JP2001089250A - Sintering case for highly thermal-conductive silicon nitride sintered body and production process of highly thermal-conductive silicon nitride sintered body using the same - Google Patents

Sintering case for highly thermal-conductive silicon nitride sintered body and production process of highly thermal-conductive silicon nitride sintered body using the same

Info

Publication number
JP2001089250A
JP2001089250A JP26058299A JP26058299A JP2001089250A JP 2001089250 A JP2001089250 A JP 2001089250A JP 26058299 A JP26058299 A JP 26058299A JP 26058299 A JP26058299 A JP 26058299A JP 2001089250 A JP2001089250 A JP 2001089250A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
case
sintering
conductive silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26058299A
Other languages
Japanese (ja)
Inventor
Katsura Matsubara
桂 松原
Takashi Kudo
貴士 工藤
Masaya Ito
正也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP26058299A priority Critical patent/JP2001089250A/en
Publication of JP2001089250A publication Critical patent/JP2001089250A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sintering case which is particularly suitable for sintering a highly thermal-conductive silicon nitride sintered body and can also be used for sintering at a >=1,800 deg.C high temperature, irrespective of the composition of an unsintered body to be sintered and also to provide a process for producing the silicon nitride sintered body by using the sintering case. SOLUTION: The manufacturing process of this sintering case comprises, mixing a powdery silicon nitride raw material or powdery silicon carbide raw material, various sintering aids and a binder to prepare a raw material for a sintering case then forming the sintering case raw material into a green body and thereafter, sintering the green body in an nitrogen atmosphere when the green body consists essentially of silicon nitride, or in an argon atmosphere when the green body consists essentially of silicon carbide, to manufacture the objective sintering case having a <=3.5 wt.% Al content. Also, the objective highly thermal-conductive silicon nitride sintered body is produced by sintering a corresponding green body at >=1,800 deg.C in a nitrogen-containing atmosphere by using the sintering case.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高熱伝導窒化珪素
質焼結体用焼成ケース及びこれを用いた高熱伝導窒化珪
素質焼結体の製造方法に関する。更に詳しくは、180
0℃以上の高温下において焼成した場合においても、高
い熱伝導性を有する窒化珪素焼結体を得ることのできる
高熱伝導窒化珪素質焼結体用焼成ケース、及びこれを用
いた高熱伝導窒化珪素質焼結体の製造方法に関する。本
発明の製造方法により得られた高熱伝導窒化珪素質焼結
体は高い放熱性及び絶縁性を必要とする半導体用絶縁基
板等に好適に利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a firing case for a silicon nitride sintered body having a high thermal conductivity and a method for producing a silicon nitride sintered body having a high thermal conductivity using the same. More specifically, 180
A firing case for a high thermal conductive silicon nitride sintered body capable of obtaining a silicon nitride sintered body having high thermal conductivity even when fired at a high temperature of 0 ° C. or higher, and a high thermal conductive silicon nitride using the same The present invention relates to a method for manufacturing a porous sintered body. The high thermal conductive silicon nitride sintered body obtained by the production method of the present invention can be suitably used for an insulating substrate for a semiconductor or the like that requires high heat dissipation and insulation.

【0002】[0002]

【従来の技術】窒化珪素焼結体は、良く知られるように
強度、破壊靭性等の機械的特性、耐熱性及び耐食性等に
優れる。更に、近年は高絶縁性及び高熱伝導特性にも優
れることが注目され、半導体用絶縁基板等への適用が試
みられている。窒化珪素は共有結合性が高いため、これ
を用いた成形体の焼結は難しい。このため、これまでに
様々な焼結方法が検討された。このうち特定の焼結助剤
を添加し、高温における反応溶融により生成される液相
を介して焼結する液相焼結法が多く用いられるようにな
っている。
2. Description of the Related Art As is well known, a silicon nitride sintered body is excellent in mechanical properties such as strength and fracture toughness, heat resistance, corrosion resistance and the like. Further, in recent years, attention has been paid to its excellent high insulation properties and high heat conduction properties, and application to insulating substrates for semiconductors and the like has been attempted. Since silicon nitride has a high covalent bond property, it is difficult to sinter a molded body using the same. For this reason, various sintering methods have been studied so far. Among them, a liquid phase sintering method in which a specific sintering aid is added and sintering is performed through a liquid phase generated by reaction melting at a high temperature has been widely used.

