JP2006124206A - Degreased intermediate for aluminum nitride and sintered compact - Google Patents

Degreased intermediate for aluminum nitride and sintered compact Download PDF

Info

Publication number
JP2006124206A
JP2006124206A JP2004312147A JP2004312147A JP2006124206A JP 2006124206 A JP2006124206 A JP 2006124206A JP 2004312147 A JP2004312147 A JP 2004312147A JP 2004312147 A JP2004312147 A JP 2004312147A JP 2006124206 A JP2006124206 A JP 2006124206A
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
degreasing
thermal conductivity
degreased
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004312147A
Other languages
Japanese (ja)
Inventor
Masuhiro Natsuhara
益宏 夏原
Hirohiko Nakada
博彦 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004312147A priority Critical patent/JP2006124206A/en
Publication of JP2006124206A publication Critical patent/JP2006124206A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intermediate for an aluminum nitride sintered compact which is the intermediate in its manufacturing process and from which the aluminum nitride sintered compact satisfying specified thermal conductivity or specified blackness can be obtained. <P>SOLUTION: The degreased intermediate whose lightness is designated as N6 or less in JIS Z 8721, favorably N4 or less, is obtained by degreasing an aluminum nitride formed body containing an organic compound under a non-oxidized atmosphere in the manufacturing process of the aluminum nitride sintered compact. The aluminum nitride sintered compact with the high thermal conductivity or the high blackness and without causing inferior goods can be certainly manufactured by firing the degreased intermediate for aluminum nitride under a non-oxidized atmosphere. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、サブマウントなどのヒートシンクや、サセプタ、プローバなどの半導体製造装置あるいは検査装置に広く利用されている窒化アルミニウム焼結体、並びにその製造過程で得られる脱脂中間体に関する。   The present invention relates to an aluminum nitride sintered body widely used in a semiconductor manufacturing apparatus or inspection apparatus such as a heat sink such as a submount, a susceptor, and a prober, and a degreasing intermediate obtained in the manufacturing process.

従来から、熱伝導率の高い窒化アルミニウム焼結体については、窒化アルミニウム粉末に所定量の希土類元素やアルカリ土類金属元素の化合物を焼結助剤として加え、混合して焼結することにより製造されてきた。また、遮光性が要求される分野においては、更に炭素を所定量含有させることで、黒色に近い窒化アルミニウム焼結体が製造されている。   Conventionally, an aluminum nitride sintered body with high thermal conductivity is manufactured by adding a predetermined amount of a rare earth element or alkaline earth metal element compound to the aluminum nitride powder as a sintering aid, and mixing and sintering. It has been. Moreover, in the field | area where light-shielding property is requested | required, the aluminum nitride sintered compact close | similar to black is manufactured by containing a predetermined amount of carbon further.

例えば、特開平1−179765号公報には、所定量の炭素を含有し、更にアルカリ土類金属元素や希土類元素を含有した、高熱伝導率の窒化アルミニウム焼結体が記載されている。また、特開2001−146476公報には、所定量の結晶質と非晶質のカーボンを含有させることによって、黒色の窒化アルミニウム焼結体が得られることが記載されている。
特開平1−179765号公報 特開2001−146476公報
For example, Japanese Patent Application Laid-Open No. 1-179765 describes a high thermal conductivity aluminum nitride sintered body containing a predetermined amount of carbon and further containing an alkaline earth metal element or a rare earth element. Japanese Patent Laid-Open No. 2001-146476 describes that a black aluminum nitride sintered body can be obtained by containing a predetermined amount of crystalline and amorphous carbon.
JP-A-1-179765 JP 2001-146476 A

上記した従来方法によって得られる窒化アルミニウム焼結体においては、高熱伝導率の窒化アルミニウム焼結体又は黒色の窒化アルミニウム焼結体がそれぞれ同一工程により作製されたものであっても、例えば熱伝導率が低い焼結体が得られたり、あるいは黒色の度合いが低い焼結体が得られるなど、品質のばらつきが生じるという問題点があった。   In the aluminum nitride sintered body obtained by the conventional method described above, even if the aluminum nitride sintered body having high thermal conductivity or the black aluminum nitride sintered body is produced by the same process, for example, thermal conductivity There is a problem that quality variation occurs, for example, a sintered body having a low blackness or a sintered body having a low degree of blackness is obtained.

例えば、従来の手法では、窒化アルミニウム焼結体の熱伝導率は、同一焼結ロットのサンプルの熱伝導率で代表していた。即ち、製品に加工する前の全ての焼結体について熱伝導率を測定することは実際には不可能であるため、サンプルの熱伝導率を測定して、所定の熱伝導率以上であれば全ての焼結体を次の工程に送り、例えばヒートシンクなどの製品としていた。しかし、出来上がった製品には所定の性能が得られないものが含まれ、その焼結体を詳細に調べると、例えば熱伝導率がサンプルよりもかなり低いなどの原因が判明することが多かった。   For example, in the conventional method, the thermal conductivity of the aluminum nitride sintered body is represented by the thermal conductivity of the sample of the same sintering lot. That is, since it is actually impossible to measure the thermal conductivity of all the sintered bodies before being processed into products, the thermal conductivity of the sample is measured. All of the sintered bodies were sent to the next process, for example, as a product such as a heat sink. However, some of the finished products do not have a predetermined performance. When the sintered body is examined in detail, the cause is often found to be, for example, that the thermal conductivity is considerably lower than that of the sample.

