JP4997431B2 - Method for producing high thermal conductivity silicon nitride substrate - Google Patents

Method for producing high thermal conductivity silicon nitride substrate Download PDF

Info

Publication number
JP4997431B2
JP4997431B2 JP2006014670A JP2006014670A JP4997431B2 JP 4997431 B2 JP4997431 B2 JP 4997431B2 JP 2006014670 A JP2006014670 A JP 2006014670A JP 2006014670 A JP2006014670 A JP 2006014670A JP 4997431 B2 JP4997431 B2 JP 4997431B2
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
silicon
magnesium
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006014670A
Other languages
Japanese (ja)
Other versions
JP2007197229A (en
Inventor
喜代司 平尾
游 周
新文 朱
ゾルタン レンチェス
正浩 伊吹山
保男 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Denki Kagaku Kogyo KK filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006014670A priority Critical patent/JP4997431B2/en
Publication of JP2007197229A publication Critical patent/JP2007197229A/en
Application granted granted Critical
Publication of JP4997431B2 publication Critical patent/JP4997431B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)

Description

本発明は、パワー半導体を搭載してそれから発生する熱を逃がす作用を持ち、且つ高い信頼性が要求されるパワーモジュール用基板等に適した、高熱伝導窒化ケイ素基板とその製造方法に関する。   The present invention relates to a high thermal conductivity silicon nitride substrate that has a function of releasing power generated by mounting a power semiconductor and is suitable for a power module substrate that requires high reliability, and a method of manufacturing the same.

構造部材としての放熱材料を考えた場合、最も一般的な金属材料は500℃を超える条件下において冷却等を行うことなしに用いることは不可能である。さらに、これら金属材料はセラミックスに比べて耐食性、耐酸化性に劣る。また導電体であることから、高密度実装基板など高い放熱性を要求される絶縁基板材料として用いることは難しい。   When considering a heat dissipation material as a structural member, the most common metal material cannot be used without cooling or the like under conditions exceeding 500 ° C. Furthermore, these metal materials are inferior in corrosion resistance and oxidation resistance compared to ceramics. Moreover, since it is a conductor, it is difficult to use it as an insulating substrate material that requires high heat dissipation, such as a high-density mounting substrate.

一方、窒化アルミニウム焼結体、炭化ケイ素焼結体等のセラミック材料は高い絶縁性と高い熱伝導性を併せ持つことから、一部放熱基板材料として使用されるようになってきた。しかし、これらの高熱伝導性セラミックスは強度、靱性が低く機械的信頼性に欠けるためその用途は非常に限られたものであった。   On the other hand, ceramic materials such as an aluminum nitride sintered body and a silicon carbide sintered body have both high insulating properties and high thermal conductivity, and thus have been partially used as heat dissipation substrate materials. However, these high thermal conductive ceramics have low strength and toughness and lack mechanical reliability, so their uses are very limited.

窒化ケイ素焼結体は、高い強度と高い靱性を合わせ持つ優れた構造用セラミック材料として知られている。さらに、炭化ケイ素や窒化アルミニウムとの結晶構造の類似性から窒化ケイ素結晶の理論的な熱伝導率は200W/mK以上と期待されている。しかし、一般的な窒化ケイ素焼結体においては、窒化ケイ素粒子内部に不純物酸素が固溶しており、このため熱伝導を担うフォノンが散乱され、熱伝導率は数十W/mK程度である。   A silicon nitride sintered body is known as an excellent structural ceramic material having both high strength and high toughness. Furthermore, the theoretical thermal conductivity of silicon nitride crystals is expected to be 200 W / mK or more due to the similarity in crystal structure with silicon carbide and aluminum nitride. However, in a general silicon nitride sintered body, impurity oxygen is dissolved in silicon nitride particles, so that phonons responsible for heat conduction are scattered, and the thermal conductivity is about several tens of W / mK. .

窒化ケイ素焼結体について、高い熱伝導率を発現させるためには、焼結時に窒化ケイ素粒子内部の固溶酸素を低減させることが必要である(非特許文献1参照)。   In order to develop a high thermal conductivity for the silicon nitride sintered body, it is necessary to reduce the dissolved oxygen in the silicon nitride particles during sintering (see Non-Patent Document 1).

窒化ケイ素は、共有結合性が強く、拡散係数が小さいので、その焼結の際には、一般に、酸化物が焼結助剤として添加される。添加した焼結助剤は窒化ケイ素原料中の不純物酸素と反応して酸窒化物の融液を生成し、生成した液相の働きにより緻密化と粒成長が進行する。   Since silicon nitride has a strong covalent bond and a low diffusion coefficient, an oxide is generally added as a sintering aid during the sintering. The added sintering aid reacts with impurity oxygen in the silicon nitride raw material to generate an oxynitride melt, and densification and grain growth proceed by the action of the generated liquid phase.

酸素との親和性が高い希土類酸化物を助剤として添加した場合、液相中に多くの酸素がトラップされ、窒化ケイ素粒子の成長とともに粒子内部の固溶酸素量が低減する。このため、希土類酸化物は高熱伝導化のための重要な助剤である。しかし、希土類酸化物のみの添加では、生成する液相の融点が高いため、機械特性に優れた緻密な焼結体を得ることが困難である。このため、優れた機械特性と高い熱伝導率を共生させた窒化ケイ素焼結体を得るために、焼結助剤の種類、添加量、焼結温度、時間などのプロセス因子について様々なアプローチが行なわれてきた。   When a rare earth oxide having a high affinity with oxygen is added as an auxiliary agent, a large amount of oxygen is trapped in the liquid phase, and the amount of dissolved oxygen inside the particles decreases as the silicon nitride particles grow. For this reason, rare earth oxides are important auxiliaries for achieving high thermal conductivity. However, when only the rare earth oxide is added, it is difficult to obtain a dense sintered body excellent in mechanical properties because the melting point of the liquid phase to be generated is high. For this reason, in order to obtain a silicon nitride sintered body that coexists with excellent mechanical properties and high thermal conductivity, various approaches have been taken with respect to process factors such as the type of additive, amount added, sintering temperature, and time. Has been done.

例えば、特許文献1には、Al含有量が0.1質量%以下で平均粒径1μm以下の微細な窒化ケイ素粉末にMg、Ca、Sr、Ba、Y、La、Ce、Pr、Nd、Sm、Gd、Dy、Ho、Er、Ybのうちから選ばれる1種または2種以上の元素の酸化物焼結助剤を1〜15質量%添加して成形した後、0.1〜50MPaの窒素ガス圧下で、1700〜2300℃の温度で焼成することにより7MPam1/2以上の破壊靱性、600MPa以上の強度、80W/mK以上の熱伝導率を有する窒化ケイ素焼結体を作製することが可能なことが開示されている。 For example, Patent Document 1 discloses that a fine silicon nitride powder having an Al content of 0.1% by mass or less and an average particle size of 1 μm or less is coated with Mg, Ca, Sr, Ba, Y, La, Ce, Pr, Nd, Sm. , Gd, Dy, Ho, Er, Yb, 1 to 15% by mass of an oxide sintering aid of one or more elements selected from the elements, and then forming 0.1-50 MPa nitrogen It is possible to produce a silicon nitride sintered body having a fracture toughness of 7 MPam 1/2 or more, a strength of 600 MPa or more, and a thermal conductivity of 80 W / mK or more by firing at a temperature of 1700 to 2300 ° C. under gas pressure. It is disclosed.

また、特許文献2には、窒化ケイ素粉末にマグネシウム及びイットリウム及び/またはランタノイド族元素の1種以上の酸化物を総計で1.0質量%以下添加した原料粉末を成形した後に、温度1800〜2000℃、窒素圧0.5〜10MPa、焼成雰囲気調整用の詰粉に、窒化ケイ素、窒化ホウ素及び酸化マグネシウムからなる混合粉末を用いて焼成し、焼結体の粒子の大きさ、窒化ケイ素粒子内の酸素量、残留助剤成分量を制御することにより、常温における熱伝導率が90W/mK以上、3点曲げ強度が600MPa以上の特性を持つ窒化ケイ素焼結体の製造が可能であることが開示されている。   Further, in Patent Document 2, after forming raw material powder in which one or more oxides of magnesium and yttrium and / or lanthanoid group elements are added in a total amount of 1.0 mass% or less to silicon nitride powder, the temperature is 1800 to 2000. C., nitrogen pressure 0.5 to 10 MPa, the powder for adjusting the firing atmosphere is fired using a mixed powder composed of silicon nitride, boron nitride and magnesium oxide, the size of the sintered body particles, inside the silicon nitride particles By controlling the amount of oxygen and the amount of the remaining auxiliary component, it is possible to produce a silicon nitride sintered body having a characteristic that the thermal conductivity at normal temperature is 90 W / mK or more and the three-point bending strength is 600 MPa or more. It is disclosed.

また、特許文献3には、β相分率が30〜100%であり、酸素含有量が0.5質量%以下、平均粒子径が0.2〜10μm、アスペクト比が10以下である窒化ケイ素粉末1〜50質量部と、平均粒子径が0.2〜4μmのα型窒化ケイ素粉末99〜50質量部と、Mgと、Y及び希土類元素(RE)からなる群から選ばれた少なくとも1種の元素とを含む焼結助剤とを配合し、0.5MPaの窒素雰囲気にて1400〜1600℃の温度で1〜10時間保持した後、5.0℃/min以下の昇温速度で1800〜1950℃にして5〜40時間焼結するプロセスにより製造された、常温における熱伝導率が100W/mK以上、3点曲げ強度が600MPa以上の高強度・高熱伝導性窒化ケイ素質焼結体が記載されている。   Patent Document 3 discloses that silicon nitride having a β phase fraction of 30 to 100%, an oxygen content of 0.5% by mass or less, an average particle size of 0.2 to 10 μm, and an aspect ratio of 10 or less. 1 to 50 parts by mass of powder, 99 to 50 parts by mass of α-type silicon nitride powder having an average particle size of 0.2 to 4 μm, at least one selected from the group consisting of Mg, Y and rare earth elements (RE) And 1800 at a temperature increase rate of 5.0 ° C./min or less, after being held at a temperature of 1400 to 1600 ° C. for 1 to 10 hours in a nitrogen atmosphere of 0.5 MPa. A high-strength and high-heat-conductivity silicon nitride sintered body produced by a process of sintering at ˜1950 ° C. for 5 to 40 hours and having a thermal conductivity at room temperature of 100 W / mK or more and a three-point bending strength of 600 MPa or more Are listed.

また、本発明者らが行った予備的な実験では、従来の焼結法では、焼結時間の増加とともに、窒化ケイ素の粒成長が進み、熱伝導率は向上するものの、過度の粒成長のため熱伝導率の向上とともに、強度、及び破壊靭性が著しく低下することが判明した。   In preliminary experiments conducted by the present inventors, in the conventional sintering method, as the sintering time increases, the silicon nitride grain growth progresses and the thermal conductivity improves, but excessive grain growth occurs. Therefore, it has been found that the strength and fracture toughness are remarkably lowered as the thermal conductivity is improved.

例えば、後述する比較例(表1参照)に示すように、平均粒径0.2μmの窒化ケイ素微粉末に2mol%のYb23と5mol%のMgOを添加した窒化ケイ素成形体を1850℃で12時間焼成を行なった焼結体は、95W/mKの熱伝導率と850MPaの強度を有するが、同じ成形体を48時間焼成を行なった場合、熱伝導率は105W/mKまで向上するものの、強度は300MPaまで激減する。 For example, as shown in a comparative example described later (see Table 1), a silicon nitride molded body obtained by adding 2 mol% Yb 2 O 3 and 5 mol% MgO to a silicon nitride fine powder having an average particle diameter of 0.2 μm is 1850 ° C. The sintered body fired for 12 hours has a thermal conductivity of 95 W / mK and a strength of 850 MPa, but when the same molded body is fired for 48 hours, the thermal conductivity is improved to 105 W / mK. The strength is drastically reduced to 300 MPa.

