JP2015204652A - power conversion system - Google Patents

power conversion system Download PDF

Info

Publication number
JP2015204652A
JP2015204652A JP2014081715A JP2014081715A JP2015204652A JP 2015204652 A JP2015204652 A JP 2015204652A JP 2014081715 A JP2014081715 A JP 2014081715A JP 2014081715 A JP2014081715 A JP 2014081715A JP 2015204652 A JP2015204652 A JP 2015204652A
Authority
JP
Japan
Prior art keywords
voltage
power converter
power
bus
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014081715A
Other languages
Japanese (ja)
Other versions
JP6287512B2 (en
Inventor
祐輔 中島
Yusuke Nakajima
祐輔 中島
渉 飯島
Wataru Iijima
渉 飯島
石田 清
Kiyoshi Ishida
清 石田
雅光 丸
Masamitsu Maru
雅光 丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2014081715A priority Critical patent/JP6287512B2/en
Publication of JP2015204652A publication Critical patent/JP2015204652A/en
Application granted granted Critical
Publication of JP6287512B2 publication Critical patent/JP6287512B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Direct Current Feeding And Distribution (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve voltage stability of a power conversion system, in which a plurality of power converters are connected to a DC bus, by suppressing system stop even when a power converter performing voltage control of the DC bus has stopped.SOLUTION: Normally, a second power converter 2 of a plurality of first to fourth power converters 1 to 4 performs voltage constant control of a DC bus 7. The first, third, and fourth power converters 1, 3, 4 individually perform current control. In the case that the second power converter 2 performing the voltage constant control cannot keep voltage of the DC bus 7 constant, the voltage constant control is performed by the third power converter 3 at the time of the voltage of the DC bus 7 having been a voltage instruction value for the third power converter 3.

Description

本発明は、直流母線に複数台の電力変換器が接続された電力変換システムにおける直流母線電圧の制御技術に関する。   The present invention relates to a DC bus voltage control technique in a power conversion system in which a plurality of power converters are connected to a DC bus.

図9は、直流母線7に複数台の電力変換器が接続された回路の一例を示す図である。第1電力変換器1は交流と直流母線7に対し、双方向の電力の授受を行うことができる。第1電力変換器1の装置機能としては ピークカットおよび、自然エネルギー発電(例えば、太陽光発電モジュール:以下、太陽光発電モジュールと称する)PVで発電された電力を負荷Lまたは系統6に供給する。第2電力変換器2と第3電力変換器3の直流母線7の反対側には蓄電媒体(例えば、キャパシタ,二次電池)8,9が接続され、これらの第2電力変換器2,第3電力変換器3は直流母線7に対し、双方向に電力の授受を行い、充電時・放電時とも電流制御を行う。   FIG. 9 is a diagram illustrating an example of a circuit in which a plurality of power converters are connected to the DC bus 7. The first power converter 1 can transmit and receive bidirectional power to the AC and DC bus 7. As the device function of the first power converter 1, the power generated by the peak cut and the natural energy power generation (for example, the solar power generation module: hereinafter referred to as the solar power generation module) PV is supplied to the load L or the system 6. . Power storage media (for example, capacitors, secondary batteries) 8 and 9 are connected to opposite sides of the DC bus 7 of the second power converter 2 and the third power converter 3, and the second power converter 2 and the second power converter 2 3 The power converter 3 transmits and receives power to and from the DC bus 7 in both directions, and performs current control both during charging and discharging.

ここで、第2電力変換器2は、直流母線7の電圧を所定の値に保持するように動作する。また、第4電力変換器4には太陽光発電モジュールPVが接続されているため、最大電力動作点追従制御(以下、MPPT制御と称する)により、直流母線7に対し電力を供給する。   Here, the second power converter 2 operates so as to maintain the voltage of the DC bus 7 at a predetermined value. Further, since the photovoltaic power generation module PV is connected to the fourth power converter 4, power is supplied to the DC bus 7 by maximum power operating point tracking control (hereinafter referred to as MPPT control).