【0003】この方法では、焼結助剤として使用される
アルミナ、マグネシア及びシリカ等は液相焼結法におけ
る高温下では揮散し易い。このため雰囲気を維持する手
段として焼成ケースを必要とする。この焼成ケースとし
て特公昭49−40123号公報及び特公平6−668
号公報等が開示されているが、高熱伝導窒化珪素質焼結
体を得ることを目的とするものではない。これまでに特
に高熱伝導窒化珪素質焼結体を得ることに適する焼成ケ
ースは知られていない。
In this method, alumina, magnesia, silica and the like used as a sintering aid are easily volatilized at a high temperature in a liquid phase sintering method. For this reason, a firing case is required as a means for maintaining the atmosphere. As this firing case, Japanese Patent Publication No. 49-40123 and Japanese Patent Publication No. 6-668 are used.
However, the publication does not aim at obtaining a high thermal conductive silicon nitride based sintered body. Until now, there has been no known firing case particularly suitable for obtaining a silicon nitride sintered body having high thermal conductivity.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記課題を解
決するものであり、1800℃以上の高温下において、
高熱伝導窒化珪素質焼結体となる未焼成体(以下、単に
「未焼成体」ともいう。)の焼成に用いることができる
高熱伝導窒化珪素質焼結体用焼成ケースを提供すること
を目的とする。また、この焼成ケースを用いた高熱伝導
窒化珪素質焼結体の製造方法を提供することを目的とす
る。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and at a high temperature of 1800 ° C. or more,
An object of the present invention is to provide a fired case for a high-thermal-conductivity silicon nitride-based sintered body that can be used for firing an unsintered body to be a high-thermal-conductivity silicon nitride-based sintered body (hereinafter, also simply referred to as an “unfired body”). And It is another object of the present invention to provide a method for manufacturing a high thermal conductive silicon nitride based sintered body using the firing case.

【0005】[0005]

【課題を解決するための手段】本第1発明の高熱伝導窒
化珪素質焼結体用焼成ケースは、高熱伝導窒化珪素質焼
結体の製造に用いられる高熱伝導窒化珪素質焼結体用焼
成ケースであって、Al成分の含有量が酸化物換算で
3.5重量%以下であり、該高熱伝導窒化珪素質焼結体
となる異なる組成を有することを特徴とする。
The fired case for a high thermal conductive silicon nitride based sintered body according to the first aspect of the present invention is a sintered body for a high thermal conductive silicon nitride based sintered body used for manufacturing a high thermal conductive silicon nitride based sintered body. The case is characterized in that the content of the Al component is 3.5% by weight or less in terms of oxide, and has a different composition to be the high thermal conductive silicon nitride based sintered body.

【0006】上記「高熱伝導窒化珪素質焼結体」(以
下、単に「高熱伝導焼結体」ともいう。)とは、熱伝導
率が50W/m・K以上(より好ましくは55W/m・
K以上)であり、窒化珪素を80重量%以上含有する焼
結体をいうものとする。また、上記「Al成分」には、
アルミニウムの単体及びAl元素を含有する化合物を含
む。この上記「Alの含有量」は蛍光X線分析により測
定することができ、その含有量は酸化物(Al23)に
換算した場合の含有量であるものとする。
The above-mentioned "high thermal conductive silicon nitride sintered body" (hereinafter also simply referred to as "high thermal conductive sintered body") has a thermal conductivity of 50 W / m · K or more (more preferably 55 W / m · K).
K or more), and refers to a sintered body containing at least 80% by weight of silicon nitride. The “Al component” includes:
It includes a simple substance of aluminum and a compound containing an Al element. The above “content of Al” can be measured by X-ray fluorescence analysis, and the content is the content when converted to oxide (Al 2 O 3 ).

【0007】Al成分が焼成ケースに3.5重量%を越
えて含有される場合、特に1800℃(更に1900℃
以上)以上における高温下では焼成ケースから揮散する
ことがある。この揮散したAl成分は、未焼成体中に移
行し、更には、固溶することがある。Al成分が固溶す
ることによりサイアロンが形成され、サイアロンが形成
された窒化珪素質焼結体においては熱伝導率が著しく低
下する。このためAl成分の含有量は3.5重量%以下
であることが好ましく、3重量%以下であることがより
好ましく、2重量%以下であることが特に好ましく、と
りわけ1重量%以下であることが好ましい。
When the Al component is contained in the sintering case in an amount exceeding 3.5% by weight, particularly at 1800 ° C. (further 1900 ° C.)
Under the above high temperatures, it may volatilize from the firing case. The volatilized Al component may migrate into the unfired body, and may further form a solid solution. Sialon is formed by the solid solution of the Al component, and the thermal conductivity of the silicon nitride sintered body on which sialon is formed is significantly reduced. Therefore, the content of the Al component is preferably 3.5% by weight or less, more preferably 3% by weight or less, particularly preferably 2% by weight or less, and particularly preferably 1% by weight or less. Is preferred.

