JP2006120805A - Solid state image pickup device - Google Patents

Solid state image pickup device Download PDF

Info

Publication number
JP2006120805A
JP2006120805A JP2004306182A JP2004306182A JP2006120805A JP 2006120805 A JP2006120805 A JP 2006120805A JP 2004306182 A JP2004306182 A JP 2004306182A JP 2004306182 A JP2004306182 A JP 2004306182A JP 2006120805 A JP2006120805 A JP 2006120805A
Authority
JP
Japan
Prior art keywords
film
solid
imaging device
state imaging
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004306182A
Other languages
Japanese (ja)
Other versions
JP4867152B2 (en
JP2006120805A5 (en
Inventor
Masakazu Furukawa
雅一 古川
Keiji Mabuchi
圭司 馬渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004306182A priority Critical patent/JP4867152B2/en
Priority to TW094136606A priority patent/TWI281253B/en
Priority to US11/253,823 priority patent/US8384176B2/en
Priority to KR1020050098969A priority patent/KR101150559B1/en
Priority to CN200510131571.XA priority patent/CN1776917B/en
Publication of JP2006120805A publication Critical patent/JP2006120805A/en
Publication of JP2006120805A5 publication Critical patent/JP2006120805A5/ja
Priority to US12/215,242 priority patent/US7902623B2/en
Priority to US12/215,287 priority patent/US7902622B2/en
Priority to US13/043,090 priority patent/US8324702B2/en
Application granted granted Critical
Publication of JP4867152B2 publication Critical patent/JP4867152B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the light that penetrates a photoelectric conversion unit from the back of a substrate and reflects from a wiring film from reentering the photoelectric conversion unit improperly, and to provide a high-quality image. <P>SOLUTION: In the CMOS solid state image pickup device in which irradiation is performed from backside, a penetration prevention film is provided between a silicon substrate and the lowest layer wiring film of laminated films. The penetration prevention film prevents the light, which enters the backside of the silicon substrate and penetrates the silicon substrate, from reaching the wiring film, and thereby prevents the light incident from the wiring film from entering other pixels improperly and being photoelectrically converted. Specifically, a silicide film is employed that is formed by thermally treating a cobalt film, or the like, that is disposed on the surface of the silicon substrate or on the surface of a polysilicon electrode film, employing a dummy metal wiring provided on the lowest layer of the laminated films as a reflecting film, or employing a film having a light drawing-in property for an interlayer dielectric. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、基体の裏面に光電変換部の受光面を配置した裏面照射型の固体撮像素子に関し、特にMOSプロセスを用いて製造するCMOS型イメージセンサに有効な固体撮像素子に関する。   The present invention relates to a back-illuminated solid-state imaging device in which a light-receiving surface of a photoelectric conversion unit is disposed on the back surface of a substrate, and more particularly to a solid-state imaging device effective for a CMOS image sensor manufactured using a MOS process.

近年、CCDイメージセンサやCMOSイメージセンサ等の固体撮像素子では、搭載されるデバイスの小型化により、チップ面積の小型化が進んでおり、1画素当たりの面積も縮小せざるを得なくなってきている。それに伴い、チップ基板の電極や配線を配置した表面側より光を入射する固体撮像素子では、電極や配線によって光が遮られ、十分な集光特性が得られなくなってきており、これを解決するための技術として配線や電極のない基板の裏面より光を入射し、基板内部で光電変換を行うことで集光特性を向上させた裏面入射型の固体撮像素子が作製されている(例えば特許文献1参照)。   In recent years, in a solid-state imaging device such as a CCD image sensor or a CMOS image sensor, the chip area has been reduced due to downsizing of the mounted device, and the area per pixel has been inevitably reduced. . Along with this, in solid-state imaging devices that receive light from the surface side where the electrodes and wiring of the chip substrate are arranged, light is blocked by the electrodes and wiring, and sufficient light collecting characteristics cannot be obtained. As a technology for this purpose, a back-illuminated solid-state imaging device has been manufactured in which light is incident from the back surface of a substrate without wiring or electrodes and photoelectric conversion is performed inside the substrate to improve the condensing characteristics (for example, Patent Documents) 1).

図14は従来の裏面入射型の固体撮像素子(CMOSイメージセンサ)の一般的な構造例を示す断面図である。
この固体撮像素子は、半導体基板10中に光電変換部(フォトダイオード)の受光部12、素子分離領域14が形成され、その半導体基板10上にMOSトランジスタのゲート酸化膜16、ゲート電極18、コンタクト(図示せず)、配線膜22、26、層間絶縁膜24、28、カバー絶縁膜30等が設けられている。
このような裏面入射型構造の場合、裏面より光を入射させて、半導体基板10中の受光部12に入射した光を光電変換するが、裏面より入射した光は、基板10中で完全に光電変換が行われるわけではなく、矢印Aに示すように、入射した光の一部は基板10の表面側まで達し、さらに基板10の表面より上層へと透過するものがある。そして、この基板上層へ透過した光は、基板10の上層部に配置された金属製の配線膜22によって反射され、矢印Bに示すように、再び光電変換部に入射するものが存在する。
このような反射光が、元々透過してきた光電変換部へ再度戻って入射した場合は大きな問題にはならないが、元の光電変換部とは別の光電変換部へ入射した場合には、色分離特性の悪化やフレア等の問題となることが考えられる。
FIG. 14 is a cross-sectional view showing a general structural example of a conventional back-illuminated solid-state imaging device (CMOS image sensor).
In this solid-state imaging device, a light receiving portion 12 and an element isolation region 14 of a photoelectric conversion portion (photodiode) are formed in a semiconductor substrate 10, and a gate oxide film 16, a gate electrode 18, and a contact of a MOS transistor are formed on the semiconductor substrate 10. (Not shown), wiring films 22 and 26, interlayer insulating films 24 and 28, a cover insulating film 30 and the like are provided.
In the case of such a back-illuminated structure, light is incident from the back surface to photoelectrically convert light incident on the light receiving unit 12 in the semiconductor substrate 10, but the light incident from the back surface is completely photoelectricized in the substrate 10. Conversion is not performed, and as indicated by an arrow A, some of the incident light reaches the surface side of the substrate 10 and further transmits to the upper layer from the surface of the substrate 10. Then, the light transmitted to the upper layer of the substrate is reflected by the metal wiring film 22 disposed in the upper layer portion of the substrate 10, and there is light that enters the photoelectric conversion portion again as indicated by an arrow B.
When such reflected light enters the photoelectric conversion unit that has been transmitted again and enters again, it does not cause a big problem, but when it enters a photoelectric conversion unit different from the original photoelectric conversion unit, color separation is performed. It may be a problem such as deterioration of characteristics and flare.

そこで従来は、ゲート電極またはゲート酸化膜を金属反射膜または誘電体反射膜として反射光による悪影響を防止するものが提案されている。
特開2003−338615号公報
Therefore, conventionally, a gate electrode or a gate oxide film as a metal reflection film or a dielectric reflection film to prevent an adverse effect due to reflected light has been proposed.
JP 2003-338615 A

しかしながら、ゲート酸化膜を反射膜とすることはMOSプロセスと両立させることが難しく、上述した特許文献1にも開示がなく、実現性に問題がある。
また、ゲート電極を反射膜とすることは可能であるが、それだけでは不十分であり、例えば図14に示したように、フォトダイオードを光が透過してしまうと、上層の配線膜で反射した光が他の画素へ再入射してしまう可能性が大きい。
However, it is difficult to make the gate oxide film a reflective film, and it is difficult to make the gate oxide film compatible with the MOS process.
In addition, although it is possible to use the gate electrode as a reflection film, it is not enough. For example, as shown in FIG. 14, when light passes through the photodiode, it is reflected by the upper wiring film. There is a high possibility that light will re-enter the other pixels.