上述の事例で例示したように、従来法では性状が制御された窒化ケイ素粉末を用い、焼結助剤の種類、添加量、焼結条件などのプロセスパラメータを最適化し、所定の微細構造を発現させることにより、100W/mK程度の熱伝導率と600MPa以上の強度を持つ窒化ケイ素焼結体を作製することができる。しかし、いずれの製造方法においても高価な窒化ケイ素粉末を用いるため、製品の価格が高くなり、また、熱伝導率が100W/mKを超えると、急激に強度、靭性が低下し機械的な信頼性が乏しくなる。このように、製品価格と、熱伝導、及び機械特性との共生の二つの観点から、従来の焼結法で得られる高熱伝導窒化ケイ素は満足するものでなかった。   As illustrated in the example above, the conventional method uses silicon nitride powder with controlled properties, optimizes process parameters such as the type, amount of additive, and sintering conditions of the sintering aid, and develops a predetermined microstructure. By doing so, a silicon nitride sintered body having a thermal conductivity of about 100 W / mK and a strength of 600 MPa or more can be produced. However, since expensive silicon nitride powder is used in any of the manufacturing methods, the price of the product increases, and when the thermal conductivity exceeds 100 W / mK, the strength and toughness are drastically lowered and the mechanical reliability is reduced. Becomes scarce. Thus, from the two viewpoints of symbiosis between product price, heat conduction, and mechanical properties, the high thermal conductivity silicon nitride obtained by the conventional sintering method has not been satisfactory.

原料粉末に要するコストを低減させるという観点から、次に例示するように、原料粉末として安価なケイ素粉末を用い、その成形体を窒素中で窒化後、高温で焼結するいわゆる反応焼結手法を用いた高熱伝導窒化ケイ素材料の開発が行なわれている。例えば、特許文献4では、ケイ素、或いはケイ素と窒化ケイ素との混合粉末に対して、周期律表第3a族元素化合物を酸化物換算で2〜10mol%の割合で添加し、且つアルミニウム含有量が酸化物換算で0〜0.5質量%の混合粉末を成形し、該成形体を800〜1500℃の窒素含有中で熱処理して、前記ケイ素を窒化して、β型窒化ケイ素を10%以上含有する窒化体を作製した後、該窒化体を1400〜1800℃の窒素を含む常圧下で焼成し、さらにその焼結体を1800〜1980℃の窒素圧0.15MPa以上の雰囲気下で焼成して、前記窒化ケイ素結晶の平均粒径が2μm以上、平均アスペクト比が15以下、任意の300μm×300μmの領域に長さ20μm以上の窒化ケイ素粒子が5個以上存在の焼結体組織とすることで、高強度、高靭性、高熱伝導を併せ持つ窒化ケイ素を製造できるとされている。   From the viewpoint of reducing the cost required for the raw material powder, as illustrated below, a so-called reactive sintering method is used in which an inexpensive silicon powder is used as the raw material powder, and the molded body is nitrided in nitrogen and then sintered at high temperature Development of high thermal conductivity silicon nitride materials used is underway. For example, in Patent Document 4, a Group 3a element compound of the Periodic Table is added at a ratio of 2 to 10 mol% in terms of oxides with respect to silicon or a mixed powder of silicon and silicon nitride, and the aluminum content is A mixed powder of 0 to 0.5% by mass in terms of oxide is molded, the molded body is heat treated in a nitrogen content of 800 to 1500 ° C., and the silicon is nitrided, and β-type silicon nitride is 10% or more. After producing the nitride to be contained, the nitride is fired under normal pressure containing nitrogen at 1400 to 1800 ° C., and the sintered body is further fired at 1800 to 1980 ° C. in an atmosphere having a nitrogen pressure of 0.15 MPa or more. And a sintered body structure in which the silicon nitride crystal has an average particle size of 2 μm or more, an average aspect ratio of 15 or less, and 5 or more silicon nitride particles having a length of 20 μm or more in an arbitrary 300 μm × 300 μm region. , There is a high strength, high toughness can be produced silicon nitride having both a high thermal conductivity.

特許文献4では、窒化ケイ素の熱伝導率を向上させるために、アルミニウム含有量を0.5%以下にすることが重要であることが述べられている。これはアルミニウムが、窒化ケイ素結晶に固溶しフォノンを散乱させる要因となるためである。   Patent Document 4 states that in order to improve the thermal conductivity of silicon nitride, it is important that the aluminum content is 0.5% or less. This is because aluminum is a solid solution in the silicon nitride crystal and causes phonons to scatter.

しかし、非特許文献1、2にその詳細が示されているように、窒化ケイ素焼結体の熱伝導率を阻害する最も大きな要因は不純物酸素である。このため、不純物酸素量の影響については考慮されていない本先行文献で達成されている熱伝導率の値60〜78W/mKは、放熱部材として十分なものでない。   However, as described in detail in Non-Patent Documents 1 and 2, the largest factor that inhibits the thermal conductivity of the silicon nitride sintered body is impurity oxygen. For this reason, the value 60-78 W / mK of the thermal conductivity achieved in this prior document which does not consider the influence of the amount of impurity oxygen is not sufficient as a heat radiating member.

また、特許文献5においては、不純物酸素が熱伝導率を大きく低下させるとの概念のもとで、ケイ素の反応焼結による窒化ケイ素焼結体の製造プロセスにおいて、含有酸素量が1質量%以下のケイ素粉末を用い、その80〜99質量%とY、Yb、Smの少なくとも1種の元素の酸化物粉末1〜20質量%とを混合し、その成形体を窒素雰囲気中1400℃以下の温度で窒化処理した後、1700〜1950℃の温度で焼成することにより、高熱伝導窒化ケイ素が得られることが開示されている。   In Patent Document 5, the content of oxygen is 1% by mass or less in a process for producing a silicon nitride sintered body by reactive sintering of silicon under the concept that impurity oxygen greatly reduces thermal conductivity. 80 to 99% by mass of silicon powder and 1 to 20% by mass of oxide powder of at least one element of Y, Yb and Sm are mixed, and the compact is heated to a temperature of 1400 ° C. or less in a nitrogen atmosphere. It is disclosed that high thermal conductivity silicon nitride can be obtained by nitriding at 1700-1950 ° C. after nitriding.

さらに、特許文献5には、不純物酸素を低減させるために、還元性コーティング剤をケイ素粉末に添加し、13kPa以下の真空中、窒素含有雰囲気中で200〜800℃の温度範囲で熱処理することが示されている。   Further, in Patent Document 5, in order to reduce impurity oxygen, a reducing coating agent is added to silicon powder, and heat treatment is performed in a temperature range of 200 to 800 ° C. in a nitrogen-containing atmosphere in a vacuum of 13 kPa or less. It is shown.

また、特許文献6においては、転位の少ない原料を用い、且つプロセス中において、粉末、成形体に9.8MPa以上の圧力を加えないなどの手法により、フォノンの散乱要因の一つである窒化ケイ素粒子中の転位密度を、10μm/μm3以下とすることで高強度と高熱伝導率が達成できることが開示されている。 Further, in Patent Document 6, silicon nitride, which is one of the phonon scattering factors, is obtained by using a raw material with few dislocations and not applying a pressure of 9.8 MPa or more to the powder and the molded body during the process. It is disclosed that high strength and high thermal conductivity can be achieved by setting the dislocation density in the particles to 10 μm / μm 3 or less.

さらに、特許文献7においては、窒化ケイ素以外の第一成分として希土類元素の少なくとも1種、第二成分としてアルカリ土類元素、Li、Srの少なくとも1種を含み、酸化物に換算したモル比率で第一成分が0.95〜7.7mol%及び第二成分が0.49〜4.7mol%であって、第一成分濃度は中心部より表面部が高く、第二成分の濃度は表面部より中心部を相対的に高くすることにより高強度・高熱伝導窒化ケイ素を作製することが開示されている。   Further, in Patent Document 7, the first component other than silicon nitride includes at least one rare earth element, the second component includes at least one alkaline earth element, Li, and Sr, and has a molar ratio converted to an oxide. The first component is 0.95 to 7.7 mol% and the second component is 0.49 to 4.7 mol%, and the concentration of the first component is higher at the surface than at the center, and the concentration of the second component is at the surface It is disclosed that high strength and high thermal conductivity silicon nitride is produced by making the central portion relatively higher.

このように、ケイ素粉末を用いることが可能な反応焼結に関しても、100W/mKを超える高い熱伝導率を持つ窒化ケイ素焼結体の作製に関して多くの手法が開発されている。しかし、従来の手法は、例えば、高熱伝導を達成するためには、不純物酸素量が1%以下のケイ素粉末を使用することや、還元性コーティング剤を添加し還元処理を行う必要があること(特許文献5参照)、転位密度の少ないケイ素原料を用い、また、成形時の圧力を9.8MPa以下で行うこと(特許文献6参照)、焼結体の外周部と内周部で組成が異なるように制御を行うこと(特許文献7参照)など、使用可能なケイ素原料粉末や適用可能なプロセスに多くの制限があるという問題を抱えているのが実情であった。   As described above, many methods have been developed for the production of a silicon nitride sintered body having a high thermal conductivity exceeding 100 W / mK, also with respect to reactive sintering in which silicon powder can be used. However, in the conventional method, for example, in order to achieve high heat conduction, it is necessary to use silicon powder having an impurity oxygen amount of 1% or less, or to perform a reduction treatment by adding a reducing coating agent ( Use a silicon raw material with a low dislocation density and perform molding at a pressure of 9.8 MPa or less (see Patent Document 6). The composition differs between the outer peripheral portion and the inner peripheral portion of the sintered body. The actual situation is that there are many limitations on usable silicon raw material powders and applicable processes, such as performing control as described above (see Patent Document 7).

特開平09−030866号公報JP 09-030866 A 特開2002−293642号公報JP 2002-293642 A 特開2003−313079号公報JP 2003-313079 A 特開平11−100276号公報Japanese Patent Application Laid-Open No. 11-100300 特開平11−314969号公報JP 11-314969 A 特開2000−169239号公報JP 2000-169239 A 特開2000−272968号公報JP 2000-272968 A Journal of the American Ceramic Society,“Thermal Conductivity of beta−Si3N4 II: Effect of Lattice Oxygen,” 83[8]1985−1992(2000)Journal of the American Ceramic Society, “Thermal Conductivity of beta-Si3N4 II: Effect of Lattice Oxygen,” 83 [8] 1985-1992 (2000). 日本セラミックス協会学術論文誌、”窒化ケイ素の熱伝導率に及ぼす焼結体中の酸素の影響”,109[12]1046−1050(2001)Journal of the Ceramic Society of Japan, “Effect of oxygen in sintered body on thermal conductivity of silicon nitride”, 109 [12] 1046-1050 (2001)

上述のように、これまでに開発されたケイ素の反応焼結手法を用いた高熱伝導窒化ケイ素の製造方法は、使用可能なケイ素原料粉末や製造プロセスが大きく制限され、本手法を用いることの利点、即ち、安価なケイ素粉末を用い、従来の窒化ケイ素の焼結手法と同様なプロセスで高い特性を持つ材料を得るという利点を十分に生かしたものでなかった。   As described above, the production method of high thermal conductivity silicon nitride using the reactive sintering method of silicon developed so far greatly limits the available silicon raw material powder and production process, and the advantages of using this method That is, the advantage of obtaining a material having high characteristics by a process similar to the conventional silicon nitride sintering method using an inexpensive silicon powder has not been fully utilized.

このような状況の中で、本発明者らは、上記従来技術に鑑みて、安価なケイ素粉末を用い、従来の窒化ケイ素の焼結手法と同様なプロセスで高い特性を持つ材料を製造することを目標として、鋭意研究を重ねた結果、本発明を完成するに至った。   Under such circumstances, the present inventors, in view of the above prior art, use an inexpensive silicon powder and manufacture a material having high characteristics by a process similar to the conventional silicon nitride sintering method. As a result of intensive research aimed at the goal, the present invention has been completed.