仮に、第1電力変換器1が時間軸による固定電流指令値運転(スケジュール運転)、第3電力変換器3が時間軸による固定電流指令値運転(スケジュール運転)、第4電力変換器4がMPPT制御で動作していた場合のコントローラ5の指示について以下に示す。   Temporarily, the 1st power converter 1 is fixed current command value operation (schedule operation) by a time axis, the 3rd power converter 3 is fixed current command value operation (schedule operation) by a time axis, and the 4th power converter 4 is MPPT. The instructions of the controller 5 when operating under control will be shown below.

時間軸による固定電流指令値運転(スケジュール運転)は時間により電流指令値が与えられるが、太陽光発電モジュールPVの出力は天候により 左右される。そのため、 以下の(1),(2)の場合が想定される。
(1)第1電力変換器1出力>PV発電量+第3電力変換器3の放電量の場合
(2)第1電力変換器1出力<PV発電量+第3電力変換器3の放電量の場合
直流母線7を一定電圧に保つためには、以下の式とする必要がある。
In the fixed current command value operation (schedule operation) on the time axis, the current command value is given by time, but the output of the photovoltaic power generation module PV depends on the weather. Therefore, the following cases (1) and (2) are assumed.
(1) First power converter 1 output> PV power generation amount + discharge amount of third power converter 3 (2) First power converter 1 output <PV power generation amount + discharge amount of third power converter 3 In order to maintain the DC bus 7 at a constant voltage, it is necessary to use the following equation.

入力電流(=第1電力変換器1の直流電流)=出力電流(=第2電力変換器2+第3電力変換器3+第4電力変換器4の各直流母線電流)
*瞬時の電力でも同様
そのため、コントローラ5は、図9に示す○印の4箇所の電流を検出して各々の電力変換器の発電量および出力容量を監視し、上記式を満足するように第2電力変換器2の充放電を制御し、直流母線7を一定電圧に保つ。 すなわち、第4電力変換器4のMPPT制御は天候次第の制御とし、敢えて第4電力変換器4は外部から電流制御していない。 第1電力変換器1の電流は電流指令値で制御されているため、第4電力変換器4のアンコントロールされた電流の補償は第2電力変換器2で行う。
Input current (= DC current of first power converter 1) = Output current (= second power converter 2 + third power converter 3 + each DC bus current of fourth power converter 4)
* The same applies to instantaneous power. Therefore, the controller 5 detects the currents at the four points indicated by ◯ in FIG. 9 to monitor the power generation amount and output capacity of each power converter, and to satisfy the above formula. 2 Charge / discharge of the power converter 2 is controlled to keep the DC bus 7 at a constant voltage. That is, the MPPT control of the fourth power converter 4 is controlled according to the weather, and the fourth power converter 4 is not dared to control current from the outside. Since the current of the first power converter 1 is controlled by the current command value, compensation of the uncontrolled current of the fourth power converter 4 is performed by the second power converter 2.

図10に示すように、上記(1)第1電力変換器1出力>PV発電量+第3電力変換器3の放電量の場合は、第2電力変換器2の蓄電媒体8から不足電流を放電する。上記(2)第1電力変換器1出力<PV発電量+第3電力変換器3の放電量の場合は第2電力変換器2の蓄電媒体8において余分な電流を充電する。   As shown in FIG. 10, in the case of (1) output of the first power converter 1> PV power generation amount + discharge amount of the third power converter 3, an insufficient current is generated from the storage medium 8 of the second power converter 2. Discharge. In the case of (2) output of the first power converter 1 <PV power generation amount + discharge amount of the third power converter 3, an extra current is charged in the power storage medium 8 of the second power converter 2.

蓄電媒体8をキャパシタと考えれば、上記(1),(2)共に、蓄電媒体8には限界容量がある。よって、(1)の場合では、不足電流の放電にも限界がある。そのため、放電の限界に達した場合は、放電末(電圧低下)の信号を発し、第1電力変換器1の電流指令値を低下させることにより、第2電力変換器2の蓄電媒体8の電圧を適正電圧範囲に制御する。(2)の場合も同様に、蓄電媒体8における余分電流の充電にも限界がある。そのため、充電の限界に達した場合は、充電末(電圧上昇)の信号を発し、第1電力変換器1の電流指令値を上昇させることにより、第2電力変換器2の蓄電媒体8の電圧を適正電圧範囲に制御する。   If the power storage medium 8 is considered as a capacitor, the power storage medium 8 has a limit capacity in both cases (1) and (2). Therefore, in the case of (1), there is a limit to the discharge of insufficient current. For this reason, when the discharge limit is reached, a voltage at the end of the discharge (voltage drop) is issued, and the current command value of the first power converter 1 is reduced, whereby the voltage of the power storage medium 8 of the second power converter 2 is reduced. To an appropriate voltage range. Similarly, in the case of (2), there is a limit to the charging of the extra current in the power storage medium 8. Therefore, when the limit of charging is reached, a signal at the end of charging (voltage increase) is issued, and the current command value of the first power converter 1 is increased, whereby the voltage of the power storage medium 8 of the second power converter 2 is increased. To an appropriate voltage range.