そこで本発明は、裏面照射型の固体撮像素子において、基板裏面から光電変換部を透過して配線膜を反射した光が光電変換部に不正に再入射するのを防止でき、高画質の画像を得ることができる固体撮像素子を提供することを目的とする。   Therefore, the present invention can prevent light that has passed through the photoelectric conversion unit from the back surface of the substrate and reflected from the wiring film from entering the photoelectric conversion unit illegally in the backside illumination type solid-state imaging device, and can produce a high-quality image. An object of the present invention is to provide a solid-state imaging device that can be obtained.

上述の目的を達成するため、本発明の固体撮像素子は、画素毎に設けられ基体の第1面より入射した光を信号電荷に変換する光電変換部と、前記光電変換部によって蓄積された信号電荷を読み出す回路領域と、前記基体の前記第1面の反対側の第2面上に形成された絶縁膜及び配線膜を含む積層膜と、少なくとも前記積層膜内の配線膜と基体との間に設けられた透過防止膜とを有することを特徴とする。
また、本発明の固体撮像素子は、画素毎に設けられ基体の第1面より入射した光を信号電荷に変換する光電変換部と、前記基体の前記第1面の反対側の第2面上に形成された絶縁膜及び配線膜を含む積層膜と、前記基体の第2面上であって前記配線膜よりも基体側に設けられた透過防止膜とを有することを特徴とする。
In order to achieve the above-described object, the solid-state imaging device of the present invention includes a photoelectric conversion unit that is provided for each pixel and that converts light incident from the first surface of the substrate into a signal charge, and a signal accumulated by the photoelectric conversion unit. A circuit region for reading out charges, a laminated film including an insulating film and a wiring film formed on the second surface opposite to the first surface of the substrate, and at least between the wiring film and the substrate in the laminated film And a permeation-preventing film.
In addition, the solid-state imaging device of the present invention includes a photoelectric conversion unit that is provided for each pixel and converts light incident from the first surface of the substrate into a signal charge, and a second surface opposite to the first surface of the substrate. A laminated film including an insulating film and a wiring film, and a permeation preventive film provided on the second surface of the substrate and closer to the substrate than the wiring film.

本発明の固体撮像素子によれば、光電変換部の受光面を基体の第1面(裏面)に配置した裏面照射型の素子において、基体の第2面上に形成された配線膜と基体との間に光の透過を防止する透過防止膜を配置したことから、基体の裏面から入射して基体を透過した光が配線膜で反射して他の画素の光電変換部に不正に入射するのを防止でき、画質の悪化を防止できる効果がある。
また、固体撮像素子の回路領域としては、増幅トランジスタ、選択トランジスタ、及びリセットトランジスタを含むものや、さらに、転送トランジスタを含むものについても容易に適用でき、回路領域の構成に制約を受けることなく、不正な反射光による画質の低下を防止でき、種々の画素構成に容易に対応できる。
また、光電変換部をn型層とp型層を含むHAD構造とすることにより、さらに高特性の画質を得ることができる。
また、透過防止膜をシリサイド膜とすることにより、適正な透過防止機能(反射膜)を得ることができ、さらに、シリサイド膜をシリコン基板及びポリシリコン製のゲート電極上に金属膜を配置して熱処理して形成したものを用いることで、透過防止膜を最適な領域に容易に形成することが可能である。
また、透過防止膜を遮光用の金属膜または合金膜とすることにより、適正な透過防止機能(反射膜)を得ることができ、さらに、遮光用の金属膜または合金膜を光電変換部の受光領域に対応するパターンで形成することにより、必要な領域にだけ金属膜や合金膜を配置して効果的に光の透過を防止できる。
さらに、透過防止膜を光を吸収する層間膜とすることで、適正な透過防止機能(光吸収機能)を得ることができ、不正な反射による画質の悪化を防止できる。
According to the solid-state imaging device of the present invention, in the back-illuminated type device in which the light-receiving surface of the photoelectric conversion unit is disposed on the first surface (back surface) of the substrate, the wiring film formed on the second surface of the substrate, the substrate, Since an anti-transmission film for preventing light transmission is arranged between the two, the light that is incident from the back surface of the substrate and transmitted through the substrate is reflected by the wiring film and illegally enters the photoelectric conversion unit of another pixel. This can prevent the deterioration of image quality.
In addition, as a circuit area of the solid-state imaging device, it can be easily applied to those including an amplification transistor, a selection transistor, and a reset transistor, and further includes a transfer transistor, without being restricted by the configuration of the circuit area, It is possible to prevent deterioration in image quality due to unauthorized reflected light and to easily cope with various pixel configurations.
In addition, when the photoelectric conversion portion has an HAD structure including an n-type layer and a p-type layer, higher quality image quality can be obtained.
In addition, by using a silicide film as the transmission preventing film, an appropriate transmission preventing function (reflection film) can be obtained. Further, a metal film is disposed on the silicon substrate and the polysilicon gate electrode. By using a film formed by heat treatment, the permeation preventive film can be easily formed in an optimum region.
Further, by using a light-shielding metal film or alloy film as the light-shielding film, an appropriate light-shielding function (reflection film) can be obtained, and further, the light-shielding metal film or alloy film can be received by the photoelectric conversion unit. By forming a pattern corresponding to the region, a metal film or an alloy film can be arranged only in a necessary region to effectively prevent light transmission.
Furthermore, by using an interlayer film that absorbs light as the transmission preventing film, an appropriate transmission preventing function (light absorption function) can be obtained, and deterioration of image quality due to unauthorized reflection can be prevented.

本発明の実施の形態では、裏面照射型のCMOS固体撮像素子において、シリコン基板と積層膜内の最下層配線膜との間に、シリコン基板の裏面から入射してシリコン基板を透過した光が配線膜に至るのを防止する透過防止膜を設け、配線膜から反射した光が他の画素に不正に入射して光電変換されるのを防止する。具体的には、シリコン基板表面やポリシリコン電極膜表面にコバルト膜等を配置して熱処理して形成されるシリサイド膜を用いたり、積層膜の最下層にダミーの金属配線を設けて反射膜としたり、あるいは層間絶縁膜に光吸入性の膜を用いるといった構成が可能である。   In the embodiment of the present invention, in a back-illuminated CMOS solid-state imaging device, light that is incident from the back surface of the silicon substrate and transmitted through the silicon substrate is wired between the silicon substrate and the lowermost wiring film in the laminated film. An anti-transmission film that prevents the film from reaching the film is provided to prevent light reflected from the wiring film from being illegally incident on other pixels and being subjected to photoelectric conversion. Specifically, a silicide film formed by placing a cobalt film or the like on the surface of a silicon substrate or a polysilicon electrode film and performing heat treatment, or providing a dummy metal wiring in the bottom layer of the laminated film as a reflective film Alternatively, a configuration in which a light-absorbing film is used as the interlayer insulating film is possible.

