JPH0442862A - Preparation of aln sintered product - Google Patents
Preparation of aln sintered productInfo
- Publication number
- JPH0442862A JPH0442862A JP2149489A JP14948990A JPH0442862A JP H0442862 A JPH0442862 A JP H0442862A JP 2149489 A JP2149489 A JP 2149489A JP 14948990 A JP14948990 A JP 14948990A JP H0442862 A JPH0442862 A JP H0442862A
- Authority
- JP
- Japan
- Prior art keywords
- sintering
- aln
- sintered body
- thermal conductivity
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005245 sintering Methods 0.000 claims abstract description 40
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 38
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 38
- 239000000843 powder Substances 0.000 claims abstract description 21
- 239000012298 atmosphere Substances 0.000 claims abstract description 18
- 230000001590 oxidative effect Effects 0.000 claims abstract description 10
- 239000011230 binding agent Substances 0.000 claims abstract description 7
- 238000000465 moulding Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 15
- 229910052760 oxygen Inorganic materials 0.000 abstract description 15
- 239000001301 oxygen Substances 0.000 abstract description 15
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 abstract description 7
- 239000000203 mixture Substances 0.000 abstract description 4
- 239000001856 Ethyl cellulose Substances 0.000 abstract description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 abstract description 2
- 229920001249 ethyl cellulose Polymers 0.000 abstract description 2
- 235000019325 ethyl cellulose Nutrition 0.000 abstract description 2
- 238000009489 vacuum treatment Methods 0.000 abstract description 2
- 239000012535 impurity Substances 0.000 description 16
- 239000002245 particle Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 238000004040 coloring Methods 0.000 description 9
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 8
- 239000012299 nitrogen atmosphere Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- 238000005238 degreasing Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000001272 pressureless sintering Methods 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- -1 yttria Chemical class 0.000 description 1
- 150000003748 yttrium compounds Chemical class 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、不純物酸素量が少なく、高熱伝導性を有する
AlN焼結体の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing an AlN sintered body having a small amount of impurity oxygen and having high thermal conductivity.
従来の技術
最近のLSIの進歩により、集積度の向上ならびにIC
チップサイズの向上が行われ、それに伴いパッケージ当
りの発熱量が増大している。Conventional technology Recent advances in LSI have led to improvements in the degree of integration and
As the chip size has improved, the amount of heat generated per package has increased accordingly.
このため、基板材料の放熱性が重要視され、アルミナ基
板に代わるものとして、高熱伝導性のベリリア基板が使
用されているが、ベリリアは毒性が強く取扱いが難しい
という欠点があり、近年はApN基板の開発が盛んに行
われている。For this reason, the heat dissipation properties of substrate materials are considered important, and beryllia substrates with high thermal conductivity are used as an alternative to alumina substrates. However, beryllia has the disadvantage of being highly toxic and difficult to handle, and in recent years ApN substrates have been is being actively developed.
Al)Nは、本質的に難焼結性であるため、−船釣には
、常圧焼結においては、カルシア、イツトリア等の焼結
助剤を用いているが、こうした焼結助剤は、AlN原料
に含まれる不純物酸素がA9N焼結体中に固溶するのを
防止し、焼結体の熱伝導性を向上する効果があることも
知られている。Since Al)N is inherently difficult to sinter, sintering aids such as calcia and ittria are used in pressureless sintering for boat fishing; It is also known that it has the effect of preventing the impurity oxygen contained in the AlN raw material from forming a solid solution in the A9N sintered body and improving the thermal conductivity of the sintered body.
しかし、不純物酸素が固溶するのを防止する焼結助剤を
使用しても、160W/m 、 K程度の熱伝導率の焼
結体しか得られていなかった。However, even if a sintering aid was used to prevent impurity oxygen from forming a solid solution, a sintered body with a thermal conductivity of only about 160 W/m 2 K could only be obtained.
更に、近年、カーボンガス雰囲気をつくり出す容器にて
非酸化性(ガス)雰囲気中で焼成したり(特開昭63−
182280) 、AI N成形体中にカーボンを残留
させたり(特開平1−172272) して、200〜
220W/m−に程度の熱伝導率品が得られている。Furthermore, in recent years, firing has been carried out in a non-oxidizing (gas) atmosphere in a container that creates a carbon gas atmosphere (Japanese Patent Application Laid-Open No. 1986-1999).
182280), by leaving carbon in the AIN molded body (Japanese Patent Application Laid-open No. 1-172272),
A product with a thermal conductivity of about 220 W/m- has been obtained.
発明が解決しようとする課題
前述の特開昭63−182260の様に、還元性雰囲気
を利用して、Aj2N焼結体中の不純物酸素量を減少し
て高熱伝導化することはできるが、焼結助剤であるイツ
トリア等が炭化物や窒化物になりAlN焼結体を着色さ
せたり、色むらが起こったり、更には焼結体を変形させ
たりする問題がある。Problems to be Solved by the Invention Although it is possible to increase the thermal conductivity by reducing the amount of impurity oxygen in the Aj2N sintered body by using a reducing atmosphere, as in the above-mentioned Japanese Patent Application Laid-Open No. 63-182260, There are problems in that the sintering agent, such as ittria, turns into carbides or nitrides, causing coloring of the AlN sintered body, uneven coloring, and even deformation of the sintered body.
