JP2005171086A - Proton-conductive electrolyte and fuel cell - Google Patents

Proton-conductive electrolyte and fuel cell Download PDF

Info

Publication number
JP2005171086A
JP2005171086A JP2003413246A JP2003413246A JP2005171086A JP 2005171086 A JP2005171086 A JP 2005171086A JP 2003413246 A JP2003413246 A JP 2003413246A JP 2003413246 A JP2003413246 A JP 2003413246A JP 2005171086 A JP2005171086 A JP 2005171086A
Authority
JP
Japan
Prior art keywords
group
proton
conductive electrolyte
chain polymer
proton conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003413246A
Other languages
Japanese (ja)
Other versions
JP4440616B2 (en
Inventor
Atsuo Muneuchi
篤夫 宗内
Toshihiko Matsuda
敏彦 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2003413246A priority Critical patent/JP4440616B2/en
Priority to KR1020040102208A priority patent/KR100668317B1/en
Priority to US11/008,613 priority patent/US20050147861A1/en
Publication of JP2005171086A publication Critical patent/JP2005171086A/en
Application granted granted Critical
Publication of JP4440616B2 publication Critical patent/JP4440616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/20Polymers characterized by their physical structure
    • C08J2300/202Dendritic macromolecules, e.g. dendrimers or hyperbranched polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a proton-conductive membrane excellent in proton conductance, heat resistance and mechanical strength, and to provide a fuel cell using the membrane. <P>SOLUTION: The proton-conductive membrane comprises a proton-conductive electrolyte characterized in that a side-chain polymer 4 having proton-dissociable groups and/or a side-chain polymer 5 composed of a dendrimer is(are) added to the main-chain polymer 3 having hard segments 1 and soft segments 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プロトン伝導性電解質及び燃料電池に関するものであり、特に、耐熱性及びプロトン伝導性に優れたプロトン伝導性電解質に関するものである。   The present invention relates to a proton conductive electrolyte and a fuel cell, and particularly to a proton conductive electrolyte excellent in heat resistance and proton conductivity.

近年、地球環境の悪化に伴いクリーンエネルギーの普及開発が全世界的に焦眉の課題となっている。例えば交通関係においては交通網の発達、走行台数の増大と共に、自動車等内燃機関の排気ガスによる都市大気汚染が間題になっている。この対策として電気自動車、ハイブリッドカーと呼ばれる電気・内燃機関併用自動車などが開発されてきているが、軽量で取り扱いの容易な自動車用の大気を汚染しないエネルギー源として燃料電池などの利用もその一つとして挙げることができる。また家庭への燃料電池導入も交通分野と同様である。   In recent years, with the deterioration of the global environment, the spread and development of clean energy has become a serious issue worldwide. For example, in traffic relations, urban air pollution caused by exhaust gas from internal combustion engines such as automobiles has become an issue along with the development of the traffic network and the increase in the number of vehicles. Electric vehicles and hybrid vehicles have been developed as countermeasures for this, including electric and internal combustion engines, and the use of fuel cells as an energy source that does not pollute the atmosphere for lightweight and easy-to-use vehicles. Can be mentioned. The introduction of fuel cells to homes is similar to the transportation sector.

燃料電池には電解液の種類によりアルカリ型、リン酸型、溶融炭酸塩型、固体電解質型、固体高分子型等、いろいろのタイプの燃料電池があるが、低温で稼動でき、扱い易く、且つ出力密度の高い固体高分子型が電気自動車、家庭等のエネルギー源として注目を集めている。   There are various types of fuel cells, such as alkaline type, phosphoric acid type, molten carbonate type, solid electrolyte type, solid polymer type, etc., depending on the type of electrolyte, but they can operate at low temperatures and are easy to handle. Solid polymer type with high output density is attracting attention as an energy source for electric vehicles and homes.

固体高分子型の燃料電池に用いるプロトン伝導膜には、燃料電池の電極反応に関与するプロトンについて高いイオン伝導性が要求される。このようなプロトン伝導膜には超強酸基含有フッ素系高分子からなる膜が知られている。しかしこれらの高分子材料はフッ素系高分子であるために、非常に高価であり、また、プロトン伝導の媒体が水であるため常に加湿して水を補給する必要がある等の問題がある。   Proton conducting membranes used in solid polymer fuel cells are required to have high ionic conductivity for protons involved in electrode reactions of fuel cells. As such a proton conducting membrane, a membrane made of a super strong acid group-containing fluorine-based polymer is known. However, since these polymer materials are fluorine-based polymers, they are very expensive, and since the proton conducting medium is water, there is a problem that it is necessary to always humidify and replenish water.

プロトン伝導性を持たせるため芳香族骨格にカルボン酸基、スルホン酸基、リン酸基などのイオン解離基を含有することは特許文献1及び特許文献2に記載されている。しかし、これらのイオン解離基は特に高温で脱離してしまうため耐熱性が低く、また膜に柔軟性がなく、更にプロトン伝導度が低い等の問題点がある。
また、特許文献3にも関連した記載があるがプロトン伝導度については何ら開示されていない。
特開2002−280019号公報 特開2002−358978号公報 特表平8 ―504293号公報
Patent Document 1 and Patent Document 2 describe that an aromatic skeleton contains an ionic dissociation group such as a carboxylic acid group, a sulfonic acid group, and a phosphoric acid group in order to impart proton conductivity. However, these ion dissociation groups are eliminated particularly at high temperatures, so that they have low heat resistance, the membrane is not flexible, and proton conductivity is low.
Further, although there is a description related to Patent Document 3, there is no disclosure about proton conductivity.
JP 2002-280019 A JP 2002-358978 A Japanese National Patent Publication No. 8-504293

本発明は、上記事情に鑑みてなされたものであって、プロトン伝導度、耐熱性及び力学的強度に優れたプロトン伝導膜及びそれを用いた燃料電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a proton conductive membrane excellent in proton conductivity, heat resistance and mechanical strength, and a fuel cell using the same.

上記の目的を達成するために、本発明は以下の構成を採用した。
本発明のプロトン伝導性電解質は、ハードセグメント部とソフトセグメント部とを有する主鎖ポリマーに、プロトン解離基を有する側鎖ポリマーまたはデンドリマーからなる側鎖ポリマーのいずれか一方または両方が付加されてなることを特徴とする。
In order to achieve the above object, the present invention employs the following configuration.
The proton conductive electrolyte of the present invention is obtained by adding either or both of a side chain polymer having a proton dissociating group or a side chain polymer having a dendrimer to a main chain polymer having a hard segment portion and a soft segment portion. It is characterized by that.