【0008】上記「異なる組成」とは、同一な元素から
構成され、その含有される割合が異なること、及び異な
る元素を含有することを意味する。これらの元素は、意
図的に配合されたものであり、不可避不純物及び測定限
界以下の元素を除くものである。未焼成体と同一な主成
分及び焼結剤から焼成された高熱伝導窒化珪素質焼結体
用焼成ケース(以下、単に「焼成ケース」ともいう。)
を使用した場合、未焼成体中の元素と、焼成ケースとの
間における元素の移行を無くす又は少なくすることがで
きる。特に、本発明の焼成ケースでは、含有される元素
が異なってもよいため、未焼成体と同じ元素から構成さ
れる焼成ケースを、異なる元素を含有する未焼成体毎に
製造する必要が無い。
The above-mentioned "different compositions" means that they are composed of the same element, differ in the content ratio, and contain different elements. These elements are intentionally added and exclude unavoidable impurities and elements below the measurement limit. A firing case for a high thermal conductive silicon nitride sintered body fired from the same main component and sintering agent as the unfired body (hereinafter, also simply referred to as “fired case”).
In the case where is used, the transfer of the element between the element in the unfired body and the firing case can be eliminated or reduced. In particular, in the fired case of the present invention, since the contained elements may be different, it is not necessary to manufacture a fired case composed of the same element as the unfired body for each unfired body containing a different element.

【0009】上記「高熱伝導窒化珪素質焼結体用焼成ケ
ース」は、Al成分の含有量が酸化物換算で3.5重量
%以下であり、窒素を含む不活性雰囲気下、1800℃
以上の高温において安定なものであれば、どのような組
成を有するものであってもよい。例えば、窒化珪素を主
成分とする焼結体、炭化珪素を主成分とする焼結体又は
これらの複合焼結体等を挙げることができる。
The above-mentioned "fired case for a silicon nitride sintered body having a high thermal conductivity" has an Al content of 3.5% by weight or less in terms of oxide, and is heated at 1800 ° C. in an inert atmosphere containing nitrogen.
Any composition may be used as long as the composition is stable at the above high temperature. For example, a sintered body containing silicon nitride as a main component, a sintered body containing silicon carbide as a main component, or a composite sintered body thereof can be given.

【0010】特に、第2発明のように窒化珪素を主成分
とし、希土類元素成分と、Mg成分又はSi成分の一方
とを焼結助剤として含有する原料粉末を成形し、その
後、焼成して得るものが好ましい。このような焼成ケー
スであれば、特に高い熱伝導率を有する窒化珪素質焼結
体を得ることができる。上記「希土類元素成分」、「M
g成分」及び「Si成分」とは、各々の単体、並びに各
々の元素を含む化合物を表す。希土類酸化物としては、
酸化イットリウム、酸化ランタン、酸化セリウム、酸化
エルビウム及び酸化イッテルビウム等を使用することが
できる。このMg成分は酸化マグネシウム粉末、仮焼に
より酸化マグネシウムとなる炭酸マグネシウム粉末等を
使用することができる。また、Si成分としてはシリカ
粉末を使用することができる。
Particularly, as in the second invention, a raw material powder containing silicon nitride as a main component, a rare earth element component and one of a Mg component and a Si component as a sintering aid is formed, and then fired. What is obtained is preferred. With such a firing case, a silicon nitride sintered body having particularly high thermal conductivity can be obtained. The above “rare earth element components”, “M
The “g component” and “Si component” represent each simple substance and a compound containing each element. As rare earth oxides,
Yttrium oxide, lanthanum oxide, cerium oxide, erbium oxide, ytterbium oxide, and the like can be used. As the Mg component, magnesium oxide powder, magnesium carbonate powder that becomes magnesium oxide by calcination, or the like can be used. In addition, silica powder can be used as the Si component.

【0011】また、未焼成体の焼成時の最高温度を18
00℃未満とすることにより、Al成分の揮散量を減少
させることができる。しかし、より大きな粒径の単結晶
の形成が、高い熱伝導率を実現させている高熱伝導焼結
体において、この温度が低いと粒成長が十分でなくなり
高熱伝導焼結体を得難くなる。このため、焼成温度は1
800℃以上(より好ましくは1900℃以上、通常2
200℃以下)とすることが好ましい。
Further, the maximum temperature at the time of firing the green body is 18
By setting the temperature to be lower than 00 ° C., the volatilization amount of the Al component can be reduced. However, in a high-thermal-conductivity sintered body in which the formation of a single crystal having a larger grain size realizes a high thermal conductivity, if this temperature is low, the grain growth is not sufficient and it becomes difficult to obtain a high-thermal-conductivity sintered body. Therefore, the firing temperature is 1
800 ° C. or higher (more preferably 1900 ° C. or higher, usually 2
200 ° C. or less).