また、前述の特開平1−172272の様に成形体中の
残留カーボンを利用してAj7N焼結体中の不純物酸素
量を十分に低下させ、高熱伝導化しうることもあるが、
微粉同士の混合の難しさのためか、原料AlN粉中の不
純物酸素量に対して過剰のカーボンを成形体中に残留さ
せる必要がある。そのためか、焼結体が緻密化した後も
、カーボンが残留して、安定化して高熱伝導率品のAI
IN焼結体を得難く、場合によっては熱伝導性、絶縁性
等の低い焼結体となったりする。更に、残留カーボンが
過剰であることが原因と思われる着色、色むらおよび変
形を生じ易いという問題もある。In addition, as in the above-mentioned Japanese Patent Application Laid-Open No. 1-172272, residual carbon in the molded body may be used to sufficiently reduce the amount of impurity oxygen in the Aj7N sintered body, resulting in high thermal conductivity.
Perhaps because of the difficulty in mixing the fine powders, it is necessary to leave an excess of carbon in the compact relative to the amount of impurity oxygen in the raw AlN powder. Perhaps for this reason, even after the sintered body is densified, carbon remains and stabilizes the AI of the high thermal conductivity product.
It is difficult to obtain an IN sintered body, and in some cases, the sintered body may have low thermal conductivity, low insulation properties, etc. Furthermore, there is also the problem that discoloration, color unevenness, and deformation are likely to occur due to excessive residual carbon.
この様に特性の劣るAIIN焼結体は勿論のこと、焼結
体の着色、色むら、変形もAjllN焼結体の生産にお
いて、その収率を落とすことにつながることである。Not only the AIIN sintered body having such inferior properties, but also the coloration, color unevenness, and deformation of the sintered body lead to a decrease in the yield in the production of the AjllN sintered body.
そこで、本発明は、高熱伝導性を維持して、前述の様な
焼結体の着色、色むら、変形をなくし、安定して高収率
に高熱伝導性のA11IN焼結体を造ることを目的とす
る。Therefore, the present invention aims to maintain high thermal conductivity, eliminate the above-mentioned coloring, uneven color, and deformation of the sintered body, and produce a highly thermally conductive A11IN sintered body in a stable and high yield. purpose.
課題を解決するための手段
本発明者は、上記の問題点を解決すべく種々焼結条件等
につき検討した結果、焼結用AfiN微粉末に焼結助剤
、有機バインダーを添加し成形した後、脱脂しカーボン
を残留している脱脂済成形体を非酸化性雰囲気中で焼結
しA、QN焼結体を製造する方法において、1400〜
1700℃の温度範囲で少なくとも1回雰囲気を減圧に
することを特徴とするAlN焼結体の製造方法を見出し
た。Means for Solving the Problems In order to solve the above-mentioned problems, the inventor of the present invention investigated various sintering conditions, etc., and found that after adding a sintering aid and an organic binder to AfiN fine powder for sintering and shaping it. , a method for manufacturing an A, QN sintered body by sintering a degreased molded body in which carbon remains after degreasing in a non-oxidizing atmosphere,
We have discovered a method for producing an AlN sintered body, which is characterized by reducing the pressure of the atmosphere at least once in a temperature range of 1700°C.
次に、本発明につき詳細に説明する。Next, the present invention will be explained in detail.
主原料であるAIN微粉末は純度95%以上の平均粒径
が20m以下、好ましくは5−以下の粒径を有し、金属
不純物量としては500pI)ffl以下のものが、ま
た含有02量としては2wt%以下のものが好ましい。The main raw material, AIN fine powder, has a purity of 95% or more, an average particle size of 20m or less, preferably 5- or less, and a metal impurity amount of 500pI)ffl or less. is preferably 2 wt% or less.
焼結助剤としては、希土類の酸化物、ハロゲン化物等や
アルカリ土類金属の酸化物、ハロゲン化物、硝酸塩、炭
酸塩等を用いることができ、特にイツトリア等のイツト
リウム化合物を使用する場合、焼結体の着色、色むらが
顕著であるため、本発明の焼結方法が有効な手段となる
。また、使用する焼結助剤の粉末は、平均粒子径として
2trm以下が好ましく、その添加量は、AfINに対
し1〜10wt%、好ましくは2〜5νt%である。As the sintering aid, rare earth oxides, halides, etc., alkaline earth metal oxides, halides, nitrates, carbonates, etc. can be used. In particular, when using yttrium compounds such as yttria, sintering Since the solid body is markedly colored and unevenly colored, the sintering method of the present invention is an effective means. Further, the average particle diameter of the sintering aid powder used is preferably 2 trm or less, and the amount added is 1 to 10 wt%, preferably 2 to 5 vt%, based on AfIN.
AIN微粉末と焼結助剤との混合は、乾式混合、または
有機溶媒を使用した湿式混合により行なうが、後者の湿
式混合の方がよ(混合でき好ましい。The AIN fine powder and the sintering aid are mixed by dry mixing or wet mixing using an organic solvent, but the latter wet mixing is preferred.
混合粉末に更に、パラフィンワックス、ポリビニルブチ
ラール、エチルセルロース等の有機バインダーを混合粉
末に対し、3〜15νt%、好ましくは5〜IOνt%
添加して、適当な成形手段、例えば乾式プレス法、ラバ
ープレス法、押出法、射出法、ドクターブレードシート
成形法等によって所定の形状に成形する。Furthermore, an organic binder such as paraffin wax, polyvinyl butyral, ethyl cellulose, etc. is added to the mixed powder in an amount of 3 to 15 νt%, preferably 5 to IOνt%.