本発明の目的は、ケイ素の窒化反応を用いた反応焼結による窒化ケイ素焼結体の製造において、多くの不純物酸素を含む低品位のケイ素粉末から不純物酸素量の少ない高品位なケイ素粉末まで多様なケイ素粉末を出発原料として用いることができ、さらに従来の成形、焼成プロセスの適用が可能で、しかも優れた機械特性と高熱伝導性を併せ持つ窒化ケイ素焼結体の製造方法を用いて、パワー半導体を搭載してそれから発生する熱を逃がす作用を持ち、且つ高い信頼性が要求されるパワーモジュール用基板等として最適な、高信頼性・高熱伝導窒化ケイ素基板を提供することにある。   The object of the present invention is to manufacture a silicon nitride sintered body by reactive sintering using silicon nitriding reaction, ranging from low-grade silicon powder containing a large amount of impurity oxygen to high-grade silicon powder containing a small amount of impurity oxygen. Power semiconductors using a method of manufacturing a silicon nitride sintered body that can be used as a starting material, can be applied to conventional molding and firing processes, and has both excellent mechanical properties and high thermal conductivity It is an object of the present invention to provide a highly reliable and highly thermally conductive silicon nitride substrate that has an effect of releasing heat generated from the substrate and is optimal as a power module substrate or the like that requires high reliability.

発明は、ケイ素粉末或いはケイ素粉末と窒化ケイ素粉末の混合粉末に、ケイ素を窒化ケイ素に換算した際の比率において、0.5〜7mol%の希土類元素の酸化物と、1〜7mol%のマグネシウム混合物とを混合した混合物であって、
上記マグネシウム混合物が、酸化マグネシウム(MgO)、ケイ化マグネシウム(Mg2Si)、窒化ケイ素マグネシウム(MgSiN2)から選択される少なくとも一種であり、
上記ケイ素粉末或いはケイ素粉末と窒化ケイ素粉末の混合粉末に含まれる不純物酸素とマグネシウム化合物からの酸素との総量が0.1〜1.8質量%である混合物を調整し、
該混合物を成形して窒化し、得られた窒化体を0.1MPa以上の窒素中で加熱して相対密度が95%以上になるように緻密化し、得られた板状の窒化ケイ素焼結体の少なくとも一方の面に、マグネシウム、チタン、ジルコニウムのうち少なくとも一種の金属元素を含むろう材を用いて金属板を接合することを特徴とする高熱伝導窒化ケイ素基板の製造方法である。
The present invention relates to silicon powder or a mixed powder of silicon powder and silicon nitride powder, in a ratio when silicon is converted to silicon nitride, 0.5 to 7 mol% rare earth element oxide and 1 to 7 mol% magnesium. A mixture mixed with a mixture,
The magnesium mixture is at least one selected from magnesium oxide (MgO), magnesium silicide (Mg 2 Si), and magnesium magnesium nitride (MgSiN 2 );
Adjusting a mixture in which the total amount of impurity oxygen contained in the silicon powder or the mixed powder of silicon powder and silicon nitride powder and oxygen from the magnesium compound is 0.1 to 1.8% by mass,
The mixture is molded and nitrided, and the obtained nitride is heated in nitrogen of 0.1 MPa or more to be densified so that the relative density is 95% or more, and the obtained plate-like silicon nitride sintered body is obtained A metal plate is joined to at least one surface of the metal plate using a brazing material containing at least one metal element of magnesium, titanium, and zirconium.

本発明においては、高い熱伝導率と高強度、高靱性を併せ持つ窒化ケイ素焼結体が得られ、その焼結体に金属板を接合することにより、特に耐熱サイクル性に優れた高信頼性の高強度高熱伝導窒化ケイ素基板が得られる。また、使用する窒化ケイ素焼結体の機械特性が優れているので、接合する金属を選ばず、剛性の高い金属板や厚い金属板を接合することが可能である。従って、パワーモジュール用部材として用いる場合、パワーモジュールのベース板に直接窒化ケイ素板を接合した基板としたり、ベース板を用いず窒化ケイ素基板を直接筐体にねじ止めしたりする構造を取ることが可能となるので、パワーモジュールの新規な構造を実現できる可能性がある。これらにより、パワーモジュールの小型化、コストダウン、及び長寿命化が可能となるので、産業上大きな貢献が期待でき、また、それらを通じて省エネルギー、地球環境保全に寄与しうる。   In the present invention, a silicon nitride sintered body having both high thermal conductivity, high strength, and high toughness is obtained, and by joining a metal plate to the sintered body, particularly high heat cycle resistance and high reliability. A high strength and high thermal conductivity silicon nitride substrate is obtained. Further, since the silicon nitride sintered body to be used is excellent in mechanical properties, it is possible to join a highly rigid metal plate or a thick metal plate regardless of the metal to be joined. Therefore, when used as a member for a power module, it is possible to adopt a structure in which a silicon nitride plate is directly bonded to the base plate of the power module, or the silicon nitride substrate is directly screwed to the housing without using the base plate. Therefore, there is a possibility that a new structure of the power module can be realized. As a result, the power module can be reduced in size, reduced in cost, and extended in life, so that it can be expected to make a significant industrial contribution, and through these, it can contribute to energy saving and global environmental conservation.

また、本発明の製造方法によれば、多くの不純物酸素を含む低品位のケイ素粉末から不純物酸素量の少ない高品位なケイ素粉末まで、多様なケイ素原粉末を出発原料として用いることができる。   Further, according to the production method of the present invention, various silicon raw powders can be used as a starting material, from low-grade silicon powder containing a large amount of impurity oxygen to high-grade silicon powder having a small amount of impurity oxygen.

本発明において、ケイ素粉末の窒化反応を用い、緻密な窒化ケイ素焼結体を作製するためには、ケイ素粉末に窒化ケイ素の焼結助剤を予め添加し、混合粉末の成形体を1400℃以下の窒素中で加熱し、ケイ素を窒化ケイ素とした後、得られた窒化体をさらに高温の窒素中で加熱することにより緻密化を行うことが必要とされる。このため、本発明において、高い熱伝導率を持つ窒化ケイ素焼結体を得るための設計指針は、窒化ケイ素を出発原料とした一般的な焼結手法と基本的には同じである。   In the present invention, in order to produce a dense silicon nitride sintered body using the nitridation reaction of silicon powder, a silicon nitride sintering aid is added in advance to the silicon powder, and the mixture of the powder mixture is 1400 ° C. or lower. After heating in nitrogen to convert silicon into silicon nitride, it is necessary to perform densification by heating the resulting nitride in higher temperature nitrogen. For this reason, in the present invention, the design guideline for obtaining a silicon nitride sintered body having high thermal conductivity is basically the same as a general sintering method using silicon nitride as a starting material.

既に述べたように、窒化ケイ素粉末は、不可避的に数%程度の不純物酸素を含有している。また、窒化ケイ素はそれ自身では焼結しないので、窒化ケイ素焼結体を製造する場合、酸化物が焼結助剤として添加される。結晶中の固溶酸素が存在すること及び残留する低熱伝導の粒界相が存在することが、焼結体の熱伝導率が200W/mKを超えると予測されている窒化ケイ素結晶の理論的な熱伝導率に比較して著しく低くなることの要因である。   As already stated, silicon nitride powder inevitably contains about several percent of impurity oxygen. In addition, since silicon nitride does not sinter itself, an oxide is added as a sintering aid when producing a silicon nitride sintered body. The presence of solid solution oxygen in the crystal and the presence of residual low thermal conductivity grain boundary phases are the theoretical characteristics of the sintered silicon nitride crystal, which is predicted to have a thermal conductivity of over 200 W / mK. This is a factor of significantly lowering the thermal conductivity.

このため、窒化ケイ素焼結体の熱伝導率を向上させるためには、(1)窒化ケイ素結晶に固溶し結晶自身の熱伝導率を低下させる固溶酸素量を低減させること、(2)焼結体に残留する低熱伝導の粒界相を低減させること、が必要、且つ重要である。   For this reason, in order to improve the thermal conductivity of the silicon nitride sintered body, (1) reducing the amount of dissolved oxygen in the silicon nitride crystal to lower the thermal conductivity of the crystal itself, (2) It is necessary and important to reduce the low thermal conductivity grain boundary phase remaining in the sintered body.

従って、高熱伝導化にはこの焼結助剤の選択が非常に重要である。前者のためには、酸素との親和性が高く粒界相に酸素をトラップする能力に優れた希土類元素酸化物が助剤として用いられる。後者を満足させるためには、加熱時に生成する融液の融点を低下させ、焼結初期に緻密化に貢献し、さらに、高温での焼結時に蒸発揮散する酸化マグネシウム及び/または窒化ケイ素マグネシウムが好適に用いられる。   Therefore, selection of this sintering aid is very important for achieving high thermal conductivity. For the former, rare earth element oxides having high affinity with oxygen and excellent ability to trap oxygen in the grain boundary phase are used as auxiliary agents. In order to satisfy the latter, the melting point of the melt produced during heating is lowered, contributing to densification in the early stage of sintering, and further, magnesium oxide and / or silicon magnesium nitride that evaporates during sintering at a high temperature. Preferably used.

ケイ素粉末も窒化ケイ素粉末同様に、不可避的に不純物酸素を含んでいる。この酸素量は、ケイ素粉末の性状により大きく異なるが、一般に0.2質量%程度から数質量%程度の範囲にある。窒化ケイ素粉末を用いた従来の焼結法に比べて、ケイ素粉末の反応焼結を用いた窒化ケイ素焼結体の製造方法は、酸素量低減という観点から大きな利点を有する。   Like silicon nitride powder, silicon powder inevitably contains impurity oxygen. The amount of oxygen varies greatly depending on the properties of the silicon powder, but is generally in the range of about 0.2 mass% to several mass%. Compared to the conventional sintering method using silicon nitride powder, the method for producing a silicon nitride sintered body using reactive sintering of silicon powder has a great advantage from the viewpoint of reducing the amount of oxygen.

即ち、具体的には、
(1)3Si+2N2=Si34の窒化反応に伴い、試料重量が約70%増加するので、相対的に不純物酸素量の割合が低下する、
(2)Si粉末成形体の窒化は寸法変化を伴わずに重量が増加するため、窒化体は成形体に比べて十数%相対密度が高くなり、ポスト焼結過程での緻密化が容易である、
(3)このことは焼成時間の短縮化を可能とし、機械特性に悪影響を及ぼす過度の粒成長を防ぐことを可能とする、等の利点を有する。
That is, specifically,
(1) With the nitriding reaction of 3Si + 2N 2 = Si 3 N 4 , the sample weight increases by about 70%, so that the proportion of the amount of impurity oxygen relatively decreases.
(2) Since nitriding of Si powder compacts increases in weight without dimensional change, nitrides have a relative density that is more than 10% higher than compacts and can be easily densified in the post-sintering process. is there,
(3) This has advantages such as shortening the firing time and preventing excessive grain growth that adversely affects mechanical properties.

このように、反応焼結による手法は、高熱伝導化の観点から優れた潜在的なポテンシャルを有している。しかし、単にケイ素粉末原料中の不純物酸素量の低減を図ったのでは、原料の高純度化に伴い原料コストが増加する、使用できる原料が限定される、不純物酸素もシリカとしての焼結助剤の一端を担うので、原料の酸素量の低減に伴い焼結性が阻害される、といった問題点がある。   As described above, the reaction sintering method has an excellent potential from the viewpoint of achieving high thermal conductivity. However, simply reducing the amount of impurity oxygen in the silicon powder raw material will increase the raw material cost as the raw material is highly purified, the usable raw materials are limited, and impurity oxygen is also a sintering aid as silica. Therefore, there is a problem that the sinterability is hindered as the amount of oxygen in the raw material is reduced.

そこで、本発明者らは、機械特性と熱伝導性に優れた窒化ケイ素焼結体の反応焼結手法により製造することを目的に、ケイ素粉末の性状、特に不純物酸素量と助剤組成が、窒化体をポスト焼結して得られる窒化ケイ素焼結体の熱伝導と機械特性に及ぼす影響について鋭意検討を行った。   Therefore, the present inventors, for the purpose of producing by a reactive sintering method of a silicon nitride sintered body excellent in mechanical properties and thermal conductivity, the properties of silicon powder, in particular, the amount of impurity oxygen and the auxiliary composition are The effect of the silicon nitride sintered body obtained by post-sintering the nitride on the heat conduction and mechanical properties was investigated.