また、黒色の窒化アルミニウム焼結体においても、全ての脱脂体の炭素量を測定することは不可能であるから、同一脱脂ロットからサンプルを抜き取って炭素量を測定し、そのサンプルが所定の炭素量であれば、その脱脂ロットの全ての脱脂体を次の工程に送っていた。しかしながら、サンプルが所定量の炭素量を含有していたとしても、実際には黒色化の度合いの低い焼結体が得られることがあり、遮光性基板として不適切である場合が発生していた。   In addition, since it is impossible to measure the carbon content of all degreased bodies in a black aluminum nitride sintered body, a sample is taken from the same degreasing lot and the carbon content is measured. If it was a quantity, all the defatted bodies of the defatted lot were sent to the next step. However, even if the sample contains a predetermined amount of carbon, a sintered body with a low degree of blackening may actually be obtained, which may be inappropriate as a light-shielding substrate. .

本発明は、このような従来の事情に鑑み、製造工程の途中における中間体の段階で簡単に検査でき、最終的に得られる窒化アルミニウム焼結体の全てが所定の熱伝導率あるいは所定の黒色度を満足するような、窒化アルミニウム焼結体の中間体を提供することを目的とする。   In view of such conventional circumstances, the present invention can be easily inspected at an intermediate stage in the course of the manufacturing process, and all of the finally obtained aluminum nitride sintered body has a predetermined thermal conductivity or a predetermined black color. It aims at providing the intermediate body of the aluminum nitride sintered compact which satisfies degree.

上記目的を達成するため、本発明は、窒化アルミニウム焼結体の製造工程において、有機化合物を含有する窒化アルミニウム成形体を非酸化性雰囲気中にて脱脂して得られた脱脂中間体であって、JIS Z 8721に規定する明度がN6以下であることを特徴とする窒化アルミニウム脱脂中間体を提供するものである。上記本発明の窒化アルミニウム脱脂中間体においては、前記明度がN4以下であることが好ましい。   In order to achieve the above object, the present invention provides a degreasing intermediate obtained by degreasing an aluminum nitride molded body containing an organic compound in a non-oxidizing atmosphere in a manufacturing process of an aluminum nitride sintered body. The aluminum nitride degreasing intermediate is characterized in that the brightness specified in JIS Z 8721 is N6 or less. In the aluminum nitride degreased intermediate of the present invention, the lightness is preferably N4 or less.

本発明は、また、上記した窒化アルミニウム脱脂中間体を非酸化性雰囲気中で焼成することにより得られることを特徴とする窒化アルミニウム焼結体を提供するものである。   The present invention also provides an aluminum nitride sintered body obtained by firing the above-described aluminum nitride degreased intermediate in a non-oxidizing atmosphere.

本発明によれば、焼結体製造工程の途中の成形体を脱脂した段階において、その窒化アルミニウム脱脂中間体の明度を測定確認することで、熱伝導率の低い焼結体あるいは黒色度が低い焼結体の発生をなくし、最終的に得られる全の窒化アルミニウム焼結体について所定の熱伝導率あるいは所定の黒色度を満足させることができ、焼結時の不良品発生を撲滅することができる。   According to the present invention, at the stage of degreasing the molded body in the middle of the sintered body manufacturing process, the lightness of the aluminum nitride degreased intermediate is measured and confirmed, so that the sintered body with low thermal conductivity or the blackness is low. It is possible to eliminate the generation of sintered bodies, satisfy the predetermined thermal conductivity or predetermined blackness for all aluminum nitride sintered bodies finally obtained, and eliminate the occurrence of defective products during sintering. it can.

窒化アルミニウム成形体を非酸化雰囲気中での熱処理により脱脂した後の脱脂中間体の色調に関しては、その成形体に含有される有機化合物が熱分解し、生成した炭化物などの炭素化合物が脱脂中間体中に存在することによって着色する。しかし、本発明者らの研究により、窒化アルミニウム脱脂中間体中の炭素含有量が同一であったとしても、脱脂中間体を焼結して得られる窒化アルミニウム焼結体の熱伝導率や黒色度(即ち、明度)は必ずしも同一になるとは限らないことが分かった。   Regarding the color tone of the degreased intermediate after the aluminum nitride molded body is degreased by heat treatment in a non-oxidizing atmosphere, the organic compound contained in the molded body is thermally decomposed, and the generated carbon compound such as carbide is degreased intermediate. It is colored by being in it. However, as a result of research by the present inventors, even if the carbon content in the aluminum nitride degreasing intermediate is the same, the thermal conductivity and blackness of the aluminum nitride sintered body obtained by sintering the degreasing intermediate It was found that (that is, brightness) is not necessarily the same.

そこで、窒化アルミニウム脱脂中間体に含有される炭素化合物のどのような性質が、焼結体の熱伝導率や黒色度に影響を与えるのかについて研究した結果、含有される炭素化合物の揮散温度が影響を与えていることが判明した。即ち、同一の炭素含有量で炭素化合物を含有する窒化アルミニウム脱脂中間体であっても、その炭素化合物の揮散温度によって挙動が異なる。そして、炭素化合物の揮散温度については、推測ではあるが、炭素化合物の分子量が影響しているものと考えられる。   Therefore, as a result of investigating what properties of carbon compounds contained in aluminum nitride degreasing intermediates affect the thermal conductivity and blackness of sintered bodies, the volatilization temperature of the contained carbon compounds has an effect. Turned out to be. That is, even an aluminum nitride defatted intermediate containing a carbon compound with the same carbon content has different behavior depending on the volatilization temperature of the carbon compound. The volatilization temperature of the carbon compound is presumed to be influenced by the molecular weight of the carbon compound.

