value corrected by the cumulative deviation, and the new bus voltage target value is input to the charge / discharge control unit 32f.
  • the voltage / current, temperature, and charge / discharge threshold of the power storage device 31 are input to the charge / discharge control unit 32f, and the charge / discharge control unit 32f sets the bus voltage detection value to the bus while considering these input information.
  • PWM control or the like is performed so as to match the voltage target value, and a drive pulse is generated.
  • the drive circuit 32g turns on and off the semiconductor switching element of the DC / DC converter 32A according to the drive pulse.
  • the DC / DC converter 32A controls the charging / discharging of the power storage device 31 as described above to match the bus voltage detection value with the bus voltage target value.
  • the amount of electricity stored in the electricity storage device 31 can be roughly estimated from the terminal voltage thereof.
  • the terminal voltage varies depending on the magnitude of the charge / discharge current, but when the charge / discharge current is sufficiently small (when it is equal to or less than the above-mentioned predetermined value), the terminal voltage can be regarded as representing the amount of electricity stored in the power storage device 31.
  • the charge / discharge current of the main stabilizer becomes 0 when a steady state with a small change in power generation or power consumption is achieved. Therefore, the terminal voltage when the steady state is achieved and the charge / discharge current is small can be used as an index representing the actual (accurate) amount of electricity stored in the power storage device 31.
  • the difference between the terminal voltage and its target value is integrated, and the bus voltage is controlled by adding the obtained integrated value to the target value as a new target value.
  • the control based on the integrated value of this error can be regarded as the integrated control of the PID control when the control based on the amount of stored electricity is regarded as the proportional control.
  • the offset of the electricity storage index can be constantly removed. That is, the stored amount of the power storage device 31 can be maintained at the target value of the second storage amount index, and the continuous operation for a long period of time is stable without the actual stored amount of the power storage device 31 being exhausted or overflowing. You will be able to do it.
  • control circuit 32B (charge / discharge control unit 32f) stops the charge / discharge of the power storage device 31 for a very short time without affecting the control of the system, and forcibly provides a period during which the charge / discharge current becomes zero. May be good. The length of this period shall be such that the terminal voltage of the storage battery stabilizes so as to represent the actual amount of electricity stored.
  • the control circuit 32B provides a period in which the charge / discharge current is set to 0 periodically or irregularly, measures the terminal voltage of the power storage device 31 during this period as a second storage amount index, and determines the difference from the target storage amount. By integrating and using it for control, the same effect as above can be expected.
  • the charge / discharge threshold value of the power storage device 31 may be set by the control circuit 32B by itself, or may be received as a command from the monitoring / indicating device 80 of FIG.
  • FIG. 5 is a block diagram showing a configuration example of the power converter 42 in the metastability device 40 of FIG.
  • the power converter 42 includes a DC / DC converter 42A and a control circuit 42B.
  • the power converter 42 has the same function as the power converter 32 of FIG. 4A in that DC power is bidirectionally transferred between the DC bus 70 and the power storage device 41. Similar to the power storage device 31, the power storage device 41 is provided with a sensor 41a for detecting voltage, current, and temperature.
  • the control circuit 42B includes a voltage detector 42a, a comparison unit 42b, a subtractor 42c, a charge / discharge control unit 42d, and a drive circuit 42e.
  • the power converter 42 shown in FIG. 5 differs from the power converter 32 shown in FIG. 4A in the following points.
  • the charge / discharge control unit 42d calculates the input / output current target value based on the deviation between the charge / discharge threshold value and the bus voltage detection value.
  • the charge / discharge control unit 42d further performs charge / discharge control on the power storage device 41 so that the input / output current of the DC / DC conversion unit 42A matches the input / output current target value.
  • the charge / discharge threshold value may be a threshold value (charge threshold value and discharge threshold value) related to charge / discharge of the power storage device 41, and the input / output current target value may be set according to the difference between the threshold value and the voltage of the DC bus 70. ..
  • the comparison unit 42b provided in the control circuit 42B compares the charge / discharge threshold value of the power storage device 41 with the bus voltage detection value, and charges or discharges a charge command or a charge command or a charge command according to the magnitude relationship between the discharge threshold value and the bus voltage detection value.
  • a discharge command is output to control the operation of the charge / discharge control unit 42d.
  • the charge / discharge threshold value may be set by the control circuit 42B by itself, or may be received as a command from the monitoring / indicating device 80.
  • FIG. 6 is a block diagram showing a configuration example of the power converter 52 in the metastability device 50.
  • the power converter 52 includes a DC / DC converter 52A and a control circuit 52B.
  • the DC / DC converter 52A has a function of converting the DC power of the DC bus 70 into a predetermined size and supplying it to the water electrolysis cell 51, and is an isolated DC / DC converter or chopper equipped with a semiconductor switching element. It is composed of etc.
  • the water electrolysis cell 51 electrolyzes water using the DC power supplied from the DC / DC conversion unit 52A, and stores the generated hydrogen gas in an external storage device (not shown), in other words, a kind. Performs charging operation.
  • the control circuit 52B that controls the DC / DC converter 52A is generally configured in the same manner as the control circuit 42B in FIG.
  • the voltage of the DC bus 70 is detected by the voltage detector 52a, the deviation between the charging threshold and the bus voltage detected value is calculated by the subtractor 52c, and this voltage deviation is the charging control. It is input to the unit 52d. Further, the bus voltage detection value is input to the comparison unit 52b together with the charge threshold value, and the comparison unit 52b outputs a charge command to the charge control unit 52d when the bus voltage detection value exceeds the charge threshold value.
  • the charge threshold value corresponds to the starting voltage of electrolysis by the water electrolysis cell 51. That is, the charging threshold is a threshold for charging the water electrolysis cell 51.
  • the charge control unit 52d calculates the input / output current target value based on the voltage deviation input from the subtractor 52c, and charges the input / output current of the DC / DC conversion unit 52A so as to match the input / output current target value.
  • a drive pulse as a command is generated and output to the drive circuit 52e.
  • DC power is supplied to the water electrolysis cell 51 to electrolyze water by turning on and off the semiconductor switching element of the DC / DC conversion unit 52A according to the drive pulse.
  • the DC / DC conversion unit 52A operates so as to match the input / output current with the input / output current target value while controlling the DC power supplied to the water electrolysis cell 51 by the above operation.
  • the power generation operation by the fuel cell 61 is considered as a discharging operation, and the water electrolysis cell 51, the charging threshold, and the charging control unit 52d of the semi-stabilizing device 50 shown in FIG. 6 are fueled, respectively.
  • the battery 61, the discharge threshold, and the discharge control unit may be replaced with each other.
  • the discharge threshold value in this case corresponds to the starting voltage of power generation by the fuel cell 61.
  • the quasi-stabilizer 60 when the bus voltage detection value falls below the discharge threshold, a drive pulse corresponding to the discharge command is output to the discharge control unit to operate the DC / DC conversion unit, and the power generated by the fuel cell 61 is generated. , Is supplied to the DC bus 70 via the DC / DC conversion unit.
  • the DC / DC converter operates so as to match the input / output current with the input / output current target value while controlling the generated power of the fuel cell 61 by the above operation.
  • the water electrolysis cell 51 and the fuel cell 61 are also provided with sensors for detecting voltage, current, temperature, etc., and these detected values are input to the charge control unit 52d and the discharge control unit.
  • the illustration is omitted.
  • charge threshold value and the discharge threshold value may be set by each control circuit by themselves, or may be received as a command from the monitoring / instruction device 80.
  • the configurations and operations of the power converters 12, 32, 42, and 52 shown in FIGS. 3 to 6, and particularly the control circuits 12B, 32B, 42B, and 52B, are merely exemplary and the techniques of the present invention. Needless to say, the target range is not limited, and a configuration different from these may be adopted.
  • FIG. 7 shows the charge / discharge power of the power storage device 41 of the quasi-stabilizer 40 according to the voltage of the DC bus 70, the input power of the water electrolysis cell 51 of the quasi-stabilizer 50, and the fuel of the quasi-stabilizer 60. It is a conceptual diagram which shows each of the output power of a battery 61 schematically.
  • the horizontal width of the triangle symbol in FIG. 7 indicates the magnitude of each electric power, and the wider the width, the larger the electric power value.
  • FIG. 7 illustrates a case where the input power source is a renewable energy power source system, and the renewable energy power source system is, for example, the solar power generation system 10 and / or the wind power generation system 20 of FIG.
  • the charge / discharge operation of each part is controlled according to the voltage of the DC bus 70 to which the generated power is supplied, the charge / discharge threshold of the power storage device 41, the water electrolysis cell 51, the fuel cell 61, and the like.
  • (b) is a case where the charge threshold value and the discharge threshold value are set lower than (a) according to the reference bus voltage
  • (c) is a case where the charge threshold value and the discharge threshold value are set higher than (a). ..
  • the same threshold setting change operation is also possible for the charge threshold of the water electrolysis cell 51 and the discharge threshold of the fuel cell 61.
  • the DC bus 70 and the semi-stabilizing devices 40, 50, and 60 are controlled by changing the charge threshold and the discharge threshold of the power storage device 41, the water electrolysis cell 51, and the fuel cell 61 to control the charge / discharge operation.
  • the DC power delivered to and from is individually adjusted. In other words, it is possible to finely control the operation of each power buffer.
  • the charge threshold value and the discharge threshold value can be changed based on the command from the monitoring / indicating device 80, or the power converters 42, 52, and 62 can perform themselves.
  • 8A and 8B are operation explanatory views of the main stabilizer 30.
  • the main stabilizer 30 transfers DC power between the DC bus 70 and the power storage device 31 to control the charge / discharge of the power storage device 31.
  • the control circuit 32B in the power converter 32 sets a bus voltage target value based on the first storage amount index (for example, charge rate) of the power storage device 31 according to the characteristics shown in FIG. 8B, for example.
  • This bus voltage target value is set so as to be higher as the first storage amount index is larger and lower as the first storage amount index is smaller within the allowable range of the voltage of the DC bus 70, and this bus voltage target value is set.
  • the control circuit 32B controls the DC / DC converter 32A so that the bus voltage detection values match.
  • 9A and 9B are operation explanatory views of the metastabilizing devices 40 and 50.
  • the power converter 42 of the quasi-stabilizer 40 charges the power storage device 41 using the DC power of the DC bus 70, and the power converter 52 of the quasi-stabilizer 50
  • the DC power of the DC bus 70 is supplied to the water electrolysis cell 51 to electrolyze the water.
  • the charging characteristics in this case are as shown in FIG. 9B, and the power converters 42 and 52 are controlled so that the charging current increases as the voltage of the DC bus 70 becomes higher than the charging threshold of the power storage device 41 or the water electrolysis cell 51, respectively. do.
  • 10A and 10B are operation explanatory views of the metastabilizing devices 40 and 60.
  • the power converter 42 of the quasi-stabilizer 40 discharges the power storage device 41 to supply DC power to the DC bus 70, and the power converter 62 of the quasi-stabilizer 60. Operates the fuel cell 61 to generate electricity and supplies DC power to the DC bus 70.
  • the discharge characteristics in this case are as shown in FIG. 10B, and the power converters 42 and 62 are controlled so that the discharge current increases as the voltage of the DC bus 70 becomes lower than the discharge threshold of the power storage device 41 or the fuel cell 61, respectively. ..
  • the DC bus control system changes in the power input / output balance of the entire system are first dealt with by current input / output to the main stabilizing device 30 (storage device 31) having a fast response speed. By doing so, the response to other devices is relaxed. At this time, when the current flows into the main stabilizing device 30, the first storage amount index is increased by charging the power storage device 31, and the bus voltage is raised. On the contrary, in the case of the outflow of the current from the main stabilizer 30, the discharge of the power storage device 31 reduces the first storage amount index and lowers the bus voltage. These operations are performed by the power converter 32 (DC / DC converter 32A and control circuit 32B) of the main stabilizer 30.
  • the metastabilizing device charges or discharges by increasing or decreasing the amount of current flowing into the charging element or the discharging element according to the fluctuation of the bus voltage. This operation is performed by the power converter of the metastabilizer.
  • the system control can be performed by the distributed processing by the operation of each device, and the centralized overall control is performed. Is not needed.
  • the problem of error which is a problem when centralized management is performed, can be solved.
  • the reaction speed of the main stabilizer must follow the power fluctuations of the system, but since the main stabilizer absorbs the fast fluctuations, the operation of the semi-stabilizer can be relatively slow, and there is no problem. Since the direction of the current can also be controlled, it can be used in devices such as water electrolysis cells and fuel cells that can absorb or release electric power in only one direction and are not suitable for high-speed output fluctuations.
  • the main stabilizing device 30 determines the target value of the DC bus voltage based on the second storage amount index of the power storage device 31, the storage amount of the power storage device 31 is determined. It can be kept constant, and long-term continuous operation can be performed stably.
  • FIG. 11 is a diagram showing a simulation result in the control system of the present embodiment.
  • the charge rate (SOC) obtained by integrating the charge / discharge current of the power storage device 31 is used as the first storage amount index
  • the terminal voltage (battery voltage) of the power storage device 31 is used as the second storage amount index.
  • 50V was set as the target value of the second storage amount index.
  • FIG. 11A shows the time-series changes of the generated power 1101, the power supply (input) power 1102, and the load (output) power 1103 of the solar cell.
  • FIG. 11B shows the power consumption 1104 in the water electrolysis cell and the power generation 1105 in the fuel cell.
  • the system has a net input power, it is electrolyzed (charged) in the water electrolysis cell, and when it has a net output power, the DC current is supplied (discharged) by the electrochemical reaction of hydrogen in the fuel cell. Will be done.