その結果、熱伝導率、強度、靱性を共生させた窒化ケイ素焼結体を作製するためには、ケイ素粉末に含まれる不純物酸素量と焼結助剤としてのマグネシウム化合物からの酸素量の和並びに希土類酸化物の添加量を、特定の範囲に精緻に制御することにより、初めて実現できるとの新規知見を見出し、本発明に至った。   As a result, in order to produce a silicon nitride sintered body in which thermal conductivity, strength, and toughness coexist, the sum of the amount of oxygen contained in the silicon powder and the amount of oxygen from the magnesium compound as a sintering aid The inventors have found a novel finding that the rare earth oxide can be realized for the first time by precisely controlling the addition amount of the rare earth oxide within a specific range, and have reached the present invention.

即ち、本発明では、ケイ素粉末の反応焼結を利用して合成した反応焼結窒化ケイ素焼結体であって、β相窒化ケイ素を主成分とし、希土類元素の少なくとも一種を酸化物に換算して0.5〜7mol%含有し、Mgの存在量が酸化物に換算して2mol%以下であり、熱伝導率が100W/mK以上、3点曲げ強度が600MPa以上、予き裂導入破壊試験法で測定した破壊靱性値が7MPam1/2以上の特性を有する窒化ケイ素焼結体が得られ、該窒化ケイ素焼結体に金属層を接合することにより、高信頼性高熱伝導窒化ケイ素基板を得ることができる。 That is, the present invention is a reaction sintered silicon nitride sintered body synthesized using reaction sintering of silicon powder, which is mainly composed of β-phase silicon nitride, and at least one rare earth element is converted into an oxide. 0.5-7 mol%, Mg abundance is 2 mol% or less in terms of oxide, thermal conductivity is 100 W / mK or more, 3-point bending strength is 600 MPa or more, precracking fracture test A silicon nitride sintered body having a characteristic that the fracture toughness value measured by the method is 7 MPam 1/2 or more is obtained, and a metal layer is joined to the silicon nitride sintered body to obtain a highly reliable and highly thermally conductive silicon nitride substrate. Obtainable.

さらに本発明において製造条件を選ぶことにより、熱伝導率が120W/mK以上、3点曲げ強度が600MPa以上、予き裂導入破壊試験法で測定した破壊靱性値が10MPam1/2以上の特性を有する窒化ケイ素焼結体を製造することができ、従来よりもさらに信頼性の高い窒化ケイ素基板を得ることができ、この基板を用いたパワーモジュールの信頼性を高め、小型化することが可能となる。 Furthermore, by selecting production conditions in the present invention, the thermal conductivity is 120 W / mK or more, the three-point bending strength is 600 MPa or more, and the fracture toughness value measured by the precracking fracture test method is 10 MPam 1/2 or more. It is possible to produce a silicon nitride sintered body having a silicon nitride substrate with higher reliability than before, and to improve the reliability and miniaturization of a power module using this substrate. Become.

本発明では、ケイ素粉末或いはケイ素粉末と窒化ケイ素粉末の混合粉末に、ケイ素を窒化ケイ素に換算した際の比率において、希土類元素の酸化物を0.5〜7mol%、さらに、マグネシウム化合物として酸化マグネシウム(MgO)、窒化ケイ素マグネシウム(MgSiN2)、ケイ化マグネシウム(Mg2Si)から選択される少なくとも一種を1〜7mol%混合して用いる。また、当該混合物においては、ケイ素粉末或いはケイ素粉末と窒化ケイ素粉末の混合粉末に含まれる不純物酸素並びにマグネシウム化合物からの酸素の総量がケイ素を窒化ケイ素に換算した際の比率において0.1〜1.8質量%の範囲となるように添加し、出発原料粉末とする。 In the present invention, the silicon powder or the mixed powder of silicon powder and silicon nitride powder is mixed with 0.5 to 7 mol% of rare earth element oxide and magnesium oxide as a magnesium compound in the ratio of silicon to silicon nitride. At least one selected from (MgO), silicon magnesium nitride (MgSiN 2 ), and magnesium silicide (Mg 2 Si) is used in a mixture of 1 to 7 mol%. Moreover, in the said mixture, the total amount of oxygen from impurity oxygen contained in silicon powder or mixed powder of silicon powder and silicon nitride powder and oxygen from the magnesium compound is 0.1 to 1 in a ratio when silicon is converted into silicon nitride. It is added so that it may become the range of 8 mass%, and it is set as starting raw material powder.

上記出発原料粉末において、希土類元素の添加量が0.5mol%未満であると、粒界相に酸素をトラップすることができず、窒化ケイ素粒子に固溶する酸素が多くなるので、熱伝導率が低くなり、また、7mol%を超えると、イットリウム等を含む廷熱伝導の粒界相の量が多くなり、焼結体の熱伝導率が低下する。本発明に用いる希土類元素としては、入手が容易であり、また、酸化物として安定なY、Yb、Nd、Smが好ましく、これらから選択される少なくとも一種を酸化物として添加する。   In the above starting raw material powder, if the amount of rare earth element added is less than 0.5 mol%, oxygen cannot be trapped in the grain boundary phase, and the amount of oxygen dissolved in the silicon nitride particles increases. If the content of the sintered body exceeds 7 mol%, the amount of the grain boundary phase of the thermal conductivity containing yttrium and the like increases and the thermal conductivity of the sintered body decreases. As the rare earth element used in the present invention, Y, Yb, Nd and Sm which are easily available and are stable as an oxide are preferable, and at least one selected from these is added as an oxide.

希土類酸化物のみを助剤として添加して窒化ケイ素焼結体を作製した場合、緻密化を行なうために10MPa程度の高窒素圧中、2000℃に及ぶ超高温での焼成が必要であり、特殊な焼成炉を要するので、プロセスコストが高くなる。また、超高温での焼成により著しい粒成長が生じ、機械特性の低下を招く。このため、ポスト焼結時の緻密化を促進し、また、高強度、高靭性の発現を可能とするために、希土類化合物の添加と同時にマグネシウム化合物を添加することが必要不可欠である。マグネシウム化合物の添加は、Mgイオンが加熱時に生成する酸窒化ガラスの修飾イオンとなり、ガラスの粘性を低下させ、緻密化を促進するとともに、焼成中に蒸発揮散し、残留する粒界相の量を低減させる働きがある。   When a silicon nitride sintered body is prepared by adding only rare earth oxide as an auxiliary agent, it needs to be fired at an ultra high temperature of 2000 ° C. in a high nitrogen pressure of about 10 MPa in order to perform densification. This requires a large firing furnace, which increases the process cost. In addition, remarkable grain growth occurs by firing at an ultrahigh temperature, leading to a decrease in mechanical properties. For this reason, in order to promote densification at the time of post-sintering and to enable the development of high strength and high toughness, it is indispensable to add a magnesium compound simultaneously with the addition of the rare earth compound. Addition of a magnesium compound becomes a modified ion of oxynitride glass that is formed when Mg ions are heated, lowers the viscosity of the glass, promotes densification, and evaporates during firing, reducing the amount of residual grain boundary phase. There is a function to reduce.

ケイ素粉末は、上述のように0.2〜数質量%の不純物酸素を含んでいる。不純物酸素は窒化ケイ素の熱伝導率の阻害要因ではあるが、一方ではシリカとして窒化ケイ素の緻密化のための重要な焼結助剤である。本発明者らは、高熱伝導、高強度、高靭性を共生させるためには、マグネシウムイオンの量、並びにケイ素粉末の不純物酸素とマグネシウム化合物に含まれる酸素の総量を同時に制御することが重要であることを見出した。   As described above, the silicon powder contains 0.2 to several mass% of impurity oxygen. Impurity oxygen is a factor that inhibits the thermal conductivity of silicon nitride, but on the other hand, it is an important sintering aid for densifying silicon nitride as silica. In order for the present inventors to coexist with high thermal conductivity, high strength, and high toughness, it is important to simultaneously control the amount of magnesium ions and the total amount of oxygen contained in the impurity oxygen of the silicon powder and the magnesium compound. I found out.

マグネシウム源として酸化マグネシウムを用いる従来の手法では、不純物酸素を多く含む低価格のケイ素粉末を高熱伝導材料の原料として用いることはできなかった。本発明の大きな特徴は、酸素量の調整を、酸素を含む酸化マグネシウム(MgO)と酸素を含まないマグネシウム化合物を用いて行うことにある。即ち、酸化マグネシウム(MgO)、窒化ケイ素マグネシウム(MgSiN2)、及びケイ化マグネシウム(Mg2Si)を用いて行なうことにある。即ち、酸化マグネシウム、窒化ケイ素マグネシウム、ケイ化マグネシウムから選択される少なくとも一種を、ケイ素を窒化ケイ素に換算した際の比率において1〜7mol%、且つ、ケイ素及び窒化ケイ素に含まれる不純物酸素並びにマグネシウム化合物からの酸素の総量が、ケイ素を窒化ケイ素に換算した際の比率において0.1〜1.8質量%の範囲となるように、ケイ素粉末或いはケイ素粉末と窒化ケイ素粉末の混合粉末に添加する。 In the conventional method using magnesium oxide as the magnesium source, low-priced silicon powder containing a large amount of impurity oxygen cannot be used as a raw material for the high thermal conductivity material. A major feature of the present invention is that the amount of oxygen is adjusted using magnesium oxide containing oxygen (MgO) and a magnesium compound not containing oxygen. That is, it is to perform using magnesium oxide (MgO), silicon magnesium nitride (MgSiN 2 ), and magnesium silicide (Mg 2 Si). That is, at least one selected from magnesium oxide, silicon nitride magnesium, and magnesium silicide is 1 to 7 mol% in a ratio when silicon is converted to silicon nitride, and impurity oxygen and magnesium compound contained in silicon and silicon nitride Is added to the silicon powder or the mixed powder of silicon powder and silicon nitride powder so that the total amount of oxygen is in the range of 0.1 to 1.8% by mass when silicon is converted to silicon nitride.

本発明では、不純物酸素量の多いケイ素粉末に対しては窒化ケイ素マグネシウムやケイ化マグネシウム等酸素を含まないマグネシウム化合物を主体として、一方、不純物酸素量の少ないケイ素粉末に対しては酸化マグネシウムを主体として添加される。マグネシウム源の添加量が1mol%未満であると緻密化が困難であり、一方、7mol%を超えるとポスト焼結後にも多量のマグネシウムが残留し焼結体の熱伝導率を阻害する。   In the present invention, a magnesium powder containing no oxygen, such as silicon magnesium nitride or magnesium silicide, is mainly used for silicon powder having a large amount of impurity oxygen, while magnesium oxide is mainly used for silicon powder having a low amount of impurity oxygen. As added. If the added amount of the magnesium source is less than 1 mol%, densification is difficult. On the other hand, if it exceeds 7 mol%, a large amount of magnesium remains even after post-sintering, thereby inhibiting the thermal conductivity of the sintered body.

同様に、ケイ素に含まれる不純物酸素並びにマグネシウム化合物からの酸素の総量が、ケイ素を窒化ケイ素に換算した際の比率において0.1質量%未満であると緻密化を行なうことができず、また、1.8質量%を超えると粒界相中の酸素量が過多となり、窒化ケイ素粒子に固溶する酸素量が増加して焼結体の熱伝導率を低下させる。また、窒化反応時のケイ素粉末の融着を防ぐためには、窒化ケイ素粉末をケイ素が完全に窒化した組成に対して30質量%まで添加することも有効であるが、この場合窒化ケイ素粉末に含まれる不純物酸素も上記組成に考慮することが必要である。   Similarly, if the total amount of impurity oxygen contained in silicon and oxygen from the magnesium compound is less than 0.1% by mass in the ratio when silicon is converted to silicon nitride, densification cannot be performed, If it exceeds 1.8% by mass, the amount of oxygen in the grain boundary phase becomes excessive, the amount of oxygen dissolved in the silicon nitride particles increases, and the thermal conductivity of the sintered body is lowered. In order to prevent the silicon powder from fusing during the nitriding reaction, it is also effective to add the silicon nitride powder up to 30% by mass with respect to the composition in which the silicon is completely nitrided. It is necessary to consider the impurity oxygen to be included in the above composition.

