JP4713166B2 - Aluminum nitride powder and method for producing the same - Google Patents

Aluminum nitride powder and method for producing the same Download PDF

Info

Publication number
JP4713166B2
JP4713166B2 JP2005013513A JP2005013513A JP4713166B2 JP 4713166 B2 JP4713166 B2 JP 4713166B2 JP 2005013513 A JP2005013513 A JP 2005013513A JP 2005013513 A JP2005013513 A JP 2005013513A JP 4713166 B2 JP4713166 B2 JP 4713166B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
nitride powder
mass
primary particle
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005013513A
Other languages
Japanese (ja)
Other versions
JP2006199541A (en
Inventor
篤海 池田
茂明 多中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2005013513A priority Critical patent/JP4713166B2/en
Publication of JP2006199541A publication Critical patent/JP2006199541A/en
Application granted granted Critical
Publication of JP4713166B2 publication Critical patent/JP4713166B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)

Description

本発明は、高い破壊じん性を有すると共に、高い熱伝導率及び曲げ強度を達成した窒化アルミニウム焼結体を得ることが可能な新規な窒化アルミニウム粉末およびその製造方法に関する。   The present invention relates to a novel aluminum nitride powder capable of obtaining an aluminum nitride sintered body having high fracture toughness and achieving high thermal conductivity and bending strength, and a method for producing the same.

窒化アルミニウムは、GTO(Gate Turn Off Thyristor)サイリスタやIGBT(Insulated Gate Bipolar Transistor)等の半導体素子の高出力化による発熱量の増大に伴ない、高い熱伝導率を有する性質を利用した半導体実装用基板をはじめとした各種放熱材料や絶縁材料として利用範囲が益々広がっている。   Aluminum nitride is used for semiconductor mounting utilizing the property of having a high thermal conductivity in accordance with an increase in the amount of heat generated by increasing the output of semiconductor elements such as GTO (Gate Turn Off Thyristor) thyristors and IGBTs (Insulated Gate Bipolar Transistors). The range of use is expanding more and more as various heat-dissipating materials such as substrates and insulating materials.

このうち、特に高出力の半導体実装用基板の用途では、半導体を実装するために窒化アルミニウム焼結体に銅等の薄板を接合したり、実装基板を更に別のヒートシンク材(放熱フィンなどの金属部材)に接着したりするなど、窒化アルミニウム自身に種々の大きな応力が掛かる中で使用されることが多い。   Among these, especially in the use of a high-power semiconductor mounting substrate, a thin plate such as copper is bonded to an aluminum nitride sintered body to mount a semiconductor, or the mounting substrate is made of another heat sink material (metal such as a heat radiating fin). In many cases, aluminum nitride itself is subjected to various large stresses such as bonding to a member).

そのため、かかる用途においては、これまでの高熱伝導性に加えて、従来よりさらに高い機械的強度(曲げ強度)や破壊じん性値を有する窒化アルミニウム焼結体が必要とされるようになった。   Therefore, in such applications, in addition to the conventional high thermal conductivity, an aluminum nitride sintered body having higher mechanical strength (bending strength) and fracture toughness value than before has been required.

従来、窒化アルミニウム焼結体の破壊じん性を向上させるため、得られる窒化アルミニウム焼結体の結晶粒子の粒度分布を広くすることが提案されている。   Conventionally, in order to improve the fracture toughness of an aluminum nitride sintered body, it has been proposed to widen the particle size distribution of crystal grains of the obtained aluminum nitride sintered body.

例えば、粒度分布が異なる二種類の窒化アルミニウム粉末を原料として使用することによって焼結体の粒度分布を広げる方法(特許文献1、2及び3参照)が挙げられる。   For example, there is a method of expanding the particle size distribution of the sintered body by using two types of aluminum nitride powders having different particle size distributions as raw materials (see Patent Documents 1, 2, and 3).

特開2001−2474号公報JP 2001-2474 A 特開2001−89247号公報JP 2001-89247 A 特開2002−220283号公報JP 2002-220283 A

しかしながら、上記方法によって得られる窒化アルミニウム焼結体は、高い破壊じん性を示すものの、熱伝導率、曲げ強度に関しては改善の余地があった。即ち、上記窒化アルミニウム焼結体の製造には、1次粒子径が0.1〜1μmの小さな窒化アルミニウム粉末と1次粒子径が5〜10μmの大きな窒化アルミニウム粉末とを混合して使用されるが、平均粒径の小さい窒化アルミニウム粉末は、焼結性の良い還元窒化法により得られた粉末が使用される一方、1次粒子径の大きい窒化アルミニウム粉末は、一般に、焼結性が劣る直接窒化法により得られた粉末が使用されていた。その理由は、還元窒化法による1次粒径が大きい窒化アルミニウム粉末は工業的に生産されていないことにあった。   However, although the aluminum nitride sintered body obtained by the above method exhibits high fracture toughness, there is room for improvement in terms of thermal conductivity and bending strength. That is, in the production of the aluminum nitride sintered body, a small aluminum nitride powder having a primary particle diameter of 0.1 to 1 μm and a large aluminum nitride powder having a primary particle diameter of 5 to 10 μm are mixed and used. However, an aluminum nitride powder having a small average particle size is obtained by a reductive nitriding method having good sinterability, while an aluminum nitride powder having a large primary particle size is generally directly inferior in sinterability. The powder obtained by the nitriding method was used. The reason is that aluminum nitride powder having a large primary particle size by the reduction nitriding method has not been industrially produced.

そのため、前記方法によれば、焼結性の異なる二種類の窒化アルミニウム粉末を均一に焼成するための複雑なプロセスや精密な焼成温度の制御を必要とするばかりでなく、得られる窒化アルミニウム焼結体の物性は、破壊じん性値が3.0MPa・m1/2以上であっても、曲げ強度は400〜500MPa程度と低いものであり、また、熱伝導性についても、更なる改良の余地が残されていた。 Therefore, according to the above method, not only a complicated process for uniformly firing two kinds of aluminum nitride powders having different sinterability and precise control of the firing temperature is required, but also the obtained aluminum nitride sintered The physical properties of the body are as low as 400 to 500 MPa in bending strength even when the fracture toughness value is 3.0 MPa · m 1/2 or more, and there is room for further improvement in thermal conductivity. Was left.

本発明者らは、上記に記述した粉末の課題を解決するべく鋭意研究を行った。その結果、還元窒化法による、1次粒子径が5〜10μmの大きな窒化アルミニウム粉末の開発に成功し、かかる大粒径の窒化アルミニウムと、還元窒化法による、1次粒子径が0.1〜1μmの小さな窒化アルミニウム粉末とを使用して焼結体を製造することによって、高い破壊じん性を有すると共に、高い熱伝導率及び曲げ強度を達成した窒化アルミニウム焼結体を得ることがことを見出し、本発明を完成するに至った。   The inventors of the present invention have intensively studied to solve the problem of the powder described above. As a result, we succeeded in developing a large aluminum nitride powder having a primary particle size of 5 to 10 μm by the reduction nitriding method. It has been found that by producing a sintered body using a small aluminum nitride powder of 1 μm, an aluminum nitride sintered body having high fracture toughness and achieving high thermal conductivity and bending strength can be obtained. The present invention has been completed.