It is then molded into a predetermined shape by a suitable molding method, such as a dry press method, a rubber press method, an extrusion method, an injection method, a doctor blade sheet molding method, etc.
本発明では、A、QN焼結体の熱伝導率を高水準にする
ため、焼結体中の酸素含有量を減少させる必要があり、
そのため、成形後の脱脂処理された脱脂済成形体中にカ
ーボンを残留させる。In the present invention, in order to increase the thermal conductivity of the A, QN sintered body to a high level, it is necessary to reduce the oxygen content in the sintered body.
Therefore, carbon remains in the degreased molded body that has been degreased after molding.
この残留するカーボン量は、脱脂済成形体を非酸化性雰
囲気中または真空雰囲気中で、1300℃で加熱された
後に、成形体中に含有されているトータルカーボン量を
本発明では表わすものとする。In the present invention, this residual carbon amount represents the total amount of carbon contained in the degreased molded product after it is heated at 1300°C in a non-oxidizing atmosphere or vacuum atmosphere. .
残留カーボンの適切な量は、使用するA、QN原料粉末
の純度等により変わってくるか、例えば純度98%以上
のIN原料を使用する場合は、0,2〜2.5vt%と
するのが好ましい。残留カーボン量が2.5wt%を越
え多くなると、焼結体が緻密化した後も、カーボンが残
留し易くなり、安定して熱伝導の高い焼結体が得難いか
らであり、0.2wt%未満だと、A、QNの脱酸素効
果が小なくて、熱伝導度を高くすることができないから
である。The appropriate amount of residual carbon varies depending on the purity of the A and QN raw material powders used. For example, when using IN raw materials with a purity of 98% or more, it is recommended to set it at 0.2 to 2.5 vt%. preferable. This is because if the amount of residual carbon exceeds 2.5 wt%, carbon tends to remain even after the sintered body is densified, making it difficult to obtain a sintered body with stable high thermal conductivity. If it is less than that, the deoxidizing effect of A and QN will be insufficient and the thermal conductivity cannot be increased.
なお、この残留カーボンは、添加した有機バインダーが
熱分解した残渣であってもよいし、カーボンブラックの
様なカーボン源にもとづくものであってもよく、その両
者の混合であってもよい。Note that this residual carbon may be a residue resulting from thermal decomposition of the added organic binder, may be based on a carbon source such as carbon black, or may be a mixture of both.
残留カーボン量が0.2〜0.5wt%の範囲では、A
11N焼結体は着色、色むら、変形が起こったり、起こ
らなかったりするが、その理由はよく分からない。この
範囲の残留カーボン量の場合、着色等が起こって良質の
AlN焼結体の収率を落とすよりは、本発明による減圧
操作をすることにより安定して良質のA11N焼結体を
得ることができる。When the amount of residual carbon is in the range of 0.2 to 0.5 wt%, A
The 11N sintered body is sometimes colored, unevenly colored, and sometimes deformed, sometimes not, but the reasons for this are not well understood. In the case of residual carbon content in this range, it is better to stably obtain a high-quality A11N sintered body by performing the depressurization operation according to the present invention, rather than reducing the yield of a high-quality AlN sintered body due to coloring, etc. can.
残留カーボン量が0.5〜2.5vt%では、はぼ必ず
AlN焼結体は、着色、色むら、変形を起こすので本発
明は、その防止に有効な手段である。When the amount of residual carbon is 0.5 to 2.5 vt%, the AlN sintered body almost always becomes discolored, uneven in color, and deformed, and the present invention is an effective means for preventing this.
本発明では、Al)N微粉末、焼結助剤、有機ノくイン
ダーさらに必要ならカーボンブラック等のカーボン源を
前述の様な適正量混合し、成形した後、その成形体を脱
脂処理する。その脱脂条件は、有機バインダーの種類に
よるが400〜1000℃で0〜12時間保持して行な
うのが一般的で、その際の昇温速度は50〜b
理時の雰囲気はAlNが酸化され易いので、真空中また
はN 2 、A rガス等の非酸化性雰囲気中とするの
が好ましい。In the present invention, the above-mentioned appropriate amounts of Al)N fine powder, a sintering aid, an organic inder, and, if necessary, a carbon source such as carbon black are mixed, molded, and then the molded body is degreased. The degreasing conditions depend on the type of organic binder, but it is generally held at 400 to 1000°C for 0 to 12 hours, and the temperature increase rate is 50 to 50°C.AlN is easily oxidized in the atmosphere during degreasing. Therefore, it is preferable to conduct the process in vacuum or in a non-oxidizing atmosphere such as N 2 or Ar gas.