本発明における酸素を含まないマグネシウム化合物としては、マグネシウムのケイ化物、フッ化物、ホウ化物、窒化物さらにはこれらの三元系化合物を用いることができるが、取り扱いの容易性、プロセス時の安定性、有害物質の発生がないことなどから、窒化ケイ素マグネシウムとケイ化マグネシウムが好適に用いられる。さらに、窒化ケイ素マグネシウムとしては、好適には、例えば、Mg2Si粉末、Si粉末、窒化ケイ素粉末の所定量をMgとSiのモル比が1:1となるように混合し、窒素雰囲気中1350℃に加熱し合成されたもの(特開2003−267709号公報参照)を解砕して得た粉末が用いられるが、これらに制限されるものではない。 As the magnesium compound not containing oxygen in the present invention, magnesium silicides, fluorides, borides, nitrides and these ternary compounds can be used, but they are easy to handle and stable during processing. In view of the fact that no harmful substances are generated, silicon magnesium nitride and magnesium silicide are preferably used. Further, as the silicon magnesium nitride, for example, a predetermined amount of Mg 2 Si powder, Si powder, silicon nitride powder is preferably mixed so that the molar ratio of Mg to Si is 1: 1, and 1350 in a nitrogen atmosphere. Although the powder obtained by crushing what was synthesize | combined by heating at degreeC (refer Unexamined-Japanese-Patent No. 2003-267709) is used, it is not restrict | limited to these.

上述の組成に基づいて秤量された粉末は、水或いは有機溶剤を溶媒として用い、必要に応じて有機系結合材や分散材を添加し、ボールミルや遊星ミルにより通常の方法で混合される。その後、必要応じて溶媒を除去した後、金型成形、シート成形、静水圧加圧成形(CIP成形)などにより所定の形に成形し、場合によっては成形に用いた有機バインダー等を除去するために800℃以下の温度で仮焼した後、1200〜1400℃の温度範囲で窒化を行なう。さらに窒化体は0.1MPa以上の窒素中で1700〜1950℃の温度でポスト焼結を行い、95%以上の相対密度に緻密化される。   The powder weighed based on the above composition is mixed with a ball mill or a planetary mill by an ordinary method using water or an organic solvent as a solvent, adding an organic binder or a dispersing agent as necessary. Then, after removing the solvent as necessary, it is molded into a predetermined shape by die molding, sheet molding, isostatic pressing (CIP molding), etc., and in some cases, the organic binder used for molding is removed After calcination at a temperature of 800 ° C. or less, nitriding is performed in a temperature range of 1200 to 1400 ° C. Further, the nitride is post-sintered at a temperature of 1700 to 1950 ° C. in nitrogen of 0.1 MPa or more and densified to a relative density of 95% or more.

本発明において、窒化ケイ素焼結体の製造にはシート成形法が好適である。例えば押し出し成形法の例を示せば、前記の配合で各原料粉を秤量し、万能混合機に入れ、メチルセルロース等の有機バインダーを3〜10質量%と水10〜30質量%を加え、混合する。3本ロール等の混練機で混練した後、冷蔵して熟成させ、押し出し機で押し出し、厚さ0.2〜2mm程度の厚さに成形する。得られたグリーンシートを打ち抜き機等により所定の大きさに切断した後、離型用のBN粉やBN板を間に置いて積み重ね、黒鉛の断熱材と加熱用黒鉛ヒーターを備える高温炉内にセットする。高温炉としては、その内部で発生したガスを外部に効率的に排出することができ、真空も加圧もできるタイトボックス式電気炉(例えば、島津製作所製PVSG型)を用いると、脱バインダーと窒化反応とポスト焼結を一つの炉で行えるので、生産性が高く好都合である。   In the present invention, a sheet forming method is suitable for producing the silicon nitride sintered body. For example, if an example of the extrusion molding method is shown, each raw material powder is weighed by the above blending, put into a universal mixer, and added with 3 to 10% by weight of an organic binder such as methylcellulose and 10 to 30% by weight of water and mixed. . After kneading with a kneader such as a three-roll mill, the mixture is refrigerated and aged, and extruded with an extruder to form a thickness of about 0.2 to 2 mm. The obtained green sheets are cut to a predetermined size by a punching machine, etc., and then stacked with BN powder and BN plates for release in between, and placed in a high-temperature furnace equipped with a graphite heat insulating material and a heating graphite heater. set. As a high-temperature furnace, when a tight box type electric furnace (for example, PVSG type manufactured by Shimadzu Corporation) that can efficiently discharge the gas generated in the inside to the outside and can perform vacuum and pressurization is used, Since nitriding reaction and post-sintering can be performed in one furnace, productivity is high and convenient.

800℃以下に加熱して有機バインダーを真空中で分解除去し、その後、一旦、1Pa程度まで十分に真空引きした後、99.9%以上の純度の窒素ガスを供給する。その後、窒化開始温度まで昇温し、窒化反応の進み具合をモニターしながら、窒素ガス供給量と窒素ガス圧を制御する。窒素ガスの吸収量から計算した窒化率が75%以上に達したら、窒素ガス圧を0.9MPaに加圧すると共に、ポスト焼結温度に昇温し、残りの窒化反応を進め、窒化体を緻密化させる。   The organic binder is decomposed and removed in a vacuum by heating to 800 ° C. or lower, and then, after sufficiently evacuating to about 1 Pa, nitrogen gas having a purity of 99.9% or more is supplied. Thereafter, the temperature is raised to the nitriding start temperature, and the nitrogen gas supply amount and the nitrogen gas pressure are controlled while monitoring the progress of the nitriding reaction. When the nitriding rate calculated from the absorption amount of nitrogen gas reaches 75% or more, the nitrogen gas pressure is increased to 0.9 MPa, the temperature is raised to the post-sintering temperature, the remaining nitriding reaction is advanced, and the nitride is densely formed. Make it.

ポスト焼結温度が1700℃未満であると十分に緻密化を行なうことができず、一方、1950℃を超える場合は過度の粒成長が生じ強度が著しく低下するので、ポスト焼結温度は1700〜1950℃、望ましくは1750〜1900℃で行なう。また130W/mK以上の熱伝導率を達成に向上させるためには上記のポスト焼結条件下で保持時間を調整し、或いは緻密化の後に1700℃以下の温度と非酸化雰囲気中で熱処理し、また、Mg元素の量を酸化物に換算して0.2質量%以下に揮散させることが必要、且つ重要である。   When the post-sintering temperature is less than 1700 ° C., sufficient densification cannot be performed. On the other hand, when the post-sintering temperature exceeds 1950 ° C., excessive grain growth occurs and the strength is significantly reduced. It is carried out at 1950 ° C., preferably 1750-1900 ° C. In order to achieve a thermal conductivity of 130 W / mK or higher, the holding time is adjusted under the above-mentioned post-sintering conditions, or heat treatment is performed in a non-oxidizing atmosphere at a temperature of 1700 ° C. or lower after densification, Further, it is necessary and important that the amount of Mg element is volatilized to 0.2% by mass or less in terms of oxide.

本発明においては、得られた窒化ケイ素焼結体の少なくとも一つの面に金属板を接合する。接合する金属板には、基板の熱伝導率を重視する場合は純度の高い銅またはアルミニウム板を、機械的強度を重視する場合は銅またはアルミニウムを主成分とする合金板や、その他の金属板を用いるのが好ましく、要求に応じて適宜選択することができる。2種類の異なる金属板を同一の窒化ケイ素焼結体に接合しても良い。また、その厚さは、0.1mm〜6mm程度まで自由に選択でき、好ましくは0.25mm以上である。   In the present invention, a metal plate is bonded to at least one surface of the obtained silicon nitride sintered body. For the metal plates to be joined, high-purity copper or aluminum plates are used when the thermal conductivity of the substrate is important, and when the mechanical strength is important, alloy plates mainly composed of copper or aluminum, or other metal plates Is preferably used, and can be appropriately selected according to demand. Two different metal plates may be joined to the same silicon nitride sintered body. Moreover, the thickness can be freely selected from about 0.1 mm to 6 mm, and is preferably 0.25 mm or more.

本発明の窒化ケイ素焼結体は、製造条件を選べば9MPam1/2以上の非常に高い破壊靱性を持つので、機械的強度の高い合金板や厚い金属板を接合しても、接合外周部に発生する微小なクラックが入りにくく、またクラックが入ったとしても進展し難い。0.1〜0.5mm程度の厚さの純度の高い銅やアルミニウムの金属板を両面に接合した、通常の窒化ケイ素基板では、従来公知のものより耐ヒートショック性に優れた基板が得られ、それを使用して組み立てたパワーモジュールを通常の使用環境で使用する限り、その寿命は半永久的である。 Since the silicon nitride sintered body of the present invention has a very high fracture toughness of 9 MPam 1/2 or more if the production conditions are selected, even if an alloy plate having a high mechanical strength or a thick metal plate is joined, the outer periphery of the joint It is difficult for micro cracks to occur in the cracks, and even if cracks occur, they are difficult to progress. A normal silicon nitride substrate in which a high-purity copper or aluminum metal plate having a thickness of about 0.1 to 0.5 mm is bonded on both sides can provide a substrate having better heat shock resistance than conventionally known ones. As long as the power module assembled using the module is used in a normal use environment, its lifetime is semi-permanent.

本発明で用いる窒化ケイ素焼結体は機械特性が優れるので、窒化ケイ素焼結体や接合する金属板の面積を通常より大きくすることが可能であり、また、通常は複数の窒化ケイ素基板が半田付けされる厚さ3〜6mm程度あるパワーモジュールのベース板に、直接窒化ケイ素板を接合することが可能である。   Since the silicon nitride sintered body used in the present invention has excellent mechanical properties, the area of the silicon nitride sintered body and the metal plate to be joined can be made larger than usual, and usually a plurality of silicon nitride substrates are soldered. It is possible to directly join the silicon nitride plate to the base plate of the power module having a thickness of about 3 to 6 mm.

接合に用いるろう材としては、Mg、Ti、Zrのうち少なくとも一種の金属元素を含むロウ材が好ましい。具体的には、アルミ板接合用には、MgとCu、Si及びAgからなる群から選ばれる1種以上を含有するAl合金もしくは混合物を用いるのが好ましい。好ましくは、Mgが0.05〜3質量%であるろう材を用いると接合の信頼性が高くなる。ろう材として使用できるアルミニウム合金の日本工業規格の番号を例示すれば、JIS2014、2017、2018、2024、2030、2036、2214、2224が上げられる。銅板やその他の金属板の接合用には、Ti、Zrの中から選ばれる1種以上の金属元素を含むAgとCuを主成分とする合金または混合物を用いるのが好ましい。   As a brazing material used for joining, a brazing material containing at least one metal element of Mg, Ti, and Zr is preferable. Specifically, for aluminum plate bonding, it is preferable to use an Al alloy or a mixture containing one or more selected from the group consisting of Mg, Cu, Si, and Ag. Preferably, when a brazing material having Mg of 0.05 to 3% by mass is used, the bonding reliability is increased. For example, JIS2014, 2017, 2018, 2024, 2030, 2036, 2214, and 2224 are listed as examples of numbers of Japanese Industrial Standards of aluminum alloys that can be used as brazing materials. For joining a copper plate or other metal plate, it is preferable to use an alloy or mixture containing Ag and Cu as main components containing one or more metal elements selected from Ti and Zr.