【0012】第3発明の高熱伝導窒化珪素質焼結体の製
造方法は、第1発明又は第2発明の焼成ケースを用い、
窒素を含む不活性雰囲気において、高熱伝導窒化珪素質
焼結体となる未焼成体を温度1800℃以上で焼成する
工程を備えることを特徴とする。
[0012] A method for producing a silicon nitride sintered body having high thermal conductivity according to the third invention uses the firing case according to the first invention or the second invention,
The method is characterized in that the method comprises a step of firing an unfired body to be a highly thermally conductive silicon nitride sintered body at a temperature of 1800 ° C. or higher in an inert atmosphere containing nitrogen.

【0013】焼成温度は1800℃以上(より好ましく
は1900℃以上、通常2200℃以下)であることが
好ましい。第1発明におけると同様に1800℃未満の
温度での焼成は好ましくない。また、2200℃を超え
る温度で焼成してもよいが、焼成に必要とするエネルギ
ーが不必要に大きくなり好ましくない。これにより前記
のように、窒化珪素の粒成長を促進し、より高い熱伝導
率の高熱伝導焼結体を得ることができる。
The firing temperature is preferably 1800 ° C. or higher (more preferably 1900 ° C. or higher, usually 2200 ° C. or lower). As in the first invention, firing at a temperature lower than 1800 ° C. is not preferable. In addition, although firing may be performed at a temperature exceeding 2200 ° C., the energy required for firing is unnecessarily large, which is not preferable. Thereby, as described above, the grain growth of silicon nitride is promoted, and a high heat conductive sintered body having higher heat conductivity can be obtained.

【0014】本第1発明及び第2発明の焼成ケースを用
いた場合、熱伝導率が55W/m・K以上(更には60
W/m・K以上、特に70W/m・K以上)である高熱
伝導焼結体を得ることができる。特に、未焼成体として
窒化珪素原料粉末91重量%、酸化セリウム粉末5.0
重量%、酸化マグネシウム粉末3.0重量%、酸化ジル
コニウム粉末1.0重量%を含有する混合粉末から成形
された未焼成体を0.2〜200MPaの加圧下におい
て、第3発明の様に窒素を含有する不活性雰囲気中、1
800℃以上で焼成した場合、熱伝導率が55W/m・
K以上(更には60W/m・K以上、特に70W/m・
K以上)である高熱伝導焼結体を得ることができる。
When the firing cases of the first and second inventions are used, the thermal conductivity is 55 W / m · K or more (furthermore, 60 W / m · K or more).
W / m · K or more, particularly 70 W / m · K or more). In particular, as a green body, 91% by weight of silicon nitride raw material powder and 5.0% of cerium oxide powder were used.
The green body molded from the mixed powder containing 0.2% by weight of magnesium oxide powder, 3.0% by weight of zirconium oxide powder and 1.0% by weight of zirconium oxide powder under nitrogen pressure of 0.2 to 200 MPa as in the third invention In an inert atmosphere containing
When fired at 800 ° C. or higher, the thermal conductivity is 55 W / m ·
K or more (furthermore, 60 W / m · K or more, especially 70 W / m ·
K or more).

【0015】更に、窒化珪素を主成分とし、焼結助剤と
して酸化イットリウム及び3重量%以下のアルミナを用
いた場合は65W/m・K以上、このアルミナが2重量
%以下であれば70W/m・K以上、このアルミナが1
重量%以下であれば75W/m・K以上の熱伝導率であ
る高熱伝導焼結体を得ることができる。尚、窒化珪素を
主成分とする焼成ケースを用いた場合は炭化珪素を主成
分とする焼成ケースを用いた場合に比べて、高熱伝導焼
結体の外表面を滑らかにすることができる。
Furthermore, when silicon nitride is used as a main component and yttrium oxide and 3% by weight or less of alumina are used as sintering aids, 65 W / m · K or more, and when this alumina is 2% by weight or less, 70 W / m · K is used. m · K or more, this alumina is 1
When the content is less than 75% by weight, a high thermal conductive sintered body having a thermal conductivity of 75 W / m · K or more can be obtained. The outer surface of the high heat conductive sintered body can be made smoother in the case where the fired case mainly containing silicon nitride is used than in the case where the fired case mainly containing silicon carbide is used.