上記の構成によれば、プロトン伝導度、耐熱性、力学的強度に優れたプロトン伝導膜を得ることができる。   According to said structure, the proton conductive membrane excellent in proton conductivity, heat resistance, and mechanical strength can be obtained.

また本発明のプロトン伝導性電解質は、先に記載のプロトン伝導性電解質であり、前記ハードセグメント部が、芳香環、複素環、脂環のいずれかを有するポリイソシアネートと、酸無水物、ポリアミン化合物、ポリオール化合物のうちのいずれかの化合物との反応により形成され、かつ前記ポリイソシアネートと前記化合物とが、イミド基、ウレア基、ウレタン基の群から選ばれてなる基で結合されていることを特徴とする。   Further, the proton conductive electrolyte of the present invention is the proton conductive electrolyte described above, wherein the hard segment portion has any one of an aromatic ring, a heterocyclic ring, and an alicyclic ring, an acid anhydride, and a polyamine compound. The polyisocyanate and the compound are formed by a reaction with any one of the polyol compounds, and are bonded with a group selected from the group consisting of an imide group, a urea group, and a urethane group. Features.

上記の構成によれば、プロトン伝導度及び柔軟性に優れたプロトン伝導膜を得ることができる。   According to the above configuration, a proton conducting membrane excellent in proton conductivity and flexibility can be obtained.

また本発明のプロトン伝導性電解質は、先に記載のプロトン伝導性電解質であり、前記ソフトセグメント部が、ポリオキシアルキレン鎖を有し、ウレア基、ウレタン基のいずれか一方または両方により前記ハードセグメント部と結合されていることを特徴とする。   The proton conductive electrolyte of the present invention is the proton conductive electrolyte described above, wherein the soft segment portion has a polyoxyalkylene chain, and the hard segment is formed by one or both of a urea group and a urethane group. It is combined with the part.

上記の構成によれば高いプロトン伝導度を有するプロトン伝導膜を得ることができる。 According to the above configuration, a proton conducting membrane having high proton conductivity can be obtained.

また本発明のプロトン伝導性電解質は、先に記載のプロトン伝導性電解質であり、前記主鎖ポリマーの熱分解温度が220℃以上であり、かつ200℃における貯蔵弾性率が1×10Pa以上1×10Pa以下の範囲であることを特徴とする。 The proton conductive electrolyte of the present invention is the proton conductive electrolyte described above, wherein the main chain polymer has a thermal decomposition temperature of 220 ° C. or higher and a storage elastic modulus at 200 ° C. of 1 × 10 7 Pa or higher. It is characterized by being in a range of 1 × 10 9 Pa or less.

上記の構成によれば耐熱性に優れたプロトン伝導膜を得ることができる。   According to said structure, the proton conductive film excellent in heat resistance can be obtained.

また本発明のプロトン伝導性電解質は、先に記載のプロトン伝導性電解質であり、前記プロトン解離基が、スルホン酸基、カルボン酸基、リン酸基のうちのいずれかであることを特徴とする。   The proton conductive electrolyte of the present invention is the proton conductive electrolyte described above, wherein the proton dissociation group is any one of a sulfonic acid group, a carboxylic acid group, and a phosphoric acid group. .

上記の構成によれば、高いプロトン伝導度を有するプロトン伝導膜を得ることができる。   According to said structure, the proton conductive membrane which has high proton conductivity can be obtained.

また本発明のプロトン伝導性電解質は、先に記載のプロトン伝導性電解質であり、前記デンドリマーからなる側鎖ポリマーが、少なくともポリエチレンオキサイド鎖を有し、かつポリエチレンオキサイド鎖の末端にアミノ基、水酸基、スルホン酸基のいずれかを2以上有するポリアクリレートであることを特徴とする。   The proton conductive electrolyte of the present invention is the proton conductive electrolyte described above, wherein the side chain polymer composed of the dendrimer has at least a polyethylene oxide chain, and an amino group, a hydroxyl group, and a terminal at the end of the polyethylene oxide chain. It is a polyacrylate having two or more sulfonic acid groups.

上記構成によれば、高いプロトン伝導度を有するプロトン伝導膜を得ることができる。   According to the above configuration, a proton conducting membrane having high proton conductivity can be obtained.

次に本発明の燃料電池は、一対の電極と、各電極の間に配置された電解質膜とから構成され、前記電解質膜が、先のいずれかに記載のプロトン伝導性電解質とされ、かつ前記電極の一部に前記プロトン伝導性電解質が含有されていることを特徴とする。   Next, a fuel cell according to the present invention includes a pair of electrodes and an electrolyte membrane disposed between the electrodes, wherein the electrolyte membrane is the proton conductive electrolyte according to any one of the above, and The proton conductive electrolyte is contained in a part of the electrode.

上記の構成によれば発電特性に優れた高性能の燃料電池を提供することができる。   According to said structure, the high performance fuel cell excellent in the electric power generation characteristic can be provided.

本発明のプロトン伝導性電解質によれば、プロトン伝導度、耐熱性、力学的強度を向上することができる。また本発明の燃料電池によれば、発電特性に優れた高性能の燃料電池を提供することができる。   According to the proton conductive electrolyte of the present invention, proton conductivity, heat resistance, and mechanical strength can be improved. Moreover, according to the fuel cell of the present invention, a high-performance fuel cell excellent in power generation characteristics can be provided.

以下、本発明の実施の形態を図面を参照して説明する。図1には、本発明のプロトン伝導性電解質の構造を模式的に示す。
図1に示すように、本発明に係るプロトン伝導性電解質は、ハードセグメント部1とソフトセグメント部2とを有する主鎖ポリマー3に、プロトン解離基を有する側鎖ポリマー4またはデンドリマーからなる側鎖ポリマー5のいずれか一方または両方が付加されて構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 schematically shows the structure of the proton conductive electrolyte of the present invention.
As shown in FIG. 1, the proton conductive electrolyte according to the present invention has a side chain consisting of a side chain polymer 4 having a proton dissociating group or a dendrimer in a main chain polymer 3 having a hard segment portion 1 and a soft segment portion 2. Either one or both of the polymers 5 are added.

