JP2006120693A - Heat treatment apparatus - Google Patents

Heat treatment apparatus Download PDF

Info

Publication number
JP2006120693A
JP2006120693A JP2004304200A JP2004304200A JP2006120693A JP 2006120693 A JP2006120693 A JP 2006120693A JP 2004304200 A JP2004304200 A JP 2004304200A JP 2004304200 A JP2004304200 A JP 2004304200A JP 2006120693 A JP2006120693 A JP 2006120693A
Authority
JP
Japan
Prior art keywords
process tube
electromagnetic induction
heat
induction heating
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004304200A
Other languages
Japanese (ja)
Inventor
Satoyuki Ishibashi
智行 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Thermo Systems Corp
Original Assignee
Koyo Thermo Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Thermo Systems Co Ltd filed Critical Koyo Thermo Systems Co Ltd
Priority to JP2004304200A priority Critical patent/JP2006120693A/en
Publication of JP2006120693A publication Critical patent/JP2006120693A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treatment apparatus where temperature is controlled at high speed and throughput of heat treatment work can be improved by performing electromagnetic induction heating on a heating cylinder 2 formed of inner glassy carbon through a process tube 1. <P>SOLUTION: In the heat treatment apparatus, an inner object to be processed S is heat-treated by heating the air-tight process tube 1. The heating cylinder 2 formed of glassy carbon is disposed in the process tube 1, and an electromagnetic induction heating coil 3 is installed on an outer side of the process tube 1. The process tube 1 is formed of silica glass, and the electromagnetic induction heating coil 3 is provided with a cooling device by a water cooling type. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、気密にしたプロセスチューブ内を加熱して内部の半導体ウエハ等を熱処理する熱処理装置に関するものである。   The present invention relates to a heat treatment apparatus for heat-treating an internal semiconductor wafer or the like by heating the inside of an airtight process tube.

半導体製造プロセスでは、半導体ウエハを熱処理する際に高速熱処理装置(RTP:Rapid Thermal Prosesser)を用いる方法が知られている。また、このような高速熱処理装置では、電熱ヒータによる加熱ではなく、電磁誘導加熱によってプロセスチューブ内を加熱するようにした装置(IH-RTP:Induction Heating-RTP)も開発されている(例えば、特許文献1参照。)。この電磁誘導加熱による高速熱処理装置は、図4に示すように、被処理物Sを収容する石英ガラス製のプロセスチューブ1の外側にグラファイト製の加熱筒6を配置し、この加熱筒6の外側に絶縁断熱層7を介して電磁誘導加熱コイル3を配置している。また、この加熱筒6は、表面にSiC(炭化ケイ素)コートを施すことにより、電磁誘導加熱コイル3からの重金属イオンの透過を防止したり、グラファイトの酸化や摩耗による加熱筒6の消耗を防止している。   As a semiconductor manufacturing process, a method using a rapid thermal processing apparatus (RTP) is known when a semiconductor wafer is heat-treated. In addition, in such a high-speed heat treatment apparatus, an apparatus (IH-RTP: Induction Heating-RTP) that heats the inside of the process tube by electromagnetic induction heating instead of heating by an electric heater has been developed (for example, patent) Reference 1). As shown in FIG. 4, this rapid heat treatment apparatus using electromagnetic induction heating has a heating tube 6 made of graphite disposed outside a process tube 1 made of quartz glass that accommodates an object to be processed S, and the outside of the heating tube 6. The electromagnetic induction heating coil 3 is arranged via the insulating heat insulating layer 7. Further, the heating cylinder 6 is coated with SiC (silicon carbide) on the surface to prevent permeation of heavy metal ions from the electromagnetic induction heating coil 3 and to prevent the heating cylinder 6 from being consumed due to oxidation or wear of graphite. is doing.

上記構成の高速熱処理装置は、電磁誘導加熱コイル3に高周波電流を流して加熱筒6を加熱し放射熱を放射させることにより、プロセスチューブ1内を加熱する。しかも、プロセスチューブ1を囲む加熱筒6の内面全体から放射熱が発せられるので、ホットウォール型の加熱により被処理物Sを効率良く均一に熱処理することができる。   The rapid thermal processing apparatus having the above configuration heats the inside of the process tube 1 by flowing a high-frequency current through the electromagnetic induction heating coil 3 to heat the heating cylinder 6 and radiate radiant heat. Moreover, since radiant heat is emitted from the entire inner surface of the heating cylinder 6 surrounding the process tube 1, the workpiece S can be efficiently and uniformly heat-treated by hot wall heating.