  • FIG. 11C shows the time-series changes of the terminal voltage (battery voltage) 1106 and the charge / discharge current 1107 of the power storage device 31. It can be seen that the power storage device 31 terminal voltage 1106 is controlled so as to approach the target value of 50 V, and becomes 50 V at the timing when the power storage device 31 is not charged / discharged, that is, at the timing when the charge / discharge current is zero.
  • FIG. 12 shows a similar simulation result in the case where the power converter 32 of the main stabilizer 30 does not have the offset integrator 32c (that is, the configuration of Patent Document 1) as a comparative example.
  • FIG. 12 (a) shows the time-series changes of the generated power 1201, the power supply (input) power 1202, and the load (output) power 1203 of the solar cell, which are the same changes as in FIG. 11 (a).
  • FIG. 12B shows the power consumption 1204 in the water electrolysis cell and the power generated 1205 in the fuel cell, and shows almost the same changes as in FIG. 11B.
  • FIG. 12C shows the time-series changes in the terminal voltage (battery voltage) 1206 and the charge / discharge current 1207 of the power storage device 31.
  • the generated power and the power consumption fluctuate, and the voltage 1206 (index of the actual stored amount) of the power storage device 31 decreases each time charging / discharging occurs.
  • the power converter 32 in the main stabilizer 30 has an offset integrating unit 32c, and the power storage amount index (battery voltage) is constantly from the target value. Since the offset is removed, the battery voltage of the power storage device 31, that is, the power storage amount can be kept constant. Further, when the charge / discharge current of the power storage device 31 is large, the integration calculation of the battery voltage for offset calculation is not performed, so that the control based on the inaccurate storage amount can be prevented and stable operation can be performed. As described above, in the DC bus control system according to the present embodiment, since the power storage device 31 of the main stabilizer 30 can maintain a constant storage amount for a long period of time, stable and long-term continuous operation is possible. It becomes.
  • ⁇ Second embodiment> In the DC bus control system according to the first embodiment, when the generated power is within the power absorption capacity of the water electrolysis cell and the power consumption of the load is within the power generation capacity of the fuel cell, the main stabilizer 30 is used. The charge / discharge current of the power storage device 31 is controlled to 0 and operates stably. When the generated power exceeds the power absorption capacity of the water electrolysis cell or the power consumption of the load exceeds the power generation capacity of the fuel cell, this system does not stop abnormally and the power storage device 31 absorbs or supplies the power. , Continuous operation is possible.
  • FIGS. 13 to 15 is a diagram showing an operation in a configuration in which the offset integrating unit 32c is not provided in the main stabilizer 30 power converter 32 (that is, the configuration of Patent Document 1). ..
  • FIG. 13 is a diagram illustrating the operation of the system when the generated power and the load power are within the capacities of the water electrolysis cell and the fuel cell.
  • FIG. 13A shows the time change of the generated power 1301 and the load power 1302.
  • FIG. 13B shows the time variation of the power consumption 1303 of the water electrolysis cell and the power generated 1304 in the fuel cell.
  • FIG. 13C shows the time change of the control target value 1305 of the bus voltage.
  • FIG. 13D shows the time change of the voltage 1306 and the current 1307 of the power storage device 31.
  • the charge / discharge current of the power storage device 31 is kept at 0, and the water electrolysis cell and the fuel cell operate according to the generated power and the load power. ..
  • FIG. 14 is a diagram illustrating the operation of the system when the generated power exceeds the power absorption capacity of the water electrolysis cell.
  • FIG. 14A shows the time change of the generated power 1401 and the load power 1402.
  • FIG. 14B shows the time variation of the power consumption 1403 of the water electrolysis cell and the power generated 1404 in the fuel cell.
  • FIG. 14C shows the time change of the voltage 1405 and the current 1406 of the power storage device 31.
  • FIG. 14D shows the time change of the control target value 1407 of the bus voltage.
  • the power storage device 31 Since the generated power exceeds the power absorption capacity of the water electrolysis cell, the power storage device 31 absorbs the surplus power, and the power storage amount of the power storage device 31 increases. Even if the generated power returns to the capacity of the system, discharge continues from the power storage device 31 of the main stabilizer 30 until the excessive storage amount of the power storage device 31 is eliminated (the period in the figure). T1). During this period, electric power is supplied only from the power storage device 31, and no electric power is supplied from the fuel cell. There is no power supply from the fuel cell because the bus voltage remains high. During this period, when the load power is supplied from this system, the power exceeding the power supply capacity of the power storage device 31 of the main stabilizer 30 cannot be supplied, and the system deviates from the control of the main control device. Become.
  • the bus voltage target value calculation unit 32b determines the bus voltage target value based on the first storage amount index of the power storage device 31.
  • the first storage amount index is a value obtained by integrating the charge / discharge current of the power storage device 31.
  • an upper limit and a lower limit are set for the first storage amount index.
  • the upper limit is a value corresponding to the maximum operation of charging the water electrolysis cell or the battery (a value indicating the maximum operation) or a value slightly higher than that.
  • the lower limit is a value corresponding to the maximum operation of the fuel cell or battery discharge (a value indicating the maximum operation) or a value slightly lower than that.
  • the relationship between the first storage amount index and the target value determined by the bus voltage target value calculation unit 32b is shown in FIG. 8C. Since the first storage amount index takes only a value between the lower limit value and the upper limit value, the bus voltage target value also takes a value corresponding to this range.
  • FIG. 15 is a diagram illustrating the operation of the system when power exceeding the power absorption capacity of the water electrolysis cell is supplied when the upper limit and the lower limit are set as described above for the first storage amount index.
  • the offset integration unit 32c does not perform the offset integration and the addition processing thereof.
  • FIG. 15 (a) shows the time change of the generated power 1501 and the load power 1502, which is the same as that of FIG. 14 (a).
  • FIG. 15B shows the time variation of the power consumption 1503 of the water electrolysis cell and the power generation 1504 of the fuel cell.
  • FIG. 15C shows the time change of the voltage 1505 and the current 1506 of the power storage device 31.
  • FIG. 15E shows the time change of the control target value 1507 of the bus voltage. It should be noted that the vertical scale in FIG. 15 (d) is significantly different from the vertical scale in FIG. 14 (e).
  • the bus voltage drops in a short time after the state in which the generated power exceeds the power absorption capacity of the water electrolysis cell is resolved, charging in the water electrolysis cell is completed, and power is supplied from the fuel cell. Is possible. That is, by setting an upper limit on the first storage amount index, even if the generated power is excessive, the system can be returned to the normal state in a relatively short time after the situation is resolved.
  • the main stabilizer 30 also considers the integrated value (cumulative deviation) of the difference between the second storage amount index (battery voltage) and its target value by the offset integrating unit 32c.
  • the bus voltage target value is determined. Therefore, the difference between the calculated storage amount index (first storage amount index) and the actual storage amount as described above can be automatically eliminated in the long term.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A direct-current bus control system that controls power fluctuation at a direct-current bus that connects an input power supply and a load, the direct-current bus control system including: a principal stabilization device that bidirectionally exchanges direct-current power between a first charging/discharging element and the direct-current bus such that the voltage of the direct-current bus coincides with a bus voltage target value; and an auxiliary stabilization device that exchanges direct-current power between a second charging/discharging element, a charging element, or a discharging element and the direct-current bus such that current flows at a current target value that is found in accordance with the difference between a threshold value for charging or discharging and the voltage of the direct-current bus. The principal stabilization device finds the bus voltage target value on the basis of: a target value that corresponds to a first stored power indicator for the first charging/discharging element; and a second stored power indicator that is found by a different method than the first stored power indicator for the first charging/discharging element and is not dependent on charging/discharging efficiency.

Description

直流バス制御システムDC bus control system
 本開示は、直流バス制御システムに関する。 This disclosure relates to a DC bus control system.
 近年、化石エネルギーや原子力エネルギーの代替電源として、太陽光や風力、波力等の再生可能エネルギーを利用した電源システムが注目されており、これらの一部は既に実用化されている。 In recent years, power supply systems that use renewable energy such as solar power, wind power, and wave power have been attracting attention as alternative power sources for fossil energy and nuclear energy, and some of these have already been put into practical use.
 この種の電源システムは、天候や季節、立地等によって発電電力が大きく変動する。このため、電源システムが接続される直流バスの電圧を所定の許容範囲に維持するには、太陽電池や風力発電機等の電源を、入力範囲が広く大容量の電力変換器を介して直流バスに接続することが望ましい。しかしながら、その場合には、電力変換器の大容量化によってシステム全体の大型化や複雑化、高コスト化を招くことになる。 In this type of power supply system, the generated power fluctuates greatly depending on the weather, season, location, etc. Therefore, in order to maintain the voltage of the DC bus to which the power supply system is connected within a predetermined allowable range, the power supply of a solar cell, a wind power generator, etc. is supplied to the DC bus via a power converter having a wide input range and a large capacity. It is desirable to connect to. However, in that case, increasing the capacity of the power converter leads to an increase in size, complexity, and cost of the entire system.
 本件出願人は、入力電源や負荷の変動に起因して生ずる直流バスの電力変動を効率的に制御するための制御システムを提案している(特許文献1)。特許文献1の制御システムは、主安定化装置が、蓄電量指標に基づいて直流バス電圧を制御して、燃料電池や水電解セル等の蓄電装置の制御を行う。 The applicant has proposed a control system for efficiently controlling the power fluctuation of the DC bus caused by the fluctuation of the input power supply and the load (Patent Document 1). In the control system of Patent Document 1, the main stabilizer controls the DC bus voltage based on the storage amount index to control the power storage device such as a fuel cell or a water electrolysis cell.
 ここで用いられる蓄電量指標は、主安定化装置内の蓄電装置の充電率(SOC)であり、充放電電流を計算で積分した値として求められる。主安定化装置に用いられる蓄電装置は、一般に充電に用いたエネルギーのすべてを放電によって取り出すことはできない。また、放電によって取り出すエネルギーの割合を正確に求めることはできない。このことから、制御に用いる蓄電量(計算値)と実際の蓄電量に乖離が生じる。この結果、主安定化装置が蓄電装置の充放電を繰り返すたびに、蓄電装置の蓄電量と計算値の間の乖離が増大し、放電過多の場合には蓄電量が枯渇し、充電過多の場合は蓄電量が飽和する。その結果、直流バスの制御が不可能になりシステムの動作ができなくなる。 The storage amount index used here is the charge rate (SOC) of the power storage device in the main stabilizer, and is obtained as a value obtained by integrating the charge / discharge current by calculation. The power storage device used in the main stabilizer generally cannot extract all of the energy used for charging by electric discharge. Moreover, it is not possible to accurately determine the ratio of energy taken out by electric discharge. For this reason, there is a discrepancy between the amount of electricity stored (calculated value) used for control and the actual amount of electricity stored. As a result, each time the main stabilizer repeatedly charges and discharges the power storage device, the discrepancy between the power storage amount of the power storage device and the calculated value increases. Saturates the amount of electricity stored. As a result, the DC bus cannot be controlled and the system cannot operate.
 この問題を回避するために、充放電の効率を計測して充電率の補正を行うことが考えられるが、一般に充放電の効率は温度や電流などに依存するので正確な補正は困難である。したがって、いずれは、蓄電量の計算値と実際値に乖離が生じるので、システムの長期的・安定的な運転は困難である。 In order to avoid this problem, it is conceivable to measure the charge / discharge efficiency and correct the charge rate, but in general, the charge / discharge efficiency depends on the temperature, current, etc., so accurate correction is difficult. Therefore, in the future, there will be a discrepancy between the calculated value and the actual value of the amount of electricity stored, and it will be difficult to operate the system in a long-term and stable manner.
 また、蓄電量の正確な値は充放電を止めて計測すれば得られるが、連続運転が阻害されてしまう。 Also, the accurate value of the amount of electricity stored can be obtained by stopping charging and discharging, but continuous operation will be hindered.
国際公開第2019/103059号International Publication No. 2019/103059
 本発明は、入力電源や負荷の変動に起因して生ずる直流バスの電力変動を効率的に制御可能であり、かつ、主安定化装置の蓄電量の枯渇、飽和による制御の停止を避けることで、長期的・安定的に連続運転可能な制御システムを提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention can efficiently control the power fluctuation of the DC bus caused by the fluctuation of the input power supply and the load, and avoids the depletion of the stored amount of the main stabilizer and the stop of the control due to saturation. The purpose is to provide a control system capable of continuous operation in a long-term and stable manner.
 本発明の一態様は、入力電源と負荷との間を接続する直流バスの電力変動を制御する直流バス制御システムであって、第1の充放電要素と第1の電力変換器とを有する主安定化装置と、第2の充放電要素、充電要素、または放電要素と第2の電力変換器とを有する少なくとも1つの準安定化装置とを含み、前記第1の電力変換器は、バス電圧目標値を求め、前記バス電圧目標値に前記直流バスの電圧が一致するように、前記第1の充放電要素と前記直流バスとの間で直流電力を双方向に授受するよう構成され、前記第2の電力変換器は、前記第2の充放電要素、充電要素、または放電要素の充電又は放電に関する閾値と前記直流バスの前記電圧との差分に応じて電流目標値を求め、前記電流目標値に等しい電流が前記第2の充放電要素、充電要素、または放電要素に流れるように、前記第2の充放電要素、充電要素、または放電要素と前記直流バスとの間で直流電力を授受するよう構成されており、前記第1の電力変換器は、前記第1の充放電要素の第1の蓄電量指標に応じた目標値と、前記第1の充放電要素の前記第1の蓄電量指標とは異なる方式で求められる第2の蓄電量指標とに基づいて前記バス電圧目標値を求める、ことを特徴とする。 One aspect of the present invention is a DC bus control system that controls power fluctuations of a DC bus that connects an input power source and a load, and mainly includes a first charge / discharge element and a first power converter. The first power converter comprises a stabilizer and a second charge / discharge element, a charge element, or at least one quasi-stabilizer having a discharge element and a second power converter, wherein the first power converter is a bus voltage. A target value is obtained, and DC power is bidirectionally transferred between the first charge / discharge element and the DC bus so that the voltage of the DC bus matches the bus voltage target value. The second power converter obtains a current target value according to the difference between the threshold value for charging or discharging the second charging / discharging element, the charging element, or the discharging element and the voltage of the DC bus, and obtains the current target value. DC power is transferred between the second charge / discharge element, charge element, or discharge element and the DC bus so that a current equal to the value flows through the second charge / discharge element, charge element, or discharge element. The first power converter has a target value corresponding to a first charge / discharge amount index of the first charge / discharge element and the first charge / discharge element of the first charge / discharge element. The bus voltage target value is obtained based on a second storage amount index obtained by a method different from the quantity index.