ハードセグメント部1は、ポリイソシアネートと、酸無水物、ポリアミン化合物、ポリオール化合物のうちのいずれかの化合物との反応により形成されている。また、このハードセグメント部1は、ウレア基、ウレタン基のいずれか一方または両方によりソフトセグメント部2と結合されている。ハードセグメントとソフトセグメントの結合はNCO指数90〜110の範囲でなされている。このハードセグメント部1を備えたことにより、プロトン伝導性電解質の耐熱性が向上する。   The hard segment portion 1 is formed by a reaction between a polyisocyanate and any one of an acid anhydride, a polyamine compound, and a polyol compound. Further, the hard segment portion 1 is connected to the soft segment portion 2 by either one or both of a urea group and a urethane group. The combination of the hard segment and the soft segment is made in the range of NCO index 90-110. By providing this hard segment part 1, the heat resistance of the proton conductive electrolyte is improved.

ハードセグメント部1を構成するポリイソシアネートは、芳香環、複素環、脂環のいずれかを有するものである。芳香環としてはベンゼン環、ナフタレン環、アントラセン環、フラーレン環等が挙げられ、特にベンゼン環、ナフタレン環が好ましい。複素環としては酸素、窒素、硫黄を有するものが挙げられ、特に、酸素、窒素を有するものが好ましい。脂環としては通常のものが挙げられ、特に限定はない。   The polyisocyanate constituting the hard segment part 1 has any one of an aromatic ring, a heterocyclic ring and an alicyclic ring. Examples of the aromatic ring include a benzene ring, a naphthalene ring, an anthracene ring, and a fullerene ring, and a benzene ring and a naphthalene ring are particularly preferable. Examples of the heterocyclic ring include those having oxygen, nitrogen and sulfur, and those having oxygen and nitrogen are particularly preferable. Examples of the alicyclic ring include ordinary ones and are not particularly limited.

また、ハードセグメント部1を構成する酸無水物、ポリアミン化合物、ポリオール化合物は、ポリイソシアネートと反応してそれぞれ、イミド基、ウレア基、ウレタン基を形成する。すなわち、イミド基はポリイソシアネートと多価の酸無水物との反応により形成され、ウレア基はポリイソシアネートとポリアミン化合物との反応により、ウレタン基はポリイソシアネートとポリオール化合物との反応により形成される。   Further, the acid anhydride, polyamine compound, and polyol compound constituting the hard segment portion 1 react with polyisocyanate to form an imide group, a urea group, and a urethane group, respectively. That is, an imide group is formed by a reaction between polyisocyanate and a polyvalent acid anhydride, a urea group is formed by a reaction between polyisocyanate and a polyamine compound, and a urethane group is formed by a reaction between polyisocyanate and a polyol compound.

ポリイソシアネートの例としては次のものが挙げられる。芳香環を持つ化合物としてトリレンジイソシアネート、ジフェニルメタンジイソシアネート(以下、MDIと略す)、キシリレンジイソシアネート、ナフタレンジイソシアネート等を例示できる。また、脂環を持つ化合物としてイソホロンジイソシアネート、シクロヘキサンジイソシアネート等を例示できる。更に、脂肪族の化合物としてヘキサメチレンジイソシアネート、リジンジイソシアネート等を例示できる。更にまた、これらに記載の化合物の誘導体も使用できる。これらは必要により併用してもよい。ポリイソシアネートのNCO%は通常、20〜48%、好ましくは25〜48%である。この範囲外では耐熱性、力学強度が乏しい。   The following are mentioned as an example of polyisocyanate. Examples of the compound having an aromatic ring include tolylene diisocyanate, diphenylmethane diisocyanate (hereinafter abbreviated as MDI), xylylene diisocyanate, naphthalene diisocyanate, and the like. Examples of the compound having an alicyclic ring include isophorone diisocyanate and cyclohexane diisocyanate. Furthermore, examples of the aliphatic compound include hexamethylene diisocyanate and lysine diisocyanate. Furthermore, derivatives of the compounds described in these can also be used. These may be used in combination if necessary. The NCO% of the polyisocyanate is usually 20 to 48%, preferably 25 to 48%. Outside this range, heat resistance and mechanical strength are poor.

また、多価の酸無水物の例としては、無水ピロメリット酸、無水トリメット酸ベンゼンテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物等が挙げられる。   Examples of polyhydric acid anhydrides include pyromellitic anhydride, trimetic acid benzenetetracarboxylic dianhydride, naphthalenetetracarboxylic dianhydride, and the like.

ポリアミン化合物としては、脂肪族ジアミン(エチレンジアミン、プロピレンジアミン等)、脂環族ジアミン(イソホロンジアミン等)、芳香族ジアミン[(ポリテトラメチレンオキシド−ジ−P−アミノベンゾエート)、(4,4’−ジアミノ−3,3’−ジエチルアミノ−5,5’−ジアミノジフェニルメタン)、(2,2’,3,3’−テトラクロロ−4,4’−ジアミノジフェニルメタン)、(3,3’−ジクロロ−4,4’−ジアミノジフェニルメタン)、(トリメチレン−ビス(4−アミノベンゾアート))、(3,5−ジメチルチオトルエンジアミン)等]が挙げられる。これらは混合して使用してもよい。ポリアミン化合物のうち、脂環族ジアミン及び芳香族ジアミンが特に好ましい。アミン価は通常、250〜500、好ましくは300〜500である。この範囲外では耐熱性や力学的強度が劣る。   Polyamine compounds include aliphatic diamines (ethylene diamine, propylene diamine, etc.), alicyclic diamines (isophorone diamine, etc.), aromatic diamines [(polytetramethylene oxide-di-P-aminobenzoate), (4,4′- Diamino-3,3′-diethylamino-5,5′-diaminodiphenylmethane), (2,2 ′, 3,3′-tetrachloro-4,4′-diaminodiphenylmethane), (3,3′-dichloro-4) , 4′-diaminodiphenylmethane), (trimethylene-bis (4-aminobenzoate)), (3,5-dimethylthiotoluenediamine) and the like. These may be used as a mixture. Of the polyamine compounds, alicyclic diamines and aromatic diamines are particularly preferable. The amine value is usually 250 to 500, preferably 300 to 500. Outside this range, heat resistance and mechanical strength are poor.