特開2009−232675号公報JP 2009-232675 A 特開2009−232674号公報JP 2009-232674 A

しかしながら、 直流母線7への入力電流と出力電流を同一とする必要があるため、コントローラ5で他の電力変換器の出力を監視して第2電力変換器2に出力指令を与えるとコントローラ5の制御遅れにより、若干の誤差が生じ変動幅が大きくなる。   However, since the input current to the DC bus 7 and the output current need to be the same, if the controller 5 monitors the output of another power converter and gives an output command to the second power converter 2, the controller 5 Due to the control delay, a slight error occurs and the fluctuation range becomes large.

また、一つの電力変換器(例えば、第2電力変換器2)において直流母線7の電圧制御を行っていた場合、その電力変換器(第2電力変換器2)が故障等により停止すると、コントローラ5から新たな電圧制御機器の指定があるまでの間、直流母線7の電圧を一定に保つ機器がなくなる。そのため、直流母線7の電圧が不安定となり、システムが停止してしまうことがある。   Further, when the voltage control of the DC bus 7 is performed in one power converter (for example, the second power converter 2), when the power converter (second power converter 2) stops due to a failure or the like, the controller There is no device that keeps the voltage of the DC bus 7 constant from 5 until the designation of a new voltage control device. Therefore, the voltage of the DC bus 7 becomes unstable and the system may stop.

また、コントローラ5で他の電流を監視して、出力を決定する方式では電力変換器を追加する際に与えるデータ数が多いため演算負担が増大する。   Further, in the method in which the controller 5 monitors other currents and determines the output, the amount of data given when adding a power converter is large, so that the calculation burden increases.

以上示したようなことから、直流母線に複数の電力変換器が接続された電力変換システムにおいて、直流母線の電圧制御を行っていた電力変換器が停止した場合でも、システムの停止を抑制し、システムの電圧安定度の向上を図ることが課題となる。   As described above, in the power conversion system in which a plurality of power converters are connected to the DC bus, even when the power converter that has performed the voltage control of the DC bus stops, the system stop is suppressed, The challenge is to improve the voltage stability of the system.

本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、直流母線に接続された複数の電力変換器と、前記複数の電力変換器を制御するコントローラと、を備えた電力変換システムであって、コントローラから前記複数の電力変換器に電圧一定制御を開始する電圧指令値をそれぞれ出力し、通常時は、前記複数の電力変換器のうち何れか一つの電力変換器により直流母線の電圧一定制御を行い、他の電力変換器は各々電流制御を行い、前記電圧一定制御を行っている電力変換器で直流母線の電圧を一定に保てない場合、直流母線の電圧が他の電力変換器の電圧指令値になった時点で当該他の電力変換器で電圧一定制御を行うことを特徴とする。   The present invention has been devised in view of the conventional problems, and one aspect thereof includes a plurality of power converters connected to a DC bus and a controller that controls the plurality of power converters. The power conversion system outputs a voltage command value for starting constant voltage control from the controller to the plurality of power converters, and in normal operation, any one of the plurality of power converters If the voltage of the DC bus is not controlled and the other power converters perform current control, and the power converter performing the voltage constant control cannot maintain the voltage of the DC bus, the voltage of the DC bus When the voltage becomes a voltage command value of another power converter, the other power converter performs a constant voltage control.

また、その一態様として、前記複数の電力変換器に、予めそれぞれ異なる電圧指令値を設定しておくことを特徴とする。   In addition, as one aspect thereof, different voltage command values are set in advance in the plurality of power converters.