ところが、最近の半導体製造プロセスでは、集積回路の線間隔のプロセスルールの微細化等に伴い、熱処理温度も低温化(例えば500℃以下)の要請が強くなっている。しかしながら、上記従来の高速熱処理装置では、加熱筒6がプロセスチューブ1を介して内部を加熱するために、電磁誘導加熱コイル3による温度制御に時間遅れが生じ、特に低温域での温度制御を高速で行うことが困難になるという問題があった。つまり、電磁誘導加熱による高速熱処理装置は、電熱ヒータを用いた高速熱処理装置よりもプロセスチューブ内の温度を高速で変化させることができるという利点を有するが、それでもなおグラファイト製の加熱筒6自身の熱容量が大きいことと、このグラファイト以上に熱容量が大きい石英ガラス製のプロセスチューブ1を通して被処理物Sを加熱するという間接的な加熱構造のために、特に低温域では電磁誘導加熱コイル3の通電の開始や停止、電流の増減の実行から実際にプロセスチューブ1内の被処理物Sの温度が変化するまでに大きな時間遅れが生じる。このため、従来の高速熱処理装置は、昇温や降温のプロセスを迅速に実行することができず、熱処理作業のスループットを向上させることができなかった。   However, in recent semiconductor manufacturing processes, with the miniaturization of process rules for line spacing of integrated circuits, there is an increasing demand for lowering the heat treatment temperature (for example, 500 ° C. or less). However, in the conventional high-speed heat treatment apparatus, the heating cylinder 6 heats the inside through the process tube 1, so that there is a time delay in the temperature control by the electromagnetic induction heating coil 3, and in particular, the temperature control in the low temperature region is fast. There was a problem that it would be difficult to do. That is, the high-speed heat treatment apparatus using electromagnetic induction heating has the advantage that the temperature in the process tube can be changed at a higher speed than the high-speed heat treatment apparatus using an electric heater, but it still has the advantage of the graphite heating cylinder 6 itself. Because of the indirect heating structure in which the workpiece S is heated through the process tube 1 made of quartz glass having a larger heat capacity than that of the graphite, the electromagnetic induction heating coil 3 is energized particularly in a low temperature range. There is a large time delay from the start / stop, execution of current increase / decrease until the temperature of the workpiece S in the process tube 1 actually changes. For this reason, the conventional high-speed heat treatment apparatus cannot quickly perform the temperature raising and lowering processes, and cannot improve the throughput of the heat treatment operation.

なお、石英ガラス製のプロセスチューブ1の内部にグラファイト製の加熱筒6を配置することができれば、このプロセスチューブ1の熱容量の分だけ加熱効率を高めることができるので、温度制御の高速化が可能となる。しかしながら、グラファイトは、層状の構造を持ち、層相互間の結合が弱いために、表面にSiCコートを施したとしても、急激な温度変化の繰り返しや摩耗等による炭素層の剥離やカーボンダストとしての飛散、炭素の酸化によるガスの発生等が生じるので、プロセスチューブ1内にこれらの不純物が混入するを確実に防ぐことは出来ない。
特開2004−71596号公報
If the heating tube 6 made of graphite can be arranged inside the process tube 1 made of quartz glass, the heating efficiency can be increased by the heat capacity of the process tube 1, so that the temperature control can be speeded up. It becomes. However, since graphite has a layered structure and the bonding between layers is weak, even if the surface is coated with SiC, the carbon layer is peeled off due to repeated rapid temperature changes or wear, etc. Since scattering, generation of gas due to oxidation of carbon, and the like occur, it cannot be surely prevented that these impurities are mixed in the process tube 1.
JP 2004-71596 A

本発明は、プロセスチューブを介して内部のガラス状炭素からなる加熱筒を電磁誘導加熱することにより、温度制御を高速で行い熱処理作業のスループットを向上させることができる熱処理装置を提供しようとするものである。   The present invention intends to provide a heat treatment apparatus capable of improving the throughput of heat treatment work by performing temperature control at high speed by electromagnetic induction heating of a heating cylinder made of glassy carbon inside through a process tube. It is.