図1は本発明の実施例1による固体撮像素子の構造例を示す断面図であり、図2は図1に示す固体撮像素子の回路領域(画素トランジスタ回路)の構成例を示す回路図である。また、図3〜図11は図1に示す固体撮像素子の製造方法の具体例を示す断面図である。
まず、図2に示すように、本実施例の固体撮像素子では、画素内に光電変換部となるフォトダイオード(PD)100と、このフォトダイオード100の蓄積電荷をリセットするためのリセットトランジスタ110と、蓄積電荷量に対応する画素信号を増幅出力するための増幅トランジスタ120と、フォトダイオード100に蓄積された信号電荷を増幅トランジスタ120のゲートに転送する転送タイミングを選択する転送トランジスタ130と、信号電荷を読み出す画素を選択する選択トランジスタ140とを有している。なお、このような画素回路の構成は従来と同様のものであり、また、他の回路構成、例えば転送トランジスタを持たない構成等であってもよいものとする。
1 is a cross-sectional view showing a structural example of a solid-state imaging device according to Embodiment 1 of the present invention, and FIG. 2 is a circuit diagram showing a configuration example of a circuit region (pixel transistor circuit) of the solid-state imaging device shown in FIG. . 3 to 11 are sectional views showing specific examples of the manufacturing method of the solid-state imaging device shown in FIG.
First, as shown in FIG. 2, in the solid-state imaging device of the present embodiment, a photodiode (PD) 100 serving as a photoelectric conversion unit in a pixel, and a reset transistor 110 for resetting the accumulated charge of the photodiode 100 An amplifying transistor 120 for amplifying and outputting a pixel signal corresponding to the accumulated charge amount, a transfer transistor 130 for selecting a transfer timing for transferring the signal charge accumulated in the photodiode 100 to the gate of the amplifying transistor 120, and a signal charge And a selection transistor 140 for selecting a pixel to read out. Note that the configuration of such a pixel circuit is the same as the conventional one, and other circuit configurations such as a configuration without a transfer transistor may be used.

次に、図1において、基体としての半導体基板210中には素子分離領域214によって分離された領域に光電変換部(フォトダイオード)や上述したMOSトランジスタが形成されており、フォトダイオードの受光部212は半導体基板210の裏面から入射した光を受光し、光電変換を行う。なお、本実施例では、フォトダイオードに電子蓄積領域としてのn型層の受光表面に正孔蓄積領域としてのp型層を設けたHAD(Hole Accumulation Diode)構造を採用している。また、フォトダイオードに隣接して転送トランジスタが配置され、ゲート酸化膜216を介してゲート電極218が設けられ、フォトダイオードで生成した信号電荷をフローティングデフュージョン(ドレイン)部220に転送する。
また、半導体基板210の上には、ゲート酸化膜216及びゲート電極218の上面にシリコン層をコバルト等の金属によって合金化したシリサイド膜(CoSi2等)222が形成されており、また、その上層にコンタクト(図示せず)、配線膜226、230、層間絶縁膜228、232、及びカバー絶縁膜234等が設けられている。
このような固体撮像素子では、半導体基板210の上面(表面)と配線膜226、230との間に透過防止膜としてのシリサイド膜222を設けたことから、半導体基板210の裏面から入射して光電変換部を透過した光は、このシリサイド膜222によって光電変換部側に反射する構造となり、配線膜226、230への透過及び配線膜226、230からの反射を防止することができる。
Next, in FIG. 1, a photoelectric conversion unit (photodiode) and the above-described MOS transistor are formed in a region separated by an element isolation region 214 in a semiconductor substrate 210 as a base, and a light receiving unit 212 of the photodiode. Receives light incident from the back surface of the semiconductor substrate 210 and performs photoelectric conversion. In this embodiment, a HAD (Hole Accumulation Diode) structure is employed in which a photodiode is provided with a p-type layer as a hole accumulation region on the light receiving surface of an n-type layer as an electron accumulation region. In addition, a transfer transistor is disposed adjacent to the photodiode, and a gate electrode 218 is provided via a gate oxide film 216, and the signal charge generated by the photodiode is transferred to the floating diffusion (drain) unit 220.
On the semiconductor substrate 210, a silicide film (CoSi2 or the like) 222 in which a silicon layer is alloyed with a metal such as cobalt is formed on the upper surfaces of the gate oxide film 216 and the gate electrode 218. Contacts (not shown), wiring films 226 and 230, interlayer insulating films 228 and 232, a cover insulating film 234, and the like are provided.
In such a solid-state imaging device, since the silicide film 222 as a permeation preventive film is provided between the upper surface (front surface) of the semiconductor substrate 210 and the wiring films 226 and 230, the incident light is incident from the back surface of the semiconductor substrate 210. The light transmitted through the conversion unit is reflected by the silicide film 222 toward the photoelectric conversion unit, and transmission to the wiring films 226 and 230 and reflection from the wiring films 226 and 230 can be prevented.

次に、図3〜図11に沿って図1に示すようなシリサイド膜の形成方法について説明する。
まず、図3において、n型シリコン基板310にフォトダイオード部やフローティングデフュージョン(FD)部等となる領域にp型のウェル層320を作製する。そして、このシリコン基板310の上面に素子分離部330、ゲート酸化膜340及びゲート電極(ポリシリコン膜)350を形成した後、フォトレジスト360のパターニングを行い、フォトダイオード部にn型のイオンを注入してフォトダイオードのn型層370を形成する。
次に、図4において、フォトレジスト380のパターニングを行い、イオン注入によってFD部に薄いn層390を形成し、さらに図5に示すように、全面に酸化膜400を堆積し、次いで図6に示すようにエッチバックを行い、サイドウォール410を形成する。
この後、図7に示すように、フォトレジスト480のパターニングを行い、FD部に濃いイオン注入を行い、LDD構造を形成する。そして、図8に示すように、フォトレジスト490のパターニングを行い、フォトダイオード部に浅くp型層420をイオン注入してHAD構造のフォトダイオードを形成する。
次に、図9に示すように、全面にCo膜430をスパッタリングで形成する。これをアニールすると、図10に示すように、Co膜430とシリコン基板310のSi、及びゲート電極350のPolySiが接触する部分ではCoSi2膜440が形成される。また、Co膜430とゲート酸化膜340のSiO2が接触する部分では、CoSi2は形成されない。これによって、Si及びPolySiの領域にはシリサイド膜440が形成される。その後、図11に示すようにウェットエッチング処理を行い、ゲート酸化膜340上のCoを除去する。なお、この後は、従来と同様の工程で固体撮像素子を完成していくものとし、本発明には直接関係しないため、説明は省略する。
Next, a method for forming a silicide film as shown in FIG. 1 will be described with reference to FIGS.
First, in FIG. 3, a p-type well layer 320 is formed in an n-type silicon substrate 310 in a region that becomes a photodiode portion, a floating diffusion (FD) portion, or the like. Then, after forming an element isolation portion 330, a gate oxide film 340 and a gate electrode (polysilicon film) 350 on the upper surface of the silicon substrate 310, patterning of the photoresist 360 is performed, and n-type ions are implanted into the photodiode portion. Thus, an n-type layer 370 of the photodiode is formed.
Next, in FIG. 4, a photoresist 380 is patterned, and a thin n layer 390 is formed in the FD portion by ion implantation. Further, as shown in FIG. 5, an oxide film 400 is deposited on the entire surface, and then in FIG. Etchback is performed to form sidewalls 410 as shown.
Thereafter, as shown in FIG. 7, the photoresist 480 is patterned, and deep ion implantation is performed on the FD portion to form an LDD structure. Then, as shown in FIG. 8, the photoresist 490 is patterned, and a p-type layer 420 is ion-implanted shallowly into the photodiode portion to form a photodiode with an HAD structure.
Next, as shown in FIG. 9, a Co film 430 is formed on the entire surface by sputtering. When this is annealed, as shown in FIG. 10, a CoSi 2 film 440 is formed at the portion where the Co film 430 and Si of the silicon substrate 310 and the poly Si of the gate electrode 350 are in contact. Also, CoSi2 is not formed at the portion where the Co film 430 and the gate oxide film 340 are in contact with SiO2. Thereby, a silicide film 440 is formed in the Si and PolySi regions. Thereafter, wet etching is performed as shown in FIG. 11 to remove Co on the gate oxide film 340. After this, it is assumed that the solid-state imaging device is completed in the same process as the conventional one and is not directly related to the present invention.