本発明によれば、直流母線に複数の電力変換器が接続された電力変換システムにおいて、直流母線の電圧制御を行っていた電力変換器が停止した場合でも、システムの停止を抑制し、システムの電圧安定度の向上を図ることが可能となる。   According to the present invention, in a power conversion system in which a plurality of power converters are connected to a DC bus, even when the power converter that has performed voltage control of the DC bus is stopped, the stop of the system is suppressed, It is possible to improve the voltage stability.

実施形態における電力変換システムを示すブロック図。The block diagram which shows the power conversion system in embodiment. 実施形態における電力変換システムの動作を示すフローチャート。The flowchart which shows operation | movement of the power conversion system in embodiment. 正常時における電力変換システムの動作を示すブロック図。The block diagram which shows operation | movement of the power conversion system at the time of normal. 正常時における各電力変換器の指令値を示すタイムチャート。The time chart which shows the command value of each power converter at the time of normal. 第2電力変換器故障時における電力変換システムの動作を示すブロック図。The block diagram which shows operation | movement of the power conversion system at the time of a 2nd power converter failure. 第2電力変換器復帰時における電力変換システムの動作を示すブロック図。The block diagram which shows operation | movement of the power conversion system at the time of 2nd power converter return. 第3電力変換器故障時における電力変換システムの動作を示すブロック図。The block diagram which shows operation | movement of the power conversion system at the time of a 3rd power converter failure. 第3電力変換器復帰時における電力変換システムの動作を示すブロック図。The block diagram which shows operation | movement of the power conversion system at the time of a 3rd power converter return. 従来における電力変換システムを示すブロック図。The block diagram which shows the conventional power conversion system. 従来の電力変換システムの指令値を示すタイムチャート。The time chart which shows the command value of the conventional power conversion system.

以下、本発明における電力変換システムの実施形態を図1〜図8に基づいて詳細に説明する。   Hereinafter, embodiments of a power conversion system according to the present invention will be described in detail with reference to FIGS.

[実施形態]
図1は、本実施形態における電力変換システムを示すブロック図である。図1に示すように、直流母線7には、第1〜第4電力変換器1〜4が接続されている。この第1電力変換器1にはそれぞれスイッチを介して系統6,負荷Lが接続されている。また、第2電力変換器2,第3電力変換器3には、それぞれ蓄電媒体8,蓄電媒体9が接続されている。第4電力変換器4には、太陽光発電モジュールPVが接続されている。直流母線7の電圧は電圧検出器PTにより検出される。
[Embodiment]
FIG. 1 is a block diagram showing a power conversion system in the present embodiment. As shown in FIG. 1, first to fourth power converters 1 to 4 are connected to the DC bus 7. A grid 6 and a load L are connected to the first power converter 1 via switches, respectively. In addition, a power storage medium 8 and a power storage medium 9 are connected to the second power converter 2 and the third power converter 3, respectively. A solar power generation module PV is connected to the fourth power converter 4. The voltage of the DC bus 7 is detected by a voltage detector PT.

本実施形態における電力変換システムは、ある一つの電力変換器において直流母 線7の電圧が一定となるように制御するものである。コントローラ5から各々の第1〜第4電力変換器1〜4へ指示するのは電力変換器ごとに異なる電圧指令値のみである。ここで電圧指令値は、電流制御→電圧制御に切り換える電圧値、すなわち、電圧制御を開始する電圧値を示す。指定された電力変換器以外は各々が電流制御等で動作を行っており、他の電力変換器の故障等により直流母線7の電圧が低下し、直流母線7の電圧が電力変換器に指示された電圧指令値になったところで、当該他の電力変換器を電流制御から電圧制御へ切り換え、直流母線7の電圧を一定に保つように制御を行う。なお、コントローラ5から与える電圧指令値は第1〜第4電力変換器1〜4にそれぞれ異なる値を与えることにより、それぞれの電力変換器が何らかの原因で停止した場合においても自動で直流母線7の電圧を一定に保つ制御を行えるようになる。   The power conversion system according to the present embodiment controls so that the voltage of the DC bus 7 is constant in a certain power converter. The controller 5 instructs each of the first to fourth power converters 1 to 4 only with voltage command values that are different for each power converter. Here, the voltage command value indicates a voltage value switched from current control to voltage control, that is, a voltage value at which voltage control is started. Each of the power converters other than the designated power converter operates under current control, etc., and the voltage of the DC bus 7 is lowered due to a failure of the other power converter, and the voltage of the DC bus 7 is instructed to the power converter. When the voltage command value is reached, the other power converter is switched from current control to voltage control, and control is performed so as to keep the voltage of the DC bus 7 constant. Note that the voltage command value given from the controller 5 is given a different value to each of the first to fourth power converters 1 to 4, so that even when each power converter stops for some reason, the DC bus 7 automatically Control to keep the voltage constant can be performed.