 本発明によれば、入力電源や負荷の変動に起因して生ずる直流バスの電力変動を効率的に制御し、かつ、主安定化装置の蓄電量が長期的に一定になるような制御が実現できるため、長期的・安定的に連続運転可能な制御システムを提供することができる。 According to the present invention, it is possible to efficiently control the power fluctuation of the DC bus caused by the fluctuation of the input power supply and the load, and to control the storage amount of the main stabilizer to be constant for a long period of time. Therefore, it is possible to provide a control system capable of continuous operation over a long period of time and stably.
実施形態に係る直流バス制御システムの全体構成図である。It is an overall block diagram of the DC bus control system which concerns on embodiment. 実施形態における準安定化装置の他の例を示す構成図である。It is a block diagram which shows another example of the metastability apparatus in embodiment. 太陽光発電システム内の電力変換器の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the power converter in a photovoltaic power generation system. 主安定化装置内の電力変換器の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the power converter in a main stabilizer. 準安定化装置内の電力変換器の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the power converter in a metastabilizer. 準安定化装置内の電力変換器の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the power converter in a metastabilizer. 蓄電装置の充放電電力、水電解セルの入力電力、燃料電池の出力電力等とバス電圧との関係を模式的に示した概念図である。It is a conceptual diagram which schematically shows the relationship between the charge / discharge electric power of a power storage device, the input electric power of a water electrolysis cell, the output electric power of a fuel cell, etc., and a bus voltage. 主安定化装置の動作説明図である。It is operation explanatory drawing of the main stabilizer. 主安定化装置の動作説明図である。It is operation explanatory drawing of the main stabilizer. 主安定化装置の動作説明図である。It is operation explanatory drawing of the main stabilizer. 準安定化装置の動作説明図である。It is operation explanatory drawing of the metastability device. 準安定化装置の動作説明図である。It is operation explanatory drawing of the metastability device. 準安定化装置の動作説明図である。It is operation explanatory drawing of the metastability device. 準安定化装置の動作説明図である。It is operation explanatory drawing of the metastability device. 第1の実施形態に係るシステムのシミュレーション結果を示す図である。It is a figure which shows the simulation result of the system which concerns on 1st Embodiment. 従来例に係るシステムのシミュレーション結果を示す図である。It is a figure which shows the simulation result of the system which concerns on the prior art example. 従来例に係るシステム課題を説明する図である。It is a figure explaining the system problem which concerns on the prior art example. 従来例に係るシステム課題を説明する図である。It is a figure explaining the system problem which concerns on the prior art example. 第2の実施形態に係るシステムのシミュレーション結果を示す図である。It is a figure which shows the simulation result of the system which concerns on 2nd Embodiment.
 以下、図に沿って本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<第1の実施形態>
 図1は、この実施形態に係る直流バス制御システムの全体構成図である。図1に示される直流バス制御システムは、入力電源として、再生可能エネルギー電源システムである太陽光発電システム10及び風力発電システム20を含む。これらの発電システム10及び20は並列に接続されてその出力側が直流バス70に接続されている。太陽光発電システム10は太陽電池11及び電力変換器12を含み、風力発電システム20は風力発電機21及び電力変換器22を含む。
<First Embodiment>
FIG. 1 is an overall configuration diagram of a DC bus control system according to this embodiment. The DC bus control system shown in FIG. 1 includes a photovoltaic power generation system 10 and a wind power generation system 20 which are renewable energy power supply systems as input power sources. These power generation systems 10 and 20 are connected in parallel, and the output side thereof is connected to the DC bus 70. The photovoltaic power generation system 10 includes a solar cell 11 and a power converter 12, and the wind power generation system 20 includes a wind power generator 21 and a power converter 22.
 入力電源は任意のものであってよい。入力電源が再生可能エネルギー電源システムである場合、上述したもの以外に波力や地熱等のエネルギーを利用したものであっても良いし、水力(小水力)発電、潮力発電、潮流発電、温度差発電等の電源システムであっても良い。また、上述したものも含め、これらの組み合わせであっても良い。 The input power supply may be arbitrary. When the input power source is a renewable energy power source system, energy such as wave power or geothermal power may be used in addition to the above-mentioned ones, or hydraulic (small hydraulic) power generation, tidal power generation, tidal power generation, temperature. It may be a power supply system such as differential power generation. Further, these combinations may be used, including those described above.
 更に、互いに並列に接続される電源システムの数は特に限定されない。 Furthermore, the number of power supply systems connected in parallel with each other is not particularly limited.
 直流バス70には、主安定化装置30及び準安定化装置40,50,及び60が接続されていると共に、負荷90が接続されている。 The main stabilizer 30 and the metastabilizers 40, 50, and 60 are connected to the DC bus 70, and the load 90 is connected to the DC bus 70.
 主安定化装置30は、基準バス電圧(直流バス70の基準電圧)を中心とした所定の許容範囲内で可変のバス電圧目標値を設定し、直流バス70側の出力電圧がバス電圧目標値に一致するように電力変換器32を動作させて蓄電装置31を充放電制御する。 The main stabilizer 30 sets a variable bus voltage target value within a predetermined allowable range centered on the reference bus voltage (reference voltage of the DC bus 70), and the output voltage on the DC bus 70 side is the bus voltage target value. The power converter 32 is operated so as to match the above, and the power storage device 31 is charged / discharged.
 また、準安定化装置40は、充放電閾値と前記直流バスの前記電圧との差分に基づいて入出力電流目標値を演算し、入出力電流が前記入出力電流目標値に一致するように電力変換器42を動作させて蓄電装置41を充放電制御する。 Further, the semi-stabilizing device 40 calculates an input / output current target value based on the difference between the charge / discharge threshold value and the voltage of the DC bus, and powers the input / output current so as to match the input / output current target value. The converter 42 is operated to control the charge / discharge of the power storage device 41.
 ここで、蓄電装置31及び41は、例えばバッテリー(二次電池)、電気二重層コンデンサー、キャパシタ、フライホイール、又はレドックスフロー電池等である。また、電力変換器32及び42は、例えば絶縁型のDC/DCコンバータ又はチョッパ等であり、矢印に示すごとく双方向に直流電力を授受可能である。 Here, the power storage devices 31 and 41 are, for example, a battery (secondary battery), an electric double layer capacitor, a capacitor, a flywheel, a redox flow battery, or the like. Further, the power converters 32 and 42 are, for example, an isolated DC / DC converter or a chopper, and can transfer and receive DC power in both directions as shown by arrows.
 準安定化装置50は、充電閾値と前記直流バスの前記電圧との差分に基づいて演算した入出力電流目標値に入出力電流が一致するように電力変換器52がDC/DC変換を行って水電解セル51に直流電力を供給し(一種の充電動作)、水を電気分解して水素ガス及び酸素ガスを生成する。また、準安定化装置60は、燃料電池61の電気化学反応により発生した直流電力を、電力変換器62を介して直流バス70に供給する(一種の放電動作)が、その際に、放電閾値と前記直流バスの前記電圧との差分に基づいて演算した入出力電流目標値に入出力電流が一致するように電力変換器62がDC/DC変換を行う。 In the quasi-stabilizer 50, the power converter 52 performs DC / DC conversion so that the input / output current matches the input / output current target value calculated based on the difference between the charge threshold value and the voltage of the DC bus. DC power is supplied to the water electrolysis cell 51 (a kind of charging operation), and water is electrolyzed to generate hydrogen gas and oxygen gas. Further, the quasi-stabilizer 60 supplies the DC power generated by the electrochemical reaction of the fuel cell 61 to the DC bus 70 via the power converter 62 (a kind of discharge operation), but at that time, the discharge threshold value. The power converter 62 performs DC / DC conversion so that the input / output current matches the input / output current target value calculated based on the difference between the voltage and the voltage of the DC bus.
 上述した準安定化装置50や準安定化装置60の構成はあくまで例示的なものであり、水電解セル51に代わるものとしては、電気化学的に、二酸化炭素還元を行ってC-H系の結合(CH4,C2H4等)やアルコールを製造する手段、または、窒素を還元してアンモニアを製造する手段でも良いし、燃料電池61に代わるものとしては、アルコール等を用いた燃料電池や、化学物質(水素やC-H系、アルコール、アンモニア等)を燃焼してタービン等を回転させる発電手段でも構わない。 The configurations of the quasi-stabilizing device 50 and the quasi-stabilizing device 60 described above are merely exemplary, and as an alternative to the water electrolysis cell 51, a CH system is obtained by electrochemically reducing carbon dioxide. A means for producing bonds (CH4, C2H4, etc.) or alcohol, or a means for producing ammonia by reducing nitrogen may be used, and as an alternative to the fuel cell 61, a fuel cell using alcohol or the like or a chemical substance may be used. It may be a power generation means for rotating a turbine or the like by burning (hydrogen, CH system, alcohol, ammonia, etc.).
 図2は、準安定化装置の他の構成例である。図示する如く、前述した準安定化装置50及び60が水素貯蔵装置53を共有するような一体構造の準安定化装置50Aであっても良い。 FIG. 2 is another configuration example of the metastability device. As shown in the figure, the metastability device 50A having an integral structure may be used in which the above-mentioned metastabilization devices 50 and 60 share the hydrogen storage device 53.
 図1において、蓄電装置31及び41は直流電力の吸収(充電)、放出(放電)が可能である。また、水電解セル51(及び、図2の水素貯蔵装置53)は直流電力をガスに変換して蓄積し、燃料電池61(及び、同じく水素貯蔵装置53)はガスを直流電力に変換する発電動作が可能である。蓄電装置31及び41は充放電要素を構成し、水電解セル51(及び水素貯蔵装置53)は充電要素を構成し、燃料電池61(及び水素貯蔵装置53)は放電要素を構成する。 In FIG. 1, the power storage devices 31 and 41 are capable of absorbing (charging) and discharging (discharging) DC power. Further, the water electrolysis cell 51 (and the hydrogen storage device 53 in FIG. 2) converts DC power into gas and stores it, and the fuel cell 61 (and the hydrogen storage device 53) converts gas into DC power for power generation. Operation is possible. The power storage devices 31 and 41 constitute a charging / discharging element, the water electrolysis cell 51 (and the hydrogen storage device 53) constitutes a charging element, and the fuel cell 61 (and the hydrogen storage device 53) constitutes a discharging element.
 上記のように、各安定化装置30,40,50,及び60は、電力変換器32,42,52,及び62の動作により直流バス70との間で直流電力をそれぞれ授受する電力バッファとみなすことができる。また主安定化装置30及び準安定化装置40は充放電機能を有する電力バッファ、準安定化装置50は充電機能を有する電力バッファ、準安定化装置60は放電機能を有する電力バッファである。 As described above, each of the stabilizers 30, 40, 50, and 60 is regarded as a power buffer that transfers DC power to and from the DC bus 70 by the operation of the power converters 32, 42, 52, and 62, respectively. be able to. The main stabilizing device 30 and the semi-stabilizing device 40 are power buffers having a charging / discharging function, the semi-stabilizing device 50 is a power buffer having a charging function, and the semi-stabilizing device 60 is a power buffer having a discharging function.
 なお、バス電圧目標値の設定機能を有する主安定化装置30は1台で良いが、準安定化装置は、電源システムの並列数や負荷90の要求電力に応じて必要台数だけ設ければ良い。 The number of main stabilizers 30 having a bus voltage target value setting function may be one, but only the required number of metastabilizers may be provided according to the number of parallel power supply systems and the required power of the load 90. ..
 監視・指示装置80は、各発電システム10及び20、主安定化装置30、及び準安定化装置40,50,及び60の状態情報(電圧、電流、温度等)を収集して状態監視や動作監視を行うと共に、これらの監視結果に基づいて各部の運転指令(起動・停止指令等)、及び充放電閾値指令等を生成する。監視・指示装置80と上述した各部との間では、有線または無線により各種の監視信号及び指令を送受信可能である。 The monitoring / indicating device 80 collects state information (voltage, current, temperature, etc.) of each of the power generation systems 10 and 20, the main stabilizing device 30, and the semi-stabilizing devices 40, 50, and 60, and monitors and operates the state. In addition to monitoring, operation commands (start / stop commands, etc.) for each part, charge / discharge threshold commands, etc. are generated based on these monitoring results. Various monitoring signals and commands can be transmitted / received between the monitoring / instruction device 80 and each of the above-described units by wire or wirelessly.