ろう材箔は、ろう材合金を圧延機により厚さ5〜40μmに圧延して使用する。例えば上記のアルミニウム合金の薄板を圧延し、接合面積に応じて必要寸法に切断して、窒化ケイ素焼結体と金属板の間に挿入する。ろう材混合物は、金属粉体の混合物であり、テルピネオール等の溶剤に粉体を分散させてペースト状にして、窒化ケイ素焼結体または金属板の少なくとも一方の接合面に、スクリーン印刷法、刷毛塗り法等により、乾燥後のペースト厚みが10〜50μmになるように塗布する。ろう材の厚みやペーストの厚みが、上記下限値を下回ると、接合界面に生じる酸化マグネシウム、または窒化チタン、または窒化ジルコニウムの層が少量しか出来ず、上限値を上回ると脆い合金層が出来やすく、どちらの場合も、耐ヒートサイクル性の悪い接合面が剥離しやすい信頼性の低い基板となる。   The brazing foil is used by rolling a brazing alloy to a thickness of 5 to 40 μm with a rolling mill. For example, the above-mentioned aluminum alloy thin plate is rolled, cut into necessary dimensions according to the bonding area, and inserted between the silicon nitride sintered body and the metal plate. The brazing material mixture is a mixture of metal powders, which is made by dispersing the powder in a solvent such as terpineol to form a paste, and is applied to at least one joint surface of the silicon nitride sintered body or the metal plate by a screen printing method or a brush. It is applied by a coating method or the like so that the paste thickness after drying becomes 10 to 50 μm. If the thickness of the brazing material or paste is below the above lower limit value, only a small amount of magnesium oxide, titanium nitride, or zirconium nitride layer is formed at the joint interface, and if it exceeds the upper limit value, a brittle alloy layer is likely to be formed. In either case, the bonded surface with poor heat cycle resistance is easily peeled off, resulting in a low-reliability substrate.

窒化ケイ素焼結体とろう材を上記のように配置したものを加熱炉に入れ、必要に応じて荷重をかけながら、真空または窒素ガス中で、金属板とろう材の種類に応じて520〜650℃、もしくは750〜950℃に加熱して、ろう材の少なくとも一部を溶融し、窒化ケイ素焼結体と金属板を接合する。上記温度範囲を外れると、接合不十分となったり、脆い接合層が出来たりして、基板の信頼性が低下する。   The silicon nitride sintered body and the brazing material arranged as described above are put into a heating furnace, and a load is applied as necessary, and in vacuum or nitrogen gas, depending on the type of the metal plate and the brazing material, 520 to Heating to 650 ° C. or 750 to 950 ° C. melts at least a part of the brazing material, and joins the silicon nitride sintered body and the metal plate. When the temperature is out of the above temperature range, bonding becomes insufficient or a brittle bonding layer is formed, and the reliability of the substrate is lowered.

接合後、断面を電子線マイクロ分析等により接合界面の構成層を分析すると、十分信頼性の高い、耐熱サイクル性の良い基板では、界面に、酸化マグネシウム、または窒化チタン、または窒化ジルコニウムが、窒化ケイ素焼結体と金属板の接合平面の面積の50%以上を占める割合で層状に分布する。   After bonding, when the cross section is analyzed for the constituent layer of the bonding interface by electron beam microanalysis, etc., in a sufficiently reliable substrate with good heat cycle resistance, magnesium oxide, titanium nitride, or zirconium nitride is nitrided on the interface. It is distributed in layers at a ratio that accounts for 50% or more of the area of the joining plane between the silicon sintered body and the metal plate.

比較例及び実施例に基づいて本発明を具体的に説明するが、本発明は、以下の例によって何ら制限されるものではない。   The present invention will be specifically described based on comparative examples and examples, but the present invention is not limited to the following examples.

〔比較例1−1〜1−6〕
(窒化ケイ素粉末を出発原料とした通常の焼結方法)
平均粒径0.2μmの窒化ケイ素粉末(不純物酸素量1.3質量%)に2mol%の酸化イッテルビウム或いは2mol%の酸化イットリウム及び5mol%の酸化マグネシウムを添加し、メタノールを分散媒とし窒化ケイ素ポットと窒化ケイ素ボールを用いて2時間遊星ミル混合を行なった。エバポレータを用いてメタノールを蒸発させ、得られた粉末を45×50×5mmの形状に金型を用いて成形し、さらに306MPaの圧力でCIP成形した。
[Comparative Examples 1-1 to 1-6]
(Normal sintering method using silicon nitride powder as starting material)
Silicon nitride pot with 2 mol% ytterbium oxide or 2 mol% yttrium oxide and 5 mol% magnesium oxide added to silicon nitride powder with an average particle size of 0.2 μm (impurity oxygen content 1.3 mass%) and methanol as the dispersion medium And a silicon nitride ball were used for 2 hours for planetary mill mixing. Methanol was evaporated using an evaporator, and the resulting powder was molded into a 45 × 50 × 5 mm shape using a mold, and further CIP molded at a pressure of 306 MPa.

成形体を窒化ホウ素(BN)製ルツボに設置し、0.9MPaの加圧窒素中、1850℃で12時間、24時間或いは48時間焼結を行った。焼結体の表面を研削し、3×4×40mmの形状の試料を切り出しJIS−R1601の3点曲げ強度測定、JIS−R1607の予き裂導入破壊靱性測定を行った。さらに厚さ約2mmの円盤状試験片を作製し、レーザーフラッシュ法を用いて熱伝導率を測定した。   The compact was placed in a boron nitride (BN) crucible and sintered in pressurized nitrogen of 0.9 MPa at 1850 ° C. for 12 hours, 24 hours or 48 hours. The surface of the sintered body was ground, a sample having a shape of 3 × 4 × 40 mm was cut out, and the three-point bending strength measurement of JIS-R1601 and the pre-crack introduction fracture toughness measurement of JIS-R1607 were performed. Further, a disk-shaped test piece having a thickness of about 2 mm was prepared, and the thermal conductivity was measured using a laser flash method.

この様にして得られた焼結体の熱伝導率、強度、及び破壊靱性の値を表1に示す。窒化ケイ素粉末と酸化物系助剤を用いた通常の焼結手法では、100W/mK以上の熱伝導率、600MPa以上の3点曲げ強度、7MPam1/2以上の破壊靱性を共生させた焼結体を得ることはできないことが分かった。また、焼結時間を長くした試料では幾分の熱伝導率の向上が見られるが、強度、及び破壊靭性の急激な低下を伴うことが分かった。 Table 1 shows values of thermal conductivity, strength, and fracture toughness of the sintered body thus obtained. In a normal sintering method using silicon nitride powder and oxide-based auxiliary, sintering is performed in which the thermal conductivity of 100 W / mK or more, the three-point bending strength of 600 MPa or more, and the fracture toughness of 7 MPam 1/2 or more coexist. I found out I couldn't get a body. In addition, it was found that the sample with a longer sintering time showed some improvement in thermal conductivity, but it was accompanied by a sharp decrease in strength and fracture toughness.

〔比較例1−7、1−8〕
(窒化ケイ素粉末を出発原料とした通常の焼結方法)
粒子径150μmのケイ化マグネシウム粉末、粒子径10μmのケイ素粉末、純度99%、粒子径1μmの窒化ケイ素粉末を、それぞれ重量比で64.6%、5.9%、29.5%となるように秤量し、メノウ乳鉢を用いて混合した。高純度窒化ホウ素(BN)ルツボに充填した混合粉末をアルミナ製管状炉に設置し、窒素気流中で〜1350℃に加熱し1時間保持した後、炉内で室温まで冷却し、窒化ケイ素マグネシウム粉末を合成した。
[Comparative Examples 1-7, 1-8]
(Normal sintering method using silicon nitride powder as starting material)
Magnesium silicide powder having a particle diameter of 150 μm, silicon powder having a particle diameter of 10 μm, purity of 99%, and silicon nitride powder having a particle diameter of 1 μm are 64.6%, 5.9%, and 29.5% by weight, respectively. And weighed using an agate mortar. The mixed powder filled in high-purity boron nitride (BN) crucible is placed in an alumina tube furnace, heated to ˜1350 ° C. in a nitrogen stream and held for 1 hour, then cooled to room temperature in the furnace, and silicon nitride magnesium powder Was synthesized.

平均粒径0.2μmの窒化ケイ素粉末(不純物酸素量1.3質量%)に2mol%の酸化イットリウム及び上記手法で合成した窒化ケイ素マグネシウムの5mol%を添加し、メタノールを分散媒とし窒化ケイ素ポットと窒化ケイ素ボールを用いて2時間遊星ミル混合を行なった。エバポレータを用いてメタノールを蒸発させ、得られた粉末を45×50×5mmの形状に金型を用いて成形し、さらに306MPaの圧力でCIP成形した。   2 mol% of yttrium oxide and 5 mol% of silicon magnesium nitride synthesized by the above method are added to silicon nitride powder having an average particle size of 0.2 μm (impurity oxygen content: 1.3 mass%), and a silicon nitride pot using methanol as a dispersion medium And a silicon nitride ball were used for 2 hours for planetary mill mixing. Methanol was evaporated using an evaporator, and the resulting powder was molded into a 45 × 50 × 5 mm shape using a mold, and further CIP molded at a pressure of 306 MPa.

成形体を窒化ホウ素(BN)製ルツボに設置し、0.9MPaの加圧窒素中、1850℃で12時間或いは48時間焼結を行った。焼結体の表面を研削し、3×4×40mmの形状の試料を切り出しJIS−R1601の3点曲げ強度測定、JIS−R1607の予き裂導入破壊靱性測定を行った。さらに厚さ約2mmの円盤状試験片を作製し、レーザーフラッシュ法を用いて熱伝導率を測定した。   The molded body was placed in a boron nitride (BN) crucible and sintered in pressurized nitrogen of 0.9 MPa at 1850 ° C. for 12 hours or 48 hours. The surface of the sintered body was ground, a sample having a shape of 3 × 4 × 40 mm was cut out, and the three-point bending strength measurement of JIS-R1601 and the pre-crack introduction fracture toughness measurement of JIS-R1607 were performed. Further, a disk-shaped test piece having a thickness of about 2 mm was prepared, and the thermal conductivity was measured using a laser flash method.

この様にして得られた焼結体の熱伝導率、強度、及び破壊靱性の値を表1に示した。酸化マグネシウムを用いた場合に比べて、熱伝導率などの諸特性は幾分向上するものの、100W/mK以上の熱伝導率、600MPa以上の3点曲げ強度、7MPam1/2以上の破壊靱性を全て兼ね備えた焼結体を得ることはできないことが分かった。また、焼結時間を長くした比較例1−8の試料では、比較例1−1〜1−6の場合と同様に、強度、及び破壊靭性の急激な低下を伴うことが分かった。 Table 1 shows values of thermal conductivity, strength, and fracture toughness of the sintered body thus obtained. Although various characteristics such as thermal conductivity are somewhat improved compared to the case of using magnesium oxide, it has a thermal conductivity of 100 W / mK or more, a three-point bending strength of 600 MPa or more, and a fracture toughness of 7 MPam 1/2 or more. It was found that it was impossible to obtain a sintered body having all of them. Further, it was found that the sample of Comparative Example 1-8 in which the sintering time was extended was accompanied by a rapid decrease in strength and fracture toughness, as in Comparative Examples 1-1 to 1-6.