具体的には、所定量の炭素化合物が窒化アルミニウム脱脂中間体に含有されている場合、その炭素含有量が一定であれば、分子量の高い炭素化合物を多く含むほど脱脂中間体の明度が低く(黒色に近く)なり、最終的に得られる焼結体の熱伝導率は高くなるか、あるいは焼結体の明度は低くなって黒色度が向上する。即ち、窒化アルミニウム脱脂中間体に含まれる炭素化合物の形態によって、窒化アルミニウム焼結体に与える影響が異なるために、このような現象が起こると考えられる。   Specifically, when a predetermined amount of carbon compound is contained in the aluminum nitride defatted intermediate, if the carbon content is constant, the lightness of the defatted intermediate decreases as the carbon compound having a higher molecular weight increases ( The thermal conductivity of the sintered body finally obtained is increased, or the brightness of the sintered body is decreased and the blackness is improved. That is, it is considered that such a phenomenon occurs because the influence on the aluminum nitride sintered body varies depending on the form of the carbon compound contained in the aluminum nitride degreased intermediate.

更に詳しくは、窒化アルミニウム脱脂中間体の炭素含有量が同一であっても、分子量の大きな炭素化合物が含有される場合は、その脱脂中間体の明度は低く(黒色に近く)なり、含有される炭素化合物は高温まで揮散されにくい。そして、炭素化合物が焼結時に揮散する際には、窒化アルミニウム粒子の表面に存在する酸素化合物を激しく還元するため、結果的に窒化アルミニウム焼結体の酸素含有量を低下させ、熱伝導率を向上させることができる。しかしながら、逆に脱脂中間体に含有される炭素化合物の分子量が小さい場合には、その脱脂中間体の明度は高く(白色に近く)なり、含有される炭素化合物は低温で揮散し始めるため、窒化アルミニウム表面の酸素化合物と十分に反応することができず、得られる窒化アルミニウム焼結体の酸素含有量は相対的に多くなり、熱伝導率が低下する結果となる。   More specifically, even if the carbon content of the aluminum nitride degreasing intermediate is the same, when a carbon compound having a large molecular weight is contained, the brightness of the degreasing intermediate is low (close to black) and contained. Carbon compounds are not easily stripped to high temperatures. When the carbon compound volatilizes during sintering, the oxygen compound present on the surface of the aluminum nitride particles is vigorously reduced. As a result, the oxygen content of the aluminum nitride sintered body is reduced, and the thermal conductivity is increased. Can be improved. However, conversely, when the molecular weight of the carbon compound contained in the degreasing intermediate is small, the brightness of the degreasing intermediate is high (close to white), and the contained carbon compound starts to evaporate at a low temperature. It cannot react sufficiently with the oxygen compound on the aluminum surface, and the resulting aluminum nitride sintered body has a relatively high oxygen content, resulting in a decrease in thermal conductivity.

また、窒化アルミニウム焼結体の黒色化に関しても、所定量の炭素を焼結体中に含有させて黒色化させるには、分子量の大きな炭素化合物を窒化アルミニウム脱脂中間体中に残存させる必要がある。そうしないと、最終的に所定量の炭素を窒化アルミニウム焼結体中に存在させることはできず、焼結体の十分な黒色化が起こらない。この場合、同一の炭素含有量を有する窒化アルミニウム脱脂中間体であっても、明度の低い(黒色に近い)脱脂中間体ほど、焼結して得られる窒化アルミニウム焼結体の炭素含有量が多くなり、焼結体の黒色度も高くなる。   Further, regarding the blackening of the aluminum nitride sintered body, it is necessary to leave a carbon compound having a large molecular weight in the aluminum nitride degreasing intermediate in order to blacken the predetermined amount of carbon contained in the sintered body. . Otherwise, the predetermined amount of carbon cannot be finally present in the aluminum nitride sintered body, and sufficient blackening of the sintered body does not occur. In this case, even in the case of an aluminum nitride degreasing intermediate having the same carbon content, the carbon content of the aluminum nitride sintered body obtained by sintering is higher as the degreasing intermediate has a lower brightness (closer to black). Thus, the blackness of the sintered body is also increased.

このように、本発明者らの研究により、窒化アルミニウム脱脂中間体の色調、即ち明度が、最終的な窒化アルミニウム焼結体の熱伝導率や黒色度に影響を与えることが分かった。よって、この知見に基づいてなされた本発明においては、有機化合物を含有する窒化アルミニウム成形体を非酸化雰囲気中で熱処理した後の脱脂中間体の明度(JIS Z 8721)をN6以下とすることにより、この脱脂中間体を焼結すれば、熱伝導率の低い焼結体あるいは黒色度の低い焼結体の発生をなくすことができる。   As described above, the inventors' research has revealed that the color tone, that is, the brightness of the aluminum nitride degreased intermediate affects the thermal conductivity and blackness of the final aluminum nitride sintered body. Therefore, in the present invention made based on this finding, the brightness (JIS Z 8721) of the degreased intermediate after heat-treating the aluminum nitride molded body containing the organic compound in a non-oxidizing atmosphere is set to N6 or less. If this degreased intermediate is sintered, the generation of a sintered body having a low thermal conductivity or a sintered body having a low blackness can be eliminated.