これにより、フォトダイオード部、ソース/ドレイン部の表面にシリサイド膜が形成され、矢印Cに示すように、基板の裏面から入射した光を遮光することができる。これにより、シリコン基板を透過した光が上部の配線膜で反射され、別の画素の受光部で光電変換されることがなくなり、色分離性の悪化やフレアの発生を防ぐことができる。なお、本実施例1は一例であり、本発明で用いるシリサイド膜としては、上述したコバルトシリサイドに限定されず、タングステンシリサイド膜等でもよいことはもちろんであり、また、シリサイド膜の形成位置及び形成方法についても、上述した例に限定されないものとする。   Thereby, a silicide film is formed on the surface of the photodiode portion and the source / drain portion, and as shown by an arrow C, light incident from the back surface of the substrate can be shielded. As a result, the light transmitted through the silicon substrate is reflected by the upper wiring film and is not photoelectrically converted by the light receiving portion of another pixel, so that deterioration of color separation and occurrence of flare can be prevented. The first embodiment is an example, and the silicide film used in the present invention is not limited to the cobalt silicide described above, and may be a tungsten silicide film or the like. The method is not limited to the example described above.

図12は本発明の実施例2による固体撮像素子の構造例を示す断面図である。なお、図1と共通の構成については同一符号を付している。
本実施例2は、光の透過を防止する膜として、上述したシリサイド膜の代わりに遮光用のダミー配線を用いたものである。
図12に示すように、本来形成される配線膜のうちの最も下層に遮光用のダミー配線500を配置している。なお、その下層には層間絶縁膜501が配置されている。このダミー配線500は、ポリシリコンのような光を透過する材質ではなく、タングステンやアルミ等の金属膜やその他の合金膜を用いるものとし、図示のように、フォトダイオードの受光領域に対応するパターンで形成されている。このような実施例2においても、矢印Dに示すように、基板を裏面側から透過した光をフォトダイオードに近い位置で反射させ、別の画素への不正入射を防止できる。なお、遮光用のダミー配線膜材料としては、上述したタングステンシリサイドやコバルトシリサイドを用いてもよい。
FIG. 12 is a cross-sectional view showing a structural example of a solid-state imaging device according to Embodiment 2 of the present invention. In addition, the same code | symbol is attached | subjected about the same structure as FIG.
In the second embodiment, a light-shielding dummy wiring is used in place of the above-described silicide film as a film for preventing light transmission.
As shown in FIG. 12, a light-shielding dummy wiring 500 is arranged in the lowermost layer of the wiring film originally formed. Note that an interlayer insulating film 501 is disposed in the lower layer. The dummy wiring 500 uses a metal film such as tungsten or aluminum or another alloy film instead of a material that transmits light such as polysilicon, and a pattern corresponding to the light receiving region of the photodiode as shown in the figure. It is formed with. Also in the second embodiment, as indicated by the arrow D, the light transmitted from the back surface side of the substrate can be reflected at a position close to the photodiode, thereby preventing unauthorized incidence to another pixel. As the light shielding dummy wiring film material, the above-described tungsten silicide or cobalt silicide may be used.

図13は本発明の実施例3による固体撮像素子の構造例を示す断面図である。なお、図1と共通の構成については同一符号を付している。
本実施例2は、光の透過を防止する膜として、光を吸収する材質を用いた層間膜を設けたものである。
図13に示すように、シリコン基板と2層の配線膜の間には、それぞれ層間絶縁膜510、520が配置されており、これら層間絶縁膜510、520が光吸収膜となっている。具体的には、例えばシリコンカーバイド(SiC)を用いることができる。
このような層間絶縁膜510、520を設けることで、矢印Eに示すように、裏面側から入射した光が基板の表面側へと達しても、そこで吸収してしまうことが可能になり、別の画素への不正入射を防止できる。
なお、上述した実施例1〜3では、主に透過防止膜を基板と最下層の配線膜との間に設けたが、最下層の配線膜より上層に透過防止膜を配置した場合でも十分な効果が得られるものであり、例えば基板と最下層より上で2層目の配線層との間に透過防止膜を設けてもよく、このような構成も本発明に含まれるものとする。
FIG. 13 is a cross-sectional view showing a structural example of a solid-state imaging device according to Embodiment 3 of the present invention. In addition, the same code | symbol is attached | subjected about the same structure as FIG.
In the second embodiment, an interlayer film using a material that absorbs light is provided as a film for preventing light transmission.
As shown in FIG. 13, interlayer insulating films 510 and 520 are disposed between the silicon substrate and the two-layer wiring films, respectively, and these interlayer insulating films 510 and 520 serve as light absorption films. Specifically, for example, silicon carbide (SiC) can be used.
By providing such interlayer insulating films 510 and 520, as indicated by an arrow E, even if light incident from the back side reaches the front side of the substrate, it can be absorbed there. Can be prevented from being incident on the pixel.
In Examples 1 to 3 described above, the permeation preventive film is mainly provided between the substrate and the lowermost wiring film. However, even when the permeation preventive film is arranged above the lowermost wiring film, it is sufficient. For example, a permeation prevention film may be provided between the substrate and the second wiring layer above the lowermost layer, and such a configuration is also included in the present invention.