ポリオール化合物としては、脂肪族ジオール(エチレングリコール、プロピレングリコール等)、芳香族ジオール(ハイドロキノン、ビスフェノールA等)が挙げられる。水酸価は通常、250〜500、好ましくは300〜500である。この範囲外では耐熱性や力学的強度が劣る。   Examples of the polyol compound include aliphatic diols (such as ethylene glycol and propylene glycol) and aromatic diols (such as hydroquinone and bisphenol A). The hydroxyl value is usually 250 to 500, preferably 300 to 500. Outside this range, heat resistance and mechanical strength are poor.

次に、ソフトセグメント部2は、ポリオキシアルキレン鎖を有し、ウレア基、ウレタン基のいずれか一方または両方によりハードセグメント部1と結合されている。このソフトセグメント部2を備えたことにより、主鎖ポリマー3に柔軟性が付与され、プロトンの伝導性が向上する。   Next, the soft segment portion 2 has a polyoxyalkylene chain, and is bonded to the hard segment portion 1 by one or both of a urea group and a urethane group. By providing this soft segment portion 2, flexibility is imparted to the main chain polymer 3, and proton conductivity is improved.

ソフトセグメント部2を構成するポリオキシアルキレン鎖の例としては、ポリエチレンオキシド鎖、ポリプロピレンオキシド鎖、ポリテトラヒドロフランオキシド鎖が挙げられ、特にポリエチレンオキシド鎖及びポリテトラヒドロフランオキシド鎖がプロトン伝導度、力学的性質の観点から好ましい。   Examples of the polyoxyalkylene chain constituting the soft segment part 2 include a polyethylene oxide chain, a polypropylene oxide chain, and a polytetrahydrofuran oxide chain. Particularly, the polyethylene oxide chain and the polytetrahydrofuran oxide chain have proton conductivity and mechanical properties. It is preferable from the viewpoint.

ソフトセグメント部2は、分子中にポリオキシアルキレン鎖を有し、末端に水酸基又はアミノ基を有するもので、具体的にはポリオキシアルキレングリコールやポリアルキレンオキシド−ジ−P−アミノベンゾエートで水酸基価又はアミン価が通常、28〜200で、好ましくは28〜150である。この範囲外では力学的強度が劣る。   The soft segment part 2 has a polyoxyalkylene chain in the molecule and has a hydroxyl group or an amino group at the end. Specifically, the hydroxyl value of polyoxyalkylene glycol or polyalkylene oxide-di-P-aminobenzoate is used. Or an amine value is 28-200 normally, Preferably it is 28-150. Outside this range, the mechanical strength is poor.

また、主鎖ポリマー3は、熱分解温度が220℃以上であり、200℃における貯蔵弾性率が1×10Pa以上1×10Pa以下の範囲が好ましい。この範囲外では好ましい耐熱性および力学的性質は得られない。 The main chain polymer 3 preferably has a thermal decomposition temperature of 220 ° C. or higher and a storage elastic modulus at 200 ° C. of 1 × 10 7 Pa or more and 1 × 10 9 Pa or less. Outside this range, preferable heat resistance and mechanical properties cannot be obtained.

次に、側鎖ポリマー4は、末端にプロトン解離基を有しているものである。プロトン解離基としては、スルホン酸基、カルボン酸基、リン酸基の群から選ばれてなる1以上のものを例示できる。これらのうち、好ましいのはスルホン酸基及びリン酸基である。側鎖ポリマー4の種類としては特に限定はないが、ポリ(メタ)アクリレートが好ましい。   Next, the side chain polymer 4 has a proton dissociation group at the terminal. Examples of the proton dissociation group include one or more selected from the group consisting of a sulfonic acid group, a carboxylic acid group, and a phosphoric acid group. Of these, preferred are a sulfonic acid group and a phosphoric acid group. Although there is no limitation in particular as the kind of side chain polymer 4, poly (meth) acrylate is preferable.

側鎖ポリマー4の具体例としては以下のものを例示できる。プロトン解離基がスルホン酸基である例として、ポリ(2−アクリルアミド−2−メチルプロパンスルホン酸(以下、TBASと略す)、ポリスチレンスルホン酸等を例示できる。
またプロトン解離基がカルボン酸基である例として、ポリアクリル酸、ポリ(β−メタクロイルオキシエチルハイドロゲンサクシネート)、ポリ(β−メタクロイルオキシエチルハイドロゲンフタレート)等を例示できる。
更に、プロトン解離基がリン酸基である例として、ポリ[モノ(2−アクリロイロキシエチル)アシッドフォスフェート]、ポリ[モノ(2−メタクロイキシエチル)アシッドフォスフェート]等が挙げられる。
これらは各モノマーからラジカル重合や光重合により既知の方法で得ることができる。
Specific examples of the side chain polymer 4 include the following. Examples of the proton dissociation group being a sulfonic acid group include poly (2-acrylamido-2-methylpropanesulfonic acid (hereinafter abbreviated as TBAS), polystyrene sulfonic acid, and the like.
Examples of the proton dissociation group being a carboxylic acid group include polyacrylic acid, poly (β-methacryloyloxyethyl hydrogen succinate), poly (β-methacryloyloxyethyl hydrogen phthalate), and the like.
Furthermore, poly [mono (2-acryloyloxyethyl) acid phosphate], poly [mono (2-methacryloxyethyl) acid phosphate] and the like are examples in which the proton dissociation group is a phosphate group.
These can be obtained from each monomer by a known method by radical polymerization or photopolymerization.

次に、デンドリマーからなる側鎖ポリマー5は、少なくともポリエチレンオキサイド鎖を有し、末端にアミノ基、水酸基、スルホン酸基のいずれかを2個以上有するポリ(メタ)アクリレートである。具体的には分子内に3個以上の水酸基をもつ化合物(トリメチロールプロパン、ペンタエリスルトール等)にエチレンオキサイドを含むアルキレンオキサイドを附加し、メタアクリルイソシアネートと反応させ、ラジカル重合や光重合により既知の方法で得た物を用いるることができる。   Next, the side chain polymer 5 made of a dendrimer is a poly (meth) acrylate having at least a polyethylene oxide chain and having two or more amino groups, hydroxyl groups, or sulfonic acid groups at its terminals. Specifically, an alkylene oxide containing ethylene oxide is added to a compound having three or more hydroxyl groups in the molecule (trimethylolpropane, pentaerythritol, etc.), reacted with methacrylic isocyanate, and subjected to radical polymerization or photopolymerization. The thing obtained by the known method can be used.