Figure 0004997431
Figure 0004997431

〔実験例2−1〜2−23〕
ケイ素粉末として、平均粒径10μm、不純物酸素量0.16質量%の粉末(粉末A)、平均粒径7μm、不純物酸素量0.61質量%の粉末(粉末B)、平均粒径1μm、不純物酸素量1.75質量%の粉末(粉末C)、平均粒径0.9μm、不純物酸素量2.6質量%の粉末(粉末D)を、マグネシウム化合物として平均粒径0.1μmの酸化マグネシウム及び比較例1−7、1−8に記載の方法で合成した窒化ケイ素マグネシウム粉末(平均粒径0.5μm)或いは平均粒径10μmのケイ化マグネシウム粉末を使用した。また希土類酸化物として、平均粒径1.5μmの酸化イットリウム及び平均粒径1.2μmの酸化イッテルビウムを使用し、窒化ケイ素として平均粒径0.2μm、不純物酸素量1.3質量%の粉末を使用した。尚、ケイ素粉末及び窒化ケイ素粉末中の不純物酸素は、窒素・酸素同時分析装置を用いて測定した。
[Experimental Examples 2-1 to 2-23]
As a silicon powder, a powder having an average particle size of 10 μm, an impurity oxygen content of 0.16% by mass (powder A), an average particle size of 7 μm, a powder having an impurity oxygen content of 0.61% by mass (powder B), an average particle size of 1 μm, an impurity A powder (powder C) having an oxygen content of 1.75% by mass, an average particle size of 0.9 μm, a powder (powder D) having an impurity oxygen content of 2.6% by mass, magnesium oxide having an average particle size of 0.1 μm as a magnesium compound, and Silicon magnesium nitride powder (average particle size 0.5 μm) synthesized by the method described in Comparative Examples 1-7 and 1-8 or magnesium silicide powder having an average particle size of 10 μm was used. Moreover, yttrium oxide having an average particle diameter of 1.5 μm and ytterbium oxide having an average particle diameter of 1.2 μm are used as the rare earth oxide, and a powder having an average particle diameter of 0.2 μm and an impurity oxygen content of 1.3 mass% is used as silicon nitride. used. The impurity oxygen in the silicon powder and silicon nitride powder was measured using a simultaneous nitrogen / oxygen analyzer.

上記の原料粉末を表2に示す組成となるように秤量し、メタノールを分散媒として、窒化ケイ素ポットと窒化ケイ素ボールを用いて、2時間遊星ミル混合を行なった。エバポレータを用いてメタノールを蒸発させ、得られた粉末を45×50×5mmの形状に金型を用いて成形し、さらに306MPaの圧力でCIP成形した。次に、反応焼結させるため、成形体を窒化ホウ素(BN)製ルツボに設置し、0.1MPaの窒素中1400℃で4時間加熱し窒化処理を行なった。いずれの成形体もX線回折では残留Siは認められなかった。   The above raw material powder was weighed so as to have the composition shown in Table 2, and planetary mill mixing was performed using methanol as a dispersion medium and a silicon nitride pot and silicon nitride balls for 2 hours. Methanol was evaporated using an evaporator, and the resulting powder was molded into a 45 × 50 × 5 mm shape using a mold, and further CIP molded at a pressure of 306 MPa. Next, in order to carry out reaction sintering, the molded body was placed in a boron nitride (BN) crucible and heated at 1400 ° C. in 0.1 MPa of nitrogen for 4 hours for nitriding treatment. In any of the molded bodies, no residual Si was observed by X-ray diffraction.

Figure 0004997431
Figure 0004997431

次いで、ポスト焼結として、窒化体を0.9MPaの加圧窒素中、1850℃で6時間、12時間或いは48時間焼結を行った。焼結体の表面を研削し、3×4×40mmの形状の試料を切り出し、JIS−R1601の3点曲げ強度測定、JIS−R1607の予き裂導入破壊靱性測定を行った。さらに厚さ約2mmの円盤状試験片を作製し、レーザーフラッシュ法を用いて熱伝導率を測定した。また、作製した一部の焼結体については、ICP分析により焼結体中に残留するマグネシウムの定量分析を行なった。表3にこの様にして得られた焼結体のMg量、密度、熱伝導率、強度、及び破壊靱性の値をまとめて示す。   Next, as post-sintering, the nitride was sintered in pressurized nitrogen of 0.9 MPa at 1850 ° C. for 6 hours, 12 hours, or 48 hours. The surface of the sintered body was ground, a sample having a shape of 3 × 4 × 40 mm was cut out, and three-point bending strength measurement according to JIS-R1601 and pre-crack introduction fracture toughness measurement according to JIS-R1607 were performed. Further, a disk-shaped test piece having a thickness of about 2 mm was prepared, and the thermal conductivity was measured using a laser flash method. Moreover, about the produced some sintered compact, the quantitative analysis of the magnesium which remains in a sintered compact was performed by ICP analysis. Table 3 summarizes the values of Mg amount, density, thermal conductivity, strength, and fracture toughness of the sintered body thus obtained.

Figure 0004997431
Figure 0004997431

表2〜表3から明らかなように、希土類元素の酸化物を0.5〜7mol%、さらに、マグネシウム化合物を1〜7mol%、ケイ素及び窒化ケイ素に含まれる不純物酸素並びにマグネシウム化合物からの酸素の総量がケイ素を窒化ケイ素に換算した際の比率において0.1〜1.8質量%の範囲となるように添加した場合において、熱伝導率が100W/mK以上、3点曲げ強度が600MPa以上、予き裂導入破壊試験法で測定した破壊靱性が7MPam1/2以上の優れた特性を有する窒化ケイ素焼結体を得ることができることが分かった。 As is apparent from Tables 2 to 3, 0.5 to 7 mol% of the rare earth element oxide, 1 to 7 mol% of the magnesium compound, impurity oxygen contained in silicon and silicon nitride, and oxygen from the magnesium compound When added so that the total amount is in the range of 0.1 to 1.8% by mass in the ratio of silicon to silicon nitride, the thermal conductivity is 100 W / mK or more, the three-point bending strength is 600 MPa or more, It was found that a silicon nitride sintered body having excellent characteristics with a fracture toughness measured by a precracking fracture test method of 7 MPam 1/2 or more can be obtained.

さらに、ポスト焼結時間を長くし、残留マグネシウム量を酸化物に換算して0.2質量%以下とすることで、熱伝導率が130W/mK以上、3点曲げ強度が600MPa以上、予き裂導入破壊試験法で測定した破壊靱性値が7MPam1/2以上の特性を有する窒化ケイ素焼結体を製造することが可能となることが分かった。 Furthermore, by increasing the post-sintering time and converting the residual magnesium amount to 0.2% by mass or less in terms of oxide, the thermal conductivity is 130 W / mK or more, and the three-point bending strength is 600 MPa or more. It was found that a silicon nitride sintered body having a characteristic that the fracture toughness value measured by the crack introduction fracture test method is 7 MPam 1/2 or more can be produced.

〔実施例1、比較例2−1〜2−5〕
比較例1−1〜1−5で得た焼結体を、200メッシュダイヤモンド砥粒を使用したレジンボンド砥石を用いて研削し、0.6mm×75mm×50mmの白板を作製した。この白板の両面に、Ag粉80質量部、Cu粉15質量部、Ti粉5質量部、及びテルピネオール15質量部を混練して得たろう材ペーストを、42mm×67mmの領域にスクリーン印刷機を用いて厚さ20μmになるように塗布した。1.0mm×42mm×67mmの大きさの純度99.9%の銅板を2枚準備して、ろう材ペースを塗布した白板の両面に配置し、銅板全面に1kPaの荷重をかけ、真空炉に入れた。0.01Paの真空雰囲気下、850℃で10分加熱し、窒化ケイ素白板と銅板を接合した。得られた窒化ケイ素基板について、−70℃と350℃のヒートショック試験を50回行った結果、銅板端部の剥離が目視で認められた。
[Example 1, Comparative Examples 2-1 to 2-5]
The sintered bodies obtained in Comparative Examples 1-1 to 1-5 were ground using a resin bond grindstone using 200 mesh diamond abrasive grains to produce 0.6 mm × 75 mm × 50 mm white plates. A brazing material paste obtained by kneading 80 parts by mass of Ag powder, 15 parts by mass of Cu powder, 5 parts by mass of Ti powder, and 15 parts by mass of terpineol on both sides of this white plate was used in a 42 mm × 67 mm area using a screen printer. The coating was applied to a thickness of 20 μm. Prepare two copper plates with a size of 1.0 mm x 42 mm x 67 mm and a purity of 99.9%, place them on both sides of a white plate coated with brazing paste, apply a load of 1 kPa to the entire copper plate, I put it in. Under a vacuum atmosphere of 0.01 Pa, heating was performed at 850 ° C. for 10 minutes to join the silicon nitride white plate and the copper plate. About the obtained silicon nitride board | substrate, -70 degreeC and the heat shock test of 350 degreeC were performed 50 times, As a result, peeling of the copper plate edge part was recognized visually.

実験例2−4で得た焼結体を、比較例1−1〜1−5と同様にして窒化ケイ素基板を作製し、ヒートショック試験を30回行った結果、銅板の剥離は認められなかった。   A silicon nitride substrate was produced from the sintered body obtained in Experimental Example 2-4 in the same manner as in Comparative Examples 1-1 to 1-5, and the heat shock test was performed 30 times. As a result, no peeling of the copper plate was observed. It was.

〔実施例2〕
ろう材ペーストを塗布する面積を、片面は42mm×67mm、片面は全面とし、純度99.5%で寸法1.0mm×42mm×67mmの銅板1枚と、同じく寸法5.0mm×70mm×95mmの銅板1枚とを準備したこと以外は、実施例1と同様にして窒化ケイ素基板を作製した。−70℃と350℃のヒートショック試験を50回行った結果、銅板端部の剥離は認められなかった。
[Example 2]
The area to which the brazing paste is applied is 42 mm × 67 mm on one side, and the entire surface is on one side, and a copper plate with a purity of 99.5% and a size of 1.0 mm × 42 mm × 67 mm and a size of 5.0 mm × 70 mm × 95 mm. A silicon nitride substrate was produced in the same manner as in Example 1 except that one copper plate was prepared. As a result of performing the heat shock test at −70 ° C. and 350 ° C. 50 times, peeling of the end portion of the copper plate was not recognized.

この窒化ケイ素基板の断面を、電子線走査型顕微鏡により観察し、TiとNの元素分布を調べた。白板と銅板の接合界面において、TiとNが同時に分布しているTiNの存在が推定される領域を、観察している平面内で、白板と銅板の境界線と垂直な方向から見た時に、TiとNが同時に分布している領域が50%以上境界線と重なることが分かった。   The cross section of the silicon nitride substrate was observed with an electron beam scanning microscope, and the element distribution of Ti and N was examined. When the region where the presence of TiN in which Ti and N are simultaneously distributed is estimated at the bonding interface between the white plate and the copper plate is viewed from the direction perpendicular to the boundary line between the white plate and the copper plate, It was found that the region where Ti and N are simultaneously distributed overlaps the boundary line by 50% or more.

〔実施例3〕
実験例2−21と同じ配合の原料粉末100質量部とバインダー(ユケン工業製、商品名「セランダー」)35質量部をヘンシェルミキサーで混合した後、押し出し成型機(宮崎鉄工製)で混練し、押し出して、厚さ0.7mmのシート状成形体を作製した。これを金型で打ち抜いて、90mm×60mmの板状成形体を10枚作製し、板状成形体に窒化ホウ素(BN)粉を塗布してBN容器中に積層し、上部にBN板と重さ500gの重しを載せて収納した。島津製作所製タイトボックス炉内にセットし、真空に引きながら550℃に加熱し脱バインダーを行った。その後、真空度が2Paに達するのを確認した後、窒素ガスを導入し窒化温度まで昇温した。1400℃で8時間で窒化した後、窒素ガス圧を0.9MPaまで昇圧し、1850℃で12時間ポスト焼結を行った。その後、BN容器から板状焼結体を取り出し、表面に付着しているBN粉等をサンドブラスト装置で除去して白板とし、以降の評価や基板作製に用いた。
Example 3
After mixing 100 parts by mass of the raw material powder having the same composition as Experimental Example 2-21 and 35 parts by mass of a binder (trade name “Celander” manufactured by YUKEN INDUSTRIES) with a Henschel mixer, the mixture is kneaded with an extrusion molding machine (manufactured by Miyazaki Tekko). Extruded to produce a sheet-like molded body having a thickness of 0.7 mm. This is punched with a mold to produce 10 plate-shaped molded bodies of 90 mm × 60 mm, and boron nitride (BN) powder is applied to the plate-shaped molded body and laminated in a BN container. A 500 g weight was placed and stored. The sample was set in a tight box furnace manufactured by Shimadzu Corporation and heated to 550 ° C. while being evacuated to remove the binder. Thereafter, after confirming that the degree of vacuum reached 2 Pa, nitrogen gas was introduced and the temperature was raised to the nitriding temperature. After nitriding at 1400 ° C. for 8 hours, the nitrogen gas pressure was increased to 0.9 MPa, and post sintering was performed at 1850 ° C. for 12 hours. Thereafter, the plate-like sintered body was taken out from the BN container, and the BN powder or the like adhering to the surface was removed with a sand blasting device to form a white plate, which was used for subsequent evaluation and substrate production.