従って、窒化アルミニウム脱脂中間体の明度を非破壊で全数検査して、明度がN6以下の脱脂中間体を焼結することにより、不良品となる無駄な焼結を行うことが無くなり、結果として所定の特性を有する窒化アルミニウム焼結体のみを得ることができるため、コスト低減に役立てることができる。また、後述するように、窒化アルミニウム成形体に含有される有機化合物の種類や含有量、あるいは脱脂のための熱処理に用いる非酸化雰囲気や温度を予め適宜選定すれば、更に進んで脱脂中間体に含有される炭素化合物の分子量ないし揮散温度を調整できるので、窒化アルミニウム脱脂中間体の明度をN6以下に制御することも可能である。   Therefore, the brightness of the aluminum nitride degreased intermediate is inspected in a non-destructive manner, and the degreased intermediate having a lightness of N6 or less is sintered. Since only the aluminum nitride sintered body having the above characteristics can be obtained, it can be used for cost reduction. In addition, as will be described later, if the type and content of the organic compound contained in the aluminum nitride molded body or the non-oxidizing atmosphere and temperature used for the heat treatment for degreasing are appropriately selected in advance, the degreasing intermediate further proceeds. Since the molecular weight or volatilization temperature of the contained carbon compound can be adjusted, it is also possible to control the lightness of the aluminum nitride degreasing intermediate to N6 or less.

本発明において使用する窒化アルミニウム粉末は、特に制約は無いが、比表面積が2.0〜5.0m/gであるものが好ましい。比表面積が2.0m/g未満では、窒化アルミニウムの焼結性が低下するため好ましくない。また、比表面積が5.0m/gを超えると、粉末の凝集が非常に強くなるため好ましくない。窒化アルミニウム粉末に含まれる酸素量は2重量%以下が好ましく、2重量%を超えると焼結体の熱伝導率が低下する。また、原料に含有されるアルミニウムを除く金属不純物量については、合計で2000ppm以下が好ましく、これを超えると焼結体の熱伝導率が低下するからである。更に、金属不純物としてSi等の4族元素やFe等の鉄族元素は、熱伝導率を低下させる作用が高いため特に好ましくなく、含有率はそれぞれ500ppm以下であることが好ましい。 The aluminum nitride powder used in the present invention is not particularly limited, but preferably has a specific surface area of 2.0 to 5.0 m 2 / g. A specific surface area of less than 2.0 m 2 / g is not preferable because the sinterability of aluminum nitride is reduced. On the other hand, if the specific surface area exceeds 5.0 m 2 / g, the aggregation of the powder becomes very strong, which is not preferable. The amount of oxygen contained in the aluminum nitride powder is preferably 2% by weight or less, and if it exceeds 2% by weight, the thermal conductivity of the sintered body decreases. In addition, the amount of metal impurities excluding aluminum contained in the raw material is preferably 2000 ppm or less in total, and if it exceeds this, the thermal conductivity of the sintered body decreases. Furthermore, group 4 elements such as Si and iron group elements such as Fe as metal impurities are not particularly preferred because they have a high effect of reducing the thermal conductivity, and the content is preferably 500 ppm or less.

窒化アルミニウムは一般に難焼結材であるため、焼結体の熱伝導率を100W/mK以上の高熱伝導率とするためには、焼結助剤を添加することが好ましい。焼結助剤は窒化アルミニウム粒子の表面に存在するアルミニウム酸化物やアルミニウム酸窒化物と反応して、窒化アルミニウムの緻密化を促進すると共に、窒化アルミニウムの熱伝導率低下の一因である酸素をトラップして、熱伝導率を向上させる働きがある。添加する焼結助剤としては、希土類元素化合物が好ましく、特に窒化アルミニウムの酸素を除去するトラップ能力の高いイットリウム化合物が好ましい。   Since aluminum nitride is generally a hard-to-sinter material, it is preferable to add a sintering aid to make the sintered body have a high thermal conductivity of 100 W / mK or higher. The sintering aid reacts with aluminum oxide and aluminum oxynitride present on the surface of the aluminum nitride particles to promote densification of the aluminum nitride and to reduce oxygen, which is a cause of a decrease in the thermal conductivity of the aluminum nitride. Traps and improves the thermal conductivity. As the sintering aid to be added, a rare earth element compound is preferable, and an yttrium compound having a high trapping capability for removing oxygen from aluminum nitride is particularly preferable.

また、焼結助剤の添加量としては、酸化物換算で0.01〜5.0重量%の範囲が好ましい。焼結助剤が0.01重量%未満の場合、十分緻密な焼結体が得られにくいだけでなく、熱伝導率も低くなってしまうため好ましくない。また、焼結助剤が5.0重量%を超えると、粒界に焼結助剤が存在するようになるため、腐食性雰囲気中で窒化アルミニウム焼結体を使用する場合には、この粒界に存在する焼結助剤部分がエッチングされ、脱粒やパーティクルの原因となる。   The amount of the sintering aid added is preferably in the range of 0.01 to 5.0% by weight in terms of oxide. When the sintering aid is less than 0.01% by weight, not only is it difficult to obtain a sufficiently dense sintered body, but also the thermal conductivity is lowered, which is not preferable. Further, if the sintering aid exceeds 5.0% by weight, the sintering aid will be present at the grain boundary. Therefore, when using an aluminum nitride sintered body in a corrosive atmosphere, this grain The portion of the sintering aid present in the boundary is etched, causing degranulation and particles.