次に、残留カーボンを含有する脱脂済成形体をN 2
、 A rガス等の非酸化性雰囲気中で焼結する方法に
おいて、1400〜1700℃の温度範囲で少なくとも
1回雰囲気を減圧にして焼結するのが本発明の特徴であ
る。1400〜1700℃の範囲でずつと減圧に保持し
ていてもよいし、1回減圧にした後、再び非酸化性ガス
を流し込み、焼結炉内を常圧に戻してもよい。また、減
圧操作は1400〜1700℃の範囲で温度を保持して
行なってもよいし、昇温し続けながら行なってもよい。Next, the degreased molded body containing residual carbon was heated with N2
In a method of sintering in a non-oxidizing atmosphere such as , Ar gas, etc., the present invention is characterized in that sintering is carried out at least once in a temperature range of 1400 to 1700° C. while reducing the pressure of the atmosphere. The pressure may be maintained at a reduced pressure in the range of 1400 to 1700° C., or the pressure may be reduced once and then non-oxidizing gas may be poured in again to return the inside of the sintering furnace to normal pressure. Further, the pressure reduction operation may be performed while maintaining the temperature in the range of 1400 to 1700°C, or may be performed while continuing to raise the temperature.
減圧操作の温度範囲を1400〜1700℃としたのは
、1400℃未満では、成形体中の残留カーボンによる
AIINの脱酸素効果が小さく、A11Hの不純物酸素
量を十分に減少することができずAIIN焼結体の安定
した高熱伝導率が得難いからである。逆に、1700℃
を超えて減圧操作を行なうと、AINが分解してしまう
ことになり、あるいは、成形体の緻密化かかなり進行し
ているため、残留カーボンの除去が困難になり、かえっ
てAIN焼結体の高熱伝導率の不安定化をまねくことに
もなり、焼結体の着色、色むらの改善や低減も困難とな
る。The reason why the temperature range for the depressurization operation was set to 1400 to 1700°C is that below 1400°C, the deoxidizing effect of AIIN due to residual carbon in the compact is small, and the amount of impurity oxygen in A11H cannot be sufficiently reduced. This is because it is difficult to obtain a stable high thermal conductivity of the sintered body. On the contrary, 1700℃
If the depressurization operation is carried out in excess of This also leads to instability of the conductivity, and it becomes difficult to improve or reduce coloration and color unevenness of the sintered body.
また、1400〜1700℃の範囲での減圧操作の減圧
度は、脱脂体中の残留カーボン量にもよるが、基本的に
は焼結体中にカーボンが残留せず、かつAlNが分解し
ない程度であれば良く、焼結炉内の圧力を160〜t6
0iml1g程度にするのが望ましい。In addition, the degree of pressure reduction in the pressure reduction operation in the range of 1400 to 1700°C depends on the amount of residual carbon in the degreased body, but basically it is to the extent that no carbon remains in the sintered body and AlN does not decompose. The pressure inside the sintering furnace should be 160 to t6.
It is desirable to set the amount to about 0 iml 1 g.
減圧操作をした後、最終的に、非酸化雰囲気で1750
〜1950℃で2〜10時間程度焼結処理される。After depressurization, the final temperature was 1750 in a non-oxidizing atmosphere.
Sintering treatment is performed at ~1950°C for about 2 to 10 hours.
本発明は、焼結炉の炉材には制限されない。すなわち、
ヒーターや炉材がカーボン質である場合、その影響と思
われる着色、色むら等の問題が焼結体に生じるが、その
様な場合、密閉性の保てるhBN、l!N等の材質の容
器内に入れて焼結すれば良い。ヒーターがWてあり、炉
材がWおよび/またはMoである場合には、上記の様な
容器に入れる必要はない。The present invention is not limited to the furnace material of the sintering furnace. That is,
If the heater or furnace material is made of carbon, problems such as coloring and uneven coloring may occur in the sintered body, but in such cases, hBN, l! It may be sintered by placing it in a container made of N or the like. If the heater is W and the furnace material is W and/or Mo, there is no need to put it in the container as described above.
AINはN 2 、 A rガス等の非酸化性雰囲気で
焼結するのが一般的であり、特開昭63−277571
の実施例15に例示されるごとく、真空(減圧)雰囲気
でずっと焼結するとA、QN焼結体の熱伝導率は、13
5W/m−Kにしかならず低い値となるのが普通である
。AIN is generally sintered in a non-oxidizing atmosphere such as N2, Ar gas, etc.
As exemplified in Example 15, when sintered in a vacuum (reduced pressure) atmosphere, the thermal conductivity of the A, QN sintered body is 13.
Usually, it is a low value of only 5 W/m-K.
実施例 本発明を実施例にて詳細に以下説明する。Example The present invention will be explained in detail below using examples.
実施例 1
比表面積4.0rd/g、平均粒子径1.5雁、含有不
純物酸素量(インパルス炉抽出法(Leco社製装置)
による)■、5νt%、金属不純物200ppm以下の
焼結用AJN微粉末に、比表面積15rrr/ g 、
平均粒子径0.4」、純度99.9wt%のY2O3微
粉末を2vt%添加し、更に、これらの混合粉末100
部に対し外削として7部のポリビニルブチラールおよび
6部のフタル酸ジ−n−ブチル(可塑剤)を加え、ブタ
ノール:キシレン−2:1混合の有機溶剤でスラリー濃
度72vt%として、生シート厚さ1龍にシート成形し
、25℃で2日間乾燥した。Example 1 Specific surface area 4.0rd/g, average particle diameter 1.5g, content impurity oxygen amount (impulse furnace extraction method (Leco equipment)
)■, 5νt%, AJN fine powder for sintering with metal impurities of 200 ppm or less, a specific surface area of 15 rrr/g,
2vt% of Y2O3 fine powder with an average particle size of 0.4" and a purity of 99.9wt% was added, and further, 100% of these mixed powders were added.