【0016】[0016]

【発明の実施の形態】以下、実施例により本発明を具体
的に説明する。 (1)窒化珪素を主成分とする焼成ケース(K1〜K
5)の原料調製 以下の粉末を表1に示す割合で混合し、これら混合粉末
に各々8重量%となるバインダーを加えて焼成ケース用
原料粉末を調製した。尚、*は第1発明の範囲外である
ことを示す。 Si34:窒化珪素原料粉末(平均粒径1.0μm、不
純物Al含有量700ppm) Y23:酸化イットリウム粉末(平均粒径2.0μm) Yb23:酸化イッテルビウム粉末(平均粒径2.2μ
m) SiO2:シリカ粉末(平均粒径0.2μm) Al23:アルミナ粉末(平均粒径0.6μm) MgO:マグネシア粉末(平均粒径0.3μm)
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described specifically with reference to examples. (1) A firing case (K1 to K
5) Preparation of Raw Material The following powders were mixed at the ratio shown in Table 1, and a binder of 8% by weight was added to each of the mixed powders to prepare raw material powder for a firing case. In addition, * shows that it is out of the range of 1st invention. Si 3 N 4 : silicon nitride raw material powder (average particle size: 1.0 μm, impurity Al content: 700 ppm) Y 2 O 3 : yttrium oxide powder (average particle size: 2.0 μm) Yb 2 O 3 : ytterbium oxide powder (average particle size) 2.2μ diameter
m) SiO 2 : silica powder (average particle size 0.2 μm) Al 2 O 3 : alumina powder (average particle size 0.6 μm) MgO: magnesia powder (average particle size 0.3 μm)

【0017】(2)炭化珪素を主成分とする焼成ケース
(K6〜K8)の原料調製 以下の粉末を表1に示す割合で混合し、これら混合粉末
に各々8重量%となるバインダーを加えて焼成ケース用
原料粉末を調整した。尚、*は第1発明の範囲外である
ことを示す。 SiC:炭化珪素原料粉末(平均粒径0.5μm、不純
物Al含有量300ppm) Al23:アルミナ粉末(平均粒径0.6μm) B:ホウ素粉末(平均粒径0.3μm) C:ピッチ
(2) Preparation of Raw Materials for Fired Cases (K6 to K8) Mainly Containing Silicon Carbide The following powders were mixed in the proportions shown in Table 1, and a binder of 8% by weight was added to each of the mixed powders. Raw material powder for the firing case was prepared. In addition, * shows that it is out of the range of 1st invention. SiC: silicon carbide raw material powder (average particle diameter 0.5 μm, impurity Al content 300 ppm) Al 2 O 3 : alumina powder (average particle diameter 0.6 μm) B: boron powder (average particle diameter 0.3 μm) C: pitch

【0018】[0018]

【表1】 [Table 1]

【0019】(3)各焼成ケースの焼成及び焼成ケース (1)で調製した焼成ケース用原料をCIP成形し、外
径70mm、高さ50mm、厚さ7mmの両端が開放さ
れた筒体と、直径70mm、厚さ10mmの円盤体とか
らなる焼成ケース用成形体を形成し、これらを脱脂し
た。その後、この焼成ケース用成形体を、窒素雰囲気
下、0.2MPaに加圧して1800℃において6時間
焼成し、焼成ケースK1〜K5となる筒体及び円盤体を
得た。
(3) Firing of each firing case and firing case The raw material for the firing case prepared in (1) is subjected to CIP molding, and a cylindrical body having an outer diameter of 70 mm, a height of 50 mm, and a thickness of 7 mm, both ends being open; A molded body for a firing case composed of a disc having a diameter of 70 mm and a thickness of 10 mm was formed and degreased. Thereafter, the molded body for a firing case was fired at 1800 ° C. for 6 hours under a nitrogen atmosphere while applying a pressure of 0.2 MPa to obtain a cylindrical body and a disk body as firing cases K1 to K5.

【0020】また、(2)で調製した焼成ケース用原料
粉末をCIP成形し、上記と同様な形状の焼成ケース用
成形体を形成した。アルゴン雰囲気にて焼成し、筒体及
び円盤体を得た。尚、K6及びK7は1950℃で10
時聞焼成し、K8は2000℃で30分間焼成した。得
られた焼結体のうち、1つの円盤体上に、筒体をその開
口面が塞がるように載置し、更に、筒体の他の開口面を
塞ぐように他の円盤体を載置することにより焼成ケース
とする。
Further, the raw material powder for the firing case prepared in (2) was subjected to CIP molding to form a green body for the firing case having the same shape as above. It was fired in an argon atmosphere to obtain a cylinder and a disk. Note that K6 and K7 are 10
K8 was fired at 2000 ° C. for 30 minutes. Among the obtained sintered bodies, a cylinder is placed on one disk so that its opening surface is closed, and another disk is placed so as to cover another opening surface of the cylinder. By doing so, it becomes a firing case.

