JP2006120518A - Solid polymer electrolyte for fuel cell and fuel cell - Google Patents

Solid polymer electrolyte for fuel cell and fuel cell Download PDF

Info

Publication number
JP2006120518A
JP2006120518A JP2004308358A JP2004308358A JP2006120518A JP 2006120518 A JP2006120518 A JP 2006120518A JP 2004308358 A JP2004308358 A JP 2004308358A JP 2004308358 A JP2004308358 A JP 2004308358A JP 2006120518 A JP2006120518 A JP 2006120518A
Authority
JP
Japan
Prior art keywords
group
fuel cell
polymer electrolyte
solid polymer
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004308358A
Other languages
Japanese (ja)
Other versions
JP4684620B2 (en
Inventor
Hiroko Nakano
裕子 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2004308358A priority Critical patent/JP4684620B2/en
Priority to KR1020050010816A priority patent/KR101042960B1/en
Priority to US11/253,657 priority patent/US7829209B2/en
Publication of JP2006120518A publication Critical patent/JP2006120518A/en
Application granted granted Critical
Publication of JP4684620B2 publication Critical patent/JP4684620B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid polymer electrolyte for a fuel cell having high proton conductivity, high heat resistance, and high mechanical strength and to provide the fuel cell having the electrolyte. <P>SOLUTION: The solid polymer electrolyte for the fuel cell contains proton conductive resin in which side chains R<SP>1</SP>, R<SP>2</SP>, R<SP>3</SP>, and R<SP>4</SP>are bonded to a main chain comprising aromatic polyurea resin. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池用固体高分子電解質及びそれを用いた燃料電池に関し、特に電解質膜に加湿しながら発電を行なう燃料電池に好適に用いられる固体高分子電解質に関する。   The present invention relates to a solid polymer electrolyte for a fuel cell and a fuel cell using the same, and more particularly to a solid polymer electrolyte suitably used for a fuel cell that generates power while humidifying an electrolyte membrane.

近年、地球環境の悪化に伴い、クリーンエネルギーの普及開発が全世界的に焦眉の課題となっている。例えば交通関係においては、交通網の発達に伴う車両の走行台数の増大により、自動車等の内燃機関の排気ガスによる都市大気汚染が問題になっている。この対策として、電気自動車、ハイブリッドカーと呼ばれる電気・内燃機関併用自動車などが開発されてきているが、軽量かつ取り扱いが容易で、しかも大気を汚染しないエネルギー源として燃料電池などの利用もその一つとして有望である。また家庭への燃料電池導入も交通分野の場合と同様である。   In recent years, with the deterioration of the global environment, the widespread development of clean energy has become a serious issue worldwide. For example, in traffic relations, urban air pollution due to exhaust gas from an internal combustion engine such as an automobile has become a problem due to an increase in the number of vehicles traveling with the development of a traffic network. As countermeasures, electric vehicles and vehicles with electric / internal combustion engines called hybrid cars have been developed, but the use of fuel cells as an energy source that is lightweight and easy to handle and does not pollute the atmosphere is one of them. As promising. The introduction of fuel cells into the home is the same as in the transportation field.

燃料電池には電解液の種類によって、アルカリ型、リン酸型、溶融炭酸塩型、固体電解質型、固体高分子型等、いろいろなタイプの燃料電池があるが、低温で稼動でき、扱い易く、且つ出力密度の高い固体高分子型が電気自動車、家庭等のエネルギー源として注目を集めている。   There are various types of fuel cells, such as alkaline type, phosphoric acid type, molten carbonate type, solid electrolyte type, solid polymer type, etc., depending on the type of electrolyte, but it can operate at low temperatures and is easy to handle. In addition, a solid polymer type having a high output density is attracting attention as an energy source for electric vehicles, homes and the like.

この固体高分子型の燃料電池の電解質にはプロトン伝導膜が用いられる。プロトン伝導膜には、燃料電池の電極反応に関与するプロトンについて高いイオン伝導性が要求される。このようなプロトン伝導膜として、従来から超強酸基含有フッ素系高分子が知られている。しかしこれらの高分子電解材料はフッ素系高分子であるために、非常に高価であり、またプロトン伝導の媒体が水であることから常に加湿して水を補給する必要がある等の問題がある。   A proton conductive membrane is used for the electrolyte of this polymer electrolyte fuel cell. The proton conducting membrane is required to have high ionic conductivity for protons involved in the electrode reaction of the fuel cell. As such a proton conducting membrane, a super strong acid group-containing fluorine-based polymer has been conventionally known. However, since these polymer electrolyte materials are fluoropolymers, they are very expensive, and since the proton conducting medium is water, it is necessary to always humidify and replenish water. .

ところで、プロトン伝導性を持たせるため、芳香族骨格にカルボン酸基、スルホン酸基、リン酸基などのイオン解離基を含有させることは、特許文献1または2に記載されている。しかし、これらのイオン解離基は、特に高温で脱離しやすく、またプロトン伝導膜の柔軟性を損なうおそれがあり、更にプロトン伝導度が低い等の問題点がある。特許文献3にも関連した記載があるが、プロトン伝導度については開示されていない。   By the way, Patent Document 1 or 2 discloses that an aromatic skeleton contains an ionic dissociation group such as a carboxylic acid group, a sulfonic acid group, and a phosphoric acid group in order to impart proton conductivity. However, these ion dissociation groups are liable to be removed particularly at high temperatures, there is a risk that the flexibility of the proton conductive membrane may be impaired, and there are further problems such as low proton conductivity. Although there is a description related to Patent Document 3, proton conductivity is not disclosed.

また、非特許文献1には、ポリベンズイミダゾールにサルトンを反応させて活性水素基を導入する方法について記載されているが、当該法で導入できるのはスルホン酸基のみであり、他の活性水素基には適用できない。
特開2002−280019号公報 特開2002−358978号公報 特開2002−358978号公報 「固体高分子型燃料電池用イオン交換膜の開発」、(株)シーエムシー発行、2000年5月発行、p.98
Non-Patent Document 1 describes a method of introducing an active hydrogen group by reacting sultone with polybenzimidazole. However, only a sulfonic acid group can be introduced by this method, and other active hydrogen groups can be introduced. Not applicable to the group.
JP 2002-280019 A JP 2002-358978 A JP 2002-358978 A “Development of ion exchange membrane for polymer electrolyte fuel cell”, issued by CMC Co., Ltd., May 2000, p. 98

本発明は、上記事情に鑑みてなされたものであって、プロトン伝導度、耐熱性、力学的強度に優れた燃料電池用固体高分子電解質およびこの電解質を備えた燃料電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a solid polymer electrolyte for a fuel cell excellent in proton conductivity, heat resistance, and mechanical strength, and a fuel cell provided with the electrolyte. And