7 parts of polyvinyl butyral and 6 parts of di-n-butyl phthalate (plasticizer) were added to the part as external cutting, and the slurry concentration was made to 72vt% with an organic solvent of a 2:1 mixture of butanol and xylene, and the thickness of the green sheet was adjusted. It was formed into a sheet and dried at 25°C for 2 days.
その後、N2中で100℃/hrの昇温で600℃にて
10時間の条件で脱脂した。この脱脂体の残留カーボン
量は、N2雰囲気中1300℃での測定でo、svt%
であった。Thereafter, degreasing was performed at 600° C. for 10 hours at a temperature increase of 100° C./hr in N2. The amount of residual carbon in this degreased body is o, svt% as measured at 1300°C in a N2 atmosphere.
Met.
この脱脂体を密閉性の保てる六方晶BN製容器に入れ、
ヒーターおよび炉材がカーボン材である焼結炉内にて、
N2雰囲気下で100℃/hrで昇温し、1600℃に
到達したところで保持しながら、真空ポンプで焼結炉内
を2EiOmaHgまで減圧し、260部mHgに減圧
度が到達したらN2ガスを導入し、常圧に炉内を戻し、
引続き1800”Cまで昇温し、その温度に10時間保
持して焼結を行なった。Place this degreased body in a hexagonal BN container that can maintain airtightness.
In a sintering furnace where the heater and furnace material are carbon materials,
The temperature was raised at a rate of 100°C/hr in a N2 atmosphere, and when it reached 1600°C, while holding it, the pressure inside the sintering furnace was reduced to 2EiOmaHg using a vacuum pump, and when the degree of pressure reduction reached 260 parts mHg, N2 gas was introduced. , return the inside of the furnace to normal pressure,
Subsequently, the temperature was raised to 1800''C, and the temperature was maintained for 10 hours to perform sintering.
その結果、着色、色むら、変形がなく、熱伝導率224
W/ m−にと優れたAlN焼結体が得られた。これら
およびその他の特性値等を表・1に示す。As a result, there is no coloring, uneven color, or deformation, and the thermal conductivity is 224.
An AlN sintered body with excellent W/m- was obtained. These and other characteristic values are shown in Table 1.
得られたAl)N焼結体の熱伝導率、酸素含有量および
残留カーボン量は、それぞれレーザーフラッシュ法(真
空理工製T C−7000型装置)、インパルス炉抽出
法(Leco社製装置)、および酸素気流中燃焼−赤外
線吸収法により測定した。なお、これらの測定は、焼結
体表面を研削してから行なった。The thermal conductivity, oxygen content, and amount of residual carbon of the obtained Al)N sintered body were determined by the laser flash method (TC-7000 type device manufactured by Shinku Riko Co., Ltd.), the impulse furnace extraction method (device manufactured by Leco Co., Ltd.), and the and measured by combustion in oxygen stream-infrared absorption method. Note that these measurements were performed after the surface of the sintered body was ground.
実施例 2,3
Y2O3微粉末の添加量を3および5wt%にした以外
は実施例1と同様な条件で、実施例2および3のAlN
焼結体を得た。ともに、脱脂体中のN2雰囲気中130
0℃での測定値である残留カーボン量も、実施例1と同
じ値の0.8vt%であった。Examples 2 and 3 AlN of Examples 2 and 3 was prepared under the same conditions as Example 1 except that the amount of Y2O3 fine powder added was 3 and 5 wt%.
A sintered body was obtained. Both in N2 atmosphere in degreased body 130
The amount of residual carbon, which was measured at 0° C., was also the same value as in Example 1, which was 0.8 vt%.
得られたAlN焼結体は両者とも着色、色むら、変形が
なく、熱伝導率も表・1に示す如く優れた焼結体であっ
た。Both of the obtained AlN sintered bodies had no coloration, uneven color, or deformation, and had excellent thermal conductivity as shown in Table 1.
実施例 4
比表面積4.Ord/g、平均粒子径1.5庫、含有不
純物酸素量1 、5wt%、金属不純物200ppm以
下の焼結用A、QN微粉末に、比表面積15rrf/g
、平均粒子径0.4虜、純度99.9wt%のY 20
a微粉末を5vt%添加し、更に、これらの混合粉末
100部に対し外削として5部のポリビニルブチラール
および5部のフタル酸ジ−n−ブチルを加え、ブタノー
ル:キシレン−2:1混合の有機溶剤でスラリー濃度7
2vt%として、生シート厚さ1關にシト成形し、25
℃で2日間乾燥した。Example 4 Specific surface area4. Ord/g, average particle size 1.5, impurity oxygen content 1,5 wt%, metal impurities 200 ppm or less A, QN fine powder for sintering, specific surface area 15 rrf/g
, average particle size 0.4 mm, purity 99.9 wt% Y20
Add 5vt% of a fine powder, and further add 5 parts of polyvinyl butyral and 5 parts of di-n-butyl phthalate as external cuttings to 100 parts of these mixed powders, and make a mixture of butanol:xylene-2:1. Slurry concentration 7 with organic solvent
At 2vt%, the raw sheet was molded into a sheet with a thickness of 25%.
It was dried at ℃ for 2 days.