即ち、本発明は、 還元窒化法により得られ、1次粒子径について下記の粒度分布を有し、且つ酸素含有率が0.4〜1.3質量%となるように表面酸化されたことを特徴とする窒化アルミニウム粉末である。
(1)0.1μm以上、1μm未満の1次粒子径の粒子の含有率が5〜85質量%
(2)1μm以上、5μm未満の1次粒子径の粒子の含有率が0〜40質量%
(3)5μm以上、10μm以下の1次粒子径の粒子の含有率が15〜95質量%
但し、(1)〜(3)の粒子の含有率の合計は100質量%である。
That is, the present invention is obtained by a reductive nitriding method, has the following particle size distribution with respect to the primary particle size, and has been surface oxidized so that the oxygen content is 0.4 to 1.3% by mass. It is a featured aluminum nitride powder.
(1) The content of particles having a primary particle size of 0.1 μm or more and less than 1 μm is 5 to 85% by mass.
(2) The content ratio of particles having a primary particle diameter of 1 μm or more and less than 5 μm is 0 to 40% by mass.
(3) The content ratio of particles having a primary particle diameter of 5 μm or more and 10 μm or less is 15 to 95% by mass.
However, the total content of the particles (1) to (3) is 100% by mass.

本発明の窒化アルミニウム粉末は、焼結性の良好な、還元窒化法によって得られた前記特定の広い分布と、酸素含有率が0.4〜1.3質量%となるように表面酸化された構造を有するため、これを焼結することによって得られる窒化アルミニウム焼結体において、前記粒度分布により主として達成される高い破壊じん性を示すのみでなく、かかる焼結性の向上により、特に特殊な焼結方法を採用することなく、きわめて高い熱伝導率及び曲げ強度をも発揮することができ、前記種々の用途において、取扱い時の破損を著しく減少することが可能となる。   The aluminum nitride powder of the present invention was surface-oxidized so that the specific wide distribution obtained by the reduction nitriding method with good sinterability and the oxygen content was 0.4 to 1.3% by mass. In the aluminum nitride sintered body obtained by sintering this because of having a structure, not only the high fracture toughness mainly achieved by the particle size distribution but also the special special property due to the improvement of the sinterability. Without adopting a sintering method, extremely high thermal conductivity and bending strength can be exhibited, and in the various applications, breakage during handling can be remarkably reduced.

上記効果の発現機構は明らかではないが、前記特定の粒度分布を構成する窒化アルミニウム粉末が還元窒化法により製造された窒化アルミニウムよりなるため、その表面に安定に酸化皮膜が形成されることによるものと推定している。即ち、上記本発明の窒化アルミニウム粉体は、安定して形成された酸化皮膜により、空気中の水分などの内部拡散による酸素含量の増加を防ぐ作用が全粒子におよぶため、粉末全体に高い焼結性が維持され、これが、粒度分布と相乗的に作用して、極めて高い曲げ強度を発現し、更に、高い熱伝導率を達成できるものと推定している。   Although the manifestation mechanism of the above effect is not clear, the aluminum nitride powder constituting the specific particle size distribution is made of aluminum nitride produced by a reduction nitriding method, and therefore, the oxide film is stably formed on the surface. It is estimated. That is, the above-described aluminum nitride powder of the present invention has a stable oxide film that prevents the oxygen content from increasing due to internal diffusion of moisture in the air, which affects all particles. It is presumed that the cohesiveness is maintained and this acts synergistically with the particle size distribution to express a very high bending strength and to achieve a high thermal conductivity.

また、焼結体に力が加わり亀裂が発生した場合でも、前記粒度分布の内の大きな粒子により形成される大粒径の結晶粒子の存在により、かかる大粒径の結晶粒子の位置で亀裂が止まり、従来にない高い破壊じん性を示すものと推定される。   Even when a force is applied to the sintered body and cracks occur, the presence of large crystal grains formed by the large particles in the particle size distribution causes cracks at the positions of the large crystal grains. It is presumed to stop and show a high fracture toughness that has never been seen before.

本発明の窒化アルミニウム粉末は、還元窒化法にて製造された窒化アルミニウム粉末を配合し、その1次粒子径の分布を
(1)0.1μm以上、1μm未満の1次粒子径の粒子の含有率が5〜85質量%、好ましくは、10〜80質量%、更に好ましくは、20〜65質量%、
(2)1μm以上、5μm未満の1次粒子径の粒子の含有率が0〜40質量%、好ましくは、0〜30質量%、更に好ましくは、0〜25質量、%
(3)5μm以上、10μm以下の1次粒子径の粒子の含有率が15〜95質量%、好ましくは、20質量%〜90質量%、更に好ましくは、35質量%〜80質量%、
(但し、(1)〜(3)の粒子の含有率の合計は100質量%である。)
とすることが、前記目的を達成するために重要である。
The aluminum nitride powder of the present invention is blended with an aluminum nitride powder produced by a reduction nitriding method, and the distribution of the primary particle size is (1) containing particles having a primary particle size of 0.1 μm or more and less than 1 μm. The rate is 5 to 85% by mass, preferably 10 to 80% by mass, more preferably 20 to 65% by mass,
(2) The content of particles having a primary particle diameter of 1 μm or more and less than 5 μm is 0 to 40% by mass, preferably 0 to 30% by mass, and more preferably 0 to 25% by mass.
(3) The content ratio of particles having a primary particle diameter of 5 μm or more and 10 μm or less is 15 to 95% by mass, preferably 20 to 90% by mass, more preferably 35 to 80% by mass,
(However, the total content of the particles (1) to (3) is 100% by mass.)
It is important to achieve the above object.

即ち、上記粒度分布を構成する窒化アルミニウム粉末が還元法によって得られた窒化アルミニウム粉末ではない場合、本発明の目的を達成することができない。例えば、金属アルミニウムを窒素雰囲気下で窒化処理して得られた「直接窒化法」により得られた窒化アルミニウム粉末は、製法上酸化層の形成処理を必要としないため、窒化アルミニウム表面が空気中の水分によって酸化が進んで酸素量が増加し、焼結性を低下させる。また、かかる「直接窒化法」から得た窒化アルミニウム粉末は、元来金属不純物が多いため、これを酸化処理したとしても、高熱伝導率の焼結体を得ることが困難である。   That is, if the aluminum nitride powder constituting the particle size distribution is not an aluminum nitride powder obtained by a reduction method, the object of the present invention cannot be achieved. For example, an aluminum nitride powder obtained by the “direct nitriding method” obtained by nitriding metal aluminum in a nitrogen atmosphere does not require an oxide layer formation process, so that the aluminum nitride surface is in the air. Oxidation proceeds with moisture, the amount of oxygen increases, and the sinterability decreases. In addition, since the aluminum nitride powder obtained from the “direct nitriding method” originally has many metal impurities, it is difficult to obtain a sintered body having high thermal conductivity even if it is oxidized.