本発明の実施例1による固体撮像素子の構造例を示す断面図である。It is sectional drawing which shows the structural example of the solid-state image sensor by Example 1 of this invention. 図1に示す固体撮像素子の画素トランジスタ回路の構成例を示す回路図である。It is a circuit diagram which shows the structural example of the pixel transistor circuit of the solid-state image sensor shown in FIG. 図1に示す固体撮像素子の製造方法の具体例を示す断面図である。It is sectional drawing which shows the specific example of the manufacturing method of the solid-state image sensor shown in FIG. 図1に示す固体撮像素子の製造方法の具体例を示す断面図である。It is sectional drawing which shows the specific example of the manufacturing method of the solid-state image sensor shown in FIG. 図1に示す固体撮像素子の製造方法の具体例を示す断面図である。It is sectional drawing which shows the specific example of the manufacturing method of the solid-state image sensor shown in FIG. 図1に示す固体撮像素子の製造方法の具体例を示す断面図である。It is sectional drawing which shows the specific example of the manufacturing method of the solid-state image sensor shown in FIG. 図1に示す固体撮像素子の製造方法の具体例を示す断面図である。It is sectional drawing which shows the specific example of the manufacturing method of the solid-state image sensor shown in FIG. 図1に示す固体撮像素子の製造方法の具体例を示す断面図である。It is sectional drawing which shows the specific example of the manufacturing method of the solid-state image sensor shown in FIG. 図1に示す固体撮像素子の製造方法の具体例を示す断面図である。It is sectional drawing which shows the specific example of the manufacturing method of the solid-state image sensor shown in FIG. 図1に示す固体撮像素子の製造方法の具体例を示す断面図である。It is sectional drawing which shows the specific example of the manufacturing method of the solid-state image sensor shown in FIG. 図1に示す固体撮像素子の製造方法の具体例を示す断面図である。It is sectional drawing which shows the specific example of the manufacturing method of the solid-state image sensor shown in FIG. 本発明の実施例2による固体撮像素子の構造例を示す断面図である。It is sectional drawing which shows the structural example of the solid-state image sensor by Example 2 of this invention. 本発明の実施例3による固体撮像素子の構造例を示す断面図である。It is sectional drawing which shows the structural example of the solid-state image sensor by Example 3 of this invention. 従来の固体撮像素子の構造例を示す断面図である。It is sectional drawing which shows the structural example of the conventional solid-state image sensor.

符号の説明Explanation of symbols

100……フォトダイオード、110……リセットトランジスタ、120……増幅トランジスタ、130……転送トランジスタ、140……選択トランジスタ、210……半導体基板、212……受光部、214……素子分離領域、216……ゲート酸化膜、218……ゲート電極、220……フローティングデフュージョン部、222……シリサイド膜、224……絶縁膜、226、230……配線膜、228、232……層間絶縁膜、234……カバー絶縁膜。
DESCRIPTION OF SYMBOLS 100 ... Photodiode, 110 ... Reset transistor, 120 ... Amplification transistor, 130 ... Transfer transistor, 140 ... Selection transistor, 210 ... Semiconductor substrate, 212 ... Light-receiving part, 214 ... Element isolation region, 216 ... Gate oxide film, 218... Gate electrode, 220... Floating diffusion part, 222... Silicide film, 224 .. Insulating film, 226, 230. …… Cover insulating film.

Claims (11)

画素毎に設けられ基体の第1面より入射した光を信号電荷に変換する光電変換部と、
前記光電変換部によって蓄積された信号電荷を読み出す回路領域と、
前記基体の前記第1面の反対側の第2面上に形成された絶縁膜及び配線膜を含む積層膜と、
少なくとも前記積層膜内の配線膜と基体との間に設けられた透過防止膜と、
を有することを特徴とする固体撮像素子。
A photoelectric conversion unit that is provided for each pixel and converts light incident from the first surface of the substrate into a signal charge;
A circuit region for reading out signal charges accumulated by the photoelectric conversion unit;
A laminated film including an insulating film and a wiring film formed on the second surface of the base opposite to the first surface;
At least a permeation preventive film provided between the wiring film and the substrate in the laminated film;
A solid-state imaging device comprising:
前記回路領域は、前記光電変換部に蓄積された信号電荷量に対応する画素信号を増幅出力する増幅トランジスタと、信号電荷を読み出す画素を選択する選択トランジスタと、前記光電変換部に蓄積された電荷をリセットするためのリセットトランジスタとを含むことを特徴とする請求項1記載の固体撮像素子。   The circuit region includes an amplification transistor that amplifies and outputs a pixel signal corresponding to the signal charge amount accumulated in the photoelectric conversion unit, a selection transistor that selects a pixel from which the signal charge is read, and a charge accumulated in the photoelectric conversion unit. The solid-state imaging device according to claim 1, further comprising: a reset transistor for resetting 前記回路領域は、前記光電変換部に蓄積された信号電荷を前記増幅トランジスタに転送する転送タイミングを選択する転送トランジスタを含むことを特徴とする請求項2記載の固体撮像素子。   The solid-state imaging device according to claim 2, wherein the circuit region includes a transfer transistor that selects a transfer timing for transferring a signal charge accumulated in the photoelectric conversion unit to the amplification transistor. 前記光電変換部は信号電荷となる電子を蓄積するn型層と、前記n型層の表層に設けられて正孔を蓄積するp型層とを含むことを特徴とする請求項1記載の固体撮像素子。   2. The solid according to claim 1, wherein the photoelectric conversion unit includes an n-type layer that accumulates electrons serving as signal charges, and a p-type layer that is provided on a surface layer of the n-type layer and accumulates holes. Image sensor. 前記透過防止膜はシリサイド膜であることを特徴とする請求項1記載の固体撮像素子。   The solid-state imaging device according to claim 1, wherein the permeation preventive film is a silicide film. 前記基体がシリコン基板であり、かつ、前記シリコン基板上にゲート絶縁膜を介してポリシリコン膜よりなるゲート電極が形成され、前記シリサイド膜が前記シリコン基板及びポリシリコン膜の上面に金属膜を配置して熱処理することによって形成されていることを特徴とする請求項5記載の固体撮像素子。   The base is a silicon substrate, and a gate electrode made of a polysilicon film is formed on the silicon substrate via a gate insulating film, and the silicide film has a metal film disposed on the silicon substrate and the polysilicon film. The solid-state imaging device according to claim 5, wherein the solid-state imaging device is formed by heat treatment. 前記透過防止膜は遮光用の金属膜または合金膜であることを特徴とする請求項1記載の固体撮像素子。   2. The solid-state imaging device according to claim 1, wherein the transmission preventing film is a light shielding metal film or an alloy film. 前記遮光用の金属膜または合金膜は光電変換部の受光領域に対応するパターンで形成されていることを特徴とする請求項7記載の固体撮像素子。   8. The solid-state imaging device according to claim 7, wherein the light-shielding metal film or alloy film is formed in a pattern corresponding to a light receiving region of a photoelectric conversion unit. 前記透過防止膜は光を吸収する層間膜であることを特徴とする請求項1記載の固体撮像素子。   The solid-state imaging device according to claim 1, wherein the transmission preventing film is an interlayer film that absorbs light. 画素毎に設けられ基体の第1面より入射した光を信号電荷に変換する光電変換部と、
前記基体の前記第1面の反対側の第2面上に形成された絶縁膜及び配線膜を含む積層膜と、
前記基体の第2面上であって前記配線膜よりも基体側に設けられた透過防止膜と、
を有することを特徴とする固体撮像素子。
A photoelectric conversion unit that is provided for each pixel and converts light incident from the first surface of the substrate into a signal charge;
A laminated film including an insulating film and a wiring film formed on the second surface of the base opposite to the first surface;
A permeation preventive film provided on the second surface of the base body and closer to the base body than the wiring film;
A solid-state imaging device comprising:
前記透過防止膜は反射膜であることを特徴とする請求項10記載の固体撮像素子。
The solid-state imaging device according to claim 10, wherein the transmission preventing film is a reflective film.
JP2004306182A 2004-10-20 2004-10-20 Solid-state image sensor Expired - Fee Related JP4867152B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004306182A JP4867152B2 (en) 2004-10-20 2004-10-20 Solid-state image sensor
US11/253,823 US8384176B2 (en) 2004-10-20 2005-10-19 Solid-state imaging device
TW094136606A TWI281253B (en) 2004-10-20 2005-10-19 Solid-state imaging device
CN200510131571.XA CN1776917B (en) 2004-10-20 2005-10-20 Solid-state imaging device
KR1020050098969A KR101150559B1 (en) 2004-10-20 2005-10-20 Solid-state imaging device and solid-state imaging apparatus
US12/215,242 US7902623B2 (en) 2004-10-20 2008-06-26 Solid-state imaging device
US12/215,287 US7902622B2 (en) 2004-10-20 2008-06-26 Solid-state imaging device
US13/043,090 US8324702B2 (en) 2004-10-20 2011-03-08 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004306182A JP4867152B2 (en) 2004-10-20 2004-10-20 Solid-state image sensor