また、焼結助剤として添加する希土類元素化合物の形態としては、酸化物や窒化物、フッ化物、ステアリン酸化合物などが使用できる。これらのうちで酸化物に関しては、特に安価で入手が容易であるというメリットがある。また、ステアリン酸化合物に関しては、有機溶剤との親和性が高いため、特に原料粉末と焼結助剤などを有機溶剤にて混合する際に混合性が高くなり特に好適である。更に、ステアリン酸化合物は、脱脂処理の際に熱分解して脱脂中間体中に炭素化合物として残存するため、脱脂中間体の明度を高める点で特に好ましい。   As the form of the rare earth element compound added as a sintering aid, oxides, nitrides, fluorides, stearic acid compounds and the like can be used. Among these, oxides have the advantage of being inexpensive and easy to obtain. The stearic acid compound is particularly suitable because it has a high affinity with an organic solvent, so that the mixing property is particularly high when the raw material powder and the sintering aid are mixed in the organic solvent. Furthermore, since the stearic acid compound is thermally decomposed during the degreasing treatment and remains as a carbon compound in the degreased intermediate, it is particularly preferable in terms of increasing the brightness of the degreased intermediate.

次に、本発明の窒化アルミニウム脱脂中間体、及び焼結体の製造方法について具体的に説明する。まず、上記した窒化アルミニウム粉末及び必要に応じて焼結助剤からなる原料粉に対して、所定量の有機溶剤、有機バインダー、更には必要に応じて分散剤や邂逅剤を添加し、混合してスラリーを作製する。特に、黒色の窒化アルミニウム焼結体を製造する場合には、上記各成分に加えて、更にカーボン粉末を添加する必要がある。尚、混合のための手法としては、ボールミル混合や、超音波による混合などが可能である。   Next, the manufacturing method of the aluminum nitride degreasing intermediate of the present invention and the sintered body will be specifically described. First, a predetermined amount of an organic solvent, an organic binder, and, if necessary, a dispersant and a glaze are added to and mixed with the above-mentioned aluminum nitride powder and raw material powder comprising a sintering aid as necessary. To make a slurry. In particular, when producing a black aluminum nitride sintered body, it is necessary to add carbon powder in addition to the above components. As a mixing method, ball mill mixing, ultrasonic mixing, or the like is possible.

得られたスラリーを用いて窒化アルミニウム成形体を作製する。例えば、スラリーをスプレードライによって顆粒とし、その顆粒をプレス成形して成形体を作製することができる。また、上記スラリーをドクターブレード法によりシート成形することもできる。ここに挙げた成形方法はその一例であり、特に成形体形成の手法は問わない。また、得られた成形体に対して、必要に応じてスクリーン印刷等の手法により、WやMoなどの高融点金属を主成分としたペーストを塗布して、メタライズ層を形成することも可能である。   An aluminum nitride molded body is produced using the obtained slurry. For example, the slurry can be made into granules by spray drying, and the granules can be press-molded to produce a compact. Further, the slurry can be formed into a sheet by a doctor blade method. The molding method mentioned here is an example, and the method for forming a molded body is not particularly limited. Moreover, it is also possible to form a metallized layer by applying a paste containing a refractory metal such as W or Mo as a main component to the obtained molded body by a method such as screen printing as necessary. is there.

尚、原料粉に添加され且つ成形体に含有される有機化合物、中でも特に有機バインダーは、成形体の脱脂時における熱処理により分解されて、その一部は除去されるが、一部は炭素化合物として窒化アルミニウム脱脂中間体中に残存する。従って、残存する炭素化合物により脱脂中間体の明度がN6以下となるように、有機バインダーの種類や含有量を予め実験的に選定しておくことが望ましい。例えば、有機バインダーとしてポリビニルブチラールやアクリル樹脂を用い、その添加量を0.1〜30重量%とすることが好ましい。   The organic compound added to the raw material powder and contained in the molded body, especially the organic binder, is decomposed by heat treatment during degreasing of the molded body, and a part thereof is removed, but a part thereof is a carbon compound. It remains in the aluminum nitride degreasing intermediate. Therefore, it is desirable to experimentally select in advance the type and content of the organic binder so that the lightness of the defatted intermediate is N6 or less due to the remaining carbon compound. For example, it is preferable to use polyvinyl butyral or an acrylic resin as the organic binder and to add 0.1 to 30% by weight.

上記の窒化アルミニウム成形体は、次に、非酸化性雰囲気中で脱脂処理を行って、脱脂中間体とする。脱脂処理の条件に関しては、使用する非酸化性ガスの露点が−30℃以下であることが好ましい。これ以上の露点を有するガス雰囲気中で脱脂処理を行うと、得られる脱脂中間体の明度がN6を越えてしまうため好ましくない。また、脱脂処理に使用するガスとしては、非酸化性ガスであれば特に制限は無いが、コスト面からは窒素ガスが好ましい。   Next, the aluminum nitride molded body is degreased in a non-oxidizing atmosphere to obtain a degreased intermediate. Regarding the degreasing conditions, the dew point of the non-oxidizing gas used is preferably −30 ° C. or lower. If the degreasing treatment is performed in a gas atmosphere having a dew point higher than this, the brightness of the obtained degreasing intermediate exceeds N6, which is not preferable. In addition, the gas used for the degreasing treatment is not particularly limited as long as it is a non-oxidizing gas, but nitrogen gas is preferable from the viewpoint of cost.

また、脱脂温度は300〜1000℃の範囲が好ましい。脱脂温度が300℃未満では、成形体に含まれる有機物化合物が十分に分解されず、脱脂中間体の明度がN6を超えてしまうため好ましくない。また、1000℃を超える温度で脱脂を行った場合には、脱脂中間体中に残存する炭素化合物の濃度が低くなり、且つ脱脂中間体の粉末表面が熱処理によって大気中の酸素や水分と素早く反応し、その明度を高める(白くなる)ため好ましくない。   The degreasing temperature is preferably in the range of 300 to 1000 ° C. When the degreasing temperature is less than 300 ° C., the organic compound contained in the molded body is not sufficiently decomposed, and the brightness of the degreasing intermediate exceeds N6. In addition, when degreasing is performed at a temperature exceeding 1000 ° C., the concentration of the carbon compound remaining in the degreasing intermediate decreases, and the powder surface of the degreasing intermediate reacts quickly with oxygen and moisture in the atmosphere by heat treatment. However, it is not preferable because the brightness is increased (becomes white).

このようにして得られる窒化アルミニウム脱脂中間体については、その明度をN6以下とする。例えば、得られた全ての脱脂中間体の明度を測定し、N6以下のものを選択して焼結する。また、上記のごとく有機バインダーなどの有機化合物の種類や添加量を予め適宜選定することによって、得られる全ての脱脂中間体の明度をN6以下とすることも可能である。また、焼結助剤を添加したものに関しては、その脱脂中間体の明度をN4以下とすれば、焼結体の熱伝導率を150W/mK以上とできるため特に好ましい。また、焼結助剤を添加せず、高純度で且つ黒色の窒化アルミニウム焼結体を製造する場合においても、その脱脂中間体の明度がN4以下であれば、得られる焼結体の明度もN4以下となるため特に好ましい。   The brightness of the aluminum nitride degreased intermediate thus obtained is N6 or less. For example, the brightness of all the degreased intermediates obtained is measured, and N6 or less is selected and sintered. Moreover, it is also possible to make the brightness of all the degreasing intermediates obtained to be N6 or less by appropriately selecting the kind and the amount of addition of an organic compound such as an organic binder in advance as described above. In addition, regarding the addition of a sintering aid, it is particularly preferable that the lightness of the degreasing intermediate is N4 or less because the thermal conductivity of the sintered body can be 150 W / mK or more. In addition, even when a high-purity and black aluminum nitride sintered body is produced without adding a sintering aid, if the brightness of the degreasing intermediate is N4 or less, the brightness of the obtained sintered body is also Since it becomes N4 or less, it is particularly preferable.

本発明の窒化アルミニウム脱脂中間体は、その後焼結することにより、窒化アルミニウム焼結体とすることができる。焼結温度に関しては、焼結助剤を加えたものは、その焼結助剤の最適温度であれば良く、特に1600〜200℃の範囲が好ましい。1600℃未満の温度では焼結体が緻密化せず、逆に2000℃を超えると焼結助剤成分の揮散が激しくなり、焼結体にポアや欠陥が多くなるからである。また、焼結助剤を加えないものについては、1750〜2000℃の焼結温度が好ましい。この場合も、1750℃未満の温度では焼結体が緻密化せず、2000℃を超えると焼結体に欠陥が多くなるため好ましくない。   The aluminum nitride degreased intermediate of the present invention can be sintered thereafter to form an aluminum nitride sintered body. Regarding the sintering temperature, the material to which the sintering aid is added may be an optimum temperature of the sintering aid, and is particularly preferably in the range of 1600 to 200 ° C. This is because if the temperature is lower than 1600 ° C., the sintered body is not densified, and conversely if it exceeds 2000 ° C., the volatilization of the sintering aid component becomes violent and pores and defects increase in the sintered body. Moreover, about what does not add a sintering auxiliary agent, the sintering temperature of 1750-2000 degreeC is preferable. Also in this case, the sintered body does not become dense at a temperature lower than 1750 ° C., and if it exceeds 2000 ° C., the sintered body has many defects, which is not preferable.

また、焼結雰囲気に関しては、非酸化性雰囲気であれば特に問題はないが、使用するガスの露点には注意を払い、−30℃以下とすることが好ましい。何故ならば、脱脂処理時に炭素化合物を残留させ、明度の低い(黒色に近い)脱脂中間体を作製しても、これを焼結するときの非酸化性雰囲気の露点が−30℃を超えると、雰囲気中の水分が脱脂中間体中の炭素化合物と素早く反応し、焼結中に過大な炭素が除去されるため、熱伝導率の低い焼結体や、明度の高い(白色に近い)焼結体となるからである。   In addition, regarding the sintering atmosphere, there is no particular problem as long as it is a non-oxidizing atmosphere, but it is preferable to pay attention to the dew point of the gas used and to set it to −30 ° C. or lower. This is because, even if a carbon compound is left during degreasing treatment to produce a degreased intermediate with low brightness (close to black), the dew point of the non-oxidizing atmosphere when sintering this exceeds −30 ° C. Because moisture in the atmosphere reacts quickly with the carbon compound in the degreasing intermediate, and excessive carbon is removed during sintering, sintered products with low thermal conductivity and sintered with high brightness (close to white) Because it becomes a tie.

上記したように、明度がN6以下の窒化アルミニウム脱脂中間体を焼結することによって、所定の高い熱伝導率を有する窒化アルミニウム焼結体、あるいは所定の黒色度を満足する窒化アルミニウム焼結体を確実に製造することができる。従って、熱伝導率が低い焼結体が得られたり、あるいは黒色の度合いが低い焼結体が得られたりすることがなくなり、品質のばらつきがない窒化アルミニウム焼結体を得ることができる。   As described above, by sintering an aluminum nitride degreased intermediate having a lightness of N6 or less, an aluminum nitride sintered body having a predetermined high thermal conductivity or an aluminum nitride sintered body satisfying a predetermined blackness is obtained. It can be manufactured reliably. Therefore, a sintered body having a low thermal conductivity is not obtained, or a sintered body having a low blackness is not obtained, and an aluminum nitride sintered body having no quality variation can be obtained.