尚、本発明の窒化アルミニウム粉末において、その全てが還元窒化法によって得られたものであることが好ましいが、本発明の効果を著しく低減しない割合で直接窒化法によって得られた窒化アルミニウム粉末を一部含有することは許容することができる。かかる割合は、前記(1)〜(3)の部分においてそれぞれ10質量%以下、好ましくは、5質量%以下であることが好ましい。   In addition, it is preferable that all of the aluminum nitride powder of the present invention is obtained by the reduction nitriding method. However, the aluminum nitride powder obtained by the direct nitriding method is used in a proportion not significantly reducing the effect of the present invention. It is permissible to contain a part. Such ratio is 10% by mass or less, preferably 5% by mass or less in each of the parts (1) to (3).

本発明において、窒化アルミニウム粉末を構成する0.1μm以上、1μm未満の1次粒子径の粒子の含有率が5質量%より少ない場合、緻密な焼結体を得ることができず高い該焼結体において熱伝導性、及び高い曲げ強度を達成することができない。   In the present invention, when the content of particles having a primary particle diameter of 0.1 μm or more and less than 1 μm constituting the aluminum nitride powder is less than 5 mass%, a dense sintered body cannot be obtained and the sintering is high. Thermal conductivity and high bending strength cannot be achieved in the body.

一方、本発明の窒化アルミニウム粉末を構成する0.1μm以上、1μm未満の1次粒子径の粒子の含有率が85質量%を超える場合、また、1μm以上、5μm未満の1次粒子径の粒子の含有率が40質量%を超える場合は、熱伝導性、曲げ強度については物性が向上するが、後記の大きい1次粒子径の割合を十分に確保することが出来ず、その結果、これを用いて得られる焼結体の破壊じん性が低下し、本発明の目的を達成することができない。   On the other hand, when the content of particles having a primary particle diameter of 0.1 μm or more and less than 1 μm constituting the aluminum nitride powder of the present invention exceeds 85% by mass, particles having a primary particle diameter of 1 μm or more and less than 5 μm When the content ratio exceeds 40% by mass, the physical properties of the thermal conductivity and the bending strength are improved, but the ratio of the large primary particle diameter described later cannot be sufficiently secured. The fracture toughness of the sintered body obtained by use decreases, and the object of the present invention cannot be achieved.

尚、1μm以上、5μm未満の1次粒子径の粒子は、含有されなくとも本発明の効果には特に影響を及ぼすことはない。   Incidentally, particles having a primary particle size of 1 μm or more and less than 5 μm do not particularly affect the effect of the present invention even if not contained.

また、本発明の窒化アルミニウム粉末を構成する5μm以上、10μm以下の1次粒子径の粒子の含有率が15質量%より少ない場合、得られる焼結体の破壊じん性が低下し、本発明の目的を達成することができない。   In addition, when the content of particles having a primary particle diameter of 5 μm or more and 10 μm or less constituting the aluminum nitride powder of the present invention is less than 15% by mass, the fracture toughness of the obtained sintered body is reduced, The goal cannot be achieved.

一方、5μm以上、10μm以下の1次粒子径の粒子の含有率が95質量%を超える場合、緻密な焼結体を得ることができず高い該焼結体において熱伝導性、及び高い曲げ強度を達成することができない。   On the other hand, when the content of particles having a primary particle size of 5 μm or more and 10 μm or less exceeds 95% by mass, a dense sintered body cannot be obtained, and the thermal conductivity and high bending strength are high in the sintered body. Cannot be achieved.

本発明において、上述した粒度分布による効果の発現機構として、本発明者らは、以下のように推定している。即ち、本発明の窒化アルミニウム粉末を構成する0.1μm以上、1μm未満の1次粒子径の粒子は、大きな粒子と粒子の隙間に入り込み、それが焼結することにより焼結体の緻密化とそれにともなう高熱伝導化および高強度化を図る。5μm以上、10μm以下の1次粒子径の粒子は、焼結体に亀裂が生じた時、その大きな粒子(5μm以上、10μm以下)の部位で亀裂の進行が止まり、焼結体の破壊を防ぎ、焼結体の高強度化、高じん性化を図る。尚、1μm以上、5μm未満の粒子が多い場合、緻密化、高強度化を図る0.1μm以上、1μm未満の1次粒子径の粒子と高強度化、高じん性化を図る5μm以上、10μm以下の1次粒子径の粒子が不足し、高強度化、高じん性化を図ることが出来なくなる。   In the present invention, the present inventors presume as follows as a mechanism of manifesting the effect of the particle size distribution described above. That is, particles having a primary particle diameter of 0.1 μm or more and less than 1 μm constituting the aluminum nitride powder of the present invention enter the gaps between large particles, and by sintering, the sintered body is densified. Along with this, high thermal conductivity and high strength will be achieved. Particles with a primary particle size of 5 μm or more and 10 μm or less, when cracks occur in the sintered body, the progress of the cracks stops at the sites of the large particles (5 μm or more and 10 μm or less), thus preventing destruction of the sintered body. To increase the strength and toughness of the sintered body. When there are many particles of 1 μm or more and less than 5 μm, particles having a primary particle size of 0.1 μm or more and less than 1 μm for increasing the density and strength and 5 μm or more and 10 μm for increasing the strength and toughness. The following primary particle size is insufficient, and it becomes impossible to achieve high strength and high toughness.

本発明の窒化アルミニウム粉末は、上記粒度分布を有すると共に、酸素含有率が0.4〜1.3質量%、好ましくは、0.6〜1.2質量%、更に好ましくは、0.7〜1.1質量%となるように表面酸化されていることが重要である。本発明の窒化アルミニウム粉末は、還元窒化法によって製造されているため、表面酸化処理を行うことにより、表面に安定な酸化皮膜が形成されるが、酸化の程度が、酸素含有率として0.4質量%より少ない場合、酸素の内部拡散を十分に防止することができず、焼結性が低下し、その結果、得られる焼結体のじん性、曲げ強度が低下する。また、酸素含有率として1.3質量%より多い場合、得られる焼結体中の酸素濃度の増加により、熱伝導率が低下するば。   The aluminum nitride powder of the present invention has the above particle size distribution and an oxygen content of 0.4 to 1.3% by mass, preferably 0.6 to 1.2% by mass, and more preferably 0.7 to It is important that the surface is oxidized so as to be 1.1% by mass. Since the aluminum nitride powder of the present invention is manufactured by a reduction nitriding method, a stable oxide film is formed on the surface by performing surface oxidation treatment, but the degree of oxidation is 0.4 as the oxygen content. If the amount is less than mass%, internal diffusion of oxygen cannot be sufficiently prevented, and the sinterability is lowered. As a result, the toughness and bending strength of the obtained sintered body are lowered. Further, when the oxygen content is more than 1.3% by mass, the thermal conductivity is lowered due to an increase in oxygen concentration in the obtained sintered body.