尚、上記の側鎖ポリマー4、側鎖ポリマー5は、主鎖ポリマー5中でそれぞれのモノマーから重合させてもよい。   The side chain polymer 4 and the side chain polymer 5 may be polymerized from the respective monomers in the main chain polymer 5.

主鎖ポリマー3、側鎖ポリマー4、側鎖ポリマー5の比は特に限定はないが通常、1重量部の主鎖ポリマー3に対し、側鎖ポリマー4が0.1〜1重量部、側鎖ポリマー5が0.01〜1重量とするのがよい。より好ましくは、1重量部の主鎖ポリマー3に対し、側鎖ポリマー4がは0.3〜1重量部、側鎖ポリマー5が0.01〜0.5重量部である。   The ratio of the main chain polymer 3, the side chain polymer 4, and the side chain polymer 5 is not particularly limited, but is usually 0.1 to 1 part by weight of the side chain polymer 4 with respect to 1 part by weight of the main chain polymer 3. The polymer 5 is preferably 0.01 to 1 weight. More preferably, the side chain polymer 4 is 0.3 to 1 part by weight and the side chain polymer 5 is 0.01 to 0.5 part by weight with respect to 1 part by weight of the main chain polymer 3.

次に本発明に係る燃料電池について具体的に説明する。本発明に係る燃料電池は、一対の電極と、各電極の間に配置された電解質膜とから構成され、前記電解質膜が、本発明に係るプロトン伝導性電解質とされ、かつ前記電極の一部に前記プロトン伝導性電解質が含有されて構成されている。   Next, the fuel cell according to the present invention will be specifically described. The fuel cell according to the present invention includes a pair of electrodes and an electrolyte membrane disposed between the electrodes, and the electrolyte membrane is a proton conductive electrolyte according to the present invention, and a part of the electrodes To contain the proton conductive electrolyte.

すなわち燃料電池は、プロトン伝導性電解質からなる電解質膜と、この電解質膜の両側に接触して配置される空気極(電極)及び燃料極(電極)から構成される。
燃料極では、燃料の水素が電気化学的に酸化されて、プロトンと電子が生成される。生成されたプロトンは電解質膜により輸送されて、空気極に移動する。また、燃料極で生成した電子は燃料電池に接続された負荷を通り、空気極に流れる。空気極には酸素が供給されており、この空気極においてプロトンと酸素と電子とが反応して水を生成する。
That is, the fuel cell includes an electrolyte membrane made of a proton conductive electrolyte, an air electrode (electrode) and a fuel electrode (electrode) disposed in contact with both sides of the electrolyte membrane.
At the fuel electrode, the hydrogen of the fuel is electrochemically oxidized to generate protons and electrons. The generated protons are transported by the electrolyte membrane and move to the air electrode. Further, the electrons generated at the fuel electrode pass through the load connected to the fuel cell and flow to the air electrode. Oxygen is supplied to the air electrode, and protons, oxygen, and electrons react in the air electrode to generate water.

燃料電池を構成する燃料極及び空気極は、導電材、バインダーおよび触媒から構成されている。導電材としては、電気伝導性物質であればいずれのものでもよく、各種金属や炭素材料などが挙げられる。たとえばアセチレンブラック等のカーボンブラック、活性炭および黒鉛等が挙げられ、これらは単独あるいは混合して使用される。   The fuel electrode and air electrode constituting the fuel cell are composed of a conductive material, a binder and a catalyst. As the conductive material, any conductive material may be used, and various metals and carbon materials may be used. Examples thereof include carbon black such as acetylene black, activated carbon and graphite, and these are used alone or in combination.

触媒としては、水素の酸化反応および酸素の還元反応を促進する金属であれば、特に限定されることはないが、例えば鉛、鉄、マンガン、コバルト、クロム、ガリウム、バナジウム、タングステン、ルテニウム、イリジウム、パラジウム、白金、ロジウムまたはそれらの合金が挙げられる。   The catalyst is not particularly limited as long as it promotes a hydrogen oxidation reaction and an oxygen reduction reaction. For example, lead, iron, manganese, cobalt, chromium, gallium, vanadium, tungsten, ruthenium, iridium. , Palladium, platinum, rhodium or alloys thereof.

また、バインダーとしては、上記のプロトン伝導性電解質を用いることが望ましい。またバインダーには、プロトン伝導性電解質の他に、他の樹脂を併用することもできる。その場合、他の樹脂は撥水性を有するフッ素樹脂が好ましい。フッ素樹脂の中でも融点が400℃以下のものがより好ましく、例えばポリテトラフルオロエチレン、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体などが挙げられる。 As the binder, it is desirable to use the above proton conductive electrolyte. In addition to the proton conductive electrolyte, other resins can be used in combination with the binder. In that case, the other resin is preferably a fluororesin having water repellency. Among the fluororesins, those having a melting point of 400 ° C. or lower are more preferable, and examples thereof include polytetrafluoroethylene and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymers.

以下、実施例により本発明を説明するが、本発明はこれに限定されるものではない。なお、実施例において評価した物性の測定条件は以下の通りである。 EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to this. In addition, the measurement conditions of the physical properties evaluated in the examples are as follows.

プロトン伝導度:短冊状に成形した試料の表面に5mm間隔で2本の白金線(直径0.2mm)を押し当てて電極とし、この電極に交流(1kHz)を印加した時の抵抗をインピーダンスアナライザーで測定した。電極間隔と抵抗の傾き(R)、試料厚み(t)、試料幅(D)から、1/(R×t×D)によりプロトン伝導度を求めた。測定は80℃、湿度95%で行った。   Proton conductivity: Two platinum wires (diameter 0.2 mm) are pressed against the surface of a sample formed into a strip shape at intervals of 5 mm to form an electrode, and the resistance when alternating current (1 kHz) is applied to this electrode is an impedance analyzer. Measured with The proton conductivity was determined by 1 / (R × t × D) from the electrode interval and resistance slope (R), sample thickness (t), and sample width (D). The measurement was performed at 80 ° C. and a humidity of 95%.