請求項1の発明は、気密にしたプロセスチューブ内を加熱して内部の被処理物を熱処理する熱処理装置において、プロセスチューブ内にガラス状炭素からなる加熱筒を配置すると共に、このプロセスチューブの外側に電磁誘導加熱コイルを配置したことを特徴とする。   According to the first aspect of the present invention, in the heat treatment apparatus for heating the inside of the hermetically sealed process tube and heat-treating the object to be processed, a heating cylinder made of glassy carbon is disposed in the process tube, and the outside of the process tube. An electromagnetic induction heating coil is arranged in

請求項2の発明は、前記プロセスチューブが石英ガラスからなり、前記電磁誘導加熱コイルが水冷式による冷却装置を備えたものであることを特徴とする。   The invention of claim 2 is characterized in that the process tube is made of quartz glass, and the electromagnetic induction heating coil includes a water-cooling type cooling device.

請求項1の発明によれば、電磁誘導加熱コイルに高周波電流を流してプロセスチューブ内の加熱筒を電磁誘導加熱することにより、このプロセスチューブ内の被処理物を直接周囲から効率良く均一に加熱することができるので、被処理物の温度制御を高速で行うことができるようになる。しかも、加熱筒に用いるガラス状炭素は、グラファイトに比べて熱容量が小さいので、さらに迅速な温度制御が可能となる。また、このガラス状炭素は、グラファイトとは異なり、急激な温度変化の繰り返し等に対して安定し機械的な接触や摩耗等に対しても強度が高いので、プロセスチューブ内に不純物が混入するようなおそれも生じない。   According to the first aspect of the present invention, high-frequency current is passed through the electromagnetic induction heating coil to electromagnetically heat the heating tube in the process tube, thereby efficiently and uniformly heating the workpiece in the process tube directly from the surroundings. As a result, the temperature of the workpiece can be controlled at high speed. In addition, the vitreous carbon used in the heating cylinder has a smaller heat capacity than that of graphite, so that more rapid temperature control is possible. In addition, unlike graphite, this glassy carbon is stable against repeated rapid temperature changes and has high strength against mechanical contact and wear, so that impurities may enter the process tube. It doesn't happen either.

請求項2の発明によれば、電磁誘導加熱コイルを水冷により迅速に冷却することが出来るので、プロセスチューブの温度上昇を抑えて迅速に冷却することができ、自然放熱では昇温プロセスに比べて比較的温度変化が緩やかになり易い降温プロセスも高速化することができる。さらに、ガラス状炭素からなる加熱筒と電磁誘導加熱コイルとの間に石英ガラスからなるプロセスチューブが配置されるので、別途絶縁材や断熱材を配置する必要がなくなる。   According to the invention of claim 2, since the electromagnetic induction heating coil can be quickly cooled by water cooling, it can be quickly cooled by suppressing the temperature rise of the process tube. The temperature lowering process, in which the temperature change is relatively gradual, can be speeded up. Furthermore, since the process tube made of quartz glass is disposed between the heating cylinder made of glassy carbon and the electromagnetic induction heating coil, it is not necessary to separately arrange an insulating material or a heat insulating material.

以下、本発明の最良の実施形態について図1〜図3を参照して説明する。なお、これらの図においても、図4に示した従来例と同様の機能を有する構成部材には同じ番号を付記する。   Hereinafter, the best embodiment of the present invention will be described with reference to FIGS. In these drawings, the same reference numerals are given to constituent members having the same functions as those of the conventional example shown in FIG.

本実施形態は、従来例と同様に、半導体ウエハを熱処理するための電磁誘導加熱による高速熱処理装置について説明する。この高速熱処理装置は、図1及び図2に示すように、石英ガラスからなるプロセスチューブ1の内部に被処理物Sを収容するようになっている。このプロセスチューブ1は、図2に示すように断面が長円形であり、図1に示すように左端のみが開口した容器状の筒体である。そして、このプロセスチューブ1は、内部に被処理物Sを収容して処理用のガス(例えば窒素ガス等のような不活性ガスや還元性ガス、大気等)で満たす必要があるので、図1に示す左側の開口端を封止材4を介して封口蓋板5に押し当てて封口すると共に、この開口端を開放可能となるようにして、被処理物Sの出し入れができるようにしている。   In the present embodiment, a high-speed heat treatment apparatus using electromagnetic induction heating for heat-treating a semiconductor wafer will be described as in the conventional example. As shown in FIGS. 1 and 2, the rapid thermal processing apparatus accommodates an object to be processed S in a process tube 1 made of quartz glass. The process tube 1 is a container-like cylinder having an oval cross section as shown in FIG. 2 and having only the left end opened as shown in FIG. The process tube 1 needs to contain the workpiece S and fill it with a processing gas (for example, an inert gas such as nitrogen gas, a reducing gas, the atmosphere, etc.). The opening end on the left side shown in FIG. 2 is pressed against the sealing lid plate 5 via the sealing material 4 and sealed, and the opening end can be opened to allow the workpiece S to be taken in and out. .