Publications (3)

Publication Number Publication Date
JP2006120805A true JP2006120805A (en) 2006-05-11
JP2006120805A5 JP2006120805A5 (en) 2007-08-09
JP4867152B2 JP4867152B2 (en) 2012-02-01

Family

ID=36205411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004306182A Expired - Fee Related JP4867152B2 (en) 2004-10-20 2004-10-20 Solid-state image sensor

Country Status (5)

Country Link
US (4) US8384176B2 (en)
JP (1) JP4867152B2 (en)
KR (1) KR101150559B1 (en)
CN (1) CN1776917B (en)
TW (1) TWI281253B (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173267A (en) * 2005-12-19 2007-07-05 Nec Electronics Corp Solid-state image pickup device
JP2008016733A (en) * 2006-07-07 2008-01-24 Nec Electronics Corp Solid-state image pickup device
JP2008147333A (en) * 2006-12-08 2008-06-26 Sony Corp Solid-state imaging device, manufacturing method thereof and imaging apparatus
JP2010166094A (en) * 2010-04-16 2010-07-29 Sony Corp Solid-state imaging device, manufacturing method of the same, and imaging device
JP2010177704A (en) * 2010-04-16 2010-08-12 Sony Corp Solid-state imaging device, manufacturing method thereof and imaging device
JP2010177705A (en) * 2010-04-16 2010-08-12 Sony Corp Solid-state imaging device, manufacturing method thereof and imaging device
WO2010131534A1 (en) * 2009-05-12 2010-11-18 Canon Kabushiki Kaisha Solid-state image sensing apparatus
JP2011228748A (en) * 2011-08-04 2011-11-10 Renesas Electronics Corp Solid-state imaging device
US8098312B2 (en) 2008-05-29 2012-01-17 Kabushiki Kaisha Toshiba Back-illuminated type solid-state image pickup apparatus with peripheral circuit unit
JP2012070005A (en) * 2011-12-22 2012-04-05 Renesas Electronics Corp Solid photographing device
JP2012079979A (en) * 2010-10-04 2012-04-19 Sony Corp Solid-state imaging device, method for manufacturing the same, and electronic apparatus
JP2012204562A (en) * 2011-03-25 2012-10-22 Sony Corp Solid state image pickup device, manufacturing method of the solid state image pickup device, and electronic apparatus
JP2012231032A (en) * 2011-04-26 2012-11-22 Canon Inc Solid state imaging device and imaging apparatus
JP2013038176A (en) * 2011-08-05 2013-02-21 Toshiba Information Systems (Japan) Corp Rear face irradiation type solid-state imaging element
US8384172B2 (en) 2009-01-06 2013-02-26 Samsung Electronics Co., Ltd. Image sensor having reflective metal lines under photoelectric conversion devices
JP2013058661A (en) * 2011-09-09 2013-03-28 Sony Corp Solid-state imaging device and electronic apparatus
US9153490B2 (en) 2011-07-19 2015-10-06 Sony Corporation Solid-state imaging device, manufacturing method of solid-state imaging device, manufacturing method of semiconductor device, semiconductor device, and electronic device
JP2016171345A (en) * 2011-09-01 2016-09-23 キヤノン株式会社 Solid state image pickup device
JP2018078304A (en) * 2017-12-07 2018-05-17 株式会社東芝 Photo-detector
WO2023105783A1 (en) * 2021-12-10 2023-06-15 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and method for manufacturing same