各々の第1〜第4電力変換器1〜4はそれぞれに設定された電圧指令値までの間はスケジュール運転やMPPT制御等を実施し、電力変換器内で電流制御を行う。 Each of the first to fourth power converters 1 to 4 performs a schedule operation, MPPT control, and the like until the voltage command value set for each, and performs current control in the power converter.

以下、図2〜図8に基づいて、具体例を説明する。図2は、本実施形態における電力変換システムの動作を示すフローチャートである。ここで、コントローラ5から、各電力変換器に次の電圧指令値が与えられているものとする。第2電力変換器2=360V,第3電力変換器3=350V,第1電力変換器1=340V,第4電力変換器4=330V。   Hereinafter, specific examples will be described with reference to FIGS. FIG. 2 is a flowchart showing the operation of the power conversion system in the present embodiment. Here, it is assumed that the following voltage command value is given from the controller 5 to each power converter. 2nd power converter 2 = 360V, 3rd power converter 3 = 350V, 1st power converter 1 = 340V, 4th power converter 4 = 330V.

[正常時]
図2,図3,図4に示すように、S1において、系統電圧側の第2電力変換器2により、直流母線7の電圧一定制御(例:360V)が行われている。他の第1電力変換器1,第3電力変換器3は、コントローラ5より与えられた電流指令値(スケジュール運転等)の電流出力を実施する。第4電力変換器4は、太陽光発電モジュールPVで発電された電力を有効利用するため、MPPT制御を行う(ピークカット運転等)。
[Normal]
As shown in FIGS. 2, 3, and 4, in S <b> 1, constant voltage control (for example, 360 V) of the DC bus 7 is performed by the second power converter 2 on the system voltage side. The other first power converter 1 and the third power converter 3 execute a current output of a current command value (schedule operation or the like) given from the controller 5. The fourth power converter 4 performs MPPT control (peak cut operation or the like) in order to effectively use the power generated by the solar power generation module PV.

直流母線7の電圧は、発電量が多ければ電圧が上昇し、発電量が少なければ電圧が低下するため、第2電力変換器2で一定に保つ。   The voltage of the DC bus 7 is kept constant by the second power converter 2 because the voltage increases if the amount of power generation is large and decreases if the amount of power generation is small.

[直流母線7電圧低下時:第2電力変換器2故障(例:350V)]
第2電力変換器2に貯蔵できる電荷量には制限があるため、太陽光発電モジュールPVの補完量が多く、蓄電媒体8の容量を超えた場合、第2電力変換器2は停止する。また、太陽光発電モジュールPVの補完量が少なく、蓄電媒体8のエネルギーが無くなった場合も同様に第2電力変換器2は停止する。また、第2電力変換器2が故障した場合も、直流母線7の電圧を一定に保てなくなる。
[When DC bus 7 voltage drops: second power converter 2 failure (eg 350V)]
Since there is a limit to the amount of charge that can be stored in the second power converter 2, the second power converter 2 stops when the supplementary amount of the photovoltaic power generation module PV is large and the capacity of the power storage medium 8 is exceeded. Similarly, the second power converter 2 also stops when the supplementary amount of the solar power generation module PV is small and the energy of the power storage medium 8 is exhausted. Further, even when the second power converter 2 fails, the voltage of the DC bus 7 cannot be kept constant.

このように、第2電力変換器2が何らかの理由により、直流母線7の電圧を一定に保てない場合は、図5に示すように、第2電力変換器2を停止する(S2)。その結果、直流母線7の電圧を制御する電力変換器がなくなるため、直流母線7の電圧が不安定となり、直流母線7の電圧が低下する。   As described above, when the second power converter 2 cannot keep the voltage of the DC bus 7 constant for some reason, the second power converter 2 is stopped as shown in FIG. 5 (S2). As a result, since there is no power converter that controls the voltage of the DC bus 7, the voltage of the DC bus 7 becomes unstable, and the voltage of the DC bus 7 decreases.