得られた白板を幅10mmの短冊状に切断したものを試験片として3点曲げ強度測定を行ったところ、660MPaであった。また、レーザーフラッシュ法により得られた白板の熱伝導率測定を行ったところ、113W/mKであった。   When the obtained white plate was cut into a strip shape having a width of 10 mm and a three-point bending strength measurement was performed using a test piece, it was 660 MPa. Moreover, it was 113 W / mK when the thermal conductivity measurement of the white board obtained by the laser flash method was performed.

寸法1.0mm×42mm×67mmの純度99.95%のアルミニウム板を2枚準備し、厚さ10μmで同じ寸法のJIS番号2024のアルミ合金箔を、アルミニウム板と白板との間に挟んで、真空炉内にセットした。0.3Paの真空度で610℃で10分間加熱してアルミ板と白板を接合し、窒化ケイ素基板を得た。   Two aluminum plates with a size of 1.0 mm × 42 mm × 67 mm and a purity of 99.95% were prepared, and an aluminum alloy foil of JIS No. 2024 having a thickness of 10 μm and the same size was sandwiched between the aluminum plate and the white plate, It was set in a vacuum furnace. The aluminum plate and the white plate were joined by heating at 610 ° C. for 10 minutes at a vacuum degree of 0.3 Pa to obtain a silicon nitride substrate.

−70℃と250℃のヒートショックを1000回繰り返したが、目視では金属板の剥離は認められなかった。そこで、アルミ板をエッチングして除去し、金属板の接合端部の白板を観察したが、微小なクラックも観察されなかった。   The heat shock at −70 ° C. and 250 ° C. was repeated 1000 times, but no peeling of the metal plate was visually observed. Therefore, the aluminum plate was removed by etching, and the white plate at the joining end of the metal plate was observed, but no minute cracks were observed.

この窒化ケイ素基板の断面を、電子線走査型顕微鏡により観察し、MgとO(酸素)の元素分布を調べた。白板と銅板の接合界面において、MgとOが同時に分布しているMgOの存在が推定される領域を、観察している平面内で、白板と銅板の境界線と垂直な方向から見た時に、MgとOが同時に分布している領域が50%以上境界線と重なることが分かった。   The cross section of the silicon nitride substrate was observed with an electron beam scanning microscope, and the element distribution of Mg and O (oxygen) was examined. When the region where the presence of MgO in which Mg and O are simultaneously distributed is estimated at the bonding interface between the white plate and the copper plate is viewed from the direction perpendicular to the boundary line between the white plate and the copper plate, It was found that the region where Mg and O were simultaneously distributed overlaps the boundary line by 50% or more.

Claims (1)

ケイ素粉末或いはケイ素粉末と窒化ケイ素粉末の混合粉末に、ケイ素を窒化ケイ素に換算した際の比率において、0.5〜7mol%の希土類元素の酸化物と、1〜7mol%のマグネシウム混合物とを混合した混合物であって、
上記マグネシウム混合物が、酸化マグネシウム(MgO)、ケイ化マグネシウム(Mg2Si)、窒化ケイ素マグネシウム(MgSiN2)から選択される少なくとも一種であり、
上記ケイ素粉末或いはケイ素粉末と窒化ケイ素粉末の混合粉末に含まれる不純物酸素とマグネシウム化合物からの酸素との総量が0.1〜1.8質量%である混合物を調整し、
該混合物を成形して窒化し、得られた窒化体を0.1MPa以上の窒素中で加熱して相対密度が95%以上になるように緻密化し、得られた板状の窒化ケイ素焼結体の少なくとも一方の面に、マグネシウム、チタン、ジルコニウムのうち少なくとも一種の金属元素を含むろう材を用いて金属板を接合することを特徴とする高熱伝導窒化ケイ素基板の製造方法。
Mixing silicon powder or mixed powder of silicon powder and silicon nitride powder with 0.5 to 7 mol% rare earth oxide and 1 to 7 mol% magnesium mixture in the ratio of silicon to silicon nitride A mixture of
The magnesium mixture is at least one selected from magnesium oxide (MgO), magnesium silicide (Mg 2 Si), and magnesium magnesium nitride (MgSiN 2 );
Adjusting a mixture in which the total amount of impurity oxygen contained in the silicon powder or the mixed powder of silicon powder and silicon nitride powder and oxygen from the magnesium compound is 0.1 to 1.8% by mass,
The mixture is molded and nitrided, and the obtained nitride is heated in nitrogen of 0.1 MPa or more to be densified so that the relative density is 95% or more, and the obtained plate-like silicon nitride sintered body is obtained A metal plate is joined to at least one surface of the metal plate using a brazing material containing at least one metal element selected from magnesium, titanium, and zirconium.
JP2006014670A 2006-01-24 2006-01-24 Method for producing high thermal conductivity silicon nitride substrate Active JP4997431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006014670A JP4997431B2 (en) 2006-01-24 2006-01-24 Method for producing high thermal conductivity silicon nitride substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006014670A JP4997431B2 (en) 2006-01-24 2006-01-24 Method for producing high thermal conductivity silicon nitride substrate

Publications (2)

Publication Number Publication Date
JP2007197229A JP2007197229A (en) 2007-08-09
JP4997431B2 true JP4997431B2 (en) 2012-08-08

Family

ID=38452201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006014670A Active JP4997431B2 (en) 2006-01-24 2006-01-24 Method for producing high thermal conductivity silicon nitride substrate

Country Status (1)

Country Link
JP (1) JP4997431B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015199657A (en) * 2014-03-31 2015-11-12 日本ファインセラミックス株式会社 Method for producing silicon nitride substrate

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5046221B2 (en) * 2006-01-24 2012-10-10 独立行政法人産業技術総合研究所 Manufacturing method of highly reliable silicon nitride ceramics with high reliability
EP2217043B1 (en) 2007-11-06 2019-01-30 Mitsubishi Materials Corporation Method for producing a substrate for power module
JP5422964B2 (en) * 2007-11-06 2014-02-19 三菱マテリアル株式会社 Method for manufacturing ceramic substrate and method for manufacturing substrate for power module
JP5176627B2 (en) * 2008-03-19 2013-04-03 三菱マテリアル株式会社 Ceramic substrate for power module substrate, method for manufacturing ceramic substrate for power module substrate, and method for manufacturing power module substrate
JP5120857B2 (en) * 2008-05-16 2013-01-16 独立行政法人産業技術総合研究所 Dense dielectric material for high frequency with high thermal conductivity and low dielectric loss, its manufacturing method and member
JP5339214B2 (en) * 2010-03-01 2013-11-13 日立金属株式会社 Method for manufacturing silicon nitride substrate and silicon nitride substrate
JP6124103B2 (en) * 2012-02-29 2017-05-10 日立金属株式会社 Silicon nitride circuit board and manufacturing method thereof
DE102015108668B4 (en) * 2015-06-02 2018-07-26 Rogers Germany Gmbh Method for producing a composite material
KR101794410B1 (en) * 2015-08-17 2017-11-07 한국과학기술원 Sintered silicon nitride having high thermal conductivity and Manufacturing method thereof
JP6965768B2 (en) * 2017-02-28 2021-11-10 三菱マテリアル株式会社 Copper / Ceramics Joint, Insulated Circuit Board, Copper / Ceramics Joint Manufacturing Method, Insulated Circuit Board Manufacturing Method
WO2018159590A1 (en) * 2017-02-28 2018-09-07 三菱マテリアル株式会社 Copper/ceramic joined body insulated circuit board, method for producing copper/ceramic joined body, and method for producing insulated circuit board
WO2020105160A1 (en) * 2018-11-22 2020-05-28 日本碍子株式会社 Method for producing bonded substrate
US20220177376A1 (en) * 2019-03-29 2022-06-09 Denka Company Limited Silicon nitride sintered body, method for producing same, multilayer body and power module
EP4006002A4 (en) * 2019-07-23 2023-09-06 NGK Insulators, Ltd. Bonded substrate, and method for manufacturing bonded substrate
KR20230079366A (en) * 2020-10-05 2023-06-07 가부시끼가이샤 도꾸야마 Manufacturing method of green sheet
CN115594510A (en) * 2022-11-21 2023-01-13 潍坊学院(Cn) Silicon nitride heat-conducting substrate and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138075A (en) * 1993-11-16 1995-05-30 Isuzu Motors Ltd Production of silicon nitride having high strength and high thermal expansion
JPH07237971A (en) * 1994-02-24 1995-09-12 Honda Motor Co Ltd Production of silicon nitride reaction sintered compact
JP3501317B2 (en) * 1995-07-21 2004-03-02 日産自動車株式会社 High thermal conductivity silicon nitride sintered body and insulating substrate made of silicon nitride sintered body
JP3629783B2 (en) * 1995-12-07 2005-03-16 電気化学工業株式会社 Circuit board
JP3797905B2 (en) * 2000-10-27 2006-07-19 株式会社東芝 Silicon nitride ceramic substrate, silicon nitride ceramic circuit substrate using the same, and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015199657A (en) * 2014-03-31 2015-11-12 日本ファインセラミックス株式会社 Method for producing silicon nitride substrate
KR20160111005A (en) 2014-03-31 2016-09-23 니혼 파인 세라믹스 가부시키가이샤 Method for producing silicon nitride substrate
DE112015001562B4 (en) 2014-03-31 2022-03-03 Japan Fine Ceramics Co. Ltd. Process for producing a silicon nitride substrate

Also Published As

Publication number Publication date
JP2007197229A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
JP4997431B2 (en) Method for producing high thermal conductivity silicon nitride substrate
KR101751531B1 (en) Method for producing silicon nitride substrate
JP6182082B2 (en) Dense composite material, manufacturing method thereof, and member for semiconductor manufacturing equipment
EP3248956B1 (en) Silicon nitride substrate, and silicon nitride circuit board and semiconductor apparatus using the same
JP2018184333A (en) Method of manufacturing silicon nitride substrate and silicon nitride substrate
JP7062229B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP5046221B2 (en) Manufacturing method of highly reliable silicon nitride ceramics with high reliability
JP3565425B2 (en) Method for producing silicon nitride-based powder and method for producing silicon nitride-based sintered body
CN116134608A (en) Silicon nitride substrate and method for manufacturing same
JP4556162B2 (en) Silicon nitride-based sintered body, method for producing the same, and circuit board using the same
JP4089974B2 (en) Silicon nitride powder, silicon nitride sintered body, and circuit board for electronic components using the same
JP6720053B2 (en) Method for manufacturing silicon nitride sintered body
CN113264775B (en) Compact composite material, method for producing the same, bonded body, and member for semiconductor manufacturing device
JP3998252B2 (en) Method for producing aluminum nitride sintered body
JP5073135B2 (en) Aluminum nitride sintered body, production method and use thereof
CN106132908B (en) The manufacture method of silicon nitrate substrate
JP2002029851A (en) Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JP4142556B2 (en) Aluminum nitride sintered body, manufacturing method and use thereof
JP3929335B2 (en) Aluminum nitride sintered body and method for producing the same
JP4868641B2 (en) Method for manufacturing aluminum nitride substrate
JP6335080B2 (en) Bonding material composition, aluminum nitride bonded body, and manufacturing method thereof
JP4411403B2 (en) Method for producing aluminum nitride sintered body
JP2003146760A (en) Aluminum nitride sintered compact and method of producing the same
JP2001089250A (en) Sintering case for highly thermal-conductive silicon nitride sintered body and production process of highly thermal-conductive silicon nitride sintered body using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4997431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250