本発明の窒化アルミニウム粉末の他の構成は特に制限されないが、炭素量3000ppm未満、酸素、炭素を除く不純物量0.3質量%未満であることが好ましい。   Although the other structure of the aluminum nitride powder of the present invention is not particularly limited, it is preferable that the carbon content is less than 3000 ppm and the impurity content excluding oxygen and carbon is less than 0.3 mass%.

(窒化アルミニウム粉末の製造法)
本発明の窒化アルミニウム粉末の製造方法は、還元窒化法による方法であれば特に限定されないが、予め、前記粒度分布に調整された酸化アルミニウムを還元窒化することが、大粒径の酸化アルミニウムを効率よく窒化するために効率的である。
(Production method of aluminum nitride powder)
The method for producing the aluminum nitride powder of the present invention is not particularly limited as long as it is a reduction nitriding method. However, reducing and nitriding aluminum oxide that has been adjusted to the particle size distribution in advance reduces the efficiency of aluminum oxide having a large particle size. It is efficient because it nitrides well.

即ち、0.1μm以上、1μm未満の1次粒子径の含有率が5〜85質量%、1μm以上、5μm未満の1次粒子径の窒化アルミニウム粒子の含有率が0〜40質量%、5μm以上、10μm以下の1次粒子径の含有率が15〜95質量%(但し、上記含有率の合計は、100質量%である。)、の酸化アルミニウムをカーボンの存在下に、窒素ガスまたはアンモニアガスと加熱下に接触せしめて窒化アルミニウム粉末を得る方法が好適である。   That is, the content of primary particle diameter of 0.1 μm or more and less than 1 μm is 5 to 85% by mass, and the content of aluminum nitride particles having a primary particle size of 1 μm or more and less than 5 μm is 0 to 40% by mass, 5 μm or more. Nitrogen gas or ammonia gas in the presence of carbon in which aluminum oxide having a primary particle size of 10 to 10 μm or less is 15 to 95% by mass (however, the total content is 100% by mass). A method of obtaining aluminum nitride powder by contacting with heating is preferred.

また、その際、該窒化アルミニウム粉末を酸素の存在下に500〜900℃の温度で表面酸化処理を行うことが、酸素の粒子内への拡散を効果的に防止し、より酸素含有量の低い窒化アルミニウムを得るために好ましい。   In this case, the surface of the aluminum nitride powder is subjected to a surface oxidation treatment at a temperature of 500 to 900 ° C. in the presence of oxygen, effectively preventing oxygen from diffusing into the particles and lowering the oxygen content. It is preferable for obtaining aluminum nitride.

勿論、本発明の窒化アルミニウム粉末の製造方法は、窒化アルミニウム粉末の粒度分布と同一の分布を有する酸化アルミニウム粉末を使用せず、それぞれの大きさを有する酸化アルミニウム粉末を還元窒化法により製造した後、これらを前記含有率となるように混合することもできる。   Of course, the manufacturing method of the aluminum nitride powder of the present invention does not use the aluminum oxide powder having the same distribution as the particle size distribution of the aluminum nitride powder, and after manufacturing the aluminum oxide powder having the respective sizes by the reduction nitriding method. These can also be mixed so as to have the above-mentioned content.

上記還元窒化法を更に詳細に説明すれば、酸化アルミニウム粉末をカーボンの存在下に窒素ガスまたは、アンモニアガスと加熱下に接触せしめて窒化アルミニウム粉末を得た後、該窒化アルミニウム粉末を酸素の存在下に500〜900℃の温度で表面酸化処理を行うことを特徴とする窒化アルミニウムの製造方法が挙げられる。   The reduction nitriding method will be described in more detail. After the aluminum oxide powder is brought into contact with nitrogen gas or ammonia gas under heating in the presence of carbon to obtain an aluminum nitride powder, the aluminum nitride powder is then added to the presence of oxygen. A method for producing aluminum nitride characterized by performing surface oxidation treatment at a temperature of 500 to 900 ° C. below.

この方法において原料の酸化アルミニウム粉末としては、α、γ、θ、η等の結晶構造を持つものを挙げることができる。また、酸化アルミニウム粉末は、特に金属等の不純物の少ないものが好ましい。   Examples of the raw material aluminum oxide powder in this method include those having a crystal structure such as α, γ, θ, and η. In addition, the aluminum oxide powder is particularly preferably one having few impurities such as metal.

前記方法において、原料のカーボンは、カーボンブラック、黒鉛および、高温においてカーボン源となり得るカーボン前駆体が使用できる。本発明において、カーボンブラックはファーネス法、チャンネル法などのカーボンブラックおよび、アセチレンブラックが使用できる。これらのカーボンブラックの粒径は、任意であるが0.01から20μmのものを用いるのが好ましい。   In the above method, the raw material carbon can be carbon black, graphite, or a carbon precursor that can be a carbon source at a high temperature. In the present invention, carbon black such as furnace method and channel method and acetylene black can be used as the carbon black. The particle size of these carbon blacks is arbitrary, but it is preferable to use those having a diameter of 0.01 to 20 μm.

また、前記カーボン前駆体としては、フェノール樹脂、メラミン樹脂、エポキシ樹脂、フランフェノール樹脂等の合成樹脂縮合物やピッチ、タール等の炭化水素化合物や、セルロース、ショ糖、ポリ塩化ビニリデン、ポリフェニレン等の有機化合物が挙げられるが、固相のままないしは気相を経由して炭素化する化合物が好ましい。特に、フェノール樹脂等の合成樹脂やセルロース、ポリフェニレンなどが好ましい。これらのカーボンも、金属等の不純物が少ないものが好ましい。   Examples of the carbon precursor include synthetic resin condensates such as phenol resin, melamine resin, epoxy resin and furan phenol resin, hydrocarbon compounds such as pitch and tar, cellulose, sucrose, polyvinylidene chloride, polyphenylene and the like. Although an organic compound is mentioned, the compound which carbonizes through a solid phase or via a gaseous phase is preferable. In particular, a synthetic resin such as a phenol resin, cellulose, polyphenylene, and the like are preferable. These carbons are also preferably those having few impurities such as metals.