上記プロセスチューブ1の内側には、ガラス状炭素からなる加熱筒2が配置されている。加熱筒2は、ガラス状炭素を、図2に示すように、プロセスチューブ1の内周面よりも少し小さい長円形の断面とし、図1に示すように両端が開口した筒体に形成したものである。ガラス状炭素(GLC:Glass-Like Carbon,glassy carbon)は、グラファイトと同様に、高い導電性や耐熱性、化学安定性を備えた炭素材料であるが、グラファイトとは異なり、急激な温度変化の繰り返しや摩耗等による炭素層の剥離やカーボンダストの飛散等が生じることなく、高い強度と緻密性を備えた炭素材料である。   A heating cylinder 2 made of glassy carbon is disposed inside the process tube 1. As shown in FIG. 2, the heating cylinder 2 is formed in a cylindrical body having an oval cross section slightly smaller than the inner peripheral surface of the process tube 1 as shown in FIG. It is. Glass-like carbon (GLC), like graphite, is a carbon material with high electrical conductivity, heat resistance, and chemical stability, but unlike graphite, it undergoes rapid temperature changes. It is a carbon material having high strength and denseness without causing carbon layer peeling or carbon dust scattering due to repetition or wear.

上記プロセスチューブ1の外側には、電磁誘導加熱コイル3が配置されている。電磁誘導加熱コイル3は、高周波電流を流すためのコイルを配置したものである。従って、石英ガラス製のプロセスチューブ1は、この電磁誘導加熱コイル3と加熱筒2との間の絶縁材としての役割を果たすと共に、放射熱以外の対流等による熱の伝導を遮断する断熱材としての役割も果たすようになっている。また、この電磁誘導加熱コイル3は、加熱筒2の外壁面からの放射熱を受けるだけでなく、高周波電流によって自らも大量の熱を発生させるので、コイルの間には冷却水を循環させた水冷パイプが敷設されている。従って、この電磁誘導加熱コイル3は、水冷により常時冷却されることにより、自身の温度上昇だけでなく、プロセスチューブ1の温度上昇も抑制することができるようになる。しかも、加熱の終了により電流が遮断されると、この電磁誘導加熱コイル3の水冷による冷却効果により、プロセスチューブ1を介して加熱筒2も冷却されることになるので、このプロセスチューブ1内の温度低下を促進することもできるようになる。   An electromagnetic induction heating coil 3 is disposed outside the process tube 1. The electromagnetic induction heating coil 3 is provided with a coil for flowing a high-frequency current. Accordingly, the process tube 1 made of quartz glass serves as an insulating material between the electromagnetic induction heating coil 3 and the heating cylinder 2, and as a heat insulating material that blocks conduction of heat due to convection other than radiant heat. It has come to play a role. In addition, the electromagnetic induction heating coil 3 not only receives radiant heat from the outer wall surface of the heating cylinder 2 but also generates a large amount of heat by high-frequency current itself, so that cooling water is circulated between the coils. Water-cooled pipes are laid. Accordingly, the electromagnetic induction heating coil 3 is constantly cooled by water cooling, so that not only the temperature rise of itself but also the temperature rise of the process tube 1 can be suppressed. Moreover, when the current is interrupted by the end of heating, the heating cylinder 2 is also cooled via the process tube 1 due to the cooling effect of the electromagnetic induction heating coil 3 due to water cooling. It also becomes possible to promote a decrease in temperature.

上記電磁誘導加熱コイル3に高周波電流を流すと、プロセスチューブ1を介してガラス状炭素からなる加熱筒2にうず電流が発生し、このうず電流によるジュール熱によって加熱筒2全体が発熱する。また、この加熱筒2は、内壁面全体から内側に向けて放射熱を発するので、ホットウォール型の加熱により被処理物Sを周囲から効率良く均一に熱処理することができる。この際、図3に示す電磁誘導加熱コイル3とプロセスチューブ1を介した加熱筒2との間のギャップGは、間隔が狭いほど、電磁誘導加熱の際の電磁的結合が強くなるので、加熱効率を高めることができる。しかも、このギャップGが狭いほど、電磁誘導加熱コイル3の水冷による冷却効果がプロセスチューブ1や加熱筒2に伝わり易くなる。   When a high-frequency current is passed through the electromagnetic induction heating coil 3, an eddy current is generated in the heating cylinder 2 made of glassy carbon through the process tube 1, and the entire heating cylinder 2 generates heat due to Joule heat generated by the eddy current. In addition, since the heating cylinder 2 emits radiant heat from the entire inner wall surface toward the inside, the workpiece S can be efficiently and uniformly heat-treated from the surroundings by hot wall heating. At this time, since the gap G between the electromagnetic induction heating coil 3 and the heating tube 2 via the process tube 1 shown in FIG. 3 is narrower, the electromagnetic coupling at the time of electromagnetic induction heating becomes stronger. Efficiency can be increased. Moreover, the narrower the gap G, the more easily the cooling effect of the electromagnetic induction heating coil 3 due to water cooling is transmitted to the process tube 1 and the heating cylinder 2.

上記構成の高速熱処理装置によれば、電磁誘導加熱コイル3に高周波電流を流すことにより、プロセスチューブ1内の加熱筒2を電磁誘導加熱によって直接加熱することができるので、このプロセスチューブ1内の温度制御を高速で行うことができるようになる。しかも、この加熱筒2に用いるガラス状炭素は、グラファイトと同様に、高い導電性や耐熱性、化学安定性を備えた炭素材料であるが、炭素原子が平面状に結合した層構造のグラファイトとは異なり、炭素原子間に三次元結合があるために、グラファイトのように急激な温度変化の繰り返しや摩耗等によって炭素層が剥離したりカーボンダストとして飛散するようなことがなく、炭素が酸化してガスとなるようなことも生じない。従って、プロセスチューブ内にこれら炭素片やカーボンダスト、炭素酸化物(CO)ガス等の不純物が混入するようなおそれがなくなり、加熱筒2自体の消耗も生じない。 According to the rapid thermal processing apparatus having the above configuration, the heating tube 2 in the process tube 1 can be directly heated by electromagnetic induction heating by passing a high-frequency current through the electromagnetic induction heating coil 3. Temperature control can be performed at high speed. Moreover, the glassy carbon used in the heating cylinder 2 is a carbon material having high conductivity, heat resistance, and chemical stability, like graphite, but it has a layered structure in which carbon atoms are bonded in a plane. Unlike carbon, there is a three-dimensional bond between the carbon atoms, so that the carbon layer is not peeled off or scattered as carbon dust due to repeated rapid temperature changes or wear like graphite. There is no such thing as gas. Therefore, there is no fear that impurities such as carbon pieces, carbon dust, and carbon oxide (CO x ) gas are mixed in the process tube, and the heating cylinder 2 itself is not consumed.

また、上記ガラス状炭素は、嵩密度が1.5g/cmであり、石英ガラス(SiO)の2.2g/cmやSiCコート・グラファイトの1.85g/cm(SiCコート自体は3.1g/cm)と比べても嵩密度が十分に小さく軽量であるため熱容量も小さい。従って、従来のように熱容量の大きいSiCコート・グラファイト製の加熱筒6や石英ガラス製のプロセスチューブ1を昇温させる必要がなくなり、熱容量の小さいガラス状炭素からなる加熱筒2だけを昇温させればよいので、加熱処理の際の温度プロセスにおける昇温速度を速めることができるだけでなく、降温速度を速めることもでき、熱処理作業のスループットを向上させることができるようになる。つまり、昇温プロセスでは、単位時間ごとに同じ熱量を加えた場合に、熱容量の小さい方が温度上昇が速くなる。そして、降温プロセスでも、単位時間内の放熱熱量は外気や冷媒等との温度差によって定まるので、熱容量の小さい方が温度低下が速くなる。 Also, the glassy carbon has a bulk density of 1.5g / cm 3, 2.2g / cm 3 or SiC-coated graphite 1.85 g / cm 3 (SiC coating itself of the quartz glass (SiO 2) is Compared with 3.1 g / cm 3 ), the bulk density is sufficiently small and lightweight, so the heat capacity is also small. Therefore, it is not necessary to raise the temperature of the SiC-coated graphite heating tube 6 or the quartz glass process tube 1 having a large heat capacity as in the prior art, and only the heating tube 2 made of glassy carbon having a small heat capacity is heated. Therefore, not only can the rate of temperature increase in the temperature process during the heat treatment be increased, but also the rate of temperature decrease can be increased, and the throughput of the heat treatment operation can be improved. That is, in the temperature raising process, when the same amount of heat is applied every unit time, the temperature rise is faster as the heat capacity is smaller. Even in the temperature lowering process, the amount of heat radiated within a unit time is determined by the temperature difference from the outside air, the refrigerant, etc., so that the lower the heat capacity, the faster the temperature drop.

また、上記加熱筒2は、プロセスチューブ1を介して水冷式の電磁誘導加熱コイル3に囲まれているので、この電磁誘導加熱コイル3が降温プロセスで電流を遮断されて水冷により温度が低下すると、プロセスチューブ1を介して加熱筒2も冷却されることになるので、降温速度をさらに速めることができるようになる。つまり、石英ガラス製のプロセスチューブ1は、通常の断熱材に比べて断熱効果は少ないが、その分だけ電磁誘導加熱コイル3の温度が水冷により低下すると、加熱筒2から熱を奪うことができるようになり、これによって加熱筒2も冷却することができる。特に降温プロセスでは、別途冷却を行わない限り、加熱筒2やプロセスチューブ1は自然放熱により温度を下げることになるので、昇温時に比べて温度変化が緩やかになり易い。しかしながら、電磁誘導加熱コイル3の水冷によってプロセスチューブ1や加熱筒2も冷却できるようになれば、この降温プロセスでの温度低下をさらに速めることができるようになる。   Further, since the heating cylinder 2 is surrounded by a water-cooled electromagnetic induction heating coil 3 through the process tube 1, when the electromagnetic induction heating coil 3 is interrupted by a temperature lowering process and the temperature is lowered by water cooling. Since the heating cylinder 2 is also cooled through the process tube 1, the temperature lowering rate can be further increased. That is, the process tube 1 made of quartz glass has a heat insulating effect less than that of a normal heat insulating material. However, when the temperature of the electromagnetic induction heating coil 3 is lowered by water cooling, the heat tube 2 can take heat away. Thus, the heating cylinder 2 can also be cooled. In particular, in the temperature lowering process, unless the cooling is performed separately, the temperature of the heating cylinder 2 and the process tube 1 is lowered by natural heat dissipation, and therefore, the temperature change tends to be gradual as compared with the temperature rising. However, if the process tube 1 and the heating cylinder 2 can be cooled by the water cooling of the electromagnetic induction heating coil 3, the temperature drop in the temperature lowering process can be further accelerated.

なお、上記実施形態では、加熱筒2の形状を両端が開口した筒体としたが、ガラス状炭素の加工が可能であれば、プロセスチューブ1と同様に一方だけが開口した容器状の筒体としてもよい。また、上記実施形態では、プロセスチューブ1の形状を一方だけが開口した容器状の筒体としたが、両端が開口した筒体とすることもできる。ただし、この場合には、プロセスチューブ1の両端開口部を確実に封口する構造が必要となる。さらに、上記実施形態では、これらプロセスチューブ1や加熱筒2の断面形状を長円形としたが、この断面形状は任意であり、例えば円形や楕円形、四隅にアールのある方形等であってもよい。   In the above embodiment, the shape of the heating cylinder 2 is a cylinder with both ends opened. However, if processing of glassy carbon is possible, a container-like cylinder with only one opened like the process tube 1. It is good. Moreover, in the said embodiment, although the shape of the process tube 1 was made into the container-shaped cylinder which only one side opened, it can also be set as the cylinder which both ends opened. However, in this case, a structure that reliably seals the openings at both ends of the process tube 1 is required. Furthermore, in the above-described embodiment, the cross-sectional shape of the process tube 1 and the heating cylinder 2 is an oval shape. However, the cross-sectional shape is arbitrary, for example, a circular shape, an oval shape, a square shape with rounded corners, or the like. Good.

また、上記実施形態では、加熱筒2と電磁誘導加熱コイル3との間に、十分な絶縁性とある程度の断熱性を有するプロセスチューブ1のみを配置する場合を示したが、加熱筒2とプロセスチューブ1との間、及び/又は、プロセスチューブ1と電磁誘導加熱コイル3の間に、図4の従来例に示した絶縁断熱層7のような断熱材を配置するようにしてもよい。このような断熱材が配置されると、電磁誘導加熱コイル3の水冷による冷却効果はあまり期待できなくなるが、加熱筒2の外壁面からの熱が外部に放散されるのを防止できるので、昇温プロセスでの温度上昇をさらに促進するだけでなく、高速熱処理装置の熱効率を高めることもできるようになる。この断熱材は、鏡面のように放射熱だけを遮断するものであってもよい。さらに、上記実施形態では、プロセスチューブ1を石英ガラス製とする場合を示したが、この石英ガラスに代えて耐熱性と絶縁性を備えた例えばセラミックス製のプロセスチューブ1等を用いることもできる。   Moreover, although the case where only the process tube 1 which has sufficient insulation and a certain amount of heat insulation was arrange | positioned between the heating cylinder 2 and the electromagnetic induction heating coil 3 was shown in the said embodiment, the heating cylinder 2 and a process were shown. A heat insulating material such as the insulating heat insulating layer 7 shown in the conventional example of FIG. 4 may be arranged between the tube 1 and / or between the process tube 1 and the electromagnetic induction heating coil 3. When such a heat insulating material is arranged, the cooling effect of the electromagnetic induction heating coil 3 due to water cooling cannot be expected so much, but heat from the outer wall surface of the heating cylinder 2 can be prevented from being dissipated to the outside. Not only can the temperature rise in the temperature process be further promoted, but also the thermal efficiency of the rapid thermal processing apparatus can be increased. This heat insulating material may block only radiant heat like a mirror surface. Furthermore, although the case where the process tube 1 is made of quartz glass has been described in the above embodiment, for example, a ceramic process tube 1 having heat resistance and insulation can be used instead of this quartz glass.

また、上記実施形態では、半導体ウエハの熱処理に用いる高速熱処理装置について説明したが、被処理物Sは半導体ウエハに限らず任意であり、通常の熱処理装置であっても同様に実施可能である。さらに、上記実施形態では、枚葉型の被処理物Sの熱処理装置について示したが、例えば縦型大容量の容器状のプロセスチューブ1を用いることにより、大量の被処理物Sをまとめて処理するバッチ処理型の熱処理装置に実施することも可能である。   Moreover, although the rapid thermal processing apparatus used for the heat processing of a semiconductor wafer was demonstrated in the said embodiment, the to-be-processed object S is not restricted to a semiconductor wafer, Arbitrary, Even if it is a normal heat processing apparatus, it can implement similarly. Furthermore, in the above-described embodiment, the heat treatment apparatus for the single-wafer type processing object S has been described. However, for example, a large amount of the processing object S is processed by using the vertical large-capacity container-like process tube 1. It is also possible to implement in a batch processing type heat treatment apparatus.

本発明の一実施形態を示すものであって、高速熱処理装置の構造を示す断面正面図である。1 is a cross-sectional front view showing a structure of a rapid thermal processing apparatus according to an embodiment of the present invention. 本発明の一実施形態を示すものであって、高速熱処理装置の構造を示す断面側面図である。1 is a cross-sectional side view illustrating a structure of a rapid thermal processing apparatus according to an embodiment of the present invention. 本発明の一実施形態を示すものであって、図2におけるA−A断面正面図である。FIG. 3 shows an embodiment of the present invention, and is a cross-sectional front view taken along line AA in FIG. 2. 従来例を示すものであって、高速熱処理装置の構造を示す断面側面図である。It is a cross-sectional side view which shows a prior art example and shows the structure of a rapid thermal processing apparatus.

符号の説明Explanation of symbols

1 プロセスチューブ
2 ガラス状炭素からなる加熱筒
3 電磁誘導加熱コイル
S 被処理物
DESCRIPTION OF SYMBOLS 1 Process tube 2 Heating cylinder which consists of glassy carbon 3 Electromagnetic induction heating coil S To-be-processed object

Claims (2)

気密にしたプロセスチューブ内を加熱して内部の被処理物を熱処理する熱処理装置において、
プロセスチューブ内にガラス状炭素からなる加熱筒を配置すると共に、このプロセスチューブの外側に電磁誘導加熱コイルを配置したことを特徴とする熱処理装置。
In a heat treatment apparatus that heats the inside of an airtight process tube and heats the object to be treated,
A heat treatment apparatus in which a heating cylinder made of glassy carbon is disposed in a process tube, and an electromagnetic induction heating coil is disposed outside the process tube.
前記プロセスチューブが石英ガラスからなり、前記電磁誘導加熱コイルが水冷式による冷却装置を備えたものであることを特徴とする請求項1に記載の熱処理装置。   The heat treatment apparatus according to claim 1, wherein the process tube is made of quartz glass, and the electromagnetic induction heating coil is provided with a water-cooling type cooling device.
JP2004304200A 2004-10-19 2004-10-19 Heat treatment apparatus Pending JP2006120693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004304200A JP2006120693A (en) 2004-10-19 2004-10-19 Heat treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004304200A JP2006120693A (en) 2004-10-19 2004-10-19 Heat treatment apparatus

Publications (1)

Publication Number Publication Date
JP2006120693A true JP2006120693A (en) 2006-05-11

Family

ID=36538325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004304200A Pending JP2006120693A (en) 2004-10-19 2004-10-19 Heat treatment apparatus

Country Status (1)

Country Link
JP (1) JP2006120693A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159759A (en) * 2006-12-22 2008-07-10 Mitsui Eng & Shipbuild Co Ltd Heat treating method and apparatus using induction heating
JP2008251995A (en) * 2007-03-30 2008-10-16 Mitsui Eng & Shipbuild Co Ltd Temperature information acquiring device and heating system
JP2008283143A (en) * 2007-05-14 2008-11-20 Ulvac Japan Ltd Treatment equipment, and transistor manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878338A (en) * 1994-09-05 1996-03-22 Fujitsu Ltd Semiconductor manufacturing apparatus
JPH11209198A (en) * 1998-01-26 1999-08-03 Sumitomo Electric Ind Ltd Synthesis of silicon carbide single crystal
JP2003077855A (en) * 2001-08-31 2003-03-14 Denso Corp Heat treatment apparatus and method
JP2003151737A (en) * 2001-11-16 2003-05-23 Kobe Steel Ltd Heater
JP2004055896A (en) * 2002-07-22 2004-02-19 Kobe Steel Ltd Heating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878338A (en) * 1994-09-05 1996-03-22 Fujitsu Ltd Semiconductor manufacturing apparatus
JPH11209198A (en) * 1998-01-26 1999-08-03 Sumitomo Electric Ind Ltd Synthesis of silicon carbide single crystal
JP2003077855A (en) * 2001-08-31 2003-03-14 Denso Corp Heat treatment apparatus and method
JP2003151737A (en) * 2001-11-16 2003-05-23 Kobe Steel Ltd Heater
JP2004055896A (en) * 2002-07-22 2004-02-19 Kobe Steel Ltd Heating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159759A (en) * 2006-12-22 2008-07-10 Mitsui Eng & Shipbuild Co Ltd Heat treating method and apparatus using induction heating
JP2008251995A (en) * 2007-03-30 2008-10-16 Mitsui Eng & Shipbuild Co Ltd Temperature information acquiring device and heating system
JP2008283143A (en) * 2007-05-14 2008-11-20 Ulvac Japan Ltd Treatment equipment, and transistor manufacturing method

Similar Documents

Publication Publication Date Title
KR101070667B1 (en) Substrate processing apparatus, heating device and semiconductor device manufacturing method
US8354623B2 (en) Treatment apparatus, treatment method, and storage medium
JP2003318182A (en) Device for heating and processing semiconductor film at low temperature
JP2012526718A (en) Method for smoothing and / or beveling the edge of a substrate
JP2010045170A (en) Sample mounting electrode
JP2009231341A (en) Annealing apparatus and heat treatment method of silicon carbide semiconductor substrate
JP5877920B1 (en) Rapid heating / cooling heat treatment furnace
JP6575135B2 (en) Heating and cooling method and heating and cooling equipment
JP2006120693A (en) Heat treatment apparatus
JP4336283B2 (en) Induction heating device
JP2021042409A (en) Plasma treatment apparatus and temperature control method
JP5110790B2 (en) Heat treatment equipment
JP2011091389A (en) Substrate processing apparatus and method of manufacturing semiconductor device
JP2005072468A (en) Heat treatment apparatus of semiconductor wafer
JP2006080151A (en) Thermal treatment equipment
JP2009064864A (en) Semiconductor processing apparatus
JPH07114188B2 (en) Heat treatment method for semiconductor substrate and heat treatment apparatus used therefor
JP2008283143A (en) Treatment equipment, and transistor manufacturing method
KR102387510B1 (en) Substrate heating apparatus, substrate heating method and method of manufacturing electronic device
JP6450932B2 (en) Plasma processing apparatus and method
JP2008138986A (en) Heat treatment silicon plate and heat treatment furnace
WO2023145054A1 (en) Heater unit, multilayer structure, processing device, and method for manufacturing semiconductor device
JP6350041B2 (en) Heat treatment equipment
JP3243495U (en) Composite high-speed annealing equipment
JP2005136095A (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100922

A02 Decision of refusal

Effective date: 20110406

Free format text: JAPANESE INTERMEDIATE CODE: A02