 負荷90は、直流電動機等の直流負荷、又は直流電力を交流電力に変換するDC/AC変換器及びその交流負荷であっても良い。また、直流バス70にDC/AC変換器を介して交流電力系統が接続されていても良い。 The load 90 may be a DC load such as a DC motor, or a DC / AC converter that converts DC power into AC power and an AC load thereof. Further, an AC power system may be connected to the DC bus 70 via a DC / AC converter.
 次に、図1における各部の構成について説明する。図1の構成では、入力電源として太陽光発電システム10及び風力発電システム20を有している。 Next, the configuration of each part in FIG. 1 will be described. In the configuration of FIG. 1, a solar power generation system 10 and a wind power generation system 20 are provided as input power sources.
 太陽光発電システム10及び風力発電システム20は、再生可能エネルギーを用いた発電電力を電力変換器12及び22により直流電力に変換して直流バス70に供給する点で共通の機能を有する。このため、以下では、太陽光発電システム10を例として説明をする。 The photovoltaic power generation system 10 and the wind power generation system 20 have a common function in that the generated power using renewable energy is converted into DC power by the power converters 12 and 22 and supplied to the DC bus 70. Therefore, in the following, the solar power generation system 10 will be described as an example.
 図3は、太陽光発電システム10内の電力変換器12の一構成例を示すブロック図である。この電力変換器12は、DC/DC変換部12Aと制御回路12Bとを備えている。 FIG. 3 is a block diagram showing a configuration example of the power converter 12 in the photovoltaic power generation system 10. The power converter 12 includes a DC / DC converter 12A and a control circuit 12B.
 DC/DC変換部12Aは、半導体スイッチング素子の動作により太陽電池11の直流出力電圧を所定の大きさの直流電圧に変換して直流バス70に出力するものであり、例えば昇圧チョッパによって構成されている。 The DC / DC converter 12A converts the DC output voltage of the solar cell 11 into a DC voltage of a predetermined size by the operation of the semiconductor switching element and outputs it to the DC bus 70. For example, the DC / DC converter 12A is composed of a boost chopper. There is.
 DC/DC変換部12Aを制御する制御回路12Bでは、太陽電池11の出力電圧及び電流が電圧検出器12a及び電流検出器12bにより検出され、これらの検出値はMPPT制御部12cに入力されている。MPPT制御部12cでは、山登り法等により太陽電池11の最大出力点を探索して電圧・電流制御部12dに出力する。 In the control circuit 12B that controls the DC / DC converter 12A, the output voltage and current of the solar cell 11 are detected by the voltage detector 12a and the current detector 12b, and these detected values are input to the MPPT control unit 12c. .. The MPPT control unit 12c searches for the maximum output point of the solar cell 11 by a mountain climbing method or the like and outputs it to the voltage / current control unit 12d.
 電圧・電流制御部12dは、PWM(パルス幅変調)制御等により生成した駆動パルスを駆動回路12eに送出し、駆動回路12eは、上記駆動パルスに基づいてDC/DC変換部12Aの半導体スイッチング素子をオン及びオフさせる。 The voltage / current control unit 12d sends a drive pulse generated by PWM (pulse width modulation) control or the like to the drive circuit 12e, and the drive circuit 12e is a semiconductor switching element of the DC / DC converter 12A based on the drive pulse. On and off.
 また、直流バス70の電圧が電圧検出器12fにより検出され、このバス電圧検出値は後述の主安定化装置30から送られたバス電圧目標値と共に比較部12gに入力されている。比較部12gは、バス電圧検出値とバス電圧目標値との偏差に応じた制御信号を生成して電圧・電流制御部12dに出力する。 Further, the voltage of the DC bus 70 is detected by the voltage detector 12f, and this bus voltage detection value is input to the comparison unit 12g together with the bus voltage target value sent from the main stabilizer 30 described later. The comparison unit 12g generates a control signal according to the deviation between the bus voltage detection value and the bus voltage target value, and outputs the control signal to the voltage / current control unit 12d.
 電圧・電流制御部12dは、上記制御信号に基づいて、バス電圧検出値をバス電圧目標値に一致させるような駆動パルスを演算するものであり、例えば、バス電圧検出値がバス電圧目標値を上回る場合にはDC/DC変換部12Aの出力電圧を低下させる(運転停止も含む)ように制御動作を行う。 The voltage / current control unit 12d calculates a drive pulse that matches the bus voltage detection value with the bus voltage target value based on the control signal. For example, the bus voltage detection value sets the bus voltage target value. If it exceeds, the control operation is performed so as to reduce the output voltage of the DC / DC converter 12A (including stopping the operation).
 図4は主安定化装置30内の電力変換器32の一構成例を示すブロック図である。この電力変換器32は、DC/DC変換部32A及び制御回路32Bを備えている。 FIG. 4 is a block diagram showing a configuration example of the power converter 32 in the main stabilizer 30. The power converter 32 includes a DC / DC converter 32A and a control circuit 32B.
 DC/DC変換部32Aは、直流バス70と蓄電装置31との間で直流電力を双方向に授受して蓄電装置31を充放電制御する機能を有し、半導体スイッチング素子を備えた絶縁型のDC/DCコンバータやチョッパ等により構成されている。蓄電装置31には、電圧・電流及び温度を検出するセンサ31aが設置されている。 The DC / DC converter 32A has a function of bidirectionally transmitting and receiving DC power between the DC bus 70 and the power storage device 31 to control charging and discharging of the power storage device 31, and is an insulated type equipped with a semiconductor switching element. It is composed of a DC / DC converter, a chopper, and the like. A sensor 31a for detecting voltage / current and temperature is installed in the power storage device 31.
 制御回路32Bの構成は、以下の通りである。 The configuration of the control circuit 32B is as follows.
 電圧検出器32aにより直流バス70の電圧が検出されると共に、バス電圧目標値演算部32bにより、蓄電装置31の第1の蓄電量指標に応じてバス電圧目標値が演算される。なお、バス電圧目標値の演算方法については後述する。 The voltage of the DC bus 70 is detected by the voltage detector 32a, and the bus voltage target value calculation unit 32b calculates the bus voltage target value according to the first storage amount index of the power storage device 31. The calculation method of the bus voltage target value will be described later.
 上記の蓄電量指標としては、例えば、センサ31aにより検出される蓄電装置31の充放電電流を積分して得た充電率(SOC:State of Charge)を用いることができる。 As the storage amount index, for example, a charge rate (SOC: State of Charge) obtained by integrating the charge / discharge current of the power storage device 31 detected by the sensor 31a can be used.
 オフセット積分部32cは、蓄電装置31の第2の蓄電量指標と、第2の蓄電量指標の目標値の差分(オフセット)に基づいて、バス電圧目標値の累積偏差を演算する。第2の蓄電量指標は、第1の蓄電量指標とは異なる方式によって求められる蓄電装置31の蓄電量の指標であり、例えば、センサ31aにより検出される蓄電装置31の端子電圧(バッテリー電圧)を用いることができる。 The offset integration unit 32c calculates the cumulative deviation of the bus voltage target value based on the difference (offset) between the second storage amount index of the power storage device 31 and the target value of the second storage amount index. The second storage amount index is an index of the storage amount of the power storage device 31 obtained by a method different from the first storage amount index. For example, the terminal voltage (battery voltage) of the power storage device 31 detected by the sensor 31a. Can be used.
 また、第2の蓄電量指標の目標値は、所定の蓄電量または蓄電率に対応した第2の蓄電量指標の値とすることができる。所定の蓄電量または蓄電率は、システムの要求に応じて適宜決定すればよく、例えば、満充電の50%の蓄電量を採用することが考えられるがこれに限られない。例えば、所定の蓄電量または蓄電率は、満充電の20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%としても良いし、あるいは、満充電の47%~54%、45%~55%、40%~60%、30%~70%の範囲内で目的と用途に応じて適宜定めてもよい。 Further, the target value of the second storage amount index can be the value of the second storage amount index corresponding to the predetermined storage amount or the storage rate. The predetermined storage amount or storage rate may be appropriately determined according to the requirements of the system. For example, it is conceivable to adopt a storage amount of 50% of the full charge, but the storage amount is not limited to this. For example, the predetermined storage amount or storage rate is 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, fully charged. It may be 80%, or may be appropriately determined according to the purpose and application within the range of 47% to 54%, 45% to 55%, 40% to 60%, and 30% to 70% of the full charge. ..
 オフセット積分部32cは、例えば、第2の蓄電量指標とその目標値との差分の積分値に応じた値として上述の累積偏差を求める。より具体的には、累積偏差は、第2の蓄電量指標とその目標値との差分を積分した値に、所定のゲインを乗じた値として求められる。 The offset integration unit 32c obtains the above-mentioned cumulative deviation as a value corresponding to the integrated value of the difference between the second storage amount index and the target value, for example. More specifically, the cumulative deviation is obtained as a value obtained by multiplying a value obtained by integrating the difference between the second storage amount index and the target value by a predetermined gain.
 ここで、蓄電装置31の充放電電流の大きさ(絶対値)が所定値よりも大きいときは積分演算を行わず、充放電電流の大きさが所定値よりも小さきときのみ積分演算を行うとよい。すなわち、累積偏差は、第2の蓄電量指標とその蓄電量指標の目標値との差分を、蓄電装置31の充放電電流の大きさが所定値より小さいときのみ積分した値として求めるとよい。ここでの所定値は、例えば、蓄電装置31の充放電電流の大きさがその値よりも小さければ、第2の蓄電量指標(例えば、端子電圧)が蓄電装置31の蓄電量を精度良く表すと期待できるような値として決定される。 Here, if the magnitude (absolute value) of the charge / discharge current of the power storage device 31 is larger than the predetermined value, the integral calculation is not performed, and if the magnitude of the charge / discharge current is smaller than the predetermined value, the integral calculation is performed. good. That is, the cumulative deviation may be obtained as a value obtained by integrating the difference between the second storage amount index and the target value of the storage amount index only when the magnitude of the charge / discharge current of the power storage device 31 is smaller than a predetermined value. As for the predetermined value here, for example, if the magnitude of the charge / discharge current of the power storage device 31 is smaller than that value, the second power storage amount index (for example, terminal voltage) accurately represents the power storage amount of the power storage device 31. It is determined as a value that can be expected.
 バス電圧目標値とバス電圧検出値との偏差が減算器32dにより演算され、さらに加算器32eによって電圧偏差に累積偏差が加えられる。減算器32dの出力は累積偏差によって補正された新たなバス電圧目標値であり、新たなバス電圧目標値は充放電制御部32fに入力されている。 The deviation between the bus voltage target value and the bus voltage detection value is calculated by the subtractor 32d, and the cumulative deviation is added to the voltage deviation by the adder 32e. The output of the subtractor 32d is a new bus voltage target value corrected by the cumulative deviation, and the new bus voltage target value is input to the charge / discharge control unit 32f.
 充放電制御部32fには蓄電装置31の電圧・電流、温度、及び、充放電閾値が入力されており、充放電制御部32fは、これらの入力情報を考慮しながら、バス電圧検出値がバス電圧目標値に一致するようにPWM制御等を行って駆動パルスを生成する。駆動回路32gは、上記駆動パルスに従ってDC/DC変換部32Aの半導体スイッチング素子をオン及びオフさせる。DC/DC変換部32Aは、上記のように蓄電装置31を充放電制御してバス電圧検出値をバス電圧目標値に一致させる。 The voltage / current, temperature, and charge / discharge threshold of the power storage device 31 are input to the charge / discharge control unit 32f, and the charge / discharge control unit 32f sets the bus voltage detection value to the bus while considering these input information. PWM control or the like is performed so as to match the voltage target value, and a drive pulse is generated. The drive circuit 32g turns on and off the semiconductor switching element of the DC / DC converter 32A according to the drive pulse. The DC / DC converter 32A controls the charging / discharging of the power storage device 31 as described above to match the bus voltage detection value with the bus voltage target value.
 一般に蓄電装置31の蓄電量は、その端子電圧によっておよその値が推定できる。端子電圧は充放電電流の大きさによっても変動するが、充放電電流が十分に小さいとき(上記の所定値以下であるとき)は、端子電圧は蓄電装置31の蓄電量を表すとみなせる。主安定化装置による制御の結果、発電あるいは消費電力の変化が小さい定常状態が達成された場合、主安定化装置の充放電電流は0になる。そこで、定常状態が達成され、充放電電流が小さいときの端子電圧を蓄電装置31の実際の(正確な)蓄電量を表す指標として使用することができる。本実施形態では、端子電圧とその目標値の差分を積分演算し、得られた積分値を目標値に加えた値を新たな目標値としてバス電圧を制御する。この誤差の積分値に基づく制御は、蓄電量による制御を比例制御としてみた場合のPID制御の積分制御とみなせる。この結果、定常的な蓄電指標のオフセット除去が行える。すなわち、蓄電装置31の蓄電量を、第2の蓄電量指標の目標値に保つことができ、蓄電装置31の実蓄電量が枯渇したりオーバーフローしたりすることなく、長期間の連続運転を安定して行えるようになる。 Generally, the amount of electricity stored in the electricity storage device 31 can be roughly estimated from the terminal voltage thereof. The terminal voltage varies depending on the magnitude of the charge / discharge current, but when the charge / discharge current is sufficiently small (when it is equal to or less than the above-mentioned predetermined value), the terminal voltage can be regarded as representing the amount of electricity stored in the power storage device 31. As a result of control by the main stabilizer, the charge / discharge current of the main stabilizer becomes 0 when a steady state with a small change in power generation or power consumption is achieved. Therefore, the terminal voltage when the steady state is achieved and the charge / discharge current is small can be used as an index representing the actual (accurate) amount of electricity stored in the power storage device 31. In the present embodiment, the difference between the terminal voltage and its target value is integrated, and the bus voltage is controlled by adding the obtained integrated value to the target value as a new target value. The control based on the integrated value of this error can be regarded as the integrated control of the PID control when the control based on the amount of stored electricity is regarded as the proportional control. As a result, the offset of the electricity storage index can be constantly removed. That is, the stored amount of the power storage device 31 can be maintained at the target value of the second storage amount index, and the continuous operation for a long period of time is stable without the actual stored amount of the power storage device 31 being exhausted or overflowing. You will be able to do it.