上記の目的を達成するために、本発明は以下の構成を採用した。
本発明の燃料電池用固体高分子電解質は、芳香族ポリウレア樹脂からなる主鎖に、側鎖R,R,R,Rが結合されてなる下記[1]式で示されるプロトン伝導性樹脂を具備してなることを特徴とする。
ただし、下記式[1]中、XおよびXはそれぞれ、S,O、スルホニル基、炭素数が1−3の直鎖メチレン基、ジフルオロメチレン基、ヘキサフルオロプロピレン基、ヘテロ芳香族環のうちのいずれか一種であり、R,R,R,Rのうちの少なくとも1つがアルキルスルホン酸基またはカルボン酸基であり、nは20−1000の範囲である。
なお、本発明においては、R,R,R,Rの全てがアルキルスルホン酸基またはカルボン酸基であってもよい。
In order to achieve the above object, the present invention employs the following configuration.
The solid polymer electrolyte for a fuel cell according to the present invention has a proton conduction represented by the following formula [1] in which side chains R 1 , R 2 , R 3 and R 4 are bonded to a main chain made of an aromatic polyurea resin. It is characterized by comprising a functional resin.
However, in the following formula [1], X 1 and X 2 are S, O, a sulfonyl group, a linear methylene group having 1-3 carbon atoms, a difluoromethylene group, a hexafluoropropylene group, a heteroaromatic ring, respectively. Any one of them, at least one of R 1 , R 2 , R 3 , and R 4 is an alkylsulfonic acid group or a carboxylic acid group, and n is in the range of 20-1000.
In the present invention, all of R 1 , R 2 , R 3 , and R 4 may be an alkyl sulfonic acid group or a carboxylic acid group.

Figure 2006120518
Figure 2006120518

上記構成によれば、プロトン伝導性樹脂の主鎖として、芳香族環を含む芳香族ポリウレア樹脂が備えられているので、固体高分子電解質の耐熱性および強度を向上することができる。また、側鎖R,R,R,Rのうちの少なくとも1つがアルキルホスホン基またはカルボン酸基なので、電解質のプロトン伝導性を向上することができる。 According to the above configuration, since the aromatic polyurea resin containing an aromatic ring is provided as the main chain of the proton conductive resin, the heat resistance and strength of the solid polymer electrolyte can be improved. In addition, since at least one of the side chains R 1 , R 2 , R 3 , R 4 is an alkylphosphonic group or a carboxylic acid group, the proton conductivity of the electrolyte can be improved.

また本発明においては、上記式[1]において、R,R,R,Rのうちの少なくとも1つがアルキルスルホン酸基またはカルボン酸基であり、残りが水素、炭素数1−4のアルキル基、炭素数6−9の芳香族環を含む官能基のうちのいずれか一種以上の置換基であってもよい。 In the present invention, in the above formula [1], at least one of R 1 , R 2 , R 3 , and R 4 is an alkylsulfonic acid group or a carboxylic acid group, and the remainder is hydrogen and has 1-4 carbon atoms. Or any one or more substituents of a functional group containing an aromatic ring having 6 to 9 carbon atoms.

また本発明の燃料電池用固体高分子電解質は、先に記載の燃料電池用固体高分子電解質であって、前記プロトン伝導性樹脂に一種以上の酸が含浸されてなることを特徴とする。
特に、本発明の燃料電池用固体高分子電解質においては、前記酸がリン酸またはホスホン酸のいずれか一方または両方であることが好ましい。
The solid polymer electrolyte for fuel cells of the present invention is the solid polymer electrolyte for fuel cells described above, wherein the proton conductive resin is impregnated with one or more acids.
In particular, in the solid polymer electrolyte for a fuel cell of the present invention, the acid is preferably either one or both of phosphoric acid and phosphonic acid.

上記構成によれば、上記の酸がプロトン伝導性樹脂に含浸されることにより、プロトン伝導性を更に高めることができる。   According to the above configuration, proton conductivity can be further improved by impregnating the proton conductive resin with the acid.

次に本発明の燃料電池は、先のいずれかに記載の燃料電池用固体高分子電解質を備えたことを特徴とする。
この構成によれば、耐熱性およびプロトン伝導性に優れた固体高分子電解質を備えているので、発電特性に優れた高性能の燃料電池を提供することができる。
Next, a fuel cell according to the present invention is characterized by including the solid polymer electrolyte for a fuel cell according to any one of the above.
According to this configuration, since the solid polymer electrolyte excellent in heat resistance and proton conductivity is provided, a high-performance fuel cell excellent in power generation characteristics can be provided.

本発明によれば、プロトン伝導度、耐熱性、力学的強度に優れた燃料電池用固体高分子電解質およびこの電解質を備えた燃料電池を提供することを目的とする。   According to the present invention, it is an object to provide a solid polymer electrolyte for a fuel cell excellent in proton conductivity, heat resistance, and mechanical strength, and a fuel cell provided with the electrolyte.

以下、本発明の実施の形態を図面を参照して説明する。
本発明の燃料電池用固体高分子電解質は、ポリウレア樹脂からなる主鎖に、活性水素基が末端に結合されてなる側鎖が結合されて形成されたプロトン伝導性樹脂から構成されている。本発明における側鎖はポリウレア樹脂の主鎖中のウレア基及び/またはウレタン基から分岐している。この構造以外では高いプロトン伝導度を得ることができない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The solid polymer electrolyte for a fuel cell of the present invention is composed of a proton conductive resin formed by bonding a main chain made of a polyurea resin with a side chain having an active hydrogen group bonded to the terminal. The side chain in the present invention is branched from a urea group and / or a urethane group in the main chain of the polyurea resin. Other than this structure, high proton conductivity cannot be obtained.

より具体的には、本発明の燃料電池用固体高分子電解質は、芳香族ポリウレア樹脂からなる主鎖に、側鎖R,R,R,Rが結合されてなる下記[2]式で示されるプロトン伝導性樹脂を具備して構成されている。なお、下記式[2]中、XおよびXはそれぞれ、S,O、スルホニル基、炭素数が1−3の直鎖メチレン基、ジフルオロメチレン基、ヘキサフルオロプロピレン基、ヘテロ芳香族環のうちのいずれか一種であり、nは20−1000の範囲である。 More specifically, the solid polymer electrolyte for a fuel cell according to the present invention includes side chains R 1 , R 2 , R 3 , and R 4 bonded to a main chain made of an aromatic polyurea resin [2] A proton conductive resin represented by the formula is provided. In the following formula [2], X 1 and X 2 are S, O, a sulfonyl group, a linear methylene group having 1-3 carbon atoms, a difluoromethylene group, a hexafluoropropylene group, a heteroaromatic ring, respectively. Any one of them, and n is in the range of 20-1000.

Figure 2006120518
Figure 2006120518

側鎖R,R,R,Rは、ポリウレア樹脂中に含まれるウレア基またはウレタン基のいずれか一方または両方に結合した置換基であり、その少なくとも1つがアルキルホスホン基またはカルボン酸基であり、残りが水素、炭素数1−4のアルキル基、炭素数6−9の芳香族環を含む官能基のうちのいずれか一種以上の置換基である。
側鎖R,R,R,Rのうちの少なくとも1つを構成するアルキルホスホン基またはカルボン酸基には、活性水素基が含まれており、この活性水素基によってプロトンの伝導が起こり、燃料電池用固体高分子電解質にプロトン伝導性が付与される。
The side chains R 1 , R 2 , R 3 and R 4 are substituents bonded to one or both of a urea group and a urethane group contained in the polyurea resin, at least one of which is an alkylphosphonic group or a carboxylic acid And the balance is one or more substituents selected from hydrogen, an alkyl group having 1 to 4 carbon atoms, and a functional group containing an aromatic ring having 6 to 9 carbon atoms.
The alkylphosphonic group or carboxylic acid group constituting at least one of the side chains R 1 , R 2 , R 3 , R 4 contains an active hydrogen group, and proton conduction is performed by this active hydrogen group. Occurs, and proton conductivity is imparted to the solid polymer electrolyte for fuel cells.

また、側鎖R,R,R,Rの全てがアルキルホスホン基またはカルボン酸基であってもよく、側鎖R,R,R,Rの一部がアルキルホスホン基またはカルボン酸基であれば全部がアルキルホスホン基またはカルボン酸基でなくてもよい。この場合、アルキルホスホン基またはカルボン酸基以外の置換基として、水素、炭素数1−4のアルキル基、炭素数6−9の芳香族環を含む官能基のうちのいずれか一種以上の置換基を用いることができる。ここで、炭素数1−4のアルキル基とは、メチル基、エチル基、プロピル基、ブチル基を指す。また、炭素数6−9の芳香族環を含む官能基とは、フェニル基、ベンジル基、フェニルエチル基、フェニルプロピル基を指す。アルキル基または芳香族環を含む官能基の炭素数が4または9を越えると、側鎖R−Rによって主鎖を構成する芳香族ポリウレア樹脂の結晶性が低下し、耐熱性が低下するので好ましくない。 Further, all of the side chains R 1 , R 2 , R 3 and R 4 may be an alkylphosphonic group or a carboxylic acid group, and a part of the side chains R 1 , R 2 , R 3 and R 4 is an alkylphosphonic group. As long as it is a group or a carboxylic acid group, not all may be an alkylphosphonic group or a carboxylic acid group. In this case, as a substituent other than the alkylphosphonic group or the carboxylic acid group, any one or more substituents selected from hydrogen, an alkyl group having 1 to 4 carbon atoms, and a functional group containing an aromatic ring having 6 to 9 carbon atoms Can be used. Here, the alkyl group having 1 to 4 carbon atoms refers to a methyl group, an ethyl group, a propyl group, and a butyl group. The functional group containing an aromatic ring having 6 to 9 carbon atoms refers to a phenyl group, a benzyl group, a phenylethyl group, and a phenylpropyl group. When the carbon number of the functional group containing an alkyl group or an aromatic ring exceeds 4 or 9, the crystallinity of the aromatic polyurea resin constituting the main chain by the side chains R 1 to R 4 is lowered, and the heat resistance is lowered. Therefore, it is not preferable.

次に、主鎖を構成する芳香族ポリウレア樹脂は、耐熱性および対薬品性に優れる特徴があり、燃料電池用固体高分子電解質の耐熱性および力学的強度を高めることができる。
芳香族ポリウレア樹脂には、原料モノマーの種類によって、その分子構造中にウレア基またはウレタン基のいずれか一方または両方を備えることになる。これらウレア基およびウレタン基には、窒素に結合した活性水素が存在する。この活性水素に対して、種々の官能基が反応することにより、ポリウレア樹脂に側鎖R−Rが結合される。例えば、アルキルスルホン基は、サルトン類等が開裂することにより形成される。また、カルボン酸基は、末端イソシアネート基含有エステル化合物が結合し、エステル部分が加水分解することにより形成される。サルトン類が開裂して主鎖に結合すると、その側鎖の末端にはスルホン酸基が位置することになる。また末端イソシアネート基含有エステル化合物が結合し、エステル部分が加水分解すると、その側鎖の末端にはカルボン酸基が位置することになる。
Next, the aromatic polyurea resin constituting the main chain is characterized by excellent heat resistance and chemical resistance, and can improve the heat resistance and mechanical strength of the solid polymer electrolyte for fuel cells.
The aromatic polyurea resin has one or both of a urea group and a urethane group in its molecular structure depending on the type of raw material monomer. These urea groups and urethane groups have active hydrogen bonded to nitrogen. By reacting this active hydrogen with various functional groups, the side chain R 1 -R 4 is bonded to the polyurea resin. For example, the alkylsulfone group is formed by cleavage of sultones or the like. In addition, the carboxylic acid group is formed by bonding of the terminal isocyanate group-containing ester compound and hydrolysis of the ester moiety. When the sultone is cleaved and bonded to the main chain, a sulfonic acid group is located at the end of the side chain. When the terminal isocyanate group-containing ester compound is bonded and the ester portion is hydrolyzed, a carboxylic acid group is located at the end of the side chain.

芳香族ポリウレア樹脂は、例えば、芳香族ポリイソシアネートと芳香族ポリアミンとの反応により得られる。
芳香族ポリイソシアネートの例としては、トリレンジイソシアネート、ジフェニルメタンジイソシアネート(以下、MDIと略す)、4,4’−ジフェニルエーテルジイソシアネート(ODI)、キシリレンジイソシアネート、ナフタレンジイソシアネート、4,4’−ジフェニルスルフィドジイソシアネート、4,4’−ジフェニルスルホキシドジイソシアネート、ジフェニルエタンジイソシアネート、ジフェニルプロパンジイシシアネート、ジフェニルジフルオロメタンジイソシアネート、ジフェニルヘキサフルオロプロピレンジイソシアネート等を例示でき、更にこれらに記載の化合物の誘導体も例示することができる。
これら芳香族ポリイソシアネートは、必要により併用してもよい。ポリイソシアネートのNCO%は通常、20%以上48%以下、好ましくは25%以上48%以下であるこの範囲外では燃料電池用固体高分子電解質の耐熱性、力学的強度が低下する。
The aromatic polyurea resin is obtained, for example, by a reaction between an aromatic polyisocyanate and an aromatic polyamine.
Examples of aromatic polyisocyanates include tolylene diisocyanate, diphenylmethane diisocyanate (hereinafter abbreviated as MDI), 4,4′-diphenyl ether diisocyanate (ODI), xylylene diisocyanate, naphthalene diisocyanate, 4,4′-diphenyl sulfide diisocyanate, Examples include 4,4′-diphenyl sulfoxide diisocyanate, diphenylethane diisocyanate, diphenylpropane diisocyanate, diphenyldifluoromethane diisocyanate, diphenylhexafluoropropylene diisocyanate, and derivatives of the compounds described therein.
These aromatic polyisocyanates may be used in combination if necessary. The NCO% of the polyisocyanate is usually 20% or more and 48% or less, preferably 25% or more and 48% or less. If the polyisocyanate is outside this range, the heat resistance and mechanical strength of the solid polymer electrolyte for fuel cells are lowered.

芳香族ポリアミンとしては、4,4’−ジフェニルエーテルジアミン(ODA)、(ポリテトラメチレンオキシド−ジ−P−アミノベンゾエート)、(4,4’−ジアミノ−3,3’−ジエチルアミノ−5,5’−ジアミノジフェニルメタン)、(2,2’,3,3’−テトラクロロ−4,4’−ジアミノジフェニルメタン)、(3,3’−ジクロロ−4,4’−ジアミノジフェニルメタン)、(トリメチレン−ビス(4−アミノベンゾアート))、(3,5’−ジメチルチオトルエンジアミン)、2,3−ジアミノピリジン、2,5−ジアミノピリジン、2,6−ジアミノピリジン、3,4−ジアミノピリジン、等を例示できる。これらは混合して使用してもよい。これらのうち特に4,4’−ジフェニルエーテルジアミン(ODA)が好ましい。アミン価は通常、28以上200以下の範囲が好ましく、28以上150以下がより好ましい。この範囲外では燃料電池用固体高分子電解質の力学的強度が低下する。   Aromatic polyamines include 4,4′-diphenyl ether diamine (ODA), (polytetramethylene oxide-di-P-aminobenzoate), (4,4′-diamino-3,3′-diethylamino-5,5 ′). -Diaminodiphenylmethane), (2,2 ′, 3,3′-tetrachloro-4,4′-diaminodiphenylmethane), (3,3′-dichloro-4,4′-diaminodiphenylmethane), (trimethylene-bis ( 4-aminobenzoate)), (3,5'-dimethylthiotoluenediamine), 2,3-diaminopyridine, 2,5-diaminopyridine, 2,6-diaminopyridine, 3,4-diaminopyridine, etc. It can be illustrated. These may be used as a mixture. Of these, 4,4'-diphenyl ether diamine (ODA) is particularly preferable. The amine value is usually preferably in the range of 28 to 200, more preferably 28 to 150. Outside this range, the mechanical strength of the solid polymer electrolyte for fuel cells decreases.

芳香族ポリイソシアネートと芳香族ポリアミンの反応は通常、NCO指数90以上110以下、好ましくは95以上105以下である。この範囲外では良好な耐熱性及び強度を持った膜を得ることができない。   The reaction between the aromatic polyisocyanate and the aromatic polyamine is usually an NCO index of 90 or more and 110 or less, preferably 95 or more and 105 or less. Outside this range, a film having good heat resistance and strength cannot be obtained.

ポリウレア樹脂中のウレア基及び/またはウレタン基と、側鎖R−Rとの反応は、溶媒の存在下、ポリウレタンにおける公知の反応により行われる。
側鎖R−Rに結合させる置換基としてアルキルホスホン基を導入する場合は、ポリウレア樹脂中のウレア基またはウレタン基のいずれか一方または両方に、サルトン類等を開裂させて結合させる。
The reaction between the urea group and / or the urethane group in the polyurea resin and the side chain R 1 -R 4 is performed by a known reaction in polyurethane in the presence of a solvent.
When an alkylphosphone group is introduced as a substituent to be bonded to the side chain R 1 -R 4 , a sultone or the like is cleaved and bonded to one or both of the urea group and the urethane group in the polyurea resin.

反応式の一例を下記式[3]に示す。具体的には、水素化ナトリウム等をポリウレア樹脂(3−1)に添加して、ウレア基またはウレタン基に含まれる窒素に結合された活性水素をナトリウムと置換(3−2)した上で、このナトリウムにサルトン化合物(3−3)を反応させる。このときサルトン化合物が開裂して側鎖となってウレア樹脂に化合(3−4)する。更に酸で置換することにより、側鎖の末端にサルトン化合物に由来するスルホン酸基(3−5)が形成される。サルトン化合物としては、(アルキル)プロパンサルトン、ブタンサルトンが挙げられる。   An example of the reaction formula is shown in the following formula [3]. Specifically, sodium hydride or the like is added to the polyurea resin (3-1), and the active hydrogen bonded to nitrogen contained in the urea group or urethane group is replaced with sodium (3-2). The sodium is reacted with a sultone compound (3-3). At this time, the sultone compound is cleaved to form a side chain and compound (3-4) into a urea resin. Further, by substitution with an acid, a sulfonic acid group (3-5) derived from a sultone compound is formed at the end of the side chain. Examples of the sultone compounds include (alkyl) propane sultone and butane sultone.

Figure 2006120518
Figure 2006120518

また、側鎖R−Rに結合させる置換基としてカルボン酸基を導入する場合は、ポリウレア樹脂中のウレア基またはウレタン基のいずれか一方または両方に、末端イソシアネート基含有エステル化合物を結合し、エステル部分を加水分解させる。
末端イソシアネート基含有エステル化合物の具体例としては、イソシアナト酢酸ブチル、イソシアナト酢酸エチル、イソシアナト安息香酸エチル、イソシアナトプロピオン酸エチル等を例示できる。
ポリウレア樹脂中のウレア基またはウレタン基のいずれか一方または両方と末端イソシアネート基含有エステル化合物との反応は、溶媒の存在下、ポリウレタンにおける公知の方法により行われる。反応式の一例を下記式[4]に示す。この反応において、溶媒としてはジメチルホルムアミド、ジメチルスルホキシド、ジメチルアセトアミド等が好ましい。必要により、ウレタンか触媒を使用してもよい。ウレタン化触媒としては錫化合物が好ましい。
また、ポリウレア樹脂中のウレア基またはウレタン基のいずれか一方または両方と末端イソシアネート基含有エステル化合物との反応物(4−2)のエステル部分をカルボン酸に変換するには、公知の加水分解方法が挙げられる。
When a carboxylic acid group is introduced as a substituent to be bonded to the side chain R 1 -R 4 , a terminal isocyanate group-containing ester compound is bonded to one or both of the urea group and the urethane group in the polyurea resin. The ester moiety is hydrolyzed.
Specific examples of the terminal isocyanate group-containing ester compound include butyl isocyanatoacetate, ethyl isocyanatoacetate, ethyl isocyanatobenzoate, and ethyl isocyanatopropionate.
The reaction between one or both of the urea group and the urethane group in the polyurea resin and the terminal isocyanate group-containing ester compound is performed by a known method in polyurethane in the presence of a solvent. An example of the reaction formula is shown in the following formula [4]. In this reaction, the solvent is preferably dimethylformamide, dimethyl sulfoxide, dimethylacetamide or the like. If necessary, urethane or a catalyst may be used. A tin compound is preferred as the urethanization catalyst.
In addition, in order to convert the ester part of the reaction product (4-2) of the urea group or the urethane group in the polyurea resin and the terminal isocyanate group-containing ester compound into a carboxylic acid, a known hydrolysis method is used. Is mentioned.

Figure 2006120518
Figure 2006120518

また本実施形態の燃料電池用固体高分子電解質は、プロトン伝導性樹脂に一種以上の酸を含浸させてなるものであっても良い。前記酸としては、リン酸またはホスホン酸のいずれか一方または両方であることが好ましい。このリン酸等の含浸量(ドープ量)は、上記式[2]に示すプロトン伝導性樹脂の繰り返し単位1モルあたり、4モルないし32モルの範囲とすることが好ましい。プロトン伝導性樹脂にリン酸等を含浸させることで、固体高分子電解質のプロトン伝導性を更に高めることができる。   In addition, the solid polymer electrolyte for a fuel cell according to this embodiment may be obtained by impregnating a proton conductive resin with one or more acids. The acid is preferably either one or both of phosphoric acid and phosphonic acid. The impregnation amount (doping amount) of phosphoric acid or the like is preferably in the range of 4 mol to 32 mol per mol of the repeating unit of the proton conductive resin represented by the formula [2]. By impregnating the proton conductive resin with phosphoric acid or the like, the proton conductivity of the solid polymer electrolyte can be further increased.

次に本発明に係る燃料電池について具体的に説明する。本発明に係る燃料電池にはプロトン伝導性を有する高分子膜として、前記した燃料電池用固体高分子電解質が備えられている。   Next, the fuel cell according to the present invention will be specifically described. The fuel cell according to the present invention includes the above-described solid polymer electrolyte for a fuel cell as a polymer membrane having proton conductivity.

燃料電池はプロトン伝導性を有する高分子膜とこの両側に接触して配置される正極及び負極(一対の電極)から構成される。燃料の水素は負極において電気化学的に酸化されて、プロトンと電子を生成する。このプロトンは高分子膜内で輸送されて酸素が供給される正極に達する。一方、負極で生成した電子は燃料電池に接続された外部負荷を通り、正極に流れ、正極においてプロトンと酸素と電子が反応して水が生成される。   The fuel cell is composed of a polymer film having proton conductivity and a positive electrode and a negative electrode (a pair of electrodes) arranged in contact with both sides. Fuel hydrogen is electrochemically oxidized at the negative electrode to produce protons and electrons. The protons are transported in the polymer membrane and reach the positive electrode to which oxygen is supplied. On the other hand, electrons generated at the negative electrode pass through an external load connected to the fuel cell and flow to the positive electrode, where protons, oxygen, and electrons react to generate water.

前記燃料電池を構成する電極は、導電材、バインダーおよび触媒から成っている。導電材としては、電気伝導性物質であればいずれのものでもよく、各種金属や炭素材料などが挙げられる。たとえばアセチレンブラック等のカーボンブラック、活性炭および黒鉛等が挙げられ、これらは単独あるいは混合して使用される。   The electrode constituting the fuel cell is composed of a conductive material, a binder and a catalyst. As the conductive material, any conductive material may be used, and various metals and carbon materials may be used. Examples thereof include carbon black such as acetylene black, activated carbon and graphite, and these are used alone or in combination.

また、バインダーとしては本発明のプロトン伝導性樹脂を使用するのが好ましいが、他の樹脂を用いることもできる。その場合、他の樹脂は揆水性を有するフッ素樹脂が好ましい。フッ素樹脂の中でも融点が400℃以下のものがより好ましく、例えばポリテトラフルオロエチレン、テトラフルオロエチレンーパーフルオロアルキルビニルエーテル共重合体などが挙げられる。   Moreover, although it is preferable to use the proton conductive resin of this invention as a binder, other resin can also be used. In that case, the other resin is preferably a fluororesin having hydrophobicity. Among the fluororesins, those having a melting point of 400 ° C. or lower are more preferable, and examples thereof include polytetrafluoroethylene and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymers.

電極の触媒としては、水素の酸化反応および酸素の還元反応を促進する金属であれば、特に限定されることはないが、例えば鉛、鉄、マンガン、コバルト、クロム、ガリウム、バナジウム、タングステン、ルテニウム、イリジウム、パラジウム、白金、ロジウムまたはそれらの合金が挙げられる。   The electrode catalyst is not particularly limited as long as it is a metal that promotes hydrogen oxidation reaction and oxygen reduction reaction. For example, lead, iron, manganese, cobalt, chromium, gallium, vanadium, tungsten, ruthenium. , Iridium, palladium, platinum, rhodium or an alloy thereof.

以上説明したように、本発明の燃料電池用固体高分子電解質によれば、プロトン伝導度、耐熱性および力学的強度を向上させることができる。また本発明の燃料電池によれば、発電特性をより向上させることができる。   As described above, according to the solid polymer electrolyte for fuel cell of the present invention, proton conductivity, heat resistance and mechanical strength can be improved. Moreover, according to the fuel cell of the present invention, the power generation characteristics can be further improved.

(実施例1)
アルゴン雰囲気下において4,4’−ジフェニルエーテルジアミン(ODA)1.040gをN−メチルピロリドン15mLに溶解し、更にアルゴン雰囲気下で、ジフェニルメタンジイソシアネート(MDI)1.250gをゆっくり滴下した。その後、120℃で3時間反応させた後、反応溶液をメタノールに再沈殿させて白色の芳香族ポリウレア樹脂(以下、PU−MDODと表記する)を回収した。
次に、アルゴン雰囲気下、80℃にてN−メチルピロリドン10mLに水素化ナトリウム0.120gを分散させた。また、先ほど得られたPU−MDOD1.035gをN−メチルピロリドン溶液10mLに溶解させた。そして、水素化ナトリウムのN−メチルピロリドン溶液に、PU−MDODのN−メチルピロリドン溶液を徐々に滴下した。滴下後の溶液が透明になってから、1,4−ブタンサルトン0.681gを滴下した。滴下後、析出してきた固体を減圧濾過で回収し、エタノールで洗浄することにより、淡黄色の固体状のプロトン伝導樹脂のナトリウム塩(以下、s−PU−MDOD(Na)と表記する)が得られた。得られたs−PU−MDOD(Na)をジメチルアセトアミド(以下、DMAcと表記する)に溶解させてから溶液をガラス基板上にキャストし、80℃にて乾燥することで淡黄色透明フィルムを得た。このフィルムを1mol/Lの塩酸水溶液に12時間以上浸すことによりNaイオンを水素イオンに置換して、プロトン伝導樹脂(以下、s−PU−MDOD(H)と表記する)からなるフィルムを得た。このようにして、側鎖にアルキルホスホン基が導入されてなる芳香族ポリウレア樹脂からなる実施例1の固体高分子電解質膜を製造した。得られた高分子膜の膜厚は37μmであった。下記式[5]に、本実施例における芳香族ポリウレア樹脂の合成からプロトン伝導樹脂の合成まで反応スキームを示す。また、下記式[6]に、実施例1のs−PU−MDOD(H)の構造式を示す。この下記式[6]に示す構造は、上記構造式[2]において、XをOとし、XをCHとし、R−RをHとし、R4をOCSOHとしたものである。
Example 1
Under an argon atmosphere, 1.040 g of 4,4′-diphenyl ether diamine (ODA) was dissolved in 15 mL of N-methylpyrrolidone, and further 1.250 g of diphenylmethane diisocyanate (MDI) was slowly added dropwise under an argon atmosphere. Then, after making it react at 120 degreeC for 3 hours, the reaction solution was reprecipitated in methanol and white aromatic polyurea resin (henceforth PU-MDOD) was collect | recovered.
Next, 0.120 g of sodium hydride was dispersed in 10 mL of N-methylpyrrolidone at 80 ° C. in an argon atmosphere. Moreover, 1.035 g of PU-MDOD obtained previously was dissolved in 10 mL of N-methylpyrrolidone solution. And the N-methylpyrrolidone solution of PU-MDOD was gradually dripped at the N-methylpyrrolidone solution of sodium hydride. After the dropped solution became transparent, 1,81-butanesultone (0.681 g) was added dropwise. After dropping, the precipitated solid is collected by vacuum filtration and washed with ethanol to obtain a pale yellow solid proton conductive resin sodium salt (hereinafter referred to as s-PU-MDOD (Na)). It was. The obtained s-PU-MDOD (Na) was dissolved in dimethylacetamide (hereinafter referred to as DMAc), and then the solution was cast on a glass substrate and dried at 80 ° C. to obtain a pale yellow transparent film. It was. By immersing this film in a 1 mol / L hydrochloric acid aqueous solution for 12 hours or more, Na ions were replaced with hydrogen ions to obtain a film made of a proton conductive resin (hereinafter referred to as s-PU-MDOD (H)). . Thus, the solid polymer electrolyte membrane of Example 1 made of an aromatic polyurea resin having an alkylphosphone group introduced into the side chain was produced. The obtained polymer film had a thickness of 37 μm. The reaction scheme from the synthesis of the aromatic polyurea resin to the synthesis of the proton conductive resin in the present Example is shown in the following formula [5]. Moreover, structural formula of s-PU-MDOD (H) of Example 1 is shown in the following formula [6]. The structure represented by the following formula [6] is the same as the structure [2] described above, in which X 1 is O, X 2 is CH 2 , R 1 -R 3 is H, and R 4 is OC 3 H 6 SO 3 H. It is what.

Figure 2006120518
Figure 2006120518

Figure 2006120518
Figure 2006120518

(実施例2)
ジフェニルメタンジイソシアネート(MDI)を4,4’−ジフェニルエーテルジイソシアネート(ODI)に変えたこと以外は実施例1と同様にして、プロトン伝導樹脂(以下、s−PU−ODOD(H)と表記する)からなるフィルムを得た。このようにして、側鎖にアルキルホスホン基が導入されてなる芳香族ポリウレア樹脂からなる実施例2の固体高分子電解質膜を製造した。得られた高分子膜の膜厚は41μmであった。下記式[7]に、本実施例における芳香族ポリウレア樹脂の合成からプロトン伝導樹脂の合成まで反応スキームを示す。また、下記式[8]に、本実施例2のs−PU−ODOD(H)の構造式を示す。この下記式[8]に示す構造は、上記構造式[2]において、XをおよびXをOとし、R−RをHとし、R4をOCSOHとしたものである。
(Example 2)
A proton conductive resin (hereinafter referred to as s-PU-ODOD (H)) is used in the same manner as in Example 1 except that diphenylmethane diisocyanate (MDI) is changed to 4,4′-diphenyl ether diisocyanate (ODI). A film was obtained. In this way, a solid polymer electrolyte membrane of Example 2 made of an aromatic polyurea resin having an alkylphosphone group introduced in the side chain was produced. The film thickness of the obtained polymer film was 41 μm. The reaction scheme from the synthesis of the aromatic polyurea resin to the synthesis of the proton conductive resin in the present Example is shown in the following formula [7]. Moreover, structural formula of s-PU-ODOD (H) of the present Example 2 is shown in the following formula [8]. The structure represented by the following formula [8] is the structure represented by the above formula [2], wherein X 1 and X 2 are O, R 1 -R 3 is H, and R 4 is OC 3 H 6 SO 3 H. It is.

Figure 2006120518
Figure 2006120518

Figure 2006120518
Figure 2006120518

(実施例3)
実施例1で得られたs−PU−MDOD(Na)を、85%リン酸に12時間浸積させることにより、プロトン伝導樹脂にリン酸が含浸されてなる実施例3の固体高分子電解質膜を製造した。得られた高分子膜の膜厚は35μmであった。
(Example 3)
The solid polymer electrolyte membrane of Example 3 in which the proton conductive resin is impregnated with phosphoric acid by immersing the s-PU-MDOD (Na) obtained in Example 1 in 85% phosphoric acid for 12 hours Manufactured. The film thickness of the obtained polymer film was 35 μm.

(比較例1)
フラスコに、市販のポリエーテルエーテルケトン25gと濃硫酸125mlを投入し、窒素気流下、室温にて48時間攪拌してポリエーテルエーテルケトンをスルホン化させた。撹拌後の反応溶液を3リットルの脱イオン水にゆっくりと滴下して、スルホン化ポリエーテルエーテルケトンを析出させ、ろ過回収した。得られた析出物を実施例1と同様の方法で成膜し、黄色透明な膜が得られた。このようにして比較例1の固体高分子電解質膜を得た。
(Comparative Example 1)
Into the flask, 25 g of commercially available polyether ether ketone and 125 ml of concentrated sulfuric acid were added, and the mixture was stirred at room temperature for 48 hours under a nitrogen stream to sulfonate the polyether ether ketone. The reaction solution after stirring was slowly added dropwise to 3 liters of deionized water to precipitate sulfonated polyether ether ketone, which was collected by filtration. The obtained precipitate was formed into a film in the same manner as in Example 1, and a yellow transparent film was obtained. Thus, the solid polymer electrolyte membrane of Comparative Example 1 was obtained.

実施例1−3及び比較例1の固体高分子電解質膜について、プロトン伝導度およびイオン交換容量を測定した。結果を表1に示す。なお、プロトン伝導度、イオン交換容量の測定は以下の手順で行なった。   With respect to the solid polymer electrolyte membranes of Examples 1-3 and Comparative Example 1, proton conductivity and ion exchange capacity were measured. The results are shown in Table 1. The proton conductivity and ion exchange capacity were measured according to the following procedure.

プロトン伝導度:短冊状の電解質膜の表面に5mm間隔で白金線(直径0.2mm)を押しあてて電極とし、交流(1kHz)を印加した時の抵抗をインピーダンスアナライザーで測定した。電極間隔と抵抗の傾き(R)、電解質膜の厚み(t)、電解質膜の幅(D)から1/(R×T×D)によりプロトン伝導度を求めた。測定は80℃、湿度95%で行った。   Proton conductivity: A platinum wire (diameter 0.2 mm) was pressed against the surface of a strip-shaped electrolyte membrane at an interval of 5 mm to form an electrode, and the resistance when alternating current (1 kHz) was applied was measured with an impedance analyzer. The proton conductivity was determined by 1 / (R × T × D) from the electrode interval and the slope of resistance (R), the thickness (t) of the electrolyte membrane, and the width (D) of the electrolyte membrane. The measurement was performed at 80 ° C. and a humidity of 95%.

イオン交換容量:短冊状の電解質膜を80℃、減圧下にて12時間乾燥させて重量を測定し、このフィルムを1mol/Lの塩化ナトリウム水溶液40mLに12時間以上浸漬させる。膜を浸漬させた塩化ナトリウム水溶液を20mL採取し、0.05mol/Lの水酸化ナトリウム水溶液で系中の酸を滴定した。系中の酸のモル数(M)と乾燥時の膜の重量(W)からM/Wによりイオン交換容量(meq/g)を求めた。   Ion exchange capacity: A strip-shaped electrolyte membrane is dried at 80 ° C. under reduced pressure for 12 hours to measure the weight, and this film is immersed in 40 mL of a 1 mol / L sodium chloride aqueous solution for 12 hours or more. 20 mL of a sodium chloride aqueous solution in which the membrane was immersed was collected, and the acid in the system was titrated with a 0.05 mol / L aqueous sodium hydroxide solution. The ion exchange capacity (meq / g) was determined by M / W from the number of moles of acid in the system (M) and the weight of the membrane during drying (W).

Figure 2006120518
Figure 2006120518

更に、実施例3及び比較例1の固体高分子電解質膜について、100℃でプロトン伝導度を測定した。結果を表2に示す。   Furthermore, proton conductivity was measured at 100 ° C. for the solid polymer electrolyte membranes of Example 3 and Comparative Example 1. The results are shown in Table 2.

Figure 2006120518
Figure 2006120518

表1に示すように、実施例1および2については、比較例1よりもイオン交換容量が少ないにも関わらず、プロトン伝導度が高くなっていることがわかる。イオン交換容量は、プロトン伝導樹脂の主鎖に結合する側鎖の量に比例するものであり、実施例1および2では、側鎖の量が少ないにも関わらず、高いプロトン伝導度を示している。また一般に、樹脂の側鎖が少ないほど樹脂自体の結晶性が向上して耐熱性が高まることから、実施例1および2では、耐熱性にも優れていると推測することができる。
更に、表2に示すように、リン酸を含浸させた実施例3の電解質膜は、100℃の比較的高温で比較例1よりもプロトン伝導度が大幅に高くなっていることがわかる。このように、プロトン伝導樹脂にリン酸を含浸させた電解質膜は、100℃以上の温度で作動させる燃料電池において、優れた発電特性を発揮するものと考えられる。

As shown in Table 1, in Examples 1 and 2, although proton exchange capacity is smaller than that in Comparative Example 1, it can be seen that proton conductivity is high. The ion exchange capacity is proportional to the amount of the side chain bonded to the main chain of the proton conductive resin. In Examples 1 and 2, although the amount of the side chain is small, high proton conductivity is exhibited. Yes. In general, the smaller the resin side chain, the better the crystallinity of the resin itself and the higher the heat resistance. Therefore, in Examples 1 and 2, it can be assumed that the heat resistance is also excellent.
Furthermore, as shown in Table 2, it can be seen that the electrolyte membrane of Example 3 impregnated with phosphoric acid has a significantly higher proton conductivity than Comparative Example 1 at a relatively high temperature of 100 ° C. Thus, an electrolyte membrane obtained by impregnating proton conductive resin with phosphoric acid is considered to exhibit excellent power generation characteristics in a fuel cell operated at a temperature of 100 ° C. or higher.

Claims (5)

芳香族ポリウレア樹脂からなる主鎖に、側鎖R,R,R,Rが結合されてなる下記[1]式で示されるプロトン伝導性樹脂を具備してなることを特徴とする燃料電池用固体高分子電解質。
ただし、下記式[1]中、XおよびXはそれぞれ、S,O、スルホニル基、炭素数が1−3の直鎖メチレン基、ジフルオロメチレン基、ヘキサフルオロプロピレン基、ヘテロ芳香族環のうちのいずれか一種であり、R,R,R,Rのうちの少なくとも1つがアルキルスルホン酸基またはカルボン酸基であり、nは20−1000の範囲である。
Figure 2006120518
It is characterized by comprising a proton conductive resin represented by the following formula [1] in which side chains R 1 , R 2 , R 3 , and R 4 are bonded to a main chain made of an aromatic polyurea resin. Solid polymer electrolyte for fuel cells.
However, in the following formula [1], X 1 and X 2 are S, O, a sulfonyl group, a linear methylene group having 1-3 carbon atoms, a difluoromethylene group, a hexafluoropropylene group, a heteroaromatic ring, respectively. Any one of them, at least one of R 1 , R 2 , R 3 , and R 4 is an alkylsulfonic acid group or a carboxylic acid group, and n is in the range of 20-1000.
Figure 2006120518
請求項1の式[1]において、R,R,R,Rのうちの少なくとも1つがアルキルスルホン酸基またはカルボン酸基であり、残りが水素、炭素数1−4のアルキル基、炭素数6−9の芳香族環を含む官能基のうちのいずれか一種以上の置換基であることを特徴とする請求項1に記載の燃料電池用固体高分子電解質。 In the formula [1] of claim 1 , at least one of R 1 , R 2 , R 3 , and R 4 is an alkylsulfonic acid group or a carboxylic acid group, and the remainder is hydrogen and an alkyl group having 1 to 4 carbon atoms. 2. The solid polymer electrolyte for a fuel cell according to claim 1, which is one or more substituents selected from functional groups containing an aromatic ring having 6 to 9 carbon atoms. 前記プロトン伝導性樹脂に一種以上の酸が含浸されてなることを特徴とする請求項1または請求項2に記載の燃料電池用固体高分子電解質。   The solid polymer electrolyte for a fuel cell according to claim 1 or 2, wherein the proton conductive resin is impregnated with one or more acids. 前記酸がリン酸またはホスホン酸のいずれか一方または両方であることを特徴とする請求項3に記載の燃料電池用固体高分子電解質。   4. The solid polymer electrolyte for a fuel cell according to claim 3, wherein the acid is either one or both of phosphoric acid and phosphonic acid. 請求項1ないし請求項4のいずれかに記載の燃料電池用固体高分子電解質を備えたことを特徴とする燃料電池。

A fuel cell comprising the solid polymer electrolyte for a fuel cell according to any one of claims 1 to 4.

JP2004308358A 2004-10-22 2004-10-22 Solid polymer electrolyte for fuel cell and fuel cell Active JP4684620B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004308358A JP4684620B2 (en) 2004-10-22 2004-10-22 Solid polymer electrolyte for fuel cell and fuel cell
KR1020050010816A KR101042960B1 (en) 2004-10-22 2005-02-04 Solid polymer electrolyte for fuel cell and fuel cell using the same
US11/253,657 US7829209B2 (en) 2004-10-22 2005-10-20 Solid polymer electrolyte for fuel cell and fuel cell containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004308358A JP4684620B2 (en) 2004-10-22 2004-10-22 Solid polymer electrolyte for fuel cell and fuel cell

Publications (2)

Publication Number Publication Date
JP2006120518A true JP2006120518A (en) 2006-05-11
JP4684620B2 JP4684620B2 (en) 2011-05-18

Family

ID=36538207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004308358A Active JP4684620B2 (en) 2004-10-22 2004-10-22 Solid polymer electrolyte for fuel cell and fuel cell

Country Status (2)

Country Link
JP (1) JP4684620B2 (en)
KR (1) KR101042960B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165047A (en) * 2005-12-12 2007-06-28 Samsung Sdi Co Ltd Proton conductive solid polymer electrolyte and fuel cell
WO2010147044A1 (en) 2009-06-19 2010-12-23 日産自動車株式会社 Polyurea electrolyte and production method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100745741B1 (en) * 2006-08-22 2007-08-02 삼성에스디아이 주식회사 Membrane and electrode assembly for fuel cell and fuel cell employing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273386A (en) * 2003-03-12 2004-09-30 Toyota Motor Corp Proton conductive material, proton conductive material film, and fuel cell
JP2005171086A (en) * 2003-12-11 2005-06-30 Samsung Sdi Co Ltd Proton-conductive electrolyte and fuel cell
JP2006040709A (en) * 2004-07-27 2006-02-09 Samsung Sdi Co Ltd Electrolyte membrane for fuel cell and fuel cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028030A (en) 1997-03-06 2000-02-22 Nippon Paper Industrie Co., Ltd. Thermal sensitive recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273386A (en) * 2003-03-12 2004-09-30 Toyota Motor Corp Proton conductive material, proton conductive material film, and fuel cell
JP2005171086A (en) * 2003-12-11 2005-06-30 Samsung Sdi Co Ltd Proton-conductive electrolyte and fuel cell
JP2006040709A (en) * 2004-07-27 2006-02-09 Samsung Sdi Co Ltd Electrolyte membrane for fuel cell and fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165047A (en) * 2005-12-12 2007-06-28 Samsung Sdi Co Ltd Proton conductive solid polymer electrolyte and fuel cell
WO2010147044A1 (en) 2009-06-19 2010-12-23 日産自動車株式会社 Polyurea electrolyte and production method therefor
US9196391B2 (en) 2009-06-19 2015-11-24 Nissan Motor Co., Ltd. Polyurea electrolyte and method for manufacturing the same

Also Published As

Publication number Publication date
KR101042960B1 (en) 2011-06-20
JP4684620B2 (en) 2011-05-18
KR20060041767A (en) 2006-05-12

Similar Documents

Publication Publication Date Title
US6989212B2 (en) Fuel cell, polyelectrolyte and ion-exchange resin used for same
JPWO2007007767A1 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
JPWO2006098495A1 (en) Electrolyte membrane
JP4972867B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
JP4919941B2 (en) Inspection method for polymer electrolyte membrane
US7781085B2 (en) Monomer compound, graft copolymer compound, production method thereof, polymer electrolyte membrane, and fuel cell
JP5233065B2 (en) Polymer having ionic group, polymer electrolyte material, polymer electrolyte component, membrane electrode composite, and polymer electrolyte fuel cell
JP4170973B2 (en) Polymer containing terminal sulfonic acid group and polymer electrolyte and fuel cell employing the same
KR101042960B1 (en) Solid polymer electrolyte for fuel cell and fuel cell using the same
JP2009129703A (en) Dendronized polymer electrolyte, manufacturing method thereof, solid polymer electrolyte membrane, electrode for solid polymer fuel cell, and fuel cell
JP4765401B2 (en) Method for producing membrane for polymer electrolyte fuel cell and method for producing membrane electrode assembly for polymer electrolyte fuel cell
JP4851072B2 (en) ELECTROLYTE MEMBRANE FOR FUEL CELL AND FUEL CELL
JP4959115B2 (en) Proton conducting electrolyte and fuel cell
JP4762695B2 (en) Proton conducting solid polymer electrolyte and fuel cell
KR102629899B1 (en) Compound, polymer comprising monomer derived from same, polymer separation membrane using same, membrane electrode assembly, fuel cell and redox flow cell using same
KR100696460B1 (en) Proton-conducting polymer
JP4742664B2 (en) Polymer having ionic group, polymer electrolyte material, and polymer electrolyte fuel cell
JP4813218B2 (en) Proton conducting electrolyte and fuel cell
US7829209B2 (en) Solid polymer electrolyte for fuel cell and fuel cell containing the same
JP2005290318A (en) Solid polyelectrolyte
KR20230027559A (en) Sulfamate-grafted metal-organic frameworks, method for preparing same, and use thereof
JP5264068B2 (en) Proton conducting polymer electrolyte and fuel cell
JP2005251409A (en) Solid polymer electrolyte, membrane using it, electrolyte/catalyst electrode assembly, membrane/electrode assembly and fuel cell
Wang Anion Exchange and Bipolar Membranes for Electrochemical Energy Conversion and Storage
JP5054309B2 (en) Solid polymer electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4684620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250