本発明において酸化アルミニウムとカーボンを混合方法としては、酸化アルミニウムとカーボンが均一になるような方法であればいずれの方法でも良い。溶媒を使用した湿式ボールミル混合、溶媒を使用しない乾式ボールミル混合が好ましい。湿式ボールミル混合にしようする溶媒は、水、メチルアルコール、エチルアルコール、イソプロピルアルコール、アセトン、ベンゼン、トルエン、キシレン等が例示できる。溶媒は、前述のカーボン前駆体が溶解しないものが好ましい。この溶媒を除去するため定法によって酸化アルミニウムとカーボンの混合物を乾燥する。   In the present invention, as a method of mixing aluminum oxide and carbon, any method may be used as long as aluminum oxide and carbon are uniform. Wet ball mill mixing using a solvent and dry ball mill mixing without using a solvent are preferred. Examples of the solvent used for wet ball mill mixing include water, methyl alcohol, ethyl alcohol, isopropyl alcohol, acetone, benzene, toluene, and xylene. The solvent is preferably a solvent that does not dissolve the aforementioned carbon precursor. In order to remove this solvent, a mixture of aluminum oxide and carbon is dried by a conventional method.

酸化アルミニウムとカーボンの混合物の窒化は、窒素および/または、アンモニア気流中、1200から1900℃の条件下で行うのが良い。窒化温度が1200℃以下では窒化反応が遅く、1900℃以上では、粒子同士の焼結が激しくなり、1次粒子の粒度分布が維持できないからである。   Nitriding of a mixture of aluminum oxide and carbon is preferably carried out under a condition of 1200 to 1900 ° C. in a nitrogen and / or ammonia stream. This is because when the nitriding temperature is 1200 ° C. or lower, the nitriding reaction is slow, and when the nitriding temperature is 1900 ° C. or higher, the particles are strongly sintered and the primary particle size distribution cannot be maintained.

上記還元窒化法において、酸化アルミニウムが、5μm以上の大粒径の粒子よりなるか、該粒子を含む場合は、特に、効率よく窒素ガスと接触させる必要がある。例えば、高温の窒素雰囲気下においてアルミナとカーボンの混合粉末を流動させる。また、坩堝(セッター)等への充填層厚を薄くする方法等の条件で窒化を行うことによって、従来では工業的に得ることのできなかった、還元窒化法による大粒径の窒化アルミニウム粉末を製造することができる。そして、これにより、本発明の窒化アルミニウム粉末を実現することが可能となったのである。   In the reductive nitriding method, when the aluminum oxide is made of or contains particles having a large particle diameter of 5 μm or more, it is particularly necessary to efficiently contact with nitrogen gas. For example, a mixed powder of alumina and carbon is flowed in a high-temperature nitrogen atmosphere. In addition, by performing nitriding under conditions such as a method of reducing the thickness of a packed layer in a crucible (setter) or the like, a large particle size aluminum nitride powder by a reduction nitriding method, which could not be obtained industrially conventionally, Can be manufactured. As a result, the aluminum nitride powder of the present invention can be realized.

前記還元窒化法によって得られた窒化アルミニウム粉末は、その表面の酸化処理を行うことによって取扱い時の酸素の内部拡散を効果的に防止することができる。   The aluminum nitride powder obtained by the reduction nitriding method can effectively prevent internal diffusion of oxygen during handling by performing an oxidation treatment on the surface thereof.

かかる酸化処理は、酸素の存在下、好ましくは、酸素濃度5〜40容量%の雰囲気下で加熱することにより実施される。上記雰囲気下での加熱温度は、500〜900℃が好ましい。これは、500℃以下では表面酸化処理に時間を要し、900℃以上では、酸化層の形成厚みの制御が困難となり、粒子の内部まで酸化される場合があるからである。   Such oxidation treatment is carried out by heating in the presence of oxygen, preferably in an atmosphere having an oxygen concentration of 5 to 40% by volume. The heating temperature in the atmosphere is preferably 500 to 900 ° C. This is because it takes time for the surface oxidation treatment at 500 ° C. or lower, and when it is 900 ° C. or higher, it is difficult to control the formation thickness of the oxide layer, and the inside of the particles may be oxidized.

酸化処理を行うことにより、窒化アルミニウム粒子表面に酸化アルミニウム膜が形成され、耐湿性が向上し、表面が空気中の水分によって参加され、酸素量が増加することを抑制する。また、焼結助剤として、酸化イットリウム、酸化カルシウム等を使用したとき、焼結助剤と表面酸化アルミニウム皮膜が反応し、焼結助剤としての働きもする。上記酸化層の厚みは、前記酸素濃度に調整された厚みの結果として具現化されるが、一般に、その厚みは、300〜2000Å程度である。   By performing the oxidation treatment, an aluminum oxide film is formed on the surface of the aluminum nitride particles, the moisture resistance is improved, and the surface is joined by moisture in the air, thereby suppressing an increase in the amount of oxygen. Further, when yttrium oxide, calcium oxide or the like is used as a sintering aid, the sintering aid reacts with the surface aluminum oxide film, and also functions as a sintering aid. The thickness of the oxide layer is embodied as a result of the thickness adjusted to the oxygen concentration, but generally the thickness is about 300 to 2000 mm.

(窒化アルミニウム粉末の焼結方法)
本発明の窒化アルミニウム粉末は、公知の方法によって焼結することにより、高い破壊じん性を有すると共に、高い熱伝導率及び曲げ強度を有する焼結体を得ることができる。
(Sintering method of aluminum nitride powder)
The aluminum nitride powder of the present invention can be sintered by a known method to obtain a sintered body having high fracture toughness and high thermal conductivity and bending strength.

上記焼結方法としては、窒化アルミニウム粉末を冷間等方圧プレスまたは、アクリル系、ポバール系、フェニル系、フェノール系、ポリイミド系等の樹脂を代表とする有機バインダーと共に成形し、窒化アルミニウムが実質的に酸化されない条件下に脱脂した後、炭素による還元雰囲気下、或いは中性雰囲気下で、温度1600〜2000℃の範囲で、1〜20時間焼成する条件が一般的である。   As the above sintering method, aluminum nitride powder is formed by cold isostatic pressing or with an organic binder typified by acrylic, poval, phenyl, phenol, polyimide, etc. Generally, the condition is that after degreasing under conditions that are not oxidized, firing in a reducing atmosphere with carbon or in a neutral atmosphere at a temperature of 1600 to 2000 ° C. for 1 to 20 hours.

上記方法において、有機バインダーの量も特に制限されないが、窒化アルミニウム粉末100質量部に対して、0.1〜20質量部となる割合が一般的である。   In the above method, the amount of the organic binder is not particularly limited, but a ratio of 0.1 to 20 parts by mass with respect to 100 parts by mass of the aluminum nitride powder is common.

また、上記焼結において、焼結助剤の使用も特に制限なく行うことができる。焼結助剤としては、 酸化カルシウム、酸化レアアース金属(例えば、セシウム、イットリウム、等)等が一般に使用され、窒化アルミニウム粉末への添加量は、0.1〜20質量%が適当である。   In the above sintering, the use of a sintering aid can be performed without any particular limitation. As the sintering aid, calcium oxide, rare earth metal oxide (for example, cesium, yttrium, etc.) and the like are generally used, and the addition amount to the aluminum nitride powder is suitably from 0.1 to 20% by mass.