貯蔵弾性率:粘弾性測定装置(ユービーエム社製Rheogel−E4000)を使用し、昇温速度2℃/分、温度範囲20℃〜230℃、周波数100Hz、変位5μmで行った。   Storage elastic modulus: Using a viscoelasticity measuring device (Rheogel-E4000 manufactured by UBM Co., Ltd.), the heating rate was 2 ° C./min, the temperature range was 20 ° C. to 230 ° C., the frequency was 100 Hz, and the displacement was 5 μm.

(実施例1)
20.8重量部のMDIと、100重量部のポリテトラメチレンオキシド−ジ−P−アミノベンゾエート(アミン価89)を混合し、これらをテトラヒドロフラン400部に溶解し、溶液をフッ素樹脂製のシャーレに注入し、テトラヒドロフランを除去することにより、実施例1の主鎖ポリマーを得た。
得られた主鎖ポリマーについて粘弾性測定をした結果、200℃における貯蔵弾性率が4×10Pa、熱分解温度が250℃であった。
(Example 1)
20.8 parts by weight of MDI and 100 parts by weight of polytetramethylene oxide-di-P-aminobenzoate (amine number 89) are mixed and dissolved in 400 parts of tetrahydrofuran, and the solution is placed in a petri dish made of fluororesin. The main chain polymer of Example 1 was obtained by pouring and removing tetrahydrofuran.
As a result of measuring the viscoelasticity of the obtained main chain polymer, the storage elastic modulus at 200 ° C. was 4 × 10 7 Pa and the thermal decomposition temperature was 250 ° C.

(実施例2)
25.7重量部のMDIと、50重量部のポリテトラメチレンオキシド−ジ−P−アミノベンゾエート(アミン価89)と、50重量部のポリテトラメチレンオキシド−ジ−P−アミノベンゾエート(アミン価132)とを混合し、これらをテトラヒドロフラン400部に溶解し、溶液をフッ素樹脂製のシャーレに注入し、テトラヒドロフランを除去することにより、実施例2の主鎖ポリマーを得た。
得られた主鎖ポリマーについて粘弾性測定をした結果、200℃における貯蔵弾性率が8×10Paであり、熱分解温度が270℃であった。
(Example 2)
25.7 parts by weight MDI, 50 parts by weight polytetramethylene oxide-di-P-aminobenzoate (amine number 89), 50 parts by weight polytetramethylene oxide-di-P-aminobenzoate (amine number 132) ) Were dissolved in 400 parts of tetrahydrofuran, the solution was poured into a petri dish made of fluororesin, and tetrahydrofuran was removed to obtain the main chain polymer of Example 2.
As a result of measuring the viscoelasticity of the obtained main chain polymer, the storage elastic modulus at 200 ° C. was 8 × 10 7 Pa, and the thermal decomposition temperature was 270 ° C.

(実施例3)
上記実施例1で製造した主鎖ポリマーを1重量部と、側鎖ポリマー4としてTBAS(50%水溶液)を1重量部と、重合開始剤として2−ヒドロキシ−2−メチルプロピオフェノンを0.01部と、テトラヒドロフラン6部とを混合し、脱気した後、紫外線(400W水銀ランプ)を7分照射した。その後、生成物を熱水(80℃)で1時間洗浄してから乾燥した。このようにして実施例3のプロトン伝導性電解質を製造した。
得られたプロトン伝導性電解質のプロトン伝導度は、6.1×10−3S/cmであった。

尚、実施例1の主鎖ポリマーのプロトン伝導度は3×10−6S/cmであった。従って、側鎖ポリマー4を主鎖ポリマーに付加することにより、プロトン伝導度を向上できることが分かる。
(Example 3)
1 part by weight of the main chain polymer produced in Example 1 above, 1 part by weight of TBAS (50% aqueous solution) as the side chain polymer 4, and 0.02 of 2-hydroxy-2-methylpropiophenone as the polymerization initiator. 01 parts and 6 parts of tetrahydrofuran were mixed and degassed, and then irradiated with ultraviolet rays (400 W mercury lamp) for 7 minutes. Thereafter, the product was washed with hot water (80 ° C.) for 1 hour and then dried. In this way, the proton conductive electrolyte of Example 3 was produced.
The proton conductivity of the obtained proton conductive electrolyte was 6.1 × 10 −3 S / cm.

The proton conductivity of the main chain polymer of Example 1 was 3 × 10 −6 S / cm. Therefore, it can be seen that proton conductivity can be improved by adding the side chain polymer 4 to the main chain polymer.

(実施例4)
上記実施例2で製造した主鎖ポリマーを1重量部と、側鎖ポリマー4としてTBAS(50%水溶液)を2重量部と、重合開始剤として2−ヒドロキシ−2−メチルプロピオフェノンを0.01部と、側鎖ポリマー5としてペンタエリスリトールにエチレンオキサイドを附加して水酸基価545としたもの10部と2−メタアクロイルオキシエチルイソシアネート3.7部との反応物を0.3部と、テトラヒドロフラン6部とを混合したこと以外は、上記実施例3と同様にして実施例4のプロトン伝導性電解質を製造した。
得られたプロトン伝導性電解質のプロトン伝導度は、1×l0−3S/cmであった。
Example 4
1 part by weight of the main chain polymer prepared in Example 2 above, 2 parts by weight of TBAS (50% aqueous solution) as the side chain polymer 4, and 0. 2-hydroxy-2-methylpropiophenone as the polymerization initiator. 0.3 part of a reaction product of 01 parts, 10 parts of ethylene oxide added to pentaerythritol as side chain polymer 5 to give a hydroxyl value of 545, and 3.7 parts of 2-methacryloyloxyethyl isocyanate, A proton conducting electrolyte of Example 4 was produced in the same manner as in Example 3 except that 6 parts of tetrahydrofuran was mixed.
The proton conductivity of the obtained proton conductive electrolyte was 1 × 10 −3 S / cm.

尚、実施例1の主鎖ポリマーのプロトン伝導度は3×10−6S/cmであった。従って、側鎖ポリマー4及び側鎖ポリマー5を主鎖ポリマーに付加することにより、プロトン伝導度を向上できることが分かる。 The proton conductivity of the main chain polymer of Example 1 was 3 × 10 −6 S / cm. Therefore, it can be seen that the proton conductivity can be improved by adding the side chain polymer 4 and the side chain polymer 5 to the main chain polymer.

(実施例5)
実施例3におけるプロトン伝導性電解質を用いて燃料電池を構成した。電極には、白金を30%担持させたPt/C触媒を用い、この触媒とテトラヒドロフランのポリマー溶液(実施例3における溶液)に分散し、溶液を除去して触媒層を形成したものを用いた。また電極間に、実施例3のプロトン伝導性電解質からなる電解質膜を配置した。空気と水素を用いて、80℃にて発電したところ、電流密度0.3A/cmで0.66Vのセル電圧を得た。
(Example 5)
A fuel cell was constructed using the proton conductive electrolyte in Example 3. The electrode used was a Pt / C catalyst on which 30% of platinum was supported, dispersed in a polymer solution of this catalyst and tetrahydrofuran (solution in Example 3), and the solution was removed to form a catalyst layer. . Moreover, the electrolyte membrane which consists of a proton conductive electrolyte of Example 3 was arrange | positioned between electrodes. When power was generated at 80 ° C. using air and hydrogen, a cell voltage of 0.66 V was obtained at a current density of 0.3 A / cm 2 .

本発明の実施形態であるプロトン伝導性電解質の分子構造を示す模式図。The schematic diagram which shows the molecular structure of the proton-conductive electrolyte which is embodiment of this invention.

符号の説明Explanation of symbols

1…ハードセグメント部、2…ソフトセグメント部、3…主鎖ポリマー、4…プロトン解離基を有する側鎖ポリマー、5…デンドリマーからなる側鎖ポリマー

DESCRIPTION OF SYMBOLS 1 ... Hard segment part, 2 ... Soft segment part, 3 ... Main chain polymer, 4 ... Side chain polymer which has a proton dissociation group, 5 ... Side chain polymer which consists of dendrimers

Claims (7)

ハードセグメント部とソフトセグメント部とを有する主鎖ポリマーに、プロトン解離基を有する側鎖ポリマーまたはデンドリマーからなる側鎖ポリマーのいずれか一方または両方が付加されてなることを特徴とするプロトン伝導性電解質。   A proton conductive electrolyte comprising a main chain polymer having a hard segment part and a soft segment part, to which one or both of a side chain polymer having a proton dissociation group or a side chain polymer comprising a dendrimer is added. . 前記ハードセグメント部が、芳香環、複素環、脂環のいずれかを有するポリイソシアネートと、酸無水物、ポリアミン化合物、ポリオール化合物のうちのいずれかの化合物との反応により形成され、かつ前記ポリイソシアネートと前記化合物とが、イミド基、ウレア基、ウレタン基の群から選ばれてなる基で結合されていることを特徴とする請求項1に記載のプロトン伝導性電解質。   The hard segment portion is formed by a reaction between a polyisocyanate having any one of an aromatic ring, a heterocyclic ring, and an alicyclic ring and any one of an acid anhydride, a polyamine compound, and a polyol compound, and the polyisocyanate. 2. The proton conductive electrolyte according to claim 1, wherein the compound is bonded to a group selected from the group consisting of an imide group, a urea group, and a urethane group. 前記ソフトセグメント部が、ポリオキシアルキレン鎖を有し、ウレア基、ウレタン基のいずれか一方または両方により前記ハードセグメント部と結合されていることを特徴とする請求項1または請求項2に記載のプロトン伝導性電解質。   The said soft segment part has a polyoxyalkylene chain, and is couple | bonded with the said hard segment part by any one or both of a urea group and a urethane group, The Claim 1 or Claim 2 characterized by the above-mentioned. Proton conducting electrolyte. 前記主鎖ポリマーの熱分解温度が220℃以上であり、かつ200℃における貯蔵弾性率が1×10Pa以上1×10Pa以下の範囲であることを特徴とする請求項1ないし請求項3のいずれかに記載のプロトン伝導性電解質。 The thermal decomposition temperature of the main chain polymer is 220 ° C. or higher, and the storage elastic modulus at 200 ° C. is in the range of 1 × 10 7 Pa to 1 × 10 9 Pa. 4. The proton conductive electrolyte according to any one of 3. 前記プロトン解離基が、スルホン酸基、カルボン酸基、リン酸基のうちのいずれかであることを特徴とする請求項1に記載のプロトン伝導性電解質。   The proton conductive electrolyte according to claim 1, wherein the proton dissociation group is any one of a sulfonic acid group, a carboxylic acid group, and a phosphoric acid group. 前記デンドリマーからなる側鎖ポリマーが、少なくともポリエチレンオキサイド鎖を有し、かつポリエチレンオキサイド鎖の末端にアミノ基、水酸基、スルホン酸基のいずれかを2以上有するポリアクリレートであることを特徴とする請求項1に記載のプロトン伝導性電解質。   The side chain polymer comprising the dendrimer is a polyacrylate having at least a polyethylene oxide chain and having two or more of an amino group, a hydroxyl group, and a sulfonic acid group at the end of the polyethylene oxide chain. 1. The proton conductive electrolyte according to 1. 一対の電極と、各電極の間に配置された電解質膜とから構成され、前記電解質膜が、請求項1ないし請求項6のいずれかに記載のプロトン伝導性電解質とされ、かつ前記電極の一部に前記プロトン伝導性電解質が含有されていることを特徴とする燃料電池。

It is comprised from a pair of electrode and the electrolyte membrane arrange | positioned between each electrode, The said electrolyte membrane is the proton conductive electrolyte in any one of Claim 1 thru | or 6, and one of the said electrodes A fuel cell characterized in that the proton conductive electrolyte is contained in the part.

JP2003413246A 2003-12-11 2003-12-11 Proton conducting electrolyte and fuel cell Expired - Lifetime JP4440616B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003413246A JP4440616B2 (en) 2003-12-11 2003-12-11 Proton conducting electrolyte and fuel cell
KR1020040102208A KR100668317B1 (en) 2003-12-11 2004-12-07 Proton conducting electrolyte and fuel cell using the same
US11/008,613 US20050147861A1 (en) 2003-12-11 2004-12-10 Proton conducting electrolyte and fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003413246A JP4440616B2 (en) 2003-12-11 2003-12-11 Proton conducting electrolyte and fuel cell

Publications (2)

Publication Number Publication Date
JP2005171086A true JP2005171086A (en) 2005-06-30
JP4440616B2 JP4440616B2 (en) 2010-03-24

Family

ID=34733430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003413246A Expired - Lifetime JP4440616B2 (en) 2003-12-11 2003-12-11 Proton conducting electrolyte and fuel cell

Country Status (2)

Country Link
JP (1) JP4440616B2 (en)
KR (1) KR100668317B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120518A (en) * 2004-10-22 2006-05-11 Samsung Sdi Co Ltd Solid polymer electrolyte for fuel cell and fuel cell
JP2008202025A (en) * 2007-01-22 2008-09-04 Honda Motor Co Ltd Proton-conductive polymer
WO2010147044A1 (en) * 2009-06-19 2010-12-23 日産自動車株式会社 Polyurea electrolyte and production method therefor
WO2011007702A1 (en) * 2009-07-15 2011-01-20 ソニー株式会社 Ion-conducting particle and manufacturing method therefor, ion-conducting composite, membrane electrode assembly (mea), and electrochemical device
US7879971B2 (en) 2006-03-16 2011-02-01 Samsung Sdi, Co., Ltd. Multiblock copolymer, method of preparing the same, polymer electrolyte membrane prepared from the multiblock copolymer, method of preparing the polymer electrolyte membrane, and fuel cell employing the polymer electrolyte membrane
US8298720B2 (en) 2007-03-23 2012-10-30 Honda Motor Co. Ltd. Proton conductor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4818703B2 (en) * 2005-12-12 2011-11-16 三星エスディアイ株式会社 Proton conducting solid polymer electrolyte and fuel cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586561B1 (en) 1999-02-18 2003-07-01 Case Western Reserve University Rigid rod ion conducting copolymers
JP2001338657A (en) 2000-05-26 2001-12-07 Honda Motor Co Ltd Compound electroyte having protection film, its manufacturing method, and fuel cell equipped with it
KR20020010251A (en) * 2000-07-28 2002-02-04 이 행 우 Polyurethanes Having Good Hydrophilic and Ion-conductive Properties and Method for Preparing Thereof
JP2002280019A (en) 2001-03-16 2002-09-27 Mitsui Chemicals Inc Ion conductive polymer membrane for fuel cell and fuel cell using it
JP3703016B2 (en) 2001-06-01 2005-10-05 住友電気工業株式会社 POLYMER ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120518A (en) * 2004-10-22 2006-05-11 Samsung Sdi Co Ltd Solid polymer electrolyte for fuel cell and fuel cell
JP4684620B2 (en) * 2004-10-22 2011-05-18 三星エスディアイ株式会社 Solid polymer electrolyte for fuel cell and fuel cell
US7879971B2 (en) 2006-03-16 2011-02-01 Samsung Sdi, Co., Ltd. Multiblock copolymer, method of preparing the same, polymer electrolyte membrane prepared from the multiblock copolymer, method of preparing the polymer electrolyte membrane, and fuel cell employing the polymer electrolyte membrane
JP2008202025A (en) * 2007-01-22 2008-09-04 Honda Motor Co Ltd Proton-conductive polymer
US8298720B2 (en) 2007-03-23 2012-10-30 Honda Motor Co. Ltd. Proton conductor
WO2010147044A1 (en) * 2009-06-19 2010-12-23 日産自動車株式会社 Polyurea electrolyte and production method therefor
CN102459388A (en) * 2009-06-19 2012-05-16 日产自动车株式会社 Polyurea electrolyte and production method therefor
CN102459388B (en) * 2009-06-19 2014-03-19 日产自动车株式会社 Polyurea electrolyte and production method therefor
US9196391B2 (en) 2009-06-19 2015-11-24 Nissan Motor Co., Ltd. Polyurea electrolyte and method for manufacturing the same
WO2011007702A1 (en) * 2009-07-15 2011-01-20 ソニー株式会社 Ion-conducting particle and manufacturing method therefor, ion-conducting composite, membrane electrode assembly (mea), and electrochemical device

Also Published As

Publication number Publication date
KR100668317B1 (en) 2007-01-12
JP4440616B2 (en) 2010-03-24
KR20050058197A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
Luo et al. Quaternized poly (methyl methacrylate-co-butyl acrylate-co-vinylbenzyl chloride) membrane for alkaline fuel cells
US8053144B2 (en) Membrane-electrode assembly for fuel cell and fuel cell comprising the same
US7494733B2 (en) Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell
Yuan et al. Application and degradation mechanism of polyoxadiazole based membrane for vanadium flow batteries
Yan et al. Tailoring the nanophase-separated morphology of anion exchange membrane by embedding aliphatic chains of different lengths into aromatic main chains
Hu et al. Synthesis and properties of sulfonated multiblock copolynaphthalimides
JP4440616B2 (en) Proton conducting electrolyte and fuel cell
Dai et al. Fabrication of novel proton exchange membranes for DMFC via UV curing
US20040096717A1 (en) Solid polymer type fuel cell
KR101350382B1 (en) Styrene-butadiene triblock copolymer, and preparing method of the same
JP2007109599A (en) Film electrode assembly for solid polymer fuel cell
JP2010232121A (en) Electrolyte composite membrane, membrane-electrode assembly, and solid polymer fuel cell
JP4919941B2 (en) Inspection method for polymer electrolyte membrane
JP5188137B2 (en) Fuel cell membrane
JP4851072B2 (en) ELECTROLYTE MEMBRANE FOR FUEL CELL AND FUEL CELL
JP2005162623A (en) Monomer compound, graft copolymer compound, method for producing the same, polyelectrolyte membrane and fuel cell
US20050147861A1 (en) Proton conducting electrolyte and fuel cell using the same
JP4913397B2 (en) Proton conducting solid polymer electrolyte and fuel cell
US7648790B2 (en) Electrolyte for fuel cell and fuel cell employing the same
JP2002298868A (en) Solid polymer fuel cell
JP5079306B2 (en) Polymer electrolyte membrane for fuel cell, membrane-electrode assembly, and fuel cell
JP6327759B2 (en) POLYMER ELECTROLYTE MEMBRANE AND FUEL CELL
JP4684620B2 (en) Solid polymer electrolyte for fuel cell and fuel cell
WO2003001622A1 (en) Electrode structure for solid-polymer type fuel cell
JP2006286219A (en) Proton conductive layer and fuel cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090826

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090831

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090928

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4440616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term