【0021】(4)高熱伝導焼結体の製造 91.0重量%の窒化珪素原料粉末(平均粒径1.0μ
m、α率97%、不純物酸素含有量0.6重量%)と、
5.0重量%の酸化セリウム粉末(平均粒径3.0μ
m)と、3.0重量%の酸化マグネシウム粉末(平均粒
径0.3μm)と、1.0重量%の酸化ジルコニウム粉
末(平均粒径0.5μm)とを、樹脂ポットと、直径1
0mmの窒化珪素球石とを使用し、エタノールを分散媒
として24時間混合粉砕した。得られた泥漿を湯煎乾燥
した後、直径15mm、厚さ5mmの円盤状にプレス成
形し、その後100MPaにてCIP処理を行い焼成試
験用未焼成体を作製した。次に、この未焼成体を表1に
示す焼成ケースを使用し、窒素雰囲気下、1MPaに加
圧し、1950℃で6時間焼成した。
(4) Production of High Thermal Conductive Sintered Body 91.0% by weight of silicon nitride raw material powder (average particle size 1.0 μm)
m, α rate 97%, impurity oxygen content 0.6% by weight)
5.0% by weight of cerium oxide powder (average particle size 3.0 μm)
m), 3.0% by weight of magnesium oxide powder (average particle size 0.3 μm) and 1.0% by weight of zirconium oxide powder (average particle size 0.5 μm)
Using 0 mm silicon nitride spheres, mixing and grinding were performed for 24 hours using ethanol as a dispersion medium. After the obtained slurry was dried in hot water, it was press-formed into a disk having a diameter of 15 mm and a thickness of 5 mm, and then subjected to a CIP treatment at 100 MPa to prepare an unfired body for a firing test. Next, this green body was fired at 1950 ° C. for 6 hours under a nitrogen atmosphere by applying a pressure of 1 MPa using a firing case shown in Table 1.

【0022】(5)高熱伝導焼結体の性状評価 (4)で得られた高熱伝導焼結体をアルキメデス法によ
り密度を測定し、相対密度を算出した。また、得られた
高熱伝導焼結体を直径10mm、厚さ2mmに加工し、
レーザーフラッシュ法(真空理工社製、熱定数測定装
置、型式「TC−7000」を使用。)により、室温
(23℃)における熱伝導率を測定した。更に、蛍光X
線分析(株式会社リガク社製、波長分散型蛍光X線分析
装置、型式「RIX−3000」を使用。)によりAl
成分の含有量を測定し、これを酸化物換算した。これら
の結果を表2に示す。尚、*は第1発明の範囲外である
ことを示す。
(5) Evaluation of properties of high thermal conductive sintered body The density of the high thermal conductive sintered body obtained in (4) was measured by the Archimedes method, and the relative density was calculated. Further, the obtained high thermal conductive sintered body was processed into a diameter of 10 mm and a thickness of 2 mm,
The thermal conductivity at room temperature (23 ° C.) was measured by a laser flash method (using a thermal constant measuring device, model “TC-7000” manufactured by Vacuum Riko Co., Ltd.). Furthermore, fluorescent X
X-ray analysis (using a wavelength-dispersive X-ray fluorescence spectrometer manufactured by Rigaku Co., Ltd., model "RIX-3000").
The contents of the components were measured and converted to oxides. Table 2 shows the results. In addition, * shows that it is out of the range of 1st invention.

【0023】[0023]

【表2】 [Table 2]

【0024】表2の実験例1〜4、6、7、9において
は、Al成分の含有量が3.5重量%以下である焼成ケ
ースを用いたため、未焼成体と異なる成分を含有しても
何れの焼成ケースであっても55〜82W/m・Kの熱
伝導率を得ることができる。主成分が窒化珪素であり、
Al成分の含有量が3重量%である焼成ケースを使用し
た実験例4では67W/m・Kの高熱伝導焼結体を、A
l成分の含有量が1重量%である焼成ケースを使用した
実験例1、2では72〜79W/m・Kの高熱伝導焼結
体を得ることができることが分かる。
In Experimental Examples 1 to 4, 6, 7, and 9 in Table 2, since a sintering case having an Al content of 3.5% by weight or less was used, a component different from that of the unsintered body was contained. In any of the firing cases, a thermal conductivity of 55 to 82 W / mK can be obtained. The main component is silicon nitride,
In Experimental Example 4 using a firing case in which the content of the Al component was 3% by weight, a high-thermal-conductivity sintered body of 67 W / mK
In Experimental Examples 1 and 2 using the firing case in which the content of the 1 component is 1% by weight, it can be seen that a high heat conductive sintered body of 72 to 79 W / m · K can be obtained.