また、本発明の窒化アルミニウム粉体は、ホットプレス法で焼結することによっても、良好な物性を有する焼結体を得ることができ。ホットプレスの条件も、公知の条件が特に制限なく採用される。例えば、窒化ホウ素または、黒鉛等のモールドに窒化アルミニウム粉末を充填し、プレス圧力を1MPa〜400MPaにし、焼成温度を1600〜1800℃で1〜30時間焼成する。   Moreover, the sintered body having good physical properties can be obtained by sintering the aluminum nitride powder of the present invention by hot pressing. Known conditions for hot pressing are also used without particular limitation. For example, a mold such as boron nitride or graphite is filled with aluminum nitride powder, the pressing pressure is set to 1 MPa to 400 MPa, and the firing temperature is 1600 to 1800 ° C. for 1 to 30 hours.

以下、本発明を更に具体的に説明するために実施例を示すが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, examples will be shown to describe the present invention more specifically, but the present invention is not limited to these examples.

尚、実施例、比較例において、各種物性は、下記の方法によって測定した。   In Examples and Comparative Examples, various physical properties were measured by the following methods.

1)1次粒子の粒度分布の測定
SEM写真から1次粒子径を求め、その径から1次粒子を球と仮定して、粒度分布を体積分布として求めた。
1) Measurement of particle size distribution of primary particles The primary particle diameter was determined from the SEM photograph, and the particle size distribution was determined as a volume distribution assuming that the primary particles were spheres.

2)焼結体相対密度
東洋精機製「高精度比重計D−H」を使用して、アルキメデス法により求めた焼結体密度と理論焼結体密度の相対値を相対密度とした。
2) Relative Density of Sintered Body Using “Toyo Seiki's“ High Precision Density Meter DH ”, the relative value of the sintered body density obtained by the Archimedes method and the theoretical sintered body density was defined as the relative density.

3)窒化アルミニウム粉末の酸素濃度
(株)堀場製作所製:酸素窒素同時分析装置(型式:EMGA‐550A)を使用して行った。即ち、窒化アルミニウム粉末中に含まれる酸素を不活性ガス、インパルス加熱融解法により抽出し、該酸素を一酸化炭素として非分散赤外線検出器にて測定するものである。
3) Oxygen concentration of aluminum nitride powder, manufactured by HORIBA, Ltd .: Oxygen-nitrogen simultaneous analyzer (model: EMGA-550A). That is, oxygen contained in the aluminum nitride powder is extracted by an inert gas, impulse heating and melting method, and the oxygen is measured with a non-dispersive infrared detector as carbon monoxide.

4)破壊じん性値
JIS R1607に準じた方法により、(株)アカシ製ビッカース硬さ試験機AVK−COにて測定されたビッカース硬さからI.F.法により算出した。押し込み荷重49N。保持時間15秒。5サンプルの平均値を測定値とした。
4) Fracture toughness value According to the method according to JIS R1607, from the Vickers hardness measured with Akashi Vickers hardness tester AVK-CO, I.V. F. Calculated by the method. Indentation load 49N. Retention time 15 seconds. The average value of 5 samples was taken as the measured value.

5)曲げ強度
JIS R1601に準じて、クロスヘッド速度0.5mm/分、スパン30mmで3点曲げ強度測定を行なった。試験片の幅は4mmで平面研削して作製した。曲げ強度は、5サンプルの平均値を測定値とした。
5) Bending strength According to JIS R1601, three-point bending strength was measured at a crosshead speed of 0.5 mm / min and a span of 30 mm. The width of the test piece was 4 mm and prepared by surface grinding. The bending strength was determined by measuring the average value of 5 samples.

6)熱伝導率
理学電気(株)製の熱定数測定装置PS−7を使用して、レーザーフラッシュ法により測定した。厚み補正は検量線により行なった。
6) Thermal conductivity The thermal conductivity was measured by a laser flash method using a thermal constant measuring device PS-7 manufactured by Rigaku Denki Co., Ltd. Thickness correction was performed using a calibration curve.

実施例1〜3、比較例1〜5
(窒化アルミニウム粉末の作製−1)
アルミナ粉末を下記A〜Cの3種類のアルミナに分級した。
Examples 1-3, Comparative Examples 1-5
(Preparation of aluminum nitride powder-1)
The alumina powder was classified into the following three types of aluminas A to C.

アルミナ−A 1次粒子径:0.1μm以上、1μm未満
アルミナ−B 1次粒子径:1μm以上、5μm未満
アルミナ−C 1次粒子径:5μm以上、10μm以下。
Alumina-A primary particle size: 0.1 μm or more and less than 1 μm Alumina-B primary particle size: 1 μm or more and less than 5 μm Alumina-C primary particle size: 5 μm or more and 10 μm or less.

次いで、上記分級したアルミナをそれぞれ280gとカーボン140gとを混合した後、これを黒鉛の坩堝に入れ窒素雰囲気下、1600℃にて12時間保持して還元窒化を行った。窒化後の粉末を空気中、600℃にて10時間表面酸化処理し、窒化アルミニウム粉末を得た。   Next, after 280 g of the classified alumina and 140 g of carbon were mixed, they were put in a graphite crucible and held at 1600 ° C. for 12 hours in a nitrogen atmosphere to perform reductive nitriding. The nitrided powder was surface oxidized in air at 600 ° C. for 10 hours to obtain an aluminum nitride powder.

尚、5μm以上、10μm以下のアルミナ粒子を還元窒化処理するときは、充填層厚を通常の40mmから30mmとした。   In addition, when reducing and nitriding 5 μm or more and 10 μm or less of alumina particles, the packed layer thickness was changed from the normal 40 mm to 30 mm.

窒化後の粉末を空気雰囲気下において650℃で13時間、酸化処理を行った。   The nitrided powder was oxidized at 650 ° C. for 13 hours in an air atmosphere.

上記還元窒化法にて作った1次粒子径の異なる数種類の窒化アルミニウム粉末をボールミルにて混合を行い、下記の1次粒子径分布を持つ窒化アルミニウム粉末を得た。   Several types of aluminum nitride powders having different primary particle diameters produced by the above reduction nitriding method were mixed by a ball mill to obtain aluminum nitride powders having the following primary particle size distribution.

AlN−A 1次粒子径:0.1μm以上、1μm未満
AlN−B 1次粒子径:1μm以上、5μm未満
AlN−C 1次粒子径:5μm以上、10μm以下。
AlN-A primary particle size: 0.1 μm or more and less than 1 μm AlN-B primary particle size: 1 μm or more and less than 5 μm AlN-C primary particle size: 5 μm or more and 10 μm or less.