その後、N2中で100℃/hrの昇温で600℃にて
10時間の条件で脱脂した。この脱脂体の残留カーボン
量は、N2雰囲気中1300℃での測定で0.5νt%
であった。Thereafter, degreasing was performed at 600° C. for 10 hours at a temperature increase of 100° C./hr in N2. The amount of residual carbon in this degreased body is 0.5νt% when measured at 1300°C in a N2 atmosphere.
Met.
この脱脂体を密閉性の保てる六方晶BN製容器に入れ、
ヒーターおよび炉材がカーボン材である焼結炉内にて、
N2雰囲気下で100℃/hrて昇模し、1400℃に
到達したところで保持しながら、真空ポンプで焼結炉内
を360層tsHgまで減圧し、3BOsmHgに減圧
度が到達したらN2ガスを導入し、常圧に炉内を戻し、
引続き1800℃まで昇温I7、その温度に6時間保持
して焼結を行なった。Place this degreased body in a hexagonal BN container that can maintain airtightness.
In a sintering furnace where the heater and furnace material are carbon materials,
The temperature was increased at 100°C/hr in a N2 atmosphere, and when the temperature reached 1400°C, the pressure inside the sintering furnace was reduced to 360 tsHg using a vacuum pump. When the degree of pressure reduction reached 3BOsmHg, N2 gas was introduced. , return the inside of the furnace to normal pressure,
Subsequently, the temperature was raised to 1800° C. I7, and sintering was carried out by holding at that temperature for 6 hours.
その結果、着色、色むら、変形がなく、熱伝導率171
W/m−にと優れた。JN焼結体が得られた。これらお
よびその他の特性値等を表・1に示す。As a result, there is no coloration, uneven color, or deformation, and the thermal conductivity is 171.
Excellent W/m-. A JN sintered body was obtained. These and other characteristic values are shown in Table 1.
なお、AlN焼結体等の物性特性値の測定法は実施例1
と同様である。Note that the method for measuring the physical property values of the AlN sintered body, etc. is as described in Example 1.
It is similar to
実施例 5〜7
減圧操作温度を1400℃の代わりに1500℃、 1
600℃および1700℃とした以外は実施例4と同一
条件で、それぞれ実施例5〜7のAlN焼結体を得た。Examples 5 to 7 Decompression operation temperature is 1500°C instead of 1400°C, 1
AlN sintered bodies of Examples 5 to 7 were obtained under the same conditions as Example 4 except that the temperatures were 600°C and 1700°C.
なお、減圧度は、実施例4と同じ360+un+Hgと
した。Note that the degree of pressure reduction was 360+un+Hg, which is the same as in Example 4.
得られたAlN焼結体は、着色、色むら、変形がなく、
熱伝導率も表・1に示す如く優れた焼結体であった。The obtained AlN sintered body has no coloring, uneven color, or deformation,
The sintered body also had excellent thermal conductivity as shown in Table 1.
実施例 8
比表面積4.Ord/g、平均粒子径1.5コ、含有不
純物酸素量2.Ovt%、金属不純物200ppa+以
下の焼結用AIN微粉末に、比表面積L5rd/g、平
均粒子径0,4即、純度99.9vt%のY2O3微粉
末を5vt%添加し、更に、これらの混合粉末100部
に対し外削として7部のポリビニルブチラール、6部の
フタル酸ジ−n−ブチルおよびカーボンブラック(電気
化学製デンカブラック)l、7部を加え、ブタノール:
キシレン−2:1混合の有機溶剤でスラリー濃度72w
t%として、生シート厚さ1關にシート成形し、25℃
で2日間乾燥した。Example 8 Specific surface area4. Ord/g, average particle size 1.5 particles, amount of impurity oxygen contained 2. 5vt% of Y2O3 fine powder with a specific surface area of L5rd/g, average particle size of 0.4, and purity of 99.9vt% was added to AIN fine powder for sintering with Ovt% and metal impurities of 200 ppa+, and further, these were mixed. To 100 parts of powder, 7 parts of polyvinyl butyral, 6 parts of di-n-butyl phthalate, and 7 parts of carbon black (Denka Black manufactured by Denki Kagaku Co., Ltd.) were added as external polishing, and butanol:
Slurry concentration 72w with xylene-2:1 mixed organic solvent
As t%, the raw sheet is formed into a sheet with a thickness of 1, and heated at 25°C.
It was dried for 2 days.
その後、N2中で100℃/hrの昇温て600℃にて
10時間の条件で脱脂した。この脱脂体の残留カーボン
量は、N2雰囲気中1300℃での測定で2.5vt%
であった。Thereafter, degreasing was performed in N2 at a temperature increase of 100° C./hr to 600° C. for 10 hours. The amount of residual carbon in this degreased body is 2.5vt% as measured at 1300°C in a N2 atmosphere.
Met.
その後、この脱脂体を実施例1と同一条件で処理した。Thereafter, this degreased body was treated under the same conditions as in Example 1.
ただ、焼結温度1800℃の保持時間は、6時間とした
。However, the holding time at the sintering temperature of 1800°C was 6 hours.
その結果、着色、色むら、変形がなく、表・1に示す様
なA11N焼結体が得られた。As a result, an A11N sintered body as shown in Table 1 was obtained without coloring, color unevenness, or deformation.