【0025】特に、主成分が窒化珪素であり、Al成分
の含有量が測定限界以下である焼成ケースを使用した実
験例6では82W/m・Kの高熱伝導焼結体を得てい
る。また、焼成ケースに含まれるAl成分の含有量が多
いほど、得られた高熱伝導窒化珪素質焼結体に含まれる
Al成分が多いことが表2より分かる。
In particular, in Experimental Example 6 using a firing case in which the main component is silicon nitride and the content of the Al component is below the measurement limit, a high thermal conductive sintered body of 82 W / m · K was obtained. Table 2 shows that the higher the content of the Al component contained in the firing case, the more the Al component contained in the obtained high thermal conductive silicon nitride sintered body.

【0026】更に、高熱伝導窒化珪素質焼結体を得るた
めに、窒化珪素を主成分とせず、炭化珪素を主成分とす
る焼成ケースを用いた場合であっても、64〜68W/
m・Kの高い熱伝導率を有する高熱伝導窒化珪素質焼結
体が得られることが、実験例7及び8より分かる。
Further, in order to obtain a sintered body having a high thermal conductivity of silicon nitride, even if a firing case containing silicon carbide as a main component without using silicon nitride as a main component is used, the firing case is 64 to 68 W / watt.
Experimental examples 7 and 8 show that a high thermal conductive silicon nitride based sintered body having a high thermal conductivity of m · K can be obtained.

【0027】これに対して、実験例5ではAl成分の含
有量が5重量%である焼成ケースを使用したために、A
l成分が未焼成体に多く移行したことが、表2より分か
る。そのため、相対密度は高く、良く焼結されているも
のの55W/m・K以上の高熱伝導焼結体は得られてい
ない。実験例8においても、同様な結果が得られてい
る。
On the other hand, in Experimental Example 5, the firing case having an Al component content of 5% by weight was used.
It can be seen from Table 2 that a large amount of the l component migrated to the green body. Therefore, although the relative density is high and the sintered body is well sintered, a high heat conductive sintered body of 55 W / m · K or more has not been obtained. Similar results were obtained in Experimental Example 8.

【0028】尚、本発明においては、上記の具体的実施
例に示すものに限られず、目的、用途に応じて本発明の
範囲内で種々変更した実施例とすることができる。即
ち、本実施例においては前記に示す組成の未焼成体を使
用したために、その熱伝導率は57〜82W/m・Kと
なっている。しかし、本発明の焼成ケースは前記組成の
未焼成体を焼成するためのみのものではない。従って、
例えば他の公知の組成の未焼成体を本発明の焼成ケース
を用いて焼成することにより、更に高い熱伝導率の焼成
体を得ることもできる。
It should be noted that the present invention is not limited to the specific embodiments described above, but can be variously modified within the scope of the present invention in accordance with the purpose and application. That is, in this embodiment, since the unsintered body having the composition described above was used, the thermal conductivity was 57 to 82 W / m · K. However, the firing case of the present invention is not only for firing an unfired body having the above composition. Therefore,
For example, by firing an unfired body having another known composition using the firing case of the present invention, a fired body having a higher thermal conductivity can be obtained.

【0029】[0029]

【発明の効果】本第1発明の高熱伝導窒化珪素質焼結体
用焼成ケースによると、高熱伝導性である窒化珪素の製
造に使用することに特に適し、1800℃以上の高温に
おける焼成において高熱伝導焼結体を得ることができ
る。また、焼成する未焼成体の成分によらず使用するこ
とができる。本第3発明によると高熱伝導窒化珪素質焼
結体を容易に得ることができる。
According to the firing case for a silicon nitride sintered body having high thermal conductivity according to the first aspect of the present invention, the firing case is particularly suitable for use in the production of silicon nitride having high thermal conductivity. A conductive sintered body can be obtained. Further, it can be used regardless of the components of the unfired body to be fired. According to the third aspect of the present invention, a silicon nitride sintered body having high thermal conductivity can be easily obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 正也 名古屋市瑞穂区高辻町14番18号 日本特殊 陶業株式会社内 Fターム(参考) 4G001 BA03 BA04 BA06 BA08 BA09 BA11 BA14 BA22 BA32 BA60 BA68 BB03 BB04 BB06 BB08 BB09 BB11 BB14 BB22 BB23 BB32 BC13 BC46 BC52 BC54 BC62 BD03 BD07  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Masaya Ito 14-18 Takatsuji-cho, Mizuho-ku, Nagoya F-term in Japan Special Ceramics Co., Ltd. 4G001 BA03 BA04 BA06 BA08 BA09 BA11 BA14 BA22 BA32 BA60 BA68 BB03 BB04 BB06 BB08 BB09 BB11 BB14 BB22 BB23 BB32 BC13 BC46 BC52 BC54 BC62 BD03 BD07