(窒化アルミニウム粉末の作製−2)
前記A〜Cのアルミナをボールミルにて後記の所定の配合比に配合を行ったアルミナ280gとカーボンブラック140gを乾式の振動ボールミルにて混合を行った。混合粉末を窒素雰囲気下において1600℃で10時間還元窒化を行った。アルミナ粉末を窒素と効率良く接触させるため、窒化時の層厚は30mmとした。更に、窒化後の粉末を空気雰囲気下において650℃で13時間、酸化処理を行って、窒化アルミニウム粉末を得た。
(Preparation of aluminum nitride powder-2)
280 g of alumina prepared by mixing the aluminas A to C in a ball mill with a predetermined mixing ratio described below and 140 g of carbon black were mixed in a dry vibration ball mill. The mixed powder was subjected to reductive nitriding at 1600 ° C. for 10 hours in a nitrogen atmosphere. In order to efficiently bring the alumina powder into contact with nitrogen, the layer thickness during nitriding was set to 30 mm. Furthermore, the nitrided powder was oxidized at 650 ° C. for 13 hours in an air atmosphere to obtain an aluminum nitride powder.

尚、上術の方法によって得られた窒化アルミニウム粉末の酸素含率は、表面酸化前の値との対比により、窒化アルミニウム粉末の表面に存在することが確認された。   The oxygen content of the aluminum nitride powder obtained by the above method was confirmed to be present on the surface of the aluminum nitride powder by comparison with the value before the surface oxidation.

(焼結体の作製)
内容積が10Lのナイロン製ポットにアルミナ製ボールを見掛け充填率で40%入れ、次いで、これに前記窒化アルミニウム粉末の作製−1で得られたAlN−A〜Cの窒化アルミニウム粉末を表1に示す配合割合で混合した窒化アルミニウム粉末100重量部、酸化イットリウムを5重量部、表面活性剤を2重量部、更に、溶媒としてトルエン21重量部、エタノール12重量部、ブタノール2重量部を添加して、一回目のボールミル混合を16時間行なった後、この混合物に結合剤としてポリビニルブチラール8重量部、可塑剤を4重量部、溶媒としてトルエン27重量部、エタノール16重量部、ブタノール2重量部を入れて二回目のボールミル混合を18時間行ない、白色の泥しょう(以下、スラリーという)を得た。
(Production of sintered body)
Alumina balls having an apparent filling rate of 40% are put in a 10 L nylon pot, and then the aluminum nitride powders of AlN-A to C obtained in Preparation of aluminum nitride powder-1 are shown in Table 1. 100 parts by weight of aluminum nitride powder mixed at the indicated blending ratio, 5 parts by weight of yttrium oxide, 2 parts by weight of a surfactant, 21 parts by weight of toluene, 12 parts by weight of ethanol, and 2 parts by weight of butanol were added. After the first ball mill mixing for 16 hours, 8 parts by weight of polyvinyl butyral as a binder, 4 parts by weight of a plasticizer, 27 parts by weight of toluene as a solvent, 16 parts by weight of ethanol, and 2 parts by weight of butanol are added to this mixture. The second ball mill mixing was performed for 18 hours to obtain a white slurry (hereinafter referred to as slurry).

得られたスラリーは、脱溶媒し、粘度を20000〜30000cpsに調整した。その後、ドクターブレード法によりシート成形を行ない、室温で1時間、60℃で2時間、100℃で1時間乾燥して幅20cm、厚さ0.75mmのグリーンシートを作製した。さらに、打ち抜きプレス加工機により、50.8mm角のグリーン体に加工した。   The resulting slurry was desolvated and the viscosity was adjusted to 20000-30000 cps. Thereafter, a sheet was formed by a doctor blade method, and dried at room temperature for 1 hour, at 60 ° C. for 2 hours, and at 100 ° C. for 1 hour to produce a green sheet having a width of 20 cm and a thickness of 0.75 mm. Furthermore, it was processed into a green body of 50.8 mm square by a punching press machine.

乾燥空気中で580℃の温度で4時間脱脂処理し、脱脂体を窒化硼素製の焼成容器にいれて、窒素雰囲気中で1750℃の温度で、4時間焼成した。   Degreasing treatment was performed in dry air at a temperature of 580 ° C. for 4 hours, and the degreased body was placed in a baking vessel made of boron nitride and baked at a temperature of 1750 ° C. for 4 hours in a nitrogen atmosphere.

還元窒化法にて作った窒化アルミニウム粉末を実施例1〜3および、比較例1〜5に示す配合を行い、それから窒化アルミニウム焼結体を作製し、密度、曲げ強度、じん性を評価した。結果を表1に示す。   The aluminum nitride powder produced by the reduction nitriding method was blended as shown in Examples 1 to 3 and Comparative Examples 1 to 5, and then an aluminum nitride sintered body was produced, and the density, bending strength, and toughness were evaluated. The results are shown in Table 1.

Figure 0004713166
実施例4〜6、比較例6〜10
前記窒化アルミニウム粉末の作製−2において、表2に示す粒度分布のアルミナから作製した、表2に示す粒度分布を持つ還元窒化法による窒化アルミニウム粉末を、実施例1と同様な条件で焼結して焼結体を作製した。得られた焼結体の密度、曲げ強度、じん性を評価した。結果を表2に示す。
Figure 0004713166
Examples 4-6, Comparative Examples 6-10
In the preparation of aluminum nitride powder-2, aluminum nitride powder produced by reduction nitriding having the particle size distribution shown in Table 2 and made from alumina having the particle size distribution shown in Table 2 was sintered under the same conditions as in Example 1. Thus, a sintered body was produced. The density, bending strength, and toughness of the obtained sintered body were evaluated. The results are shown in Table 2.

Figure 0004713166
比較例11
表3に示す粒度分布を有する、直接窒化法にて得られた窒化アルミニウム粉末を、実施例と同様な方法によって焼結体を作製し、その密度、曲げ強度、じん性を評価した。結果を表3に示す。
Figure 0004713166
Comparative Example 11
A sintered body was produced from the aluminum nitride powder obtained by the direct nitriding method having the particle size distribution shown in Table 3 by the same method as in the Examples, and the density, bending strength, and toughness were evaluated. The results are shown in Table 3.

比較例12
表3に示す粒度分布を有する、直接窒化法にて得られた窒化アルミニウム粉末を空気中で600℃、10時間表面酸化処理した。得られた窒化アルミニウムを、実施例と同様な方法によって焼結体を作製し、その密度、曲げ強度、じん性を評価した。結果を表3に示す。
Comparative Example 12
An aluminum nitride powder having a particle size distribution shown in Table 3 and obtained by a direct nitriding method was surface oxidized in air at 600 ° C. for 10 hours. A sintered body was produced from the obtained aluminum nitride by the same method as in the Examples, and the density, bending strength, and toughness were evaluated. The results are shown in Table 3.