S3において、コントローラ5により、その直流母線7の電圧が低下して第3電力変換器3の電圧指令値になった時点で、自動で第3電力変換器3を電圧制御に切り換え、直流母線7の電圧を一定(350V)に保つように制御する。   In S3, the controller 5 automatically switches the third power converter 3 to voltage control when the voltage of the DC bus 7 decreases to the voltage command value of the third power converter 3, and the DC bus 7 Is controlled to be constant (350 V).

[第2電力変換器2復帰時]
S4において、第2電力変換器2が復帰した場合、図6に示すように、第2電力変換器2が直流母線7の電圧を上昇させて直流母線7の電圧を360Vで一定に保つように制御を行う。直流母線7の電圧上昇に伴い、第3電力変換器3が定電流制御(スケジュール運転等)へ自動移行し、定常時の状態へ復帰する(S5)。
[When the second power converter 2 is restored]
In S4, when the second power converter 2 returns, as shown in FIG. 6, the second power converter 2 increases the voltage of the DC bus 7 so as to keep the voltage of the DC bus 7 constant at 360V. Take control. As the voltage of the DC bus 7 increases, the third power converter 3 automatically shifts to constant current control (schedule operation or the like) and returns to a steady state (S5).

[直流母線 7電圧低下時:第3電力変換器3故障(例:340V)]
第2電力変換器2停止後、第3電力変換器3が何らかの理由により、直流母線7の電圧一定制御を行うことが難しい場合、図7に示すように、第3電力変換器3を停止する。その結果、直流母線7の電圧を制御する電力変換器がなくなるため、直流母線7の電圧が不安定となり、直流母線7の電圧が低下する(S6)。
[DC bus 7 When voltage drop: third power converter 3 failure (example: 340V)]
After the second power converter 2 is stopped, if it is difficult for the third power converter 3 to perform constant voltage control of the DC bus 7 for some reason, the third power converter 3 is stopped as shown in FIG. . As a result, since there is no power converter for controlling the voltage of the DC bus 7, the voltage of the DC bus 7 becomes unstable and the voltage of the DC bus 7 decreases (S6).

S7において、その直流母線7の電圧が低下して第1電力変換器1の電圧指令値になった時点で、自動で第1電力変換器1を電圧制御に切り換え、直流母線7の電圧を一定(340V)に保つように制御する。   In S7, when the voltage of the DC bus 7 decreases to the voltage command value of the first power converter 1, the first power converter 1 is automatically switched to voltage control, and the voltage of the DC bus 7 is kept constant. Control to keep at (340V).

[第3電力変換器3復帰時]
第3電力変換器3が復帰した場合、図8に示すように、第3電力変換器3が電圧を上昇させて直流母線7の電圧を350Vに保つように制御を行う(S8)。直流母線7の電圧上昇に伴い、第1電力変換器1が電流制御へ自動移行し、定常時の状態へ復帰する(S9)。
[When returning to the third power converter 3]
When the third power converter 3 returns, control is performed so that the third power converter 3 increases the voltage and keeps the voltage of the DC bus 7 at 350 V as shown in FIG. 8 (S8). As the voltage of the DC bus 7 increases, the first power converter 1 automatically shifts to current control and returns to the steady state (S9).

以上示したように、本実施形態によれば、直流母線7に複数台の電力変換器が接続された電力変換システムにおいて、直流母線7の電圧一定制御を行っている特定の電力変換器(本実施形態では第2電力変換器2)の停止時(電圧低下時)に、次の直流母線7の電圧制御を受け持つ電力変換器(本実施形態では第3電力変換器3)を電流制御→電圧制御に切り換え、直流母線7の電圧一定制御を行うことにより、システムの停止を抑制し、システムの電圧安定度を向上させることが可能となる。   As described above, according to the present embodiment, in the power conversion system in which a plurality of power converters are connected to the DC bus 7, a specific power converter (this book) that performs constant voltage control of the DC bus 7. In the embodiment, when the second power converter 2) is stopped (when the voltage drops), the power converter (the third power converter 3 in the present embodiment) responsible for the voltage control of the next DC bus 7 is controlled by current control → voltage. By switching to control and performing constant voltage control of the DC bus 7, it is possible to suppress the stop of the system and improve the voltage stability of the system.