[実施例1]
窒化アルミニウム(AlN)粉末99.5重量%に、焼結助剤としてYを0.5重量%添加し、次いで有機バインダーとしてポリビニルブチラール(PVB)をAlN粉末100重量部に対して15重量部加え、更に有機溶剤を加えて、ボールミルにて24時間混合した。得られたスラリーをスプレードライにて顆粒とし、プレス成形により直径40mm、厚さ10mmの成形体を作製した。
[Example 1]
0.5% by weight of Y 2 O 3 is added as a sintering aid to 99.5% by weight of aluminum nitride (AlN) powder, and then polyvinyl butyral (PVB) is added as an organic binder to 15 parts by weight of 100 parts by weight of AlN powder. Part by weight and an organic solvent were further added and mixed for 24 hours in a ball mill. The obtained slurry was made into granules by spray drying, and a compact having a diameter of 40 mm and a thickness of 10 mm was produced by press molding.

得られたAlN成形体を、露点−60℃の窒素ガス雰囲気中において、250〜1100℃の間で脱脂温度を変えて脱脂処理を行った。得られた各脱脂中間体の明度(JIS Z 8721に規定)を明度計にて測定し、その結果を下記表1に示した。次に、これらのAlN脱脂中間体を、露点−60℃の窒素ガス雰囲気中にて1850℃で6時間結した。得られた各AlN焼結体から熱伝導率測定用に直径10mm、厚さ3mmのサンプルを作製し、レーザーフラッシュ法にて熱伝導率を測定し、得られた結果を下記表1に併せて示した。   The obtained AlN molded body was degreased by changing the degreasing temperature between 250 and 1100 ° C. in a nitrogen gas atmosphere having a dew point of −60 ° C. The brightness (specified in JIS Z 8721) of each degreased intermediate obtained was measured with a brightness meter, and the results are shown in Table 1 below. Next, these AlN degreased intermediates were sintered at 1850 ° C. for 6 hours in a nitrogen gas atmosphere having a dew point of −60 ° C. A sample having a diameter of 10 mm and a thickness of 3 mm was prepared from each of the obtained AlN sintered bodies for measuring the thermal conductivity, the thermal conductivity was measured by a laser flash method, and the obtained results are shown in Table 1 below. Indicated.

Figure 2006124206
Figure 2006124206

上記の結果から分かるように、AlN脱脂中間体の明度をN6以下に調整制御することによって、熱伝導率が非常に高い、具体的には150W/mK以上のAlN焼結体が得られる。   As can be seen from the above results, by adjusting and controlling the brightness of the AlN degreased intermediate to N6 or less, an AlN sintered body having a very high thermal conductivity, specifically 150 W / mK or more can be obtained.

[実施例2]
AlN粉末1000重量部にカーボン粉末2重量部を加え、有機バインダーとしてPVBをAlN粉末100重量部に対して15重量部加え、更に有機溶剤を加えて、上記実施例1と同様に成形した。得られたAlN成形体を、露点−60℃の窒素ガス雰囲気中にて、250〜1100℃の間で脱脂温度を変えて脱脂処理を行った。また、これらのAlN脱脂中間体を、露点−60℃の窒素ガス雰囲気中にて1900℃で10時間結した。
[Example 2]
2 parts by weight of carbon powder was added to 1000 parts by weight of AlN powder, 15 parts by weight of PVB as an organic binder was added to 100 parts by weight of AlN powder, and an organic solvent was further added to form the same as in Example 1 above. The obtained AlN molded body was degreased by changing the degreasing temperature between 250 and 1100 ° C. in a nitrogen gas atmosphere having a dew point of −60 ° C. Further, these AlN degreasing intermediates were bonded at 1900 ° C. for 10 hours in a nitrogen gas atmosphere having a dew point of −60 ° C.

上記の各AlN脱脂中間体について、明度を上記実施例1と同様に測定した。また、各AlN脱脂中間体を焼結して得た黒色の各AlN焼結体について、上記実施例1と同様にして、明度を測体すると共に、レーザーフラッシュ法にて熱伝導率を測定した。得られた結果を下記表2示した。   About each said AlN degreasing intermediate, the brightness was measured similarly to the said Example 1. FIG. Moreover, about each black AlN sintered compact obtained by sintering each AlN degreasing intermediate body, it measured the lightness similarly to the said Example 1, and measured the thermal conductivity with the laser flash method. . The obtained results are shown in Table 2 below.

Figure 2006124206
Figure 2006124206

上記の結果から、カーボン粉末を添加したAlN脱脂中間体の明度をN6以下とすることによって、熱伝導率が比較的高く、且つ明度がN4以下の黒色度の高いAlN焼結体が得られることが分かる。   From the above results, it is possible to obtain an AlN sintered body having a relatively high thermal conductivity and a high blackness with a lightness of N4 or less by setting the lightness of the AlN degreased intermediate added with carbon powder to N6 or less. I understand.