Figure 0004713166
Figure 0004713166

Claims (2)

還元窒化法により得られ、1次粒子径について下記の粒度分布を有し、且つ酸素含有率が0.4〜1.3質量%となるように表面酸化されたことを特徴とする窒化アルミニウム粉末。
(1)0.1μm以上、1μm未満の1次粒子径の粒子の含有率が5〜85質量%
(2)1μm以上、5μm未満の1次粒子径の粒子の含有率が0〜40質量%
(3)5μm以上、10μm以下の1次粒子径の粒子の含有率が15〜95質量%
但し、(1)〜(3)の粒子の含有率の合計は100質量%である。
Aluminum nitride powder obtained by reductive nitriding method, having the following particle size distribution with respect to the primary particle size, and surface oxidized so that the oxygen content is 0.4 to 1.3% by mass .
(1) The content of particles having a primary particle size of 0.1 μm or more and less than 1 μm is 5 to 85% by mass.
(2) The content ratio of particles having a primary particle diameter of 1 μm or more and less than 5 μm is 0 to 40% by mass.
(3) The content ratio of particles having a primary particle diameter of 5 μm or more and 10 μm or less is 15 to 95% by mass.
However, the total content of the particles (1) to (3) is 100% by mass.
下記の1次粒子径分布を持つ酸化アルミニウムとカーボンの存在下に窒素ガスまたは、アンモニアガスと加熱下に接触せしめて窒化アルミニウム粉末を得、該窒化アルミニウム粉末を酸素の存在下に500〜900℃の温度で表面酸化処理を行うことを特徴とする窒化アルミニウム粉末の製造方法。
(1)0.1μm以上、1μm未満の1次粒子径の含有率が10〜80質量%
(2)1μm以上5μm未満の1次粒子径の含有率が0〜35質量%
(3)5μm以上10μm以下の1次粒子径の含有率が20〜90質量%
An aluminum nitride powder is obtained by contacting under heating with nitrogen gas or ammonia gas in the presence of aluminum oxide and carbon having the following primary particle size distribution, and the aluminum nitride powder is heated to 500 to 900 ° C. in the presence of oxygen. A method for producing an aluminum nitride powder , characterized by performing a surface oxidation treatment at a temperature of
(1) The content of the primary particle diameter of 0.1 μm or more and less than 1 μm is 10 to 80% by mass.
(2) The primary particle size content of 1 μm or more and less than 5 μm is 0 to 35% by mass.
(3) The content of primary particle diameter of 5 to 10 μm is 20 to 90% by mass
JP2005013513A 2005-01-21 2005-01-21 Aluminum nitride powder and method for producing the same Active JP4713166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005013513A JP4713166B2 (en) 2005-01-21 2005-01-21 Aluminum nitride powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005013513A JP4713166B2 (en) 2005-01-21 2005-01-21 Aluminum nitride powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006199541A JP2006199541A (en) 2006-08-03
JP4713166B2 true JP4713166B2 (en) 2011-06-29

Family

ID=36957869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005013513A Active JP4713166B2 (en) 2005-01-21 2005-01-21 Aluminum nitride powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP4713166B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186385A (en) * 2006-01-16 2007-07-26 Denki Kagaku Kogyo Kk Aluminum nitride sintered compact and aluminum nitride circuit board using it
KR101816954B1 (en) * 2010-12-06 2018-01-09 가부시끼가이샤 도꾸야마 Aluminum nitride powder and process for manufacturing same
JP6112939B2 (en) * 2013-03-29 2017-04-12 株式会社トクヤマ Method for producing aluminum nitride powder
JP6196457B2 (en) * 2013-04-03 2017-09-13 株式会社トクヤマ Method for producing aluminum nitride powder
KR101726674B1 (en) 2014-11-20 2017-04-17 (주)티티에스 A boat device for aluminum and producing method thereby

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246812A (en) * 1986-04-21 1987-10-28 Sumitomo Chem Co Ltd Production of aluminum nitride powder
JPS63139008A (en) * 1986-11-28 1988-06-10 Kawasaki Steel Corp Production of powdery aluminum nitride
JP2722533B2 (en) * 1988-10-05 1998-03-04 住友化学工業株式会社 Aluminum nitride powder and method for producing the same
JPH0465307A (en) * 1990-06-29 1992-03-02 Matsushita Electric Works Ltd Production of aluminum nitride powder
JPH0497903A (en) * 1990-08-10 1992-03-30 Sumitomo Chem Co Ltd Oxidation resistant aluminum nitride powder
JPH06191807A (en) * 1992-12-28 1994-07-12 Tokuyama Soda Co Ltd Production of aluminum nitride powder

Also Published As

Publication number Publication date
JP2006199541A (en) 2006-08-03

Similar Documents

Publication Publication Date Title
Zhou et al. Development of high-thermal-conductivity silicon nitride ceramics
JP5836522B2 (en) Method for manufacturing silicon nitride substrate
JP4997431B2 (en) Method for producing high thermal conductivity silicon nitride substrate
JP5444384B2 (en) High thermal conductivity aluminum nitride sintered body
JP4713166B2 (en) Aluminum nitride powder and method for producing the same
JP2007197226A (en) High-thermal conductive silicon nitride ceramic having high reliability and method of manufacturing the same
JP2024026590A (en) Silicon nitride substrate and manufacturing method thereof
JP2003221279A (en) Aluminum nitride ceramics, member for manufacturing semiconductor and anticorrosive member
JP2015086125A (en) Nitrogen and silicon-based sintered body and manufacturing method thereof
JP2007254164A (en) Aluminum nitride sintered compact, member for semiconductor manufacturing device, and method of manufacturing auminum nitride sintered compact
JP2004262756A (en) Silicon nitride powder, silicon nitride sintered compact, and circuit board for electronic component using the sintered compact
JP2642184B2 (en) Method for producing aluminum nitride-hexagonal boron nitride sintered body
KR102660216B1 (en) Dense composite material, method for producing the same, joined body, and member for semiconductor manufacturing device
JP4615873B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP4773744B2 (en) Method for producing aluminum nitride sintered body
JP2005119934A (en) Silicon nitride porous body and method of manufacturing the same
JP2008156142A (en) Aluminum nitride sintered compact and method for manufacturing the same
JP2003226580A (en) Aluminum nitride-based ceramic and member for producing semiconductor
JP2009155126A (en) Silicon nitride sintered compact, its manufacturing method and circuit board, power semiconductor module
JP4314231B2 (en) Method for producing sintered boron nitride
JP2002029851A (en) Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JP4564257B2 (en) High thermal conductivity aluminum nitride sintered body
Xu et al. Influence of Y2O3 sintering aids on performance of c-BN-reinforced AlN/BN composite ceramics
JP5094259B2 (en) Circuit board
JP2022027444A (en) Silicon nitride substrate and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110324

R150 Certificate of patent or registration of utility model

Ref document number: 4713166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150