また、コントローラ5からは、それぞれの第1〜第4電力変換器1〜4が自動で直流母線7の電圧一定制御に切り換わる電圧指令値を与えるのみであるため、電流制御→電圧制御の切り換えを早く行うことが可能となる。   Further, since the controller 5 only gives a voltage command value that automatically switches to constant voltage control of the DC bus 7 from the first to fourth power converters 1 to 4, switching from current control to voltage control. Can be done quickly.

また、従来は、直流母線7への入力電流と出力電流を同一とする必要があるため、コントローラ5で他の電力変換器の出力を監視して第2電力変換器2に出力指令を与えるとコントローラ5の制御遅れにより、若干の誤差が生じ変動幅が大きくなっていた。本実施形態では、コントローラ5から、それぞれの第1〜第4電力変換器1〜4に電圧指令値を与えるのみであるため、コントローラ5の制御遅れにより若干の誤差が生じ変動幅が大きくなることを抑制することが可能となる。   Further, conventionally, since it is necessary to make the input current to the DC bus 7 equal to the output current, the controller 5 monitors the output of another power converter and gives an output command to the second power converter 2. Due to the control delay of the controller 5, a slight error occurred and the fluctuation range was large. In this embodiment, since only the voltage command value is given from the controller 5 to the first to fourth power converters 1 to 4, a slight error occurs due to the control delay of the controller 5 and the fluctuation range becomes large. Can be suppressed.

さらに、装置を追加する場合においても、各々の電力変換器が独自に動作を行っているため、容易に追加することが可能である。   Furthermore, even when a device is added, since each power converter operates independently, it can be easily added.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

1…第1電力変換器
2…第2電力変換器
3…第3電力変換器
4…第4電力変換器
5…コントローラ
6…系統
7…直流母線
8,9…蓄電媒体
L…負荷
PV…太陽光発電モジュール(自然エネルギー発電等)
DESCRIPTION OF SYMBOLS 1 ... 1st power converter 2 ... 2nd power converter 3 ... 3rd power converter 4 ... 4th power converter 5 ... Controller 6 ... System | strain 7 ... DC bus 8, 9 ... Power storage medium L ... Load PV ... Sun Photovoltaic modules (natural energy power generation, etc.)

Claims (2)

直流母線に接続された複数の電力変換器と、
前記複数の電力変換器を制御するコントローラと、を備えた電力変換システムであって、
コントローラから前記複数の電力変換器に電圧一定制御を開始する電圧指令値をそれぞれ出力し、
通常時は、前記複数の電力変換器のうち何れか一つの電力変換器により直流母線の電圧一定制御を行い、他の電力変換器は各々電流制御を行い、
前記電圧一定制御を行っている電力変換器で直流母線の電圧を一定に保てない場合、直流母線の電圧が他の電力変換器の電圧指令値になった時点で当該他の電力変換器で電圧一定制御を行うことを特徴とする電力変換システム。
A plurality of power converters connected to the DC bus;
A power conversion system comprising a controller for controlling the plurality of power converters,
A voltage command value for starting constant voltage control is output from the controller to the plurality of power converters, respectively.
During normal operation, DC power bus constant voltage control is performed by any one of the plurality of power converters, and the other power converters each perform current control.
When the voltage of the DC bus cannot be kept constant by the power converter performing the voltage constant control, the voltage of the DC bus becomes the voltage command value of the other power converter. A power conversion system characterized by performing constant voltage control.
前記複数の電力変換器に、予めそれぞれ異なる電圧指令値を設定しておくことを特徴とする請求項1記載の電力変換システム。   The power conversion system according to claim 1, wherein different voltage command values are set in advance in the plurality of power converters.
JP2014081715A 2014-04-11 2014-04-11 Power conversion system Active JP6287512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014081715A JP6287512B2 (en) 2014-04-11 2014-04-11 Power conversion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014081715A JP6287512B2 (en) 2014-04-11 2014-04-11 Power conversion system

Publications (2)