Claims (3)

窒化アルミニウム焼結体の製造工程において、有機化合物を含有する窒化アルミニウム成形体を非酸化性雰囲気中にて脱脂して得られた脱脂中間体であって、JIS Z 8721に規定する明度がN6以下であることを特徴とする窒化アルミニウム脱脂中間体。   In a manufacturing process of an aluminum nitride sintered body, a degreasing intermediate obtained by degreasing an aluminum nitride molded body containing an organic compound in a non-oxidizing atmosphere, the lightness specified in JIS Z 8721 being N6 or less An aluminum nitride degreased intermediate, characterized in that 前記明度がN4以下であることを特徴とする、請求項1に記載の窒化アルミニウム脱脂中間体。   The aluminum nitride degreased intermediate according to claim 1, wherein the brightness is N 4 or less. 請求項1〜2に記載の窒化アルミニウム脱脂中間体を非酸化性雰囲気中で焼成することにより得られることを特徴とする窒化アルミニウム焼結体。


An aluminum nitride sintered body obtained by firing the aluminum nitride degreased intermediate according to claim 1 or 2 in a non-oxidizing atmosphere.


JP2004312147A 2004-10-27 2004-10-27 Degreased intermediate for aluminum nitride and sintered compact Pending JP2006124206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004312147A JP2006124206A (en) 2004-10-27 2004-10-27 Degreased intermediate for aluminum nitride and sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004312147A JP2006124206A (en) 2004-10-27 2004-10-27 Degreased intermediate for aluminum nitride and sintered compact

Publications (1)

Publication Number Publication Date
JP2006124206A true JP2006124206A (en) 2006-05-18

Family

ID=36719292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004312147A Pending JP2006124206A (en) 2004-10-27 2004-10-27 Degreased intermediate for aluminum nitride and sintered compact

Country Status (1)

Country Link
JP (1) JP2006124206A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209466A (en) * 2011-03-30 2012-10-25 Mitsubishi Materials Corp Ceramic substrate for power module comprising blacken aluminum nitride substrate, and method of manufacturing the same
WO2013094613A1 (en) * 2011-12-20 2013-06-27 デクセリアルズ株式会社 Thermally conductive sheet and method for manufacturing thermally conductive sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172272A (en) * 1987-12-25 1989-07-07 Murata Mfg Co Ltd Production of aln ceramic
JPH0442862A (en) * 1990-06-06 1992-02-13 Showa Denko Kk Preparation of aln sintered product
JP2000058631A (en) * 1998-03-02 2000-02-25 Sumitomo Electric Ind Ltd Holder for manufacturing semiconductor and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172272A (en) * 1987-12-25 1989-07-07 Murata Mfg Co Ltd Production of aln ceramic
JPH0442862A (en) * 1990-06-06 1992-02-13 Showa Denko Kk Preparation of aln sintered product
JP2000058631A (en) * 1998-03-02 2000-02-25 Sumitomo Electric Ind Ltd Holder for manufacturing semiconductor and manufacture thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209466A (en) * 2011-03-30 2012-10-25 Mitsubishi Materials Corp Ceramic substrate for power module comprising blacken aluminum nitride substrate, and method of manufacturing the same
WO2013094613A1 (en) * 2011-12-20 2013-06-27 デクセリアルズ株式会社 Thermally conductive sheet and method for manufacturing thermally conductive sheet
CN108384248A (en) * 2011-12-20 2018-08-10 迪睿合电子材料有限公司 The manufacturing method of thermal conductivity piece and thermal conductivity piece
CN108384248B (en) * 2011-12-20 2021-10-19 迪睿合电子材料有限公司 Thermally conductive sheet and method for producing thermally conductive sheet

Similar Documents

Publication Publication Date Title
KR100353387B1 (en) Aluminum Nitride Sintered Body and Method of Preparing the Same
JP6651628B2 (en) High thermal conductivity silicon nitride sintered body and method for producing the same
WO2009096384A1 (en) POLYCRYSTALLINE MgO SINTERED COMPACT, PROCESS FOR PRODUCING THE POLYCRYSTALLINE MgO SINTERED COMPACT, AND MgO TARGET FOR SPUTTERING
JP5084155B2 (en) Alumina sintered body and method for manufacturing the same, electrostatic chuck using the alumina sintered body, and method for manufacturing the same
JP4571728B2 (en) Silicon nitride sintered body and manufacturing method thereof
JP3214890B2 (en) Aluminum nitride sintered body, method for producing the same, and firing jig using the same
WO2020059035A1 (en) Aluminum nitride sintered compact and method for producing same
JP2008069031A (en) Silicon nitride sintered compact and method of manufacturing the same
JP4713166B2 (en) Aluminum nitride powder and method for producing the same
JP2006124206A (en) Degreased intermediate for aluminum nitride and sintered compact
JP4429742B2 (en) Sintered body and manufacturing method thereof
JP4384101B2 (en) Silicon nitride ceramic substrate and silicon nitride ceramic circuit board using the same
JP6678623B2 (en) Aluminum nitride sintered body and method for producing the same
JP5031541B2 (en) Silicon nitride sintered body, circuit board, and power semiconductor module
JP2004262756A (en) Silicon nitride powder, silicon nitride sintered compact, and circuit board for electronic component using the sintered compact
JP2018070436A (en) Production method of silicon nitride sintered body
JP2006298690A (en) Aluminum nitride metallizing degreased intermediate and metallizing substrate
JP2005082429A (en) Zirconia-made heat treating member
JPH07187788A (en) Sintered aluminum nitride and its production
JP4348659B2 (en) High thermal conductivity silicon nitride sintered body, substrate using the same, circuit board for semiconductor device
KR102313589B1 (en) Manufacturing method of aluminium nitride ceramics
JPH06116039A (en) Aluminum nitride sintered compact
JP5150020B2 (en) Method for producing AlN-Al2O3 composite material
JP4868641B2 (en) Method for manufacturing aluminum nitride substrate
JP2742599B2 (en) Aluminum nitride sintered body and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081125