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442629B2 (en) 2004-09-24 2008-10-28 President & Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
US7057256B2 (en) 2001-05-25 2006-06-06 President & Fellows Of Harvard College Silicon-based visible and near-infrared optoelectric devices
US20070001100A1 (en) * 2005-06-30 2007-01-04 Taiwan Semiconductor Manufacturing Company, Ltd. Light reflection for backside illuminated sensor
US7629661B2 (en) * 2006-02-10 2009-12-08 Noble Peak Vision Corp. Semiconductor devices with photoresponsive components and metal silicide light blocking structures
US7638852B2 (en) * 2006-05-09 2009-12-29 Taiwan Semiconductor Manufacturing Company, Ltd. Method of making wafer structure for backside illuminated color image sensor
US8704277B2 (en) * 2006-05-09 2014-04-22 Taiwan Semiconductor Manufacturing Company, Ltd. Spectrally efficient photodiode for backside illuminated sensor
US7791170B2 (en) 2006-07-10 2010-09-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method of making a deep junction for electrical crosstalk reduction of an image sensor
KR100870821B1 (en) * 2007-06-29 2008-11-27 매그나칩 반도체 유한회사 Backside illuminated image sensor
US7999342B2 (en) * 2007-09-24 2011-08-16 Taiwan Semiconductor Manufacturing Company, Ltd Image sensor element for backside-illuminated sensor
JP5151375B2 (en) * 2007-10-03 2013-02-27 ソニー株式会社 Solid-state imaging device, manufacturing method thereof, and imaging device
US7989859B2 (en) 2008-02-08 2011-08-02 Omnivision Technologies, Inc. Backside illuminated imaging sensor with silicide light reflecting layer
US20090200631A1 (en) * 2008-02-08 2009-08-13 Omnivision Technologies, Inc. Backside illuminated imaging sensor with light attenuating layer
JP2009277798A (en) * 2008-05-13 2009-11-26 Sony Corp Solid-state imaging device and electronic equipment
JP5374941B2 (en) * 2008-07-02 2013-12-25 ソニー株式会社 Solid-state imaging device and electronic device
US20100026824A1 (en) * 2008-07-29 2010-02-04 Shenlin Chen Image sensor with reduced red light crosstalk
US8604521B2 (en) * 2008-08-21 2013-12-10 United Microelectronics Corp. Optically controlled read only memory
TWI484491B (en) * 2008-08-21 2015-05-11 United Microelectronics Corp Optical controlled read only memory and manufacturing method thereof
FR2935839B1 (en) * 2008-09-05 2011-08-05 Commissariat Energie Atomique CMOS IMAGE SENSOR WITH LIGHT REFLECTION
US9142586B2 (en) 2009-02-24 2015-09-22 Taiwan Semiconductor Manufacturing Company, Ltd. Pad design for backside illuminated image sensor
US8531565B2 (en) 2009-02-24 2013-09-10 Taiwan Semiconductor Manufacturing Company, Ltd. Front side implanted guard ring structure for backside illuminated image sensor
JP5428394B2 (en) * 2009-03-04 2014-02-26 ソニー株式会社 Solid-state imaging device, manufacturing method thereof, and imaging device
JP5470928B2 (en) * 2009-03-11 2014-04-16 ソニー株式会社 Method for manufacturing solid-state imaging device
JP2010238848A (en) * 2009-03-31 2010-10-21 Sony Corp Solid-state image pickup apparatus, and electronic apparatus
JP5493461B2 (en) * 2009-05-12 2014-05-14 ソニー株式会社 Solid-state imaging device, electronic apparatus, and manufacturing method of solid-state imaging device
US8569807B2 (en) * 2009-09-01 2013-10-29 Taiwan Semiconductor Manufacturing Company, Ltd. Backside illuminated image sensor having capacitor on pixel region
US9673243B2 (en) 2009-09-17 2017-06-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US9911781B2 (en) 2009-09-17 2018-03-06 Sionyx, Llc Photosensitive imaging devices and associated methods
JP2011129627A (en) * 2009-12-16 2011-06-30 Panasonic Corp Semiconductor device
JP5663925B2 (en) * 2010-03-31 2015-02-04 ソニー株式会社 Solid-state imaging device, manufacturing method thereof, and electronic apparatus
US8629523B2 (en) 2010-04-16 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Inserted reflective shield to improve quantum efficiency of image sensors
US8692198B2 (en) 2010-04-21 2014-04-08 Sionyx, Inc. Photosensitive imaging devices and associated methods
US8389921B2 (en) * 2010-04-30 2013-03-05 Omnivision Technologies, Inc. Image sensor having array of pixels and metal reflectors with widths scaled based on distance from center of the array
US20120146172A1 (en) 2010-06-18 2012-06-14 Sionyx, Inc. High Speed Photosensitive Devices and Associated Methods
JP2012018951A (en) * 2010-07-06 2012-01-26 Sony Corp Solid state image pickup element and method of manufacturing the same, solid state image pickup device and image pickup device
JP2012064709A (en) 2010-09-15 2012-03-29 Sony Corp Solid state image pick-up device and electronic device
US9496308B2 (en) 2011-06-09 2016-11-15 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
JP2014525091A (en) 2011-07-13 2014-09-25 サイオニクス、インク. Biological imaging apparatus and related method
US9064764B2 (en) 2012-03-22 2015-06-23 Sionyx, Inc. Pixel isolation elements, devices, and associated methods
JP6161258B2 (en) * 2012-11-12 2017-07-12 キヤノン株式会社 Solid-state imaging device, manufacturing method thereof, and camera
JP6466346B2 (en) 2013-02-15 2019-02-06 サイオニクス、エルエルシー High dynamic range CMOS image sensor with anti-blooming characteristics and associated method
US9939251B2 (en) 2013-03-15 2018-04-10 Sionyx, Llc Three dimensional imaging utilizing stacked imager devices and associated methods
US9209345B2 (en) 2013-06-29 2015-12-08 Sionyx, Inc. Shallow trench textured regions and associated methods
CN103474442A (en) * 2013-08-29 2013-12-25 上海宏力半导体制造有限公司 COMS (complementary metal-oxide semiconductor) image sensor and manufacturing method thereof
CN105206638B (en) * 2015-08-31 2019-05-31 豪威科技(上海)有限公司 A kind of back-illuminated cmos image sensors and forming method thereof
US11101305B2 (en) * 2016-10-27 2021-08-24 Sony Semiconductor Solutions Corporation Imaging element and electronic device
CN109509836B (en) 2017-09-14 2022-11-01 联华电子股份有限公司 Method for forming memory capacitor
CN108288626B (en) * 2018-01-30 2019-07-02 德淮半导体有限公司 Imaging sensor and the method for forming imaging sensor
JP2020068289A (en) * 2018-10-24 2020-04-30 キヤノン株式会社 Photoelectric conversion device, imaging system, mobile body, and semiconductor chip for lamination
CN110444556B (en) * 2019-08-30 2021-12-03 上海华力微电子有限公司 CMOS sensor and method for forming CMOS sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104166A (en) * 1989-09-18 1991-05-01 Fujitsu Ltd Photo detecting device
JPH06236986A (en) * 1993-02-10 1994-08-23 Nec Corp Solid-state infrared imaging device
JP2000323695A (en) * 1999-05-14 2000-11-24 Nec Corp Solid-state image sensor and its manufacture
JP2003273343A (en) * 2002-03-19 2003-09-26 Sony Corp Manufacturing method of solid-state image sensing element

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416344A (en) * 1992-07-29 1995-05-16 Nikon Corporation Solid state imaging device and method for producing the same
JP2797941B2 (en) * 1993-12-27 1998-09-17 日本電気株式会社 Photoelectric conversion element and driving method thereof
US5747863A (en) * 1996-07-08 1998-05-05 Nikon Corporation Infrared solid-state image pickup device and infrared solid-state image pickup apparatus equipped with this device
EP0837418A3 (en) * 1996-10-18 2006-03-29 Kabushiki Kaisha Toshiba Method and apparatus for generating information input using reflected light image of target object
JPH1145989A (en) * 1997-04-08 1999-02-16 Matsushita Electron Corp Solid state image pickup device and manufacture thereof
US6731007B1 (en) * 1997-08-29 2004-05-04 Hitachi, Ltd. Semiconductor integrated circuit device with vertically stacked conductor interconnections
TW556013B (en) * 1998-01-30 2003-10-01 Seiko Epson Corp Electro-optical apparatus, method of producing the same and electronic apparatus
JP3103064B2 (en) * 1998-04-23 2000-10-23 松下電子工業株式会社 Solid-state imaging device and method of manufacturing the same
US6077722A (en) * 1998-07-14 2000-06-20 Bp Solarex Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts
US6310366B1 (en) * 1999-06-16 2001-10-30 Micron Technology, Inc. Retrograde well structure for a CMOS imager
US6168965B1 (en) * 1999-08-12 2001-01-02 Tower Semiconductor Ltd. Method for making backside illuminated image sensor
US6350127B1 (en) * 1999-11-15 2002-02-26 Taiwan Semiconductor Manufacturing Company Method of manufacturing for CMOS image sensor
US6511778B2 (en) * 2000-01-05 2003-01-28 Shin-Etsu Chemical Co., Ltd. Phase shift mask blank, phase shift mask and method of manufacture
DE10056871B4 (en) * 2000-11-16 2007-07-12 Advanced Micro Devices, Inc., Sunnyvale Improved gate contact field effect transistor and method of making the same
US6387767B1 (en) * 2001-02-13 2002-05-14 Advanced Micro Devices, Inc. Nitrogen-rich silicon nitride sidewall spacer deposition
JP4123415B2 (en) * 2002-05-20 2008-07-23 ソニー株式会社 Solid-state imaging device
WO2004027879A2 (en) * 2002-09-19 2004-04-01 Quantum Semiconductor Llc Light-sensing device
US7091536B2 (en) * 2002-11-14 2006-08-15 Micron Technology, Inc. Isolation process and structure for CMOS imagers
JP3840214B2 (en) * 2003-01-06 2006-11-01 キヤノン株式会社 Photoelectric conversion device, method for manufacturing photoelectric conversion device, and camera using the same
JP4647404B2 (en) * 2004-07-07 2011-03-09 三星電子株式会社 Manufacturing method of image sensor having photodiode self-aligned while being superimposed on transfer gate electrode
WO2006137866A2 (en) * 2004-09-17 2006-12-28 Bedabrata Pain Back- illuminated cmos or ccd imaging device structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104166A (en) * 1989-09-18 1991-05-01 Fujitsu Ltd Photo detecting device
JPH06236986A (en) * 1993-02-10 1994-08-23 Nec Corp Solid-state infrared imaging device
JP2000323695A (en) * 1999-05-14 2000-11-24 Nec Corp Solid-state image sensor and its manufacture
JP2003273343A (en) * 2002-03-19 2003-09-26 Sony Corp Manufacturing method of solid-state image sensing element