 また、制御回路32B(充放電制御部32f)は、蓄電装置31の充放電をシステムの制御に影響を与えないごく短時間停止して、充放電電流が0となる期間を強制的に設けてもよい。この期間の長さは、蓄電池の端子電圧が実際の蓄電量を表すように安定する程度の長さとする。制御回路32Bは、定期的あるいは不定期に充放電電流を0とする期間を設けて、この期間の蓄電装置31の端子電圧を第2の蓄電量指標として計測し、目標蓄電量との差分を積分し制御に使用することで、上記と同様の効果を期待できる。 Further, the control circuit 32B (charge / discharge control unit 32f) stops the charge / discharge of the power storage device 31 for a very short time without affecting the control of the system, and forcibly provides a period during which the charge / discharge current becomes zero. May be good. The length of this period shall be such that the terminal voltage of the storage battery stabilizes so as to represent the actual amount of electricity stored. The control circuit 32B provides a period in which the charge / discharge current is set to 0 periodically or irregularly, measures the terminal voltage of the power storage device 31 during this period as a second storage amount index, and determines the difference from the target storage amount. By integrating and using it for control, the same effect as above can be expected.
 なお、蓄電装置31の充放電閾値は、制御回路32Bが自ら設定しても良いし、図1の監視・指示装置80からの指令として受信しても良い。 The charge / discharge threshold value of the power storage device 31 may be set by the control circuit 32B by itself, or may be received as a command from the monitoring / indicating device 80 of FIG.
 図5は、図1の準安定化装置40内の電力変換器42の一構成例を示すブロック図である。この電力変換器42は、DC/DC変換部42A及び制御回路42Bを備えている。電力変換器42は、直流バス70と蓄電装置41との間で直流電力を双方向に授受する点で、図4Aの電力変換器32と同様の機能を有する。蓄電装置41には、前記蓄電装置31と同様に、電圧・電流、及び温度を検出するセンサ41aが設けられている。制御回路42Bは、電圧検出器42a、比較部42b、減算器42c、充放電制御部42d、及び駆動回路42eを含む。 FIG. 5 is a block diagram showing a configuration example of the power converter 42 in the metastability device 40 of FIG. The power converter 42 includes a DC / DC converter 42A and a control circuit 42B. The power converter 42 has the same function as the power converter 32 of FIG. 4A in that DC power is bidirectionally transferred between the DC bus 70 and the power storage device 41. Similar to the power storage device 31, the power storage device 41 is provided with a sensor 41a for detecting voltage, current, and temperature. The control circuit 42B includes a voltage detector 42a, a comparison unit 42b, a subtractor 42c, a charge / discharge control unit 42d, and a drive circuit 42e.
 図5に示す電力変換器42は図4Aの電力変換器32と以下の点で異なる。制御回路42Bは、充放電閾値とバス電圧検出値との偏差に基づいて充放電制御部42dが入出力電流目標値を演算する。充放電制御部42dは更に、DC/DC変換部42Aの入出力電流が入出力電流目標値に一致するように蓄電装置41に対する充放電制御を行う。ここで上記充放電閾値は蓄電装置41の充放電に関する閾値(充電閾値及び放電閾値)であってよく、当該閾値と直流バス70の電圧との差分に応じて入出力電流目標値を定めてよい。 The power converter 42 shown in FIG. 5 differs from the power converter 32 shown in FIG. 4A in the following points. In the control circuit 42B, the charge / discharge control unit 42d calculates the input / output current target value based on the deviation between the charge / discharge threshold value and the bus voltage detection value. The charge / discharge control unit 42d further performs charge / discharge control on the power storage device 41 so that the input / output current of the DC / DC conversion unit 42A matches the input / output current target value. Here, the charge / discharge threshold value may be a threshold value (charge threshold value and discharge threshold value) related to charge / discharge of the power storage device 41, and the input / output current target value may be set according to the difference between the threshold value and the voltage of the DC bus 70. ..
 更に、制御回路42Bに設けられた比較部42bは、蓄電装置41の充放電閾値をバス電圧検出値と比較し、充電閾値または放電閾値とバス電圧検出値との大小関係に応じて充電指令または放電指令を出力して充放電制御部42dの動作を制御する。なお、充放電閾値は、制御回路42Bが自ら設定しても良いし、監視・指示装置80から指令として受信しても良い。 Further, the comparison unit 42b provided in the control circuit 42B compares the charge / discharge threshold value of the power storage device 41 with the bus voltage detection value, and charges or discharges a charge command or a charge command or a charge command according to the magnitude relationship between the discharge threshold value and the bus voltage detection value. A discharge command is output to control the operation of the charge / discharge control unit 42d. The charge / discharge threshold value may be set by the control circuit 42B by itself, or may be received as a command from the monitoring / indicating device 80.
 図6は準安定化装置50内の電力変換器52の一構成例を示すブロック図である。この電力変換器52は、DC/DC変換部52A及び制御回路52Bを備えている。 FIG. 6 is a block diagram showing a configuration example of the power converter 52 in the metastability device 50. The power converter 52 includes a DC / DC converter 52A and a control circuit 52B.
 DC/DC変換部52Aは、直流バス70の直流電力を所定の大きさに変換して水電解セル51に供給する機能を有し、半導体スイッチング素子を備えた絶縁型のDC/DCコンバータやチョッパ等により構成されている。水電解セル51は、DC/DC変換部52Aから供給された直流電力を用いて水を電気分解し、生成された水素ガスを外部の貯蔵装置(図示せず)に貯蔵する動作、言い換えれば一種の充電動作を行う。 The DC / DC converter 52A has a function of converting the DC power of the DC bus 70 into a predetermined size and supplying it to the water electrolysis cell 51, and is an isolated DC / DC converter or chopper equipped with a semiconductor switching element. It is composed of etc. The water electrolysis cell 51 electrolyzes water using the DC power supplied from the DC / DC conversion unit 52A, and stores the generated hydrogen gas in an external storage device (not shown), in other words, a kind. Performs charging operation.
 DC/DC変換部52Aを制御する制御回路52Bは、おおむね図5の制御回路42Bと同様に構成されている。 The control circuit 52B that controls the DC / DC converter 52A is generally configured in the same manner as the control circuit 42B in FIG.
 すなわち、図6の制御回路52Bにおいて、電圧検出器52aにより直流バス70の電圧が検出されると共に、充電閾値とバス電圧検出値との偏差が減算器52cにより演算され、この電圧偏差が充電制御部52dに入力されている。また、バス電圧検出値は充電閾値と共に比較部52bに入力されており、比較部52bは、バス電圧検出値が充電閾値を上回ると充電指令を充電制御部52dに出力する。ここで、充電閾値は、水電解セル51による電気分解の開始電圧に相当する。即ち上記充電閾値は、水電解セル51の充電に関する閾値である。 That is, in the control circuit 52B of FIG. 6, the voltage of the DC bus 70 is detected by the voltage detector 52a, the deviation between the charging threshold and the bus voltage detected value is calculated by the subtractor 52c, and this voltage deviation is the charging control. It is input to the unit 52d. Further, the bus voltage detection value is input to the comparison unit 52b together with the charge threshold value, and the comparison unit 52b outputs a charge command to the charge control unit 52d when the bus voltage detection value exceeds the charge threshold value. Here, the charge threshold value corresponds to the starting voltage of electrolysis by the water electrolysis cell 51. That is, the charging threshold is a threshold for charging the water electrolysis cell 51.
 充電制御部52dは、減算器52cから入力された電圧偏差に基づいて入出力電流目標値を演算すると共に、DC/DC変換部52Aの入出力電流が入出力電流目標値に一致するように充電指令としての駆動パルスを生成し、駆動回路52eに出力する。駆動回路52eでは、上記駆動パルスに従ってDC/DC変換部52Aの半導体スイッチング素子をオン及びオフさせることにより、水電解セル51に直流電力を供給して水を電気分解する。 The charge control unit 52d calculates the input / output current target value based on the voltage deviation input from the subtractor 52c, and charges the input / output current of the DC / DC conversion unit 52A so as to match the input / output current target value. A drive pulse as a command is generated and output to the drive circuit 52e. In the drive circuit 52e, DC power is supplied to the water electrolysis cell 51 to electrolyze water by turning on and off the semiconductor switching element of the DC / DC conversion unit 52A according to the drive pulse.
 DC/DC変換部52Aは、上記の動作により水電解セル51に供給される直流電力を制御しつつ、入出力電流を入出力電流目標値に一致させるように動作する。 The DC / DC conversion unit 52A operates so as to match the input / output current with the input / output current target value while controlling the DC power supplied to the water electrolysis cell 51 by the above operation.
 図1の準安定化装置60については、燃料電池61による発電動作を放電動作と考え、図6に示した準安定化装置50の水電解セル51、充電閾値、及び充電制御部52dをそれぞれ燃料電池61、放電閾値、放電制御部に置き換えて構成すれば良い。この場合の放電閾値は、燃料電池61による発電の開始電圧に相当する。 Regarding the semi-stabilizing device 60 of FIG. 1, the power generation operation by the fuel cell 61 is considered as a discharging operation, and the water electrolysis cell 51, the charging threshold, and the charging control unit 52d of the semi-stabilizing device 50 shown in FIG. 6 are fueled, respectively. The battery 61, the discharge threshold, and the discharge control unit may be replaced with each other. The discharge threshold value in this case corresponds to the starting voltage of power generation by the fuel cell 61.
 準安定化装置60では、バス電圧検出値が放電閾値を下回ったときに放電指令に相当する駆動パルスを放電制御部に出力してDC/DC変換部を動作させ、燃料電池61による発電電力を、DC/DC変換部を介して直流バス70に供給する。 In the quasi-stabilizer 60, when the bus voltage detection value falls below the discharge threshold, a drive pulse corresponding to the discharge command is output to the discharge control unit to operate the DC / DC conversion unit, and the power generated by the fuel cell 61 is generated. , Is supplied to the DC bus 70 via the DC / DC conversion unit.
 DC/DC変換部は、上記の動作により燃料電池61の発電電力を制御しつつ、入出力電流を入出力電流目標値に一致させるように動作する。 The DC / DC converter operates so as to match the input / output current with the input / output current target value while controlling the generated power of the fuel cell 61 by the above operation.
 水電解セル51や燃料電池61にも、電圧・電流及び温度等を検出するセンサが設けられ、これらの検出値が充電制御部52dや放電制御部に入力されているが、便宜上、上記センサの図示は省略してある。 The water electrolysis cell 51 and the fuel cell 61 are also provided with sensors for detecting voltage, current, temperature, etc., and these detected values are input to the charge control unit 52d and the discharge control unit. The illustration is omitted.
 また、充電閾値及び放電閾値は、各制御回路が自ら設定しても良いし、監視・指示装置80から指令として受信しても良い。 Further, the charge threshold value and the discharge threshold value may be set by each control circuit by themselves, or may be received as a command from the monitoring / instruction device 80.
 図3~図6に示した電力変換器12,32,42,及び52、特に制御回路12B,32B,42B,及び52Bの構成や動作は、あくまで例示的なものであって何ら本発明の技術的範囲を限定するものではなく、これらと異なる構成を採用しても良いことは言うまでもない。 The configurations and operations of the power converters 12, 32, 42, and 52 shown in FIGS. 3 to 6, and particularly the control circuits 12B, 32B, 42B, and 52B, are merely exemplary and the techniques of the present invention. Needless to say, the target range is not limited, and a configuration different from these may be adopted.
 次に、図7は、直流バス70の電圧に応じた準安定化装置40の蓄電装置41の充放電電力、準安定化装置50の水電解セル51の入力電力、準安定化装置60の燃料電池61の出力電力を、それぞれ模式的に示した概念図である。図7における三角形シンボルの横方向の幅は各電力の大きさを示しており、幅が広いほど電力値が大きくなる。 Next, FIG. 7 shows the charge / discharge power of the power storage device 41 of the quasi-stabilizer 40 according to the voltage of the DC bus 70, the input power of the water electrolysis cell 51 of the quasi-stabilizer 50, and the fuel of the quasi-stabilizer 60. It is a conceptual diagram which shows each of the output power of a battery 61 schematically. The horizontal width of the triangle symbol in FIG. 7 indicates the magnitude of each electric power, and the wider the width, the larger the electric power value.
 図7では、入力電源が再生可能エネルギー電源システムである場合を例示しており、再生可能エネルギー電源システムは、例えば、図1の太陽光発電システム10及び/又は風力発電システム20である。これらの発電電力が供給される直流バス70の電圧と蓄電装置41、水電解セル51、燃料電池61の充放電閾値等に応じて、各部の充放電動作が制御される。 FIG. 7 illustrates a case where the input power source is a renewable energy power source system, and the renewable energy power source system is, for example, the solar power generation system 10 and / or the wind power generation system 20 of FIG. The charge / discharge operation of each part is controlled according to the voltage of the DC bus 70 to which the generated power is supplied, the charge / discharge threshold of the power storage device 41, the water electrolysis cell 51, the fuel cell 61, and the like.
 例えば、蓄電装置41に関する(a)に示すように、バス電圧が蓄電装置41の充電閾値より高ければ高いほど蓄電装置41に供給される充電電力は大きくなり、バス電圧が蓄電装置41の放電閾値より低ければ低いほど蓄電装置41から放出される放電電力は大きくなる。同様にして、バス電圧が水電解セル51の充電閾値より高ければ高いほど水電解セル51に供給される充電電力は大きくなり、バス電圧が燃料電池61の放電閾値より低ければ低いほど燃料電池61から発生する放電電力は大きくなる。 For example, as shown in (a) regarding the power storage device 41, the higher the bus voltage is higher than the charge threshold of the power storage device 41, the larger the charging power supplied to the power storage device 41, and the bus voltage is the discharge threshold of the power storage device 41. The lower the value, the larger the discharge power discharged from the power storage device 41. Similarly, the higher the bus voltage is higher than the charging threshold of the water electrolysis cell 51, the larger the charging power supplied to the water electrolysis cell 51, and the lower the bus voltage is lower than the discharge threshold of the fuel cell 61, the more the fuel cell 61 The discharge power generated from is large.
 蓄電装置41に関する(b)は、基準バス電圧に応じて充電閾値及び放電閾値を(a)より低く設定した場合、(c)は充電閾値及び放電閾値を(a)より高く設定した場合である。同様の閾値の設定変更操作は水電解セル51の充電閾値及び燃料電池61の放電閾値に対しても可能である。 Regarding the power storage device 41, (b) is a case where the charge threshold value and the discharge threshold value are set lower than (a) according to the reference bus voltage, and (c) is a case where the charge threshold value and the discharge threshold value are set higher than (a). .. The same threshold setting change operation is also possible for the charge threshold of the water electrolysis cell 51 and the discharge threshold of the fuel cell 61.
 このように、蓄電装置41、水電解セル51、及び燃料電池61の充電閾値及び放電閾値を変化させて充放電動作を制御することにより、直流バス70と準安定化装置40,50,及び60との間で授受される直流電力を個別に調整することができる。言い換えれば、それぞれの電力バッファとしての動作をきめ細かく制御することが可能である。 In this way, the DC bus 70 and the semi-stabilizing devices 40, 50, and 60 are controlled by changing the charge threshold and the discharge threshold of the power storage device 41, the water electrolysis cell 51, and the fuel cell 61 to control the charge / discharge operation. The DC power delivered to and from is individually adjusted. In other words, it is possible to finely control the operation of each power buffer.
 前述したごとく充電閾値及び放電閾値の変更は、監視・指示装置80からの指令に基づき、あるいは、電力変換器42,52,及び62が自ら行うことができる。 As described above, the charge threshold value and the discharge threshold value can be changed based on the command from the monitoring / indicating device 80, or the power converters 42, 52, and 62 can perform themselves.
 図8A及び8Bは主安定化装置30の動作説明図である。 8A and 8B are operation explanatory views of the main stabilizer 30.
 図8Aに破線(太線)で示すように、主安定化装置30は直流バス70と蓄電装置31との間で直流電力を授受し、蓄電装置31を充放電制御する。電力変換器32内の制御回路32Bは、例えば図8Bに示す特性に従って、蓄電装置31の第1の蓄電量指標(例えば充電率)に基づきバス電圧目標値を設定する。 As shown by a broken line (thick line) in FIG. 8A, the main stabilizer 30 transfers DC power between the DC bus 70 and the power storage device 31 to control the charge / discharge of the power storage device 31. The control circuit 32B in the power converter 32 sets a bus voltage target value based on the first storage amount index (for example, charge rate) of the power storage device 31 according to the characteristics shown in FIG. 8B, for example.
 このバス電圧目標値は、直流バス70の電圧の許容範囲内で、第1の蓄電量指標が大きいほど高く、第1の蓄電量指標が小さいほど低くなるように設定され、このバス電圧目標値にバス電圧検出値が一致するように制御回路32BがDC/DC変換部32Aを制御する。 This bus voltage target value is set so as to be higher as the first storage amount index is larger and lower as the first storage amount index is smaller within the allowable range of the voltage of the DC bus 70, and this bus voltage target value is set. The control circuit 32B controls the DC / DC converter 32A so that the bus voltage detection values match.
 図9A及び9Bは準安定化装置40及び50の動作説明図である。 9A and 9B are operation explanatory views of the metastabilizing devices 40 and 50.
 図9Aに破線(太線)で示すように、準安定化装置40の電力変換器42は直流バス70の直流電力を用いて蓄電装置41を充電し、準安定化装置50の電力変換器52は直流バス70の直流電力を水電解セル51に供給して水を電気分解する。 As shown by a broken line (thick line) in FIG. 9A, the power converter 42 of the quasi-stabilizer 40 charges the power storage device 41 using the DC power of the DC bus 70, and the power converter 52 of the quasi-stabilizer 50 The DC power of the DC bus 70 is supplied to the water electrolysis cell 51 to electrolyze the water.
 この場合の充電特性は図9Bに示す通りであり、直流バス70の電圧が蓄電装置41または水電解セル51の充電閾値より高くなるほど充電電流が大きくなるように電力変換器42及び52をそれぞれ制御する。 The charging characteristics in this case are as shown in FIG. 9B, and the power converters 42 and 52 are controlled so that the charging current increases as the voltage of the DC bus 70 becomes higher than the charging threshold of the power storage device 41 or the water electrolysis cell 51, respectively. do.
 図10A及び10Bは準安定化装置40及び60の動作説明図である。 10A and 10B are operation explanatory views of the metastabilizing devices 40 and 60.
 図10Aに破線(太線)で示すように、準安定化装置40の電力変換器42は蓄電装置41を放電させて直流バス70に直流電力を供給し、準安定化装置60の電力変換器62は燃料電池61を発電動作させて直流バス70に直流電力を供給する。 As shown by a broken line (thick line) in FIG. 10A, the power converter 42 of the quasi-stabilizer 40 discharges the power storage device 41 to supply DC power to the DC bus 70, and the power converter 62 of the quasi-stabilizer 60. Operates the fuel cell 61 to generate electricity and supplies DC power to the DC bus 70.
 この場合の放電特性は図10Bに示す通りであり、直流バス70の電圧が蓄電装置41または燃料電池61の放電閾値より低くなるほど放電電流が大きくなるように電力変換器42及び62をそれぞれ制御する。 The discharge characteristics in this case are as shown in FIG. 10B, and the power converters 42 and 62 are controlled so that the discharge current increases as the voltage of the DC bus 70 becomes lower than the discharge threshold of the power storage device 41 or the fuel cell 61, respectively. ..
 本実施形態に係る直流バス制御システムによれば、システム全体の電力の入出力バランスの変化に対して、まず、応答速度の速い主安定化装置30(蓄電装置31)への電流入出力で対応することで他の装置への応答を緩和する。この際、主安定化装置30への電流が流入の場合には、蓄電装置31の充電により第1の蓄電量指標が増加し、バス電圧を上昇させる。逆に、主安定化装置30からの電流の流出の場合には、蓄電装置31の放電により第1の蓄電量指標が減少し、バス電圧が下降する。これらの動作は、主安定化装置30の電力変換器32(DC/DC変換部32Aおよび制御回路32B)によって行われる。 According to the DC bus control system according to the present embodiment, changes in the power input / output balance of the entire system are first dealt with by current input / output to the main stabilizing device 30 (storage device 31) having a fast response speed. By doing so, the response to other devices is relaxed. At this time, when the current flows into the main stabilizing device 30, the first storage amount index is increased by charging the power storage device 31, and the bus voltage is raised. On the contrary, in the case of the outflow of the current from the main stabilizer 30, the discharge of the power storage device 31 reduces the first storage amount index and lowers the bus voltage. These operations are performed by the power converter 32 (DC / DC converter 32A and control circuit 32B) of the main stabilizer 30.
 一方、準安定化装置は、バス電圧の変動に応じて、充電要素または放電要素への電流流入量を増減させて、充電または放電が行われる。この動作は、準安定化装置の電力変換器によって行われる。 On the other hand, the metastabilizing device charges or discharges by increasing or decreasing the amount of current flowing into the charging element or the discharging element according to the fluctuation of the bus voltage. This operation is performed by the power converter of the metastabilizer.
 これら一連の動作は、主安定化装置30への電流の入出力がゼロとなるように行われ、結果的に、システム全体への電流入出力の総和がゼロになるように制御される。したがって、ある直流バス電圧で、準安定化装置の電流の流入・流出が一定の値になったところで定常状態に至る。 These series of operations are performed so that the current input / output to the main stabilizer 30 becomes zero, and as a result, the total current input / output to the entire system is controlled to be zero. Therefore, at a certain DC bus voltage, a steady state is reached when the inflow / outflow of the current of the metastability device reaches a constant value.
 本実施形態によれば、各装置の動作が直流バスラインの電圧を信号としてアナログ的に行われるため、システム制御は各装置の動作による分散処理で行うことが可能であり、集中的な全体制御は必要ない。結果的に、集中的管理を行う場合に問題となる誤差の問題も解消できる。主安定化装置の反応速度は、システムがもつ電力変動に追従する必要があるが、主安定化装置が速い変動を吸収するため、準安定化装置の動作は比較的緩慢でも問題なく、また、その電流の向きも制御可能なため、水電解セルや燃料電池などの電力の吸収または放出の一方向しかできない、かつ、高速出力変動に適しない装置でも利用可能である。さらには、これらの装置の動作電圧閾値の設定や直流バス電圧に対する電流の流入・流出割合を変えることによって複数の装置を準安定化装置として利用することが可能となる。また、各装置の動作シグナルが直流バス電圧であることから、準安定化装置の増減も比較的簡単に行える。 According to this embodiment, since the operation of each device is performed in an analog manner using the voltage of the DC bus line as a signal, the system control can be performed by the distributed processing by the operation of each device, and the centralized overall control is performed. Is not needed. As a result, the problem of error, which is a problem when centralized management is performed, can be solved. The reaction speed of the main stabilizer must follow the power fluctuations of the system, but since the main stabilizer absorbs the fast fluctuations, the operation of the semi-stabilizer can be relatively slow, and there is no problem. Since the direction of the current can also be controlled, it can be used in devices such as water electrolysis cells and fuel cells that can absorb or release electric power in only one direction and are not suitable for high-speed output fluctuations. Further, by setting the operating voltage threshold value of these devices and changing the inflow / outflow ratio of the current with respect to the DC bus voltage, it becomes possible to use a plurality of devices as metastabilizing devices. Further, since the operation signal of each device is the DC bus voltage, the number of metastabilizing devices can be increased or decreased relatively easily.
 さらに、本実施形態によれば、主安定化装置30が、蓄電装置31の第2の蓄電量指標に基づいて、直流バス電圧の目標値を決定しているので、蓄電装置31の蓄電量を一定に保つことができ、長期の連続運転を安定して行うことができる。 Further, according to the present embodiment, since the main stabilizing device 30 determines the target value of the DC bus voltage based on the second storage amount index of the power storage device 31, the storage amount of the power storage device 31 is determined. It can be kept constant, and long-term continuous operation can be performed stably.
 以下、この効果を検証するために行ったシミュレーションについて説明する。 The simulation performed to verify this effect will be described below.
 図11は、本実施形態の制御システムにおけるシミュレーション結果を示す図である。本シミュレーションにおいては、第1の蓄電量指標として蓄電装置31の充放電電流を積分して得られる充電率(SOC)を用い、第2の蓄電量指標として蓄電装置31の端子電圧(バッテリ電圧)を用いた。また、第2の蓄電量指標の目標値として50Vを設定した。 FIG. 11 is a diagram showing a simulation result in the control system of the present embodiment. In this simulation, the charge rate (SOC) obtained by integrating the charge / discharge current of the power storage device 31 is used as the first storage amount index, and the terminal voltage (battery voltage) of the power storage device 31 is used as the second storage amount index. Was used. Further, 50V was set as the target value of the second storage amount index.
 図11(a)は、太陽電池の発生電力1101、電源(入力)電力1102、および負荷(出力)電力1103の時系列の変化を示す。図11(b)は、水電解セルでの消費電力1104および燃料電池での発生電力1105を示す。システムに正味の入力電力があるときは水電解セルでの電気分解(充電)が行われ、正味の出力電力があるときは燃料電池での水素の電気化学反応による直流電流の供給(放電)が行われる。 FIG. 11A shows the time-series changes of the generated power 1101, the power supply (input) power 1102, and the load (output) power 1103 of the solar cell. FIG. 11B shows the power consumption 1104 in the water electrolysis cell and the power generation 1105 in the fuel cell. When the system has a net input power, it is electrolyzed (charged) in the water electrolysis cell, and when it has a net output power, the DC current is supplied (discharged) by the electrochemical reaction of hydrogen in the fuel cell. Will be done.
 図11(c)は、蓄電装置31の端子電圧(バッテリ電圧)1106および充放電電流1107の時系列の変化を示す。蓄電装置31端子電圧1106はその目標値である50Vに近づくように制御され、蓄電装置31の充放電が行われないタイミング、すなわち充放電電流がゼロのタイミングでは50Vとなることが分かる。 FIG. 11C shows the time-series changes of the terminal voltage (battery voltage) 1106 and the charge / discharge current 1107 of the power storage device 31. It can be seen that the power storage device 31 terminal voltage 1106 is controlled so as to approach the target value of 50 V, and becomes 50 V at the timing when the power storage device 31 is not charged / discharged, that is, at the timing when the charge / discharge current is zero.
 図12は、比較例として、主安定化装置30の電力変換器32がオフセット積分部32cを有しない場合(すなわち、特許文献1の構成)での、同様のシミュレーション結果を示す。図12(a)は、太陽電池の発生電力1201、電源(入力)電力1202、および負荷(出力)電力1203の時系列の変化を示し、これは図11(a)と同一の変化である。図12(b)は、水電解セルでの消費電力1204および燃料電池での発生電力1205を示し、図11(b)とほぼ同様の変化を示す。図12(c)は、蓄電装置31の端子電圧(バッテリ電圧)1206および充放電電流1207の時系列の変化を示す。この比較例では、発生電力および消費電力が変動し、充放電が発生するたびに、蓄電装置31の電圧1206(実蓄電量の指標)は低下する。 FIG. 12 shows a similar simulation result in the case where the power converter 32 of the main stabilizer 30 does not have the offset integrator 32c (that is, the configuration of Patent Document 1) as a comparative example. FIG. 12 (a) shows the time-series changes of the generated power 1201, the power supply (input) power 1202, and the load (output) power 1203 of the solar cell, which are the same changes as in FIG. 11 (a). FIG. 12B shows the power consumption 1204 in the water electrolysis cell and the power generated 1205 in the fuel cell, and shows almost the same changes as in FIG. 11B. FIG. 12C shows the time-series changes in the terminal voltage (battery voltage) 1206 and the charge / discharge current 1207 of the power storage device 31. In this comparative example, the generated power and the power consumption fluctuate, and the voltage 1206 (index of the actual stored amount) of the power storage device 31 decreases each time charging / discharging occurs.
 以上のように本実施形態に係る直流バス制御システムは、主安定化装置30内の電力変換器32がオフセット積分部32cを有し、蓄電量指標(バッテリー電圧)の目標値からの定常的なオフセットを除去するので、蓄電装置31のバッテリー電圧すなわち蓄電量を一定に保つことができる。また、蓄電装置31の充放電電流が大きいときにはオフセット算出のためのバッテリー電圧の積分演算を行わないことで、正確ではない蓄電量に基づく制御を行わないようにでき、安定した動作が行える。以上のようにして、本実施形態に係る直流バス制御システムでは、主安定化装置30の蓄電装置31が長期間一定の蓄電量を保つことができるので、安定して長期間の連続運転が可能となる。 As described above, in the DC bus control system according to the present embodiment, the power converter 32 in the main stabilizer 30 has an offset integrating unit 32c, and the power storage amount index (battery voltage) is constantly from the target value. Since the offset is removed, the battery voltage of the power storage device 31, that is, the power storage amount can be kept constant. Further, when the charge / discharge current of the power storage device 31 is large, the integration calculation of the battery voltage for offset calculation is not performed, so that the control based on the inaccurate storage amount can be prevented and stable operation can be performed. As described above, in the DC bus control system according to the present embodiment, since the power storage device 31 of the main stabilizer 30 can maintain a constant storage amount for a long period of time, stable and long-term continuous operation is possible. It becomes.
<第2の実施形態>
 第1の実施形態に係る直流バス制御システムは、発生電力が水電解セルの電力吸収能力内であり、負荷の消費電力が燃料電池の発電能力内である場合には、主安定化装置30の蓄電装置31の充放電電流は0に制御されて安定に動作する。発生電力が水電解セルの電力吸収能力を超えたり、負荷の消費電力が燃料電池の発電能力を超えたりする場合、本システムは異常停止せずに蓄電装置31が電力を吸収または供給することで、継続動作が可能である。
<Second embodiment>
In the DC bus control system according to the first embodiment, when the generated power is within the power absorption capacity of the water electrolysis cell and the power consumption of the load is within the power generation capacity of the fuel cell, the main stabilizer 30 is used. The charge / discharge current of the power storage device 31 is controlled to 0 and operates stably. When the generated power exceeds the power absorption capacity of the water electrolysis cell or the power consumption of the load exceeds the power generation capacity of the fuel cell, this system does not stop abnormally and the power storage device 31 absorbs or supplies the power. , Continuous operation is possible.
 しかしながら、発生電力または負荷電力が水電解セルや燃料電池の能力内に戻った場合でも、過剰な蓄電量が解消されるまでは主安定化装置30の蓄電装置31からの放電または充電が続く。したがって、過剰な蓄電量の解消までは、本システムの制御能力は一時的に低下する。以下、この点について説明する。 However, even when the generated power or the load power returns to the capacity of the water electrolysis cell or the fuel cell, the discharge or charge from the power storage device 31 of the main stabilizer 30 continues until the excessive storage amount is eliminated. Therefore, the control capability of this system temporarily decreases until the excessive amount of electricity is eliminated. This point will be described below.
 なお、以下の図13から図15を用いた説明は、主安定化装置30電力変換器32にオフセット積分部32cを設けない構成(すなわち、特許文献1の構成)での動作を示す図である。 The following description using FIGS. 13 to 15 is a diagram showing an operation in a configuration in which the offset integrating unit 32c is not provided in the main stabilizer 30 power converter 32 (that is, the configuration of Patent Document 1). ..
 図13は、発生電力および負荷電力が水電解セルおよび燃料電池の能力以内である場合のシステムの動作を説明する図である。図13(a)は、発生電力1301および負荷電力1302の時間変化を示す。図13(b)は、水電解セルの消費電力1303および燃料電池での発生電力1304の時間変化を示す。図13(c)はバス電圧の制御目標値1305の時間変化を示す。図13(d)は、蓄電装置31の電圧1306および電流1307の時間変化を示す。 FIG. 13 is a diagram illustrating the operation of the system when the generated power and the load power are within the capacities of the water electrolysis cell and the fuel cell. FIG. 13A shows the time change of the generated power 1301 and the load power 1302. FIG. 13B shows the time variation of the power consumption 1303 of the water electrolysis cell and the power generated 1304 in the fuel cell. FIG. 13C shows the time change of the control target value 1305 of the bus voltage. FIG. 13D shows the time change of the voltage 1306 and the current 1307 of the power storage device 31.
 図13に示すように、発生電力および負荷電力が適正な範囲をとる場合、蓄電装置31の充放電流は0に保たれ、発生電力および負荷電力に応じて水電解セルと燃料電池が動作する。 As shown in FIG. 13, when the generated power and the load power are in an appropriate range, the charge / discharge current of the power storage device 31 is kept at 0, and the water electrolysis cell and the fuel cell operate according to the generated power and the load power. ..
 図14は、発生電力が水電解セルの電力吸収能力を超える場合のシステムの動作を説明する図である。図14(a)は、発生電力1401および負荷電力1402の時間変化を示す。図14(b)は、水電解セルの消費電力1403および燃料電池での発生電力1404の時間変化を示す。図14(c)は、蓄電装置31の電圧1405および電流1406の時間変化を示す。図14(d)は、バス電圧の制御目標値1407の時間変化を示す。 FIG. 14 is a diagram illustrating the operation of the system when the generated power exceeds the power absorption capacity of the water electrolysis cell. FIG. 14A shows the time change of the generated power 1401 and the load power 1402. FIG. 14B shows the time variation of the power consumption 1403 of the water electrolysis cell and the power generated 1404 in the fuel cell. FIG. 14C shows the time change of the voltage 1405 and the current 1406 of the power storage device 31. FIG. 14D shows the time change of the control target value 1407 of the bus voltage.
 発生電力が水電解セルの電力吸収能力を超えるので、蓄電装置31が余剰の電力を吸収し、蓄電装置31の蓄電量が増加する。発生電力がシステムの能力内に戻った場合でも、蓄電装置31の過剰な蓄電量が解消されるまでは、主安定化装置30の蓄電装置31から継続して放電が続く(図中での期間T1)。この間は、電力は蓄電装置31のみから供給され、燃料電池からは電力は供給されない。燃料電池からの電力供給がないのは、バス電圧が高いままに維持されているからである。この間、本システムから負荷電力を供給する場合は、主安定化装置30の蓄電装置31の電力供給能力を超えた電力を供給することができず、システムは主制御装置の制御から逸脱することになる。 Since the generated power exceeds the power absorption capacity of the water electrolysis cell, the power storage device 31 absorbs the surplus power, and the power storage amount of the power storage device 31 increases. Even if the generated power returns to the capacity of the system, discharge continues from the power storage device 31 of the main stabilizer 30 until the excessive storage amount of the power storage device 31 is eliminated (the period in the figure). T1). During this period, electric power is supplied only from the power storage device 31, and no electric power is supplied from the fuel cell. There is no power supply from the fuel cell because the bus voltage remains high. During this period, when the load power is supplied from this system, the power exceeding the power supply capacity of the power storage device 31 of the main stabilizer 30 cannot be supplied, and the system deviates from the control of the main control device. Become.
 ここでは、発生電力が過剰である場合について説明したが、負荷電力が過剰である場合についても同様の問題が発生する。 Here, the case where the generated power is excessive has been described, but the same problem occurs when the load power is excessive.
 本実施形態では、この問題に対して次のように対処する。 In this embodiment, this problem is dealt with as follows.
 バス電圧目標値演算部32bは、蓄電装置31の第1の蓄電量指標に基づいて、バス電圧目標値を決定する。ここで、第1の蓄電量指標は、蓄電装置31の充放電電流を積分演算して得られる値である。本実施形態では、第1の蓄電量指標に上限および下限を設定する。上限は、水電解セルまたはバッテリーの充電の最大動作に対応する値(最大動作を指示する値)またはそれよりも少し上回る値とする。また、下限は、燃料電池又はバッテリーの放電の最大動作に対応する値(最大動作を指示する値)またはそれよりも少し下回る値とする。 The bus voltage target value calculation unit 32b determines the bus voltage target value based on the first storage amount index of the power storage device 31. Here, the first storage amount index is a value obtained by integrating the charge / discharge current of the power storage device 31. In the present embodiment, an upper limit and a lower limit are set for the first storage amount index. The upper limit is a value corresponding to the maximum operation of charging the water electrolysis cell or the battery (a value indicating the maximum operation) or a value slightly higher than that. Further, the lower limit is a value corresponding to the maximum operation of the fuel cell or battery discharge (a value indicating the maximum operation) or a value slightly lower than that.
 この結果、第1の蓄電量指標と、バス電圧目標値演算部32bによって決定される目標値の関係は、図8Cに示すようになる。第1の蓄電量指標は下限値と上限値の間の値のみをとるので、バス電圧目標値もこの範囲に対応した値をとることになる。 As a result, the relationship between the first storage amount index and the target value determined by the bus voltage target value calculation unit 32b is shown in FIG. 8C. Since the first storage amount index takes only a value between the lower limit value and the upper limit value, the bus voltage target value also takes a value corresponding to this range.
 図15は、第1の蓄電量指標に上記のように上限および下限を設定した場合に、水電解セルの電力吸収能力を超える電力が供給された場合のシステムの動作を説明する図である。なお、ここでは、オフセット積分部32cによるオフセットの積分およびその加算処理は行っていない。 FIG. 15 is a diagram illustrating the operation of the system when power exceeding the power absorption capacity of the water electrolysis cell is supplied when the upper limit and the lower limit are set as described above for the first storage amount index. Here, the offset integration unit 32c does not perform the offset integration and the addition processing thereof.
 図15(a)は、発生電力1501および負荷電力1502の時間変化を示し、これは図14(a)と同一である。図15(b)は、水電解セルの消費電力1503および燃料電池での発生電力1504の時間変化を示す。図15(c)は、蓄電装置31の電圧1505および電流1506の時間変化を示す。図15(e)は、バス電圧の制御目標値1507の時間変化を示す。図15(d)における縦軸スケールが図14(e)の縦軸スケールと大きく異なることに留意されたい。 FIG. 15 (a) shows the time change of the generated power 1501 and the load power 1502, which is the same as that of FIG. 14 (a). FIG. 15B shows the time variation of the power consumption 1503 of the water electrolysis cell and the power generation 1504 of the fuel cell. FIG. 15C shows the time change of the voltage 1505 and the current 1506 of the power storage device 31. FIG. 15E shows the time change of the control target value 1507 of the bus voltage. It should be noted that the vertical scale in FIG. 15 (d) is significantly different from the vertical scale in FIG. 14 (e).
 この結果が示すように、発生電力が水電解セルの電力吸収能力を超えた状態が解消した後に短時間でバス電圧が低下し、水電解セルでの充電が終了し、燃料電池からの電力供給が可能となる。すなわち、第1の蓄電量指標に上限を設けることで、発生電力が過剰な場合でも、その状況が解消した後に比較的短時間にシステムを正常な状態に戻すことができる。 As this result shows, the bus voltage drops in a short time after the state in which the generated power exceeds the power absorption capacity of the water electrolysis cell is resolved, charging in the water electrolysis cell is completed, and power is supplied from the fuel cell. Is possible. That is, by setting an upper limit on the first storage amount index, even if the generated power is excessive, the system can be returned to the normal state in a relatively short time after the situation is resolved.
 負荷電力が過剰である場合には、第1の蓄電量指標に下限が設けられていることで、上記と同様の効果が得られる。 When the load power is excessive, the same effect as described above can be obtained by setting the lower limit in the first storage amount index.
 なお、図15(c)に示すように、システムの制御が復帰した後に、第1の蓄電量指標(計算により求められ、制御に用いられる値)と実際の蓄電装置31の蓄電量に差が生じることが分かる。このような、蓄電量の誤差が積み重なるとシステムの長期運転が妨げられる可能性が高い。 As shown in FIG. 15C, after the control of the system is restored, there is a difference between the first storage amount index (value obtained by calculation and used for control) and the actual storage amount of the power storage device 31. It turns out that it happens. If such errors in the amount of electricity stored are accumulated, there is a high possibility that the long-term operation of the system will be hindered.
 本実施形態に係る直流バス制御システムにおいては、主安定化装置30はオフセット積分部32cによって、第2の蓄電量指標(バッテリー電圧)とその目標値の差分の積分値(累積偏差)も考慮してバス電圧目標値を決定している。したがって、上述のような、計算上の蓄電量指標(第1の蓄電量指標)と実際の蓄電量との差は長期的には自動的に解消することができる。 In the DC bus control system according to the present embodiment, the main stabilizer 30 also considers the integrated value (cumulative deviation) of the difference between the second storage amount index (battery voltage) and its target value by the offset integrating unit 32c. The bus voltage target value is determined. Therefore, the difference between the calculated storage amount index (first storage amount index) and the actual storage amount as described above can be automatically eliminated in the long term.
 すなわち、本実施形態によれば、過剰な電力発生または電力消費が生じた場合に、その解消後に短時間で正常な制御に復帰できるとともに、長期間の安定した連続動作が可能となる。 That is, according to the present embodiment, when excessive power generation or power consumption occurs, normal control can be restored in a short time after the elimination, and stable continuous operation for a long period of time becomes possible.
10:太陽光発電システム
11:太陽電池
12:電力変換器
12A:DC/DC変換部
12B:制御回路
12a,12f:電圧検出器
12b:電流検出器
12c:MPPT制御部
12d:電圧・電流制御部
12e:駆動回路
12g:比較部
20:風力発電システム
21:風力発電機
22:電力変換器
30:主安定化装置
31:蓄電装置
31a:センサ
32:電力変換器
32A:DC/DC変換部
32B:制御回路
32a:電圧検出器
32b:バス電圧目標値演算部
32c:オフセット積分部
32d:減算器
32e:加算器
32f:充放電制御部
32g:駆動回路
40:準安定化装置
41:蓄電装置
41a:センサ
42:電力変換器
42A:DC/DC変換部
42B:制御回路
42a:電圧検出器
42b:比較部
42c:減算器
42d:充放電制御部
42e:駆動回路
50,50A:準安定化装置
51:水電解セル
52:電力変換器
52A:DC/DC変換部
52B:制御回路
52a:電圧検出器
52b:比較部
52c:減算器
52d:充電制御部
52e:駆動回路
53:水素貯蔵装置
60:準安定化装置
61:燃料電池
62:電力変換器
70:直流バス
80:監視・指示装置
90:負荷
10: Solar power generation system 11: Solar cell 12: Power converter 12A: DC / DC converter 12B: Control circuits 12a, 12f: Voltage detector 12b: Current detector 12c: MPPT control unit 12d: Voltage / current control unit 12e: Drive circuit 12g: Comparison unit 20: Wind power generation system 21: Wind power generator 22: Power converter 30: Main stabilizer 31: Power storage device 31a: Sensor 32: Power converter 32A: DC / DC conversion unit 32B: Control circuit 32a: Voltage detector 32b: Bus voltage target value calculation unit 32c: Offset integration unit 32d: Subtractor 32e: Adder 32f: Charge / discharge control unit 32g: Drive circuit 40: Semi-stabilizing device 41: Power storage device 41a: Sensor 42: Power converter 42A: DC / DC converter 42B: Control circuit 42a: Voltage detector 42b: Comparison unit 42c: Subtractor 42d: Charge / discharge control unit 42e: Drive circuit 50, 50A: Semi-stabilizer 51: Water electrolytic cell 52: Power converter 52A: DC / DC converter 52B: Control circuit 52a: Voltage detector 52b: Comparison unit 52c: Subtractor 52d: Charge control unit 52e: Drive circuit 53: Hydrogen storage device 60: Semi-stable Chemical device 61: Fuel cell 62: Power converter 70: DC bus 80: Monitoring / indicating device 90: Load

Claims (9)

  1.  入力電源と負荷との間を接続する直流バスの電力変動を制御する直流バス制御システムであって、
     第1の充放電要素と第1の電力変換器とを有する主安定化装置と、
     第2の充放電要素、充電要素、または放電要素と第2の電力変換器とを有する少なくとも1つの準安定化装置と
    を含み、
     前記第1の電力変換器は、バス電圧目標値を求め、前記バス電圧目標値に前記直流バスの電圧が一致するように、前記第1の充放電要素と前記直流バスとの間で直流電力を双方向に授受するよう構成され、
     前記第2の電力変換器は、前記第2の充放電要素、充電要素、または放電要素の充電又は放電に関する閾値と前記直流バスの前記電圧との差分に応じて電流目標値を求め、前記電流目標値に等しい電流が前記第2の充放電要素、充電要素、または放電要素に流れるように、前記第2の充放電要素、充電要素、または放電要素と前記直流バスとの間で直流電力を授受するよう構成されており、
     前記第1の電力変換器は、前記第1の充放電要素の第1の蓄電量指標に応じた目標値と、前記第1の充放電要素の前記第1の蓄電量指標とは異なる方式で求められる第2の蓄電量指標とに基づいて前記バス電圧目標値を求める、
     ことを特徴とする直流バス制御システム。
    It is a DC bus control system that controls the power fluctuation of the DC bus that connects the input power supply and the load.
    A main stabilizer having a first charge / discharge element and a first power converter,
    Includes a second charge / discharge element, a charge element, or at least one metastabilizer having a discharge element and a second power converter.
    The first power converter obtains a bus voltage target value, and DC power is supplied between the first charge / discharge element and the DC bus so that the voltage of the DC bus matches the bus voltage target value. Is configured to give and receive in both directions
    The second power converter obtains a current target value according to the difference between the threshold value for charging or discharging the second charging / discharging element, the charging element, or the discharging element and the voltage of the DC bus, and obtains the current target value. DC power is applied between the second charge / discharge element, charge element, or discharge element and the DC bus so that a current equal to the target value flows through the second charge / discharge element, charge element, or discharge element. It is configured to give and receive,
    The first power converter has a method different from the target value corresponding to the first storage amount index of the first charge / discharge element and the first storage amount index of the first charge / discharge element. The bus voltage target value is obtained based on the obtained second storage amount index.
    A DC bus control system characterized by this.
  2.  前記第2の蓄電量指標は前記第1の充放電要素の端子電圧であり、
     前記バス電圧目標値は、前記第1の充放電要素の第1の蓄電量指標に応じた目標値に、前記第2の蓄電量指標とその目標値の差分を積分して得られる累積偏差に応じた値を加えることにより求められる、
     請求項1に記載の直流バス制御システム。
    The second storage amount index is the terminal voltage of the first charge / discharge element.
    The bus voltage target value is a cumulative deviation obtained by integrating the difference between the second storage amount index and the target value into the target value corresponding to the first storage amount index of the first charge / discharge element. Obtained by adding the corresponding value,
    The DC bus control system according to claim 1.
  3.  前記累積偏差は、前記第2の蓄電量指標と前記第2の蓄電量指標の目標値との差分を、前記第1の充放電要素の充放電電流の大きさが所定値より小さいときのみ積分した値である、
     請求項2に記載の直流バス制御システム。
    The cumulative deviation integrates the difference between the second storage amount index and the target value of the second storage amount index only when the magnitude of the charge / discharge current of the first charge / discharge element is smaller than a predetermined value. Is the value
    The DC bus control system according to claim 2.
  4.  前記第1の電力変換器は、前記第1の充放電要素の充放電を行わない期間を設け、
     前記累積偏差は、前記第2の蓄電量指標と前記第2の蓄電量指標の目標値との差分を、前記期間について積分した値である、
     請求項2または3に記載の直流バス制御システム。
    The first power converter is provided with a period during which the first charge / discharge element is not charged / discharged.
    The cumulative deviation is a value obtained by integrating the difference between the second storage amount index and the target value of the second storage amount index for the period.
    The DC bus control system according to claim 2 or 3.
  5.  前記第1の蓄電量指標は、前記第1の充放電要素の充放電電流を積分した値である、
     請求項1から4のいずれか1項に記載の直流バス制御システム。
    The first storage amount index is a value obtained by integrating the charge / discharge currents of the first charge / discharge elements.
    The DC bus control system according to any one of claims 1 to 4.
  6.  前記第1の蓄電量指標には、所定の上限および下限が設定される、
     請求項5に記載の直流バス制御システム。
    A predetermined upper limit and lower limit are set for the first storage amount index.
    The DC bus control system according to claim 5.
  7.  前記上限は、前記第2の充放電要素または前記充電要素の充電の最大動作に対応する値であり、
     前記下限は、前記第2の充放電要素または前記放電要素の放電の最大動作に対応する値である、
     請求項6に記載の直流バス制御システム。
    The upper limit is a value corresponding to the maximum operation of charging of the second charging / discharging element or the charging element.
    The lower limit is a value corresponding to the maximum operation of the second charge / discharge element or the discharge of the discharge element.
    The DC bus control system according to claim 6.
  8.  前記の入力電源として再生可能エネルギー電源システムを更に含む、請求項1から7のいずれか1項に記載の直流バス制御システム。 The DC bus control system according to any one of claims 1 to 7, further including a renewable energy power supply system as the input power source.
  9.  前記負荷を更に含む、請求項8に記載の直流バス制御システム。 The DC bus control system according to claim 8, further comprising the load.
PCT/JP2021/013467 2020-03-31 2021-03-30 Direct-current bus control system WO2021200902A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022512265A JPWO2021200902A1 (en) 2020-03-31 2021-03-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020064292 2020-03-31
JP2020-064292 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021200902A1 true WO2021200902A1 (en) 2021-10-07

Family

ID=77928966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013467 WO2021200902A1 (en) 2020-03-31 2021-03-30 Direct-current bus control system

Country Status (2)

Country Link
JP (1) JPWO2021200902A1 (en)
WO (1) WO2021200902A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023106406A1 (en) * 2021-12-10 2023-06-15 国立研究開発法人理化学研究所 Direct current bus control system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129585A (en) * 2004-10-27 2006-05-18 Hitachi Ltd Controller for dc distribution system, and transformer controller
JP2006267014A (en) * 2005-03-25 2006-10-05 Nec Lamilion Energy Ltd Remaining capacity estimating technique of secondary cell, device, and battery pack
JP2008199723A (en) * 2007-02-09 2008-08-28 Railway Technical Res Inst Residual capacity estimation unit of battery
JP2011095209A (en) * 2009-11-02 2011-05-12 Railway Technical Res Inst Apparatus and program for estimating amount of discharge
WO2013145618A1 (en) * 2012-03-26 2013-10-03 パナソニック株式会社 Charging/discharging control device and charging/discharging control method
WO2013145658A1 (en) * 2012-03-26 2013-10-03 パナソニック株式会社 Charging/discharging control apparatus, power storage system, and charging/discharging control method
WO2019103059A1 (en) * 2017-11-21 2019-05-31 国立研究開発法人理化学研究所 Direct-current bus control system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129585A (en) * 2004-10-27 2006-05-18 Hitachi Ltd Controller for dc distribution system, and transformer controller
JP2006267014A (en) * 2005-03-25 2006-10-05 Nec Lamilion Energy Ltd Remaining capacity estimating technique of secondary cell, device, and battery pack
JP2008199723A (en) * 2007-02-09 2008-08-28 Railway Technical Res Inst Residual capacity estimation unit of battery
JP2011095209A (en) * 2009-11-02 2011-05-12 Railway Technical Res Inst Apparatus and program for estimating amount of discharge
WO2013145618A1 (en) * 2012-03-26 2013-10-03 パナソニック株式会社 Charging/discharging control device and charging/discharging control method
WO2013145658A1 (en) * 2012-03-26 2013-10-03 パナソニック株式会社 Charging/discharging control apparatus, power storage system, and charging/discharging control method
WO2019103059A1 (en) * 2017-11-21 2019-05-31 国立研究開発法人理化学研究所 Direct-current bus control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023106406A1 (en) * 2021-12-10 2023-06-15 国立研究開発法人理化学研究所 Direct current bus control system

Also Published As

Publication number Publication date
JPWO2021200902A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
JP6923231B2 (en) DC bus control system
US8373312B2 (en) Solar power generation stabilization system and method
JP4838017B2 (en) Hybrid power supply and power management system and method applied to the hybrid power supply
JP4155674B2 (en) Frequency control device for power system including secondary battery
US7550952B2 (en) Electric power control apparatus, power generation system and power grid system
JP4791689B2 (en) Power supply
JP4850019B2 (en) Storage battery equipment in private power generation equipment connected to power system and operation method of storage battery equipment
CN104782038B (en) Droop compensation using current feedback
AU2011225422B8 (en) Photovoltaic generation system and power feeding system
KR101926010B1 (en) A power converter system using new-renewable energy
US9391537B2 (en) Photovoltaic system and power supply system
JP2017051083A (en) Power generation system, power generation method and program
US20120253537A1 (en) Power supply method, recording medium which is computer readable and power generation system
WO2021200902A1 (en) Direct-current bus control system
CN109861288B (en) Photovoltaic hybrid energy storage power system based on CPS
WO2021261094A1 (en) Dc bus control system
JP4993972B2 (en) Private power generation system combining storage battery equipment and private power generation equipment and output control method of private power generation equipment in the system
WO2017199462A1 (en) Current/voltage control system
KR20170021606A (en) The battery energy storage system and reactive power compensation method using thereof
JP2011141969A (en) Sodium-sulfur battery system
KR20120110478A (en) Energy storage system for new renewable energy generator and method for controlling the same
WO2023054406A1 (en) Dc bus control system
WO2023106406A1 (en) Direct current bus control system
KR102713751B1 (en) Integrated power supply for controlling voltage
JP2015008561A (en) Low-loss power conversion device and method of controlling the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512265

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779067

Country of ref document: EP

Kind code of ref document: A1