Publication Number Publication Date
JP2015204652A true JP2015204652A (en) 2015-11-16
JP6287512B2 JP6287512B2 (en) 2018-03-07

Family

ID=54597820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014081715A Active JP6287512B2 (en) 2014-04-11 2014-04-11 Power conversion system

Country Status (1)

Country Link
JP (1) JP6287512B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105846420A (en) * 2016-05-03 2016-08-10 国网江苏省电力公司电力科学研究院 DC power distribution network voltage control method suitable for DG access
WO2018173546A1 (en) * 2017-03-23 2018-09-27 ソニー株式会社 Power control device, power control method, and computer program
WO2021090371A1 (en) * 2019-11-05 2021-05-14 三菱電機株式会社 Power reception and distribution system
WO2024042696A1 (en) * 2022-08-26 2024-02-29 東芝三菱電機産業システム株式会社 Dc power distribution system and voltage stabilizing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339118A (en) * 2002-05-22 2003-11-28 My Way Giken Kk Distributed power supply system
JP2006129585A (en) * 2004-10-27 2006-05-18 Hitachi Ltd Controller for dc distribution system, and transformer controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339118A (en) * 2002-05-22 2003-11-28 My Way Giken Kk Distributed power supply system
JP2006129585A (en) * 2004-10-27 2006-05-18 Hitachi Ltd Controller for dc distribution system, and transformer controller

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105846420A (en) * 2016-05-03 2016-08-10 国网江苏省电力公司电力科学研究院 DC power distribution network voltage control method suitable for DG access
WO2018173546A1 (en) * 2017-03-23 2018-09-27 ソニー株式会社 Power control device, power control method, and computer program
JPWO2018173546A1 (en) * 2017-03-23 2020-01-23 ソニー株式会社 Power control device, power control method, and computer program
EP3605769A4 (en) * 2017-03-23 2020-03-25 Sony Corporation Power control device, power control method, and computer program
US11063438B2 (en) 2017-03-23 2021-07-13 Sony Corporation Power control apparatus and power control method
JP7147743B2 (en) 2017-03-23 2022-10-05 ソニーグループ株式会社 POWER CONTROL DEVICE, POWER CONTROL METHOD AND COMPUTER PROGRAM
WO2021090371A1 (en) * 2019-11-05 2021-05-14 三菱電機株式会社 Power reception and distribution system
WO2024042696A1 (en) * 2022-08-26 2024-02-29 東芝三菱電機産業システム株式会社 Dc power distribution system and voltage stabilizing device
JP7473903B1 (en) 2022-08-26 2024-04-24 株式会社Tmeic DC power distribution system and voltage stabilizer

Also Published As

Publication number Publication date
JP6287512B2 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
JP5717172B2 (en) Power supply system
JP5940946B2 (en) Power conditioner and control method thereof
JP6287512B2 (en) Power conversion system
KR20140100671A (en) Control Method of Stand-alone Microgrid using Inverter for ESS
KR101417669B1 (en) System for controlling bidirectional converter
JP2008131736A (en) Distributed power system and step-up/step-down chopper device
JP5556258B2 (en) Uninterruptible power system
JP5454011B2 (en) Uninterruptible power supply system
JP2014099986A (en) Composite power storage system
Issa et al. Smooth mode transfer in AC microgrids during unintentional islanding
JP6089565B2 (en) Emergency power system
KR20160060851A (en) Power Controlling System Having Plurality of Energy Storage System and Method for Operating The Same
JP2016103915A (en) Storage battery system and power storage method
TWI505597B (en) Micro-grid operation system with smart energy management
JP4337687B2 (en) Power supply
JP6684440B2 (en) Self-excited reactive power controller
WO2022264303A1 (en) Uninterruptible power supply device
JP6432334B2 (en) Load starting method for voltage sag compensator
KR101549313B1 (en) Battery Energy Storage System and Method for Controlling Battery Energy Storage System
JP5813028B2 (en) Distributed power supply
JP6618870B2 (en) Power conversion device for solar power generation, control method, and solar power generation system
JP2021093193A (en) Power control system
JP4569552B2 (en) Instantaneous voltage drop compensation device
JP6975719B2 (en) Fuel cell power plant with active and reactive modes
JP2006311725A (en) Controller for power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R150 Certificate of patent or registration of utility model

Ref document number: 6287512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150