比較例 1
減圧操作を行なわなかったこと以外は、実施例1と同一
条件で処理しIN焼結体を得た。Comparative Example 1 An IN sintered body was obtained by processing under the same conditions as in Example 1 except that the pressure reduction operation was not performed.
このA47 N焼結体は、カーボンが残ったために生じ
たと思われる着色および色むらがあり、また大きく変形
し、表・1に示す様に熱伝導率は、153W/m−にと
低かった。This A47N sintered body had coloration and color unevenness, which was thought to be caused by residual carbon, and was also greatly deformed, and as shown in Table 1, the thermal conductivity was as low as 153 W/m-.
比較例 2
実施例3と同一のp、I N、Y2O3等の原料を同一
条件で配合し、シート成形化し、その後、同様に600
℃で10時間脱脂した。Comparative Example 2 The same raw materials as in Example 3, such as p, IN, Y2O3, etc., were blended under the same conditions, formed into a sheet, and then similarly heated to 600 ml.
It was degreased at ℃ for 10 hours.
この脱脂体を密閉性の保てる六方晶BN製容器に入れ、
ヒーターおよび炉材がカーボン材である焼結炉内にて、
N2雰囲気下で100℃/hrで昇温し、1300℃に
到達したところで保持しながら、真空ポンプで焼結炉内
を280a+a+Hgまで減圧し、260+++mHg
に減圧度が到達したらN2ガスを導入し、常圧に炉内を
戻し、実施例1と同様に、引続き1800℃まで昇温し
、その温度に10時間保持して焼結を行なった。Place this degreased body in a hexagonal BN container that can maintain airtightness.
In a sintering furnace where the heater and furnace material are carbon materials,
The temperature was raised at a rate of 100°C/hr in a N2 atmosphere, and when it reached 1300°C, while holding it, the pressure inside the sintering furnace was reduced to 280a+a+Hg using a vacuum pump, and the temperature was 260+++ mHg.
When the degree of pressure reduction reached , N2 gas was introduced to return the inside of the furnace to normal pressure, and as in Example 1, the temperature was subsequently raised to 1800°C and held at that temperature for 10 hours to perform sintering.
この場合、1300℃で減圧処理後の成形体中の残留カ
ーボン量は0.15wt%であった。In this case, the amount of residual carbon in the molded body after the vacuum treatment at 1300°C was 0.15 wt%.
得られたAlN焼結体は、着色、色むら、変形はなかっ
たものの、表−1に示す様に熱伝導率は147W/ m
−にと低かった。Although the obtained AlN sintered body had no coloration, uneven color, or deformation, the thermal conductivity was 147 W/m as shown in Table 1.
It was very low.
比較例 3
減圧操作を1300℃の代わりに1750℃で行なうこ
と以外の条件は、比較例2と同一条件にてAl)N焼結
体を得た。その焼結体は、着色、色むら、変形があった
。そのうち良好な部分を切り出し物性値を求めたが、熱
伝導率も低かった。Comparative Example 3 An Al)N sintered body was obtained under the same conditions as Comparative Example 2 except that the pressure reduction operation was performed at 1750°C instead of 1300°C. The sintered body was discolored, uneven in color, and deformed. We cut out a good part and determined its physical properties, but the thermal conductivity was also low.
比較例 4
比表面積4.Ord/g、平均粒子径1.5趨、含有不
純物酸素量1.5νt%、金属不純物200ppI11
以下の焼結用ApN微粉末に、比表面積15rd/lr
、平均粒子径0.4」、純度99.9wt%のY2O3
微粉末を5wt%添加し、更に、これらの混合粉末10
0部に対し4割として7部のポリビニルブチラール、6
部のフタル酸ジ−n−ブチルおよび実施例8と同一のカ
ーボンブラック2.2部を加え、実施例1と同様に有機
溶剤でスラリー化し、シート成形化、乾燥し、脱脂した
。Comparative example 4 Specific surface area 4. Ord/g, average particle diameter 1.5, impurity oxygen content 1.5vt%, metal impurity 200ppI11
The following ApN fine powder for sintering has a specific surface area of 15rd/lr.
, average particle size 0.4'', purity 99.9wt% Y2O3
5 wt% of fine powder was added, and 10% of these mixed powders were added.
7 parts of polyvinyl butyral as 40% of 0 parts, 6
1 part of di-n-butyl phthalate and 2.2 parts of the same carbon black as in Example 8 were added, slurried with an organic solvent in the same manner as in Example 1, formed into a sheet, dried, and degreased.
この脱脂体の残留カーボン量はN2雰囲気中1300℃
での測定で3.0wt%てあった。The amount of residual carbon in this degreased body is 1300℃ in N2 atmosphere.
It was measured at 3.0 wt%.
この脱脂体を、実施例1と同様に、hBN容器に入れ、
同一焼結炉内で、昇温し、同一の1600℃、260a
+mHgの減圧操作を行ない、N2ガスで常圧に戻し、
引続き1800℃まで昇温し、その温度に6時間保持し
て焼結した。This degreased body was placed in an hBN container in the same manner as in Example 1,
In the same sintering furnace, the temperature was raised to 1600℃ and 260a.
Perform a pressure reduction operation to +mHg, return to normal pressure with N2 gas,
Subsequently, the temperature was raised to 1800° C. and sintered by holding at that temperature for 6 hours.