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8130297B2 (en) 2005-12-19 2012-03-06 Renesas Electronics Corporation Solid state imaging device including a light receiving portion with a silicided surface
JP2007173267A (en) * 2005-12-19 2007-07-05 Nec Electronics Corp Solid-state image pickup device
US8810699B2 (en) 2005-12-19 2014-08-19 Renesas Electronics Corporation Solid state imaging device including a light receiving portion with a silicided surface
JP2008016733A (en) * 2006-07-07 2008-01-24 Nec Electronics Corp Solid-state image pickup device
US9159759B2 (en) 2006-07-07 2015-10-13 Renesas Electronics Corporation Solid-state image pickup device
JP4525671B2 (en) * 2006-12-08 2010-08-18 ソニー株式会社 Solid-state imaging device
KR101396671B1 (en) * 2006-12-08 2014-05-16 소니 주식회사 Solid-state imaging device
JP2008147333A (en) * 2006-12-08 2008-06-26 Sony Corp Solid-state imaging device, manufacturing method thereof and imaging apparatus
US8405180B2 (en) 2006-12-08 2013-03-26 Sony Corporation Solid-state imaging device, method of making the same, and imaging apparatus
US7960197B2 (en) 2006-12-08 2011-06-14 Sony Corporation Method of making a solid-state imaging device
US8039914B2 (en) 2006-12-08 2011-10-18 Sony Corporation Solid-state imaging device, method of making the same, and imaging apparatus
US8098312B2 (en) 2008-05-29 2012-01-17 Kabushiki Kaisha Toshiba Back-illuminated type solid-state image pickup apparatus with peripheral circuit unit
US8384172B2 (en) 2009-01-06 2013-02-26 Samsung Electronics Co., Ltd. Image sensor having reflective metal lines under photoelectric conversion devices
WO2010131534A1 (en) * 2009-05-12 2010-11-18 Canon Kabushiki Kaisha Solid-state image sensing apparatus
US8319305B2 (en) 2009-05-12 2012-11-27 Canon Kabushiki Kaisha Solid-state image sensing apparatus
JP2010267680A (en) * 2009-05-12 2010-11-25 Canon Inc Solid state image pickup device
JP2010177705A (en) * 2010-04-16 2010-08-12 Sony Corp Solid-state imaging device, manufacturing method thereof and imaging device
JP2010166094A (en) * 2010-04-16 2010-07-29 Sony Corp Solid-state imaging device, manufacturing method of the same, and imaging device
JP2010177704A (en) * 2010-04-16 2010-08-12 Sony Corp Solid-state imaging device, manufacturing method thereof and imaging device
JP2012079979A (en) * 2010-10-04 2012-04-19 Sony Corp Solid-state imaging device, method for manufacturing the same, and electronic apparatus
US9136420B2 (en) 2010-10-04 2015-09-15 Sony Corporation Solid-state imaging device with photoelectric conversion section, method of manufacturing the same, and electronic device with photoelectric conversion section
JP2012204562A (en) * 2011-03-25 2012-10-22 Sony Corp Solid state image pickup device, manufacturing method of the solid state image pickup device, and electronic apparatus
JP2012231032A (en) * 2011-04-26 2012-11-22 Canon Inc Solid state imaging device and imaging apparatus
US9153490B2 (en) 2011-07-19 2015-10-06 Sony Corporation Solid-state imaging device, manufacturing method of solid-state imaging device, manufacturing method of semiconductor device, semiconductor device, and electronic device
JP2011228748A (en) * 2011-08-04 2011-11-10 Renesas Electronics Corp Solid-state imaging device
JP2013038176A (en) * 2011-08-05 2013-02-21 Toshiba Information Systems (Japan) Corp Rear face irradiation type solid-state imaging element
JP2016171345A (en) * 2011-09-01 2016-09-23 キヤノン株式会社 Solid state image pickup device
JP2013058661A (en) * 2011-09-09 2013-03-28 Sony Corp Solid-state imaging device and electronic apparatus
JP2012070005A (en) * 2011-12-22 2012-04-05 Renesas Electronics Corp Solid photographing device
JP2018078304A (en) * 2017-12-07 2018-05-17 株式会社東芝 Photo-detector
WO2023105783A1 (en) * 2021-12-10 2023-06-15 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and method for manufacturing same

Also Published As

Publication number Publication date
CN1776917B (en) 2014-11-12
US20080272415A1 (en) 2008-11-06
US20060086956A1 (en) 2006-04-27
KR20060054129A (en) 2006-05-22
KR101150559B1 (en) 2012-06-01
US20080272419A1 (en) 2008-11-06
TW200633199A (en) 2006-09-16
JP4867152B2 (en) 2012-02-01
US20110180690A1 (en) 2011-07-28
CN1776917A (en) 2006-05-24
US8384176B2 (en) 2013-02-26
US8324702B2 (en) 2012-12-04
US7902623B2 (en) 2011-03-08
US7902622B2 (en) 2011-03-08
TWI281253B (en) 2007-05-11

Similar Documents

Publication Publication Date Title
JP4867152B2 (en) Solid-state image sensor
US9859324B2 (en) Solid state image pickup device and method of producing solid state image pickup device
US9825077B2 (en) Photoelectric conversion device, method for producing photoelectric conversion device, and image pickup system
JP4739324B2 (en) Image sensor with embedded photodiode region and method of manufacturing the same
US8604575B2 (en) X-Y address type solid state image pickup device and method of producing the same
US9620545B2 (en) Solid-state image pickup device and method for producing the same
JP4793402B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic apparatus
JP2006245540A (en) Cmos image sensor, its unit pixel and its manufacturing method
JP2008060356A (en) Photoelectric conversion device, and imaging system
KR101476035B1 (en) Manufacturing method of solid-state image pickup device and solid-state image pickup device
US7572663B2 (en) Method for manufacturing CMOS image sensor
TW201628176A (en) Solid-state imaging device and method of manufacturing solid-state imaging device
JP2008227357A (en) Solid image pickup device and method for manufacturing the same
JP2006054262A (en) Solid-state imaging device
JP2007294667A (en) Solid state image pickup element and method for manufacturing the same
JP4815769B2 (en) Solid-state imaging device and manufacturing method thereof
JP2009302103A (en) Solid-state imaging device and method of manufacturing the same, and imaging device
JP2000236079A (en) Solid-state image pickup device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070627

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090817

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees