JP2006080151A - Thermal treatment equipment - Google Patents

Thermal treatment equipment Download PDF

Info

Publication number
JP2006080151A
JP2006080151A JP2004259882A JP2004259882A JP2006080151A JP 2006080151 A JP2006080151 A JP 2006080151A JP 2004259882 A JP2004259882 A JP 2004259882A JP 2004259882 A JP2004259882 A JP 2004259882A JP 2006080151 A JP2006080151 A JP 2006080151A
Authority
JP
Japan
Prior art keywords
process tube
induction heating
tube
heating coil
electromagnetic induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004259882A
Other languages
Japanese (ja)
Inventor
Satoyuki Ishibashi
智行 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Thermo Systems Corp
Original Assignee
Koyo Thermo Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Thermo Systems Co Ltd filed Critical Koyo Thermo Systems Co Ltd
Priority to JP2004259882A priority Critical patent/JP2006080151A/en
Publication of JP2006080151A publication Critical patent/JP2006080151A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide thermal treatment equipment capable of improving the throughput of thermal treatment work by performing temperature control at high speed in such a way that electromagnetic induction heating may be carried out to a process tube 1 consisting of glassy carbon by an electromagnetic-induction-heating coil 3 of the outside. <P>SOLUTION: The thermal treatment equipment carries out thermal treatment of an internal treatment object S by heating the inside of process tube 1 which is made hermetically sealed. While constituting a process tube 1 from glassy carbon, the electromagnetic-induction heating coil 3 has been constitutively arranged in the outside of this process tube 1. Between the process tube 1 and the electromagnetic-induction heating coils 3, a quartz tube 2 is arranged so that the electromagnetic-induction heating coil 3 may have the composition made into a water cooling type. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、気密にしたプロセスチューブ内を加熱して内部の半導体ウエハ等を熱処理する熱処理装置に関するものである。   The present invention relates to a heat treatment apparatus for heat-treating an internal semiconductor wafer or the like by heating the inside of an airtight process tube.

半導体製造プロセスでは、半導体ウエハを熱処理する際に高速熱処理装置(RTP:Rapid Thermal Prosesser)を用いる方法が知られている。また、このような高速熱処理装置では、電熱ヒータによる加熱ではなく、電磁誘導加熱によってプロセスチューブ内を加熱するようにした装置(IH-RTP:Induction Heating-RTP)も開発されている(例えば、特許文献1参照。)。この電磁誘導加熱による高速熱処理装置は、図4に示すように、被処理物Sを収容する石英ガラス製のプロセスチューブ5の外側にグラファイト製の加熱筒6を配置し、この加熱筒6の外側に絶縁断熱層7を介して電磁誘導加熱コイル3を配置している。また、この加熱筒6は、表面にSiC(炭化ケイ素)コートを施すことにより、電磁誘導加熱コイル3からの重金属イオンの透過を防止したり、グラファイトの酸化や摩耗による加熱筒6の消耗を防止している。   As a semiconductor manufacturing process, a method using a rapid thermal processing apparatus (RTP) is known when a semiconductor wafer is heat-treated. In addition, in such a high-speed heat treatment apparatus, an apparatus (IH-RTP: Induction Heating-RTP) that heats the inside of the process tube by electromagnetic induction heating instead of heating by an electric heater has been developed (for example, patent) Reference 1). As shown in FIG. 4, the rapid heat treatment apparatus using electromagnetic induction heating has a graphite heating tube 6 disposed outside a quartz glass process tube 5 that accommodates the workpiece S, and the outside of the heating tube 6. The electromagnetic induction heating coil 3 is arranged via the insulating heat insulating layer 7. Further, the heating cylinder 6 is coated with SiC (silicon carbide) on the surface to prevent permeation of heavy metal ions from the electromagnetic induction heating coil 3 and to prevent the heating cylinder 6 from being consumed due to oxidation or wear of graphite. is doing.

上記構成の高速熱処理装置は、電磁誘導加熱コイル3に高周波電流を流して加熱筒6を加熱し放射熱を放射させることにより、プロセスチューブ5内を加熱する。しかも、プロセスチューブ5を囲む加熱筒6の内面全体から放射熱が発せられるので、ホットウォール型の加熱により被処理物Sを均一に熱処理することができる。   The rapid thermal processing apparatus having the above configuration heats the inside of the process tube 5 by flowing a high-frequency current through the electromagnetic induction heating coil 3 to heat the heating cylinder 6 to radiate radiant heat. Moreover, since radiant heat is emitted from the entire inner surface of the heating cylinder 6 surrounding the process tube 5, the workpiece S can be uniformly heat-treated by hot wall heating.

ところが、最近の半導体製造プロセスでは、集積回路の線間隔のプロセスルールの微細化等に伴い、熱処理温度も低温化(例えば500℃以下)の要請が強くなっている。しかしながら、上記従来の高速熱処理装置では、プロセスチューブ5や加熱筒6の熱容量が大きいために、特に低温域での温度制御を高速で行うことが困難であるという問題があった。つまり、電磁誘導加熱による高速熱処理装置は、電熱ヒータを用いた高速熱処理装置よりもプロセスチューブ内の温度を高速で変化させることができるという利点を有するが、それでもなお熱容量が大きい石英ガラス製のプロセスチューブ5の外側からグラファイト製の加熱筒6で加熱するという構造のために、特に低温域では電磁誘導加熱コイル3の通電の開始や停止、電流の増減の実行から実際にプロセスチューブ5内の温度が変化するまでに大きな時間遅れが生じ、昇温や降温のプロセスを迅速に実行することができず、熱処理作業のスループットを向上させることができなかった。   However, in recent semiconductor manufacturing processes, with the miniaturization of process rules for line spacing of integrated circuits, there is an increasing demand for lowering the heat treatment temperature (for example, 500 ° C. or less). However, the conventional rapid thermal processing apparatus has a problem that it is difficult to control the temperature particularly in a low temperature range at high speed because the heat capacity of the process tube 5 and the heating cylinder 6 is large. In other words, the high-speed heat treatment apparatus using electromagnetic induction heating has the advantage that the temperature in the process tube can be changed at a higher speed than the high-speed heat treatment apparatus using an electric heater, but it still has a large heat capacity. Due to the structure of heating from the outside of the tube 5 by the heating cylinder 6 made of graphite, the temperature inside the process tube 5 is actually increased from the start / stop of energization of the electromagnetic induction heating coil 3 and the increase / decrease of the current, particularly in the low temperature range. A large time lag occurred before the temperature changed, and the temperature raising and lowering processes could not be performed quickly, and the throughput of the heat treatment operation could not be improved.

なお、石英ガラス製のプロセスチューブ5を省略して、グラファイト製の加熱筒6をプロセスチューブとしても用いることができれば、この石英ガラス製のプロセスチューブ5の分だけ熱容量を減少させることができるので、温度制御の高速化が可能となる。しかしながら、グラファイトは、層状の構造を持ち、層相互間の結合が弱いために、これを用いて十分な気密性と耐摩耗性や強度を有するプロセスチューブを作成することは困難である。また、グラファイトの表面にSiCコートを施したとしても、炭素の酸化による消失や摩耗によるカーボンダストとしての散逸によって消耗することを確実に防ぐことは出来ないので、プロセスチューブとして繰り返し長期間使用することができない。
特開2004−71596号公報
If the process tube 5 made of quartz glass is omitted and the heating tube 6 made of graphite can be used as a process tube, the heat capacity can be reduced by the amount of the process tube 5 made of quartz glass. The speed of temperature control can be increased. However, since graphite has a layered structure and weak bonding between layers, it is difficult to produce a process tube having sufficient airtightness, wear resistance, and strength. In addition, even if a SiC coating is applied to the graphite surface, it cannot be reliably prevented from being consumed due to the loss of carbon due to oxidation or the loss of carbon dust due to wear. I can't.
JP 2004-71596 A

本発明は、ガラス状炭素からなるプロセスチューブを電磁誘導加熱することにより、温度制御を高速で行い熱処理作業のスループットを向上させることができる熱処理装置を提供しようとするものである。   An object of the present invention is to provide a heat treatment apparatus capable of performing temperature control at high speed and improving the throughput of heat treatment work by electromagnetically heating a process tube made of glassy carbon.

請求項1の発明は、気密にしたプロセスチューブ内を加熱して内部の被処理物を熱処理する熱処理装置において、プロセスチューブをガラス状炭素で構成すると共に、このプロセスチューブの外側に電磁誘導加熱コイルが配置されたことを特徴とする。   According to a first aspect of the present invention, there is provided a heat treatment apparatus for heating an inside of a hermetically sealed process tube to heat-treat the object to be processed. The process tube is made of glassy carbon, and an electromagnetic induction heating coil is provided outside the process tube. Is arranged.

請求項2の発明は、前記プロセスチューブと水冷式の電磁誘導加熱コイルとの間に石英ガラスからなる石英チューブを配置したことを特徴とする。   The invention of claim 2 is characterized in that a quartz tube made of quartz glass is disposed between the process tube and a water-cooled electromagnetic induction heating coil.

請求項1の発明によれば、電磁誘導加熱コイルに高周波電流を流すことにより、プロセスチューブのガラス状炭素を電磁誘導加熱によって直接加熱することができるので、このプロセスチューブ内の温度制御を高速で行うことができるようになる。しかも、ガラス状炭素は、グラファイトや石英ガラスに比べても熱容量が小さいので、さらに迅速な温度制御が可能となる。また、ガラス状炭素は、グラファイトのような酸化や摩耗による消耗がほとんどなく、特に500℃以下の比較的低温の大気雰囲気中では体積減少がほとんど生じないので、プロセスチューブとして長期間繰り返して使用することができる。   According to the invention of claim 1, since the glassy carbon of the process tube can be directly heated by electromagnetic induction heating by flowing a high frequency current through the electromagnetic induction heating coil, temperature control in the process tube can be performed at high speed. Will be able to do. In addition, since vitreous carbon has a smaller heat capacity than graphite or quartz glass, more rapid temperature control is possible. Glassy carbon is hardly consumed due to oxidation or wear like graphite, and volume reduction hardly occurs particularly in a relatively low temperature air atmosphere of 500 ° C. or lower. Therefore, it is used repeatedly as a process tube for a long time. be able to.

請求項2の発明によれば、プロセスチューブと電磁誘導加熱コイルとの間の絶縁材として石英チューブを用いるので、電磁誘導加熱コイルを水冷により冷却することにより、この石英チューブの温度上昇を抑えると共に、プロセスチューブも迅速に冷却することができ、昇温プロセスに比べて比較的温度変化が緩やかになり易い降温プロセスをさらに高速化することができる。   According to the invention of claim 2, since the quartz tube is used as the insulating material between the process tube and the electromagnetic induction heating coil, the electromagnetic induction heating coil is cooled by water cooling, thereby suppressing the temperature rise of the quartz tube. The process tube can also be cooled quickly, and the temperature lowering process, in which the temperature change is relatively gradual compared to the temperature raising process, can be further accelerated.

以下、本発明の最良の実施形態について図1〜図3を参照して説明する。なお、これらの図においても、図4に示した従来例と同様の機能を有する構成部材には同じ番号を付記する。   Hereinafter, the best embodiment of the present invention will be described with reference to FIGS. In these drawings, the same reference numerals are given to constituent members having the same functions as those of the conventional example shown in FIG.

本実施形態は、従来例と同様に、半導体ウエハを熱処理するための電磁誘導加熱による高速熱処理装置について説明する。この高速熱処理装置は、図1に示すように、ガラス状炭素からなるプロセスチューブ1の内部に被処理物Sを収容するようになっている。ガラス状炭素(GLC:Glass-Like Carbon,glassy carbon)は、グラファイトと同様に、高い導電性や耐熱性、化学安定性を備えた炭素材料であるが、グラファイトとは異なり、高い気密性(ガス不透過性)を有すると共に、酸化やカーボンダストの散逸等による消耗のおそれのない、高い耐摩耗性と強度を備えたものである。プロセスチューブ1は、このガラス状炭素を横断面が長円形の筒状に形成したものである。   In the present embodiment, a high-speed heat treatment apparatus using electromagnetic induction heating for heat-treating a semiconductor wafer will be described as in the conventional example. As shown in FIG. 1, the rapid thermal processing apparatus accommodates an object to be processed S in a process tube 1 made of glassy carbon. Glass-like carbon (GLC), like graphite, is a carbon material with high electrical conductivity, heat resistance, and chemical stability, but unlike graphite, it has high airtightness (gas It has high wear resistance and strength, and has no impermeability, and is not subject to wear due to oxidation or dissipation of carbon dust. The process tube 1 is formed by forming this glassy carbon into a cylindrical shape having an oblong cross section.

上記プロセスチューブ1の外周側は、石英チューブ2に囲まれ、この石英チューブ2の外周側に電磁誘導加熱コイル3が配置されている。電磁誘導加熱コイル3は、高周波電流を流すためのコイルを配置したものである。従って、この電磁誘導加熱コイル3に高周波電流を流すと、プロセスチューブ1のガラス状炭素にうず電流が発生し、このうず電流によるジュール熱によってプロセスチューブ1全体が発熱する。また、このプロセスチューブ1は、内壁面全体から内側に向けて放射熱を発することになるので、ホットウォール型の加熱により被処理物Sを均一に熱処理することができる。この電磁誘導加熱の際、図2に示す電磁誘導加熱コイル3とプロセスチューブ1との間のギャップGは、間隔が狭いほどこれらの電磁的結合が強くなるので、加熱効率を高めることができる。また、電磁誘導加熱コイル3は、高周波電流によって大きな発熱が生じるので、これらのコイルの間には冷却水を循環させた水冷パイプが敷設されている。   The outer peripheral side of the process tube 1 is surrounded by a quartz tube 2, and an electromagnetic induction heating coil 3 is disposed on the outer peripheral side of the quartz tube 2. The electromagnetic induction heating coil 3 is provided with a coil for flowing a high-frequency current. Therefore, when a high-frequency current is passed through the electromagnetic induction heating coil 3, an eddy current is generated in the glassy carbon of the process tube 1, and the entire process tube 1 generates heat due to the Joule heat generated by the eddy current. In addition, since the process tube 1 emits radiant heat from the entire inner wall surface toward the inside, the workpiece S can be uniformly heat-treated by hot wall heating. At the time of this electromagnetic induction heating, the gap G between the electromagnetic induction heating coil 3 and the process tube 1 shown in FIG. 2 becomes stronger as the gap becomes narrower, so that the heating efficiency can be increased. Further, since the electromagnetic induction heating coil 3 generates a large amount of heat due to the high frequency current, a water cooling pipe in which cooling water is circulated is laid between these coils.

上記プロセスチューブ1と電磁誘導加熱コイル3との間は絶縁する必要があり、本実施形態では、これらプロセスチューブ1と電磁誘導加熱コイル3との間に、上記のように石英チューブ2を配置して絶縁している。石英チューブ2は、石英ガラスを、プロセスチューブ1と同形状であってこれよりも一回り大きい長円形の筒体に形成したものである。この石英チューブ2は、プロセスチューブ1と電磁誘導加熱コイル3との間を絶縁するには十分な絶縁性を有すると共に、高温のプロセスチューブ1から外部への対流による熱の放散を有効に防止する効果も有している。また、電磁誘導加熱コイル3は、水冷により常時冷却されているので、この石英チューブ2の温度上昇を抑制することができる。しかも、加熱の終了により電流が遮断されると、この電磁誘導加熱コイル3の水冷による冷却効果により、石英チューブ2を介してプロセスチューブ1も冷却されることになるので、このプロセスチューブ1内の温度低下を促進することもできるようになる。このプロセスチューブ1の冷却効果は、図2に示す電磁誘導加熱コイル3とプロセスチューブ1との間のギャップGを狭くするほど有効に作用するので、石英チューブ2は、できるだけ薄く、かつ、プロセスチューブ1や電磁誘導加熱コイル3との間の隙間が少ないものを用いることが好ましい。   The process tube 1 and the electromagnetic induction heating coil 3 need to be insulated. In this embodiment, the quartz tube 2 is disposed between the process tube 1 and the electromagnetic induction heating coil 3 as described above. Are insulated. The quartz tube 2 is formed by forming quartz glass into an oval cylindrical body having the same shape as the process tube 1 and slightly larger than this. This quartz tube 2 has sufficient insulation to insulate between the process tube 1 and the electromagnetic induction heating coil 3, and effectively prevents heat dissipation from convection from the high temperature process tube 1 to the outside. It also has an effect. Moreover, since the electromagnetic induction heating coil 3 is always cooled by water cooling, the temperature rise of this quartz tube 2 can be suppressed. Moreover, when the current is interrupted by the end of heating, the process tube 1 is also cooled through the quartz tube 2 due to the cooling effect of the electromagnetic induction heating coil 3 due to water cooling. It also becomes possible to promote a decrease in temperature. Since the cooling effect of the process tube 1 works more effectively as the gap G between the electromagnetic induction heating coil 3 and the process tube 1 shown in FIG. 2 becomes narrower, the quartz tube 2 is made as thin as possible and the process tube It is preferable to use one having a small gap between the electromagnetic induction heating coil 1 and the electromagnetic induction heating coil 3.

上記プロセスチューブ1は、内部に被処理物Sを収容して処理用のガス(例えば窒素ガス等のような不活性ガスや還元性ガス、大気等)で満たす必要がある。従って、このプロセスチューブ1は、図3に示すように、両端部をフランジ4,4で封口すると共に、これらのフランジ4,4を着脱自在となるようにして、被処理物Sの出し入れを可能にしている。また、これらのフランジ4,4には、図示しない吸排気口が設けられ、これらの吸排気口を用いて処理用のガスの充填や排出を行うことができるようになっている。   The process tube 1 needs to accommodate the object to be processed S therein and be filled with a processing gas (for example, an inert gas such as nitrogen gas, a reducing gas, the atmosphere, or the like). Therefore, as shown in FIG. 3, the process tube 1 seals both ends with flanges 4 and 4, and allows the workpieces S to be taken in and out by making these flanges 4 and 4 removable. I have to. In addition, these flanges 4 and 4 are provided with intake / exhaust ports (not shown) so that processing gas can be filled and discharged using these intake / exhaust ports.

上記構成の高速熱処理装置によれば、電磁誘導加熱コイル3に高周波電流を流すことにより、プロセスチューブ1を電磁誘導加熱によって直接加熱することができるので、このプロセスチューブ1内の温度制御を高速で行うことができるようになる。しかも、このプロセスチューブ1に用いたガラス状炭素は、嵩密度が1.5g/cmであり、石英ガラス(SiO)の2.2g/cmやSiCコート・グラファイトの1.85g/cm(SiCコート自体は3.1g/cm)と比べても嵩密度が十分に小さく軽量であるため熱容量も小さい。従って、従来のように熱容量の大きいSiCコート・グラファイト製の加熱筒6や石英ガラス製のプロセスチューブ5を昇温させる必要がなくなり、熱容量の小さいガラス状炭素からなるプロセスチューブ1だけを昇温させればよいので、加熱処理の際の温度プロセスにおける昇温速度を速めることができるだけでなく、降温速度を速めることもでき、熱処理作業のスループットを向上させることができるようになる。つまり、昇温プロセスでは、単位時間ごとに同じ熱量を加えた場合に、熱容量の小さい方が温度上昇が速くなる。そして、降温プロセスでも、単位時間内の放熱熱量は外気や冷媒等との温度差によって定まるので、熱容量の小さい方が温度低下が速くなる。 According to the high-speed heat treatment apparatus having the above-described configuration, the process tube 1 can be directly heated by electromagnetic induction heating by flowing a high-frequency current through the electromagnetic induction heating coil 3, so that the temperature control in the process tube 1 can be performed at high speed. Will be able to do. Moreover, the glassy carbon used in the process tube 1 has a bulk density of 1.5 g / cm 3 , 2.2 g / cm 3 of quartz glass (SiO 2 ), and 1.85 g / cm 3 of SiC-coated graphite. 3 (SiC coat itself is 3.1 g / cm 3 ), the bulk density is sufficiently small and light weight, so the heat capacity is also small. Accordingly, it is not necessary to raise the temperature of the SiC-coated graphite heating tube 6 or the quartz glass process tube 5 having a large heat capacity as in the prior art, and only the process tube 1 made of glassy carbon having a small heat capacity is raised. Therefore, not only can the rate of temperature increase in the temperature process during the heat treatment be increased, but also the rate of temperature decrease can be increased, and the throughput of the heat treatment operation can be improved. That is, in the temperature raising process, when the same amount of heat is applied every unit time, the temperature rise is faster as the heat capacity is smaller. Even in the temperature lowering process, the amount of heat radiated within a unit time is determined by the temperature difference from the outside air, the refrigerant, etc., so that the lower the heat capacity, the faster the temperature drop.

また、このプロセスチューブ1は、石英チューブ2を介して水冷式の電磁誘導加熱コイル3に囲まれているので、この電磁誘導加熱コイル3が降温プロセスで電流を遮断されて水冷により冷却されると、この石英チューブ2を介してプロセスチューブ1も冷却されることになるので、降温速度をさらに速めることができるようになる。つまり、石英ガラス製の石英チューブ2は、通常の断熱材に比べて断熱効果は少ないが、その分だけ電磁誘導加熱コイル3の温度が水冷により低下すると、プロセスチューブ1から熱を奪うことができるようになり、これによってプロセスチューブ1も冷却することができる。特に降温プロセスでは、別途冷却を行わない限り、プロセスチューブ1は自然放熱により温度を下げることになるので、昇温時に比べて温度変化が緩やかになり易い。しかしながら、電磁誘導加熱コイル3の水冷によってプロセスチューブ1も冷却できるようになれば、この降温プロセスでの温度低下をさらに速めることができるようになる。   In addition, since the process tube 1 is surrounded by the water-cooled electromagnetic induction heating coil 3 through the quartz tube 2, the electromagnetic induction heating coil 3 is cooled by water cooling after the current is cut off in the temperature lowering process. Since the process tube 1 is also cooled through the quartz tube 2, the temperature drop rate can be further increased. That is, the quartz tube 2 made of quartz glass has less heat insulating effect than a normal heat insulating material, but when the temperature of the electromagnetic induction heating coil 3 is lowered by water cooling, heat can be taken from the process tube 1. As a result, the process tube 1 can also be cooled. In particular, in the temperature lowering process, unless the cooling is performed separately, the temperature of the process tube 1 is lowered by natural heat dissipation, so that the temperature change tends to be gradual as compared with the temperature rising. However, if the process tube 1 can also be cooled by water cooling of the electromagnetic induction heating coil 3, the temperature drop in the temperature lowering process can be further accelerated.

また、プロセスチューブ1に用いるガラス状炭素は、グラファイトと同様に、高い導電性や耐熱性、化学安定性を備えた炭素材料であるが、炭素原子が平面状に結合した層構造のグラファイトとは異なり、炭素原子間に三次元結合があるために、高いガス不透過性を有するので、プロセスチューブ1内の気密性を確実に維持することができる。しかも、このガラス状炭素は、炭素原子間に三次元結合により、グラファイトのように炭素が酸化してガスとなり消失したり摩耗によってカーボンダストとして散逸するようなことがなく、使用に伴う消耗がほとんど生じないので、プロセスチューブ1として長期間繰り返して使用することもできる。   The glassy carbon used in the process tube 1 is a carbon material having high conductivity, heat resistance, and chemical stability, like graphite, but what is a layered graphite in which carbon atoms are bonded in a planar shape? In contrast, since there is a three-dimensional bond between carbon atoms, the gas tube has high gas impermeability, so that the airtightness in the process tube 1 can be reliably maintained. In addition, this glassy carbon is not consumed as a result of the use of three-dimensional bonds between carbon atoms, so that carbon is not oxidized and lost as a gas or dissipated as carbon dust due to wear. Since it does not occur, the process tube 1 can be used repeatedly for a long time.

なお、上記実施形態では、プロセスチューブ1と電磁誘導加熱コイル3との間に石英チューブ2を配置する場合を示したが、この石英チューブ2に代えて耐熱性と絶縁性を備えた例えばセラミックスチューブ等を用いることもでき、これらプロセスチューブ1と電磁誘導加熱コイル3との間が十分に絶縁されていれば、何も介在させないようにすることも可能である。また、電磁誘導加熱コイル3の水冷による冷却効果を期待する必要がなければ、石英チューブ2に代えて、耐熱性の断熱材を配置することもできる。   In the above embodiment, the case where the quartz tube 2 is disposed between the process tube 1 and the electromagnetic induction heating coil 3 has been shown. However, for example, a ceramic tube having heat resistance and insulation instead of the quartz tube 2. It is also possible to use nothing as long as the process tube 1 and the electromagnetic induction heating coil 3 are sufficiently insulated from each other. Moreover, if it is not necessary to expect the cooling effect by water cooling of the electromagnetic induction heating coil 3, it can replace with the quartz tube 2 and a heat resistant heat insulating material can also be arrange | positioned.

また、上記実施形態では、半導体ウエハの熱処理に用いる高速熱処理装置について説明したが、被処理物Sは半導体ウエハに限らず任意であり、通常の熱処理装置であっても同様に実施可能である。さらに、上記実施形態では、枚葉型の被処理物Sの熱処理装置について示したが、大型の容器状のプロセスチューブ1を用いることにより、大量の被処理物Sをまとめて処理するバッチ処理型の熱処理装置に実施することも可能である。   Moreover, although the rapid thermal processing apparatus used for the heat processing of a semiconductor wafer was demonstrated in the said embodiment, the to-be-processed object S is not restricted to a semiconductor wafer, Arbitrary, Even if it is a normal heat processing apparatus, it can implement similarly. Furthermore, in the said embodiment, although it showed about the heat processing apparatus of the single wafer type to-be-processed object S, the batch processing type which processes a large amount of to-be-processed object S collectively by using the large container-shaped process tube 1 is shown. It is also possible to implement the heat treatment apparatus.

本発明の一実施形態を示すものであって、高速熱処理装置の構造を示す断面側面図である。1 is a cross-sectional side view illustrating a structure of a rapid thermal processing apparatus according to an embodiment of the present invention. 本発明の一実施形態を示すものであって、図1におけるA−A断面正面図である。1 shows an embodiment of the present invention and is a cross-sectional front view taken along the line AA in FIG. 1. 本発明の一実施形態を示すものであって、高速熱処理装置におけるプロセスチューブの気密構造を示すための断面正面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates an embodiment of the present invention, and is a cross-sectional front view illustrating an airtight structure of a process tube in a rapid heat treatment apparatus. 従来例を示すものであって、高速熱処理装置の構造を示す断面側面図である。It is a cross-sectional side view which shows a prior art example and shows the structure of a rapid thermal processing apparatus.

符号の説明Explanation of symbols

1 プロセスチューブ
2 石英チューブ
3 電磁誘導加熱コイル
S 被処理物
1 Process tube 2 Quartz tube 3 Electromagnetic induction heating coil S Object to be treated

Claims (2)

気密にしたプロセスチューブ内を加熱して内部の被処理物を熱処理する熱処理装置において、
プロセスチューブをガラス状炭素で構成すると共に、このプロセスチューブの外側に電磁誘導加熱コイルが配置されたことを特徴とする熱処理装置。
In a heat treatment apparatus that heats the inside of an airtight process tube and heats the object to be treated,
A heat treatment apparatus comprising a process tube made of glassy carbon and an electromagnetic induction heating coil disposed outside the process tube.
前記プロセスチューブと水冷式の電磁誘導加熱コイルとの間に石英ガラスからなる石英チューブを配置したことを特徴とする請求項1に記載の熱処理装置。   The heat treatment apparatus according to claim 1, wherein a quartz tube made of quartz glass is disposed between the process tube and a water-cooled electromagnetic induction heating coil.
JP2004259882A 2004-09-07 2004-09-07 Thermal treatment equipment Pending JP2006080151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004259882A JP2006080151A (en) 2004-09-07 2004-09-07 Thermal treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004259882A JP2006080151A (en) 2004-09-07 2004-09-07 Thermal treatment equipment

Publications (1)

Publication Number Publication Date
JP2006080151A true JP2006080151A (en) 2006-03-23

Family

ID=36159384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004259882A Pending JP2006080151A (en) 2004-09-07 2004-09-07 Thermal treatment equipment

Country Status (1)

Country Link
JP (1) JP2006080151A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519753A (en) * 2007-02-24 2010-06-03 アイクストロン、アーゲー Apparatus and method for depositing a crystalline layer selectively using MOCVD or HVPE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878338A (en) * 1994-09-05 1996-03-22 Fujitsu Ltd Semiconductor manufacturing apparatus
JPH11209198A (en) * 1998-01-26 1999-08-03 Sumitomo Electric Ind Ltd Synthesis of silicon carbide single crystal
JP2003077855A (en) * 2001-08-31 2003-03-14 Denso Corp Heat treatment apparatus and method
JP2003151737A (en) * 2001-11-16 2003-05-23 Kobe Steel Ltd Heater
JP2004055896A (en) * 2002-07-22 2004-02-19 Kobe Steel Ltd Heating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878338A (en) * 1994-09-05 1996-03-22 Fujitsu Ltd Semiconductor manufacturing apparatus
JPH11209198A (en) * 1998-01-26 1999-08-03 Sumitomo Electric Ind Ltd Synthesis of silicon carbide single crystal
JP2003077855A (en) * 2001-08-31 2003-03-14 Denso Corp Heat treatment apparatus and method
JP2003151737A (en) * 2001-11-16 2003-05-23 Kobe Steel Ltd Heater
JP2004055896A (en) * 2002-07-22 2004-02-19 Kobe Steel Ltd Heating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519753A (en) * 2007-02-24 2010-06-03 アイクストロン、アーゲー Apparatus and method for depositing a crystalline layer selectively using MOCVD or HVPE

Similar Documents

Publication Publication Date Title
CN113555270B (en) Base and substrate processing equipment
TWI427724B (en) Processing apparatus and processing method
US20150230293A1 (en) System for insulating an induction vacuum furnace and method of making same
JP5226206B2 (en) Heat treatment method and heat treatment apparatus using induction heating
TW201936014A (en) Plasma processing apparatus
JP5367232B2 (en) Ceramic heater
JP2006509362A (en) Susceptor system
JP5877920B1 (en) Rapid heating / cooling heat treatment furnace
JP2010045170A (en) Sample mounting electrode
JP4336283B2 (en) Induction heating device
WO2015145974A1 (en) Heat treatment device
JP5110790B2 (en) Heat treatment equipment
JP2006080151A (en) Thermal treatment equipment
KR102474898B1 (en) Microwave heating apparatus and manufacturing method of aluminum nitride using the same
JP2006120693A (en) Heat treatment apparatus
JP2005072468A (en) Heat treatment apparatus of semiconductor wafer
JP2011091389A (en) Substrate processing apparatus and method of manufacturing semiconductor device
JP4180424B2 (en) Substrate processing apparatus, substrate processing method, and IC manufacturing method
JP2004014892A (en) High-temperature heating apparatus
JP2004071596A (en) Heat treatment apparatus
JP5686467B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP2008283143A (en) Treatment equipment, and transistor manufacturing method
JP2005136095A (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
WO2023145054A1 (en) Heater unit, multilayer structure, processing device, and method for manufacturing semiconductor device
TWI803010B (en) Semiconductor substrate support power transmission components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100922

A02 Decision of refusal

Effective date: 20110406

Free format text: JAPANESE INTERMEDIATE CODE: A02