得られたAj7N焼結体は、着色および色むらがひどく
、変形も太き(、熱伝導率も低かった。The obtained Aj7N sintered body had severe coloration and color unevenness, large deformation (and low thermal conductivity).
発明の効果
本発明によって、カーボンが残留する脱脂体を減圧処理
することにより、AIHの脱酸素を促進するとともに、
余剰のカーボンを除去し、安定して高熱伝導率で、着色
、色むらがないA、QN焼結体を得ることができる。Effects of the Invention According to the present invention, deoxidation of AIH is promoted by depressurizing the degreased body in which carbon remains, and
By removing excess carbon, it is possible to obtain A and QN sintered bodies that stably have high thermal conductivity and are free from coloration and color unevenness.
Claims (1)
加し成形した後、脱脂しカーボンを残留している脱脂済
成形体を非酸化性雰囲気中で焼結しAlN焼結体を製造
する方法において、1400〜1700℃の温度範囲で
少なくとも1回雰囲気を減圧にすることを特徴とするA
lN焼結体の製造方法。After adding a sintering aid and an organic binder to AlN fine powder for sintering and molding, the degreased molded body with residual carbon is sintered in a non-oxidizing atmosphere to produce an AlN sintered body. A method characterized in that the atmosphere is reduced in pressure at least once in a temperature range of 1400 to 1700°C.
Method for manufacturing an IN sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2149489A JPH0442862A (en) | 1990-06-06 | 1990-06-06 | Preparation of aln sintered product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2149489A JPH0442862A (en) | 1990-06-06 | 1990-06-06 | Preparation of aln sintered product |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0442862A true JPH0442862A (en) | 1992-02-13 |
Family
ID=15476272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2149489A Pending JPH0442862A (en) | 1990-06-06 | 1990-06-06 | Preparation of aln sintered product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0442862A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005049525A1 (en) * | 2003-11-21 | 2005-06-02 | Kabushiki Kaisha Toshiba | High thermally conductive aluminum nitride sintered product |
JP2006124206A (en) * | 2004-10-27 | 2006-05-18 | Sumitomo Electric Ind Ltd | Degreased intermediate for aluminum nitride and sintered compact |
JP2007042672A (en) * | 2005-07-29 | 2007-02-15 | Ibiden Co Ltd | Plasma process device chamber member and its manufacturing method |
-
1990
- 1990-06-06 JP JP2149489A patent/JPH0442862A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005049525A1 (en) * | 2003-11-21 | 2005-06-02 | Kabushiki Kaisha Toshiba | High thermally conductive aluminum nitride sintered product |
US7479467B2 (en) | 2003-11-21 | 2009-01-20 | Kabushiki Kaisha Toshiba | High thermally conductive aluminum nitride sintered product |
US7662736B2 (en) | 2003-11-21 | 2010-02-16 | Kabushiki Kaisha Toshiba | High thermally conductive aluminum nitride sintered product |
JP2006124206A (en) * | 2004-10-27 | 2006-05-18 | Sumitomo Electric Ind Ltd | Degreased intermediate for aluminum nitride and sintered compact |
JP2007042672A (en) * | 2005-07-29 | 2007-02-15 | Ibiden Co Ltd | Plasma process device chamber member and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6651628B2 (en) | High thermal conductivity silicon nitride sintered body and method for producing the same | |
JP5039097B2 (en) | Power module | |
EP0540671B1 (en) | Preparing silicon nitride with densification aid, and results | |
JP3240443B2 (en) | Manufacturing method of silicon material that can be nitrided | |
JPH0442862A (en) | Preparation of aln sintered product | |
JP4384101B2 (en) | Silicon nitride ceramic substrate and silicon nitride ceramic circuit board using the same | |
US5362691A (en) | Sintered material based on Si3 N4 and processes for its production | |
JP2005170728A (en) | Yttrium oxide (y2o3) sintered compact and its producing method | |
JPH02248365A (en) | Silicon nitride ceramic composition | |
JPH07172921A (en) | Aluminum nitride sintered material and its production | |
KR20220050306A (en) | Pressureless sintered SiC ceramics with 1~30 Ωcm electrical resistivity, its composition, and method for producing the same | |
JP4301617B2 (en) | Method for manufacturing aluminum nitride sintered body for DBC circuit board and method for manufacturing DBC circuit board | |
JP4221006B2 (en) | Silicon nitride ceramic circuit board | |
JP2006290709A (en) | Silicon nitride material and its manufacturing method | |
JP2654108B2 (en) | Manufacturing method of aluminum nitride sintered body | |
JPH05105525A (en) | Production of highly heat conductive aluminum nitride sintered compact | |
JPH013075A (en) | Method for manufacturing aluminum nitride sintered body | |
JPH02307871A (en) | Production of ceramic sintered compact | |
JPS60137873A (en) | Silicon nitride sintered body | |
JPH06116039A (en) | Aluminum nitride sintered compact | |
JPH05310476A (en) | Boron nitride setter for calcining aluminum nitride | |
CN118084540A (en) | Ceramic slurry, coating for improving corrosion resistance of carbon-carbon composite material and preparation method of coating | |
JPS631273B2 (en) | ||
JPH082967A (en) | Production of aluminum nitride sintered compact | |
JP2825691B2 (en) | Method of removing binder from aluminum nitride ceramic |