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高熱伝導窒化珪素質焼結体の製造に用い
られる高熱伝導窒化珪素質焼結体用焼成ケースであっ
て、Al成分の含有量が酸化物換算で3.5重量%以下
であり、該高熱伝導窒化珪素質焼結体となる異なる組成
を有することを特徴とする高熱伝導窒化珪素質焼結体用
焼成ケース。
1. A fired case for a highly thermally conductive silicon nitride based sintered body used for producing a highly thermally conductive silicon nitride based sintered body, wherein the content of Al component is 3.5% by weight or less in terms of oxide. A firing case for a high thermal conductive silicon nitride based sintered body, characterized by having a different composition to provide the high thermal conductive silicon nitride based sintered body.
【請求項2】 窒化珪素を主成分とし、希土類酸化物
と、Mg成分又はSi成分の一方とを焼結助剤として含
有する原料粉末を成形し、その後、焼成して得る請求項
1記載の高熱伝導窒化珪素質焼結体用焼成ケース。
2. The method according to claim 1, wherein a raw material powder containing silicon nitride as a main component, a rare earth oxide and one of a Mg component and a Si component as a sintering aid is molded, and then calcined. Fired case for high thermal conductive silicon nitride sintered body.
【請求項3】 請求項1又は2記載の焼成ケースを用
い、窒素を含む不活性雰囲気において、高熱伝導窒化珪
素質焼結体となる未焼成体を温度1800℃以上で焼成
する工程を備えることを特徴とする高熱伝導窒化珪素質
焼結体の製造方法。
3. A step of using the firing case according to claim 1 and firing an unfired body to be a high thermal conductive silicon nitride sintered body at a temperature of 1800 ° C. or more in an inert atmosphere containing nitrogen. A method for producing a silicon nitride sintered body having high thermal conductivity, characterized in that:
JP26058299A 1999-09-14 1999-09-14 Sintering case for highly thermal-conductive silicon nitride sintered body and production process of highly thermal-conductive silicon nitride sintered body using the same Pending JP2001089250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26058299A JP2001089250A (en) 1999-09-14 1999-09-14 Sintering case for highly thermal-conductive silicon nitride sintered body and production process of highly thermal-conductive silicon nitride sintered body using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26058299A JP2001089250A (en) 1999-09-14 1999-09-14 Sintering case for highly thermal-conductive silicon nitride sintered body and production process of highly thermal-conductive silicon nitride sintered body using the same

Publications (1)

Publication Number Publication Date
JP2001089250A true JP2001089250A (en) 2001-04-03

Family

ID=17349957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26058299A Pending JP2001089250A (en) 1999-09-14 1999-09-14 Sintering case for highly thermal-conductive silicon nitride sintered body and production process of highly thermal-conductive silicon nitride sintered body using the same

Country Status (1)

Country Link
JP (1) JP2001089250A (en)

Similar Documents

Publication Publication Date Title
JP5836522B2 (en) Method for manufacturing silicon nitride substrate
JP6651628B2 (en) High thermal conductivity silicon nitride sintered body and method for producing the same
KR20140113364A (en) Dense composite material, method for producing the same, and component for semiconductor production equipment
JPH07277814A (en) Alumina-based ceramic sintered compact
JPH0930866A (en) Siliceous nitride sintered compact having high thermal conductivity, its production and insulating base made of siliceous nitride sintered compact
Zhu et al. Effect of sintering additive composition on the processing and thermal conductivity of sintered reaction‐bonded Si3N4
JP2007197229A (en) High-thermal conductive silicon nitride substrate and method of manufacturing the same
JP5046221B2 (en) Manufacturing method of highly reliable silicon nitride ceramics with high reliability
CN108863395B (en) High-thermal-conductivity and high-strength silicon nitride ceramic material and preparation method thereof
JP2002003276A (en) Reaction synthesis of silicon carbide-boron nitride composite material
WO2005049525A1 (en) High thermally conductive aluminum nitride sintered product
JPH0777986B2 (en) Manufacturing method of silicon carbide sintered body
JP7148613B2 (en) Alumina porcelain and ceramic heater
JP3561153B2 (en) Silicon nitride heat dissipation member and method of manufacturing the same
JP2001089250A (en) Sintering case for highly thermal-conductive silicon nitride sintered body and production process of highly thermal-conductive silicon nitride sintered body using the same
JPH11100274A (en) Silicon nitride sintered compact, its production and circuit board
JP2002029851A (en) Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP2003095747A (en) Sintered silicon nitride compact and circuit board obtained by using the same
JPH1179848A (en) Silicon carbide sintered compact
JPH07165462A (en) Alumina-beta-sialon-yag composite material
JPH01252584A (en) Sintered composite ceramic compact and production thereof
JPS59232971A (en) Abrasion resistant sialon base ceramics
JP2024053480A (en) Method for producing silicon nitride sintered body
JP2581128B2 (en) Alumina-sialon composite sintered body