JP5079306B2 - Polymer electrolyte membrane for fuel cell, membrane-electrode assembly, and fuel cell - Google Patents

Polymer electrolyte membrane for fuel cell, membrane-electrode assembly, and fuel cell Download PDF

Info

Publication number
JP5079306B2
JP5079306B2 JP2006300390A JP2006300390A JP5079306B2 JP 5079306 B2 JP5079306 B2 JP 5079306B2 JP 2006300390 A JP2006300390 A JP 2006300390A JP 2006300390 A JP2006300390 A JP 2006300390A JP 5079306 B2 JP5079306 B2 JP 5079306B2
Authority
JP
Japan
Prior art keywords
electrolyte membrane
membrane
fuel cell
polymer electrolyte
crosslinking agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006300390A
Other languages
Japanese (ja)
Other versions
JP2008117663A (en
Inventor
範珍 李
篤夫 宗内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cheil Industries Inc
Original Assignee
Cheil Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cheil Industries Inc filed Critical Cheil Industries Inc
Priority to JP2006300390A priority Critical patent/JP5079306B2/en
Priority to KR1020060131390A priority patent/KR100810683B1/en
Priority to PCT/KR2006/005902 priority patent/WO2007094561A1/en
Priority to CN200680052875XA priority patent/CN101375444B/en
Priority to TW096105902A priority patent/TWI347962B/en
Publication of JP2008117663A publication Critical patent/JP2008117663A/en
Priority to US12/191,689 priority patent/US20080305379A1/en
Application granted granted Critical
Publication of JP5079306B2 publication Critical patent/JP5079306B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池用高分子電解質膜、膜-電極接合体及び燃料電池に関するものであり、特に、架橋構造を備えた燃料電池用高分子電解質膜に関するものである。   The present invention relates to a polymer electrolyte membrane for a fuel cell, a membrane-electrode assembly, and a fuel cell, and more particularly to a polymer electrolyte membrane for a fuel cell having a crosslinked structure.

燃料電池用高分子電解質膜に関しては、1960年代の開発初期には、炭化水素系統の高分子膜に関して多くの研究が進められたが、1968年にデュポン社(E.I.Du Pont de Nemours, Inc.)で、パーフルオロネイトスルフォニック酸からなるナフィオン膜(perfluorinated sulfonic acid;Nafion)の開発に伴って研究が本格化し、特にナフィオン膜は、現在まで定置用燃料電池及び携帯用燃料電池の電解質膜に主に適用され、開発が進んでいる。   Regarding polymer electrolyte membranes for fuel cells, many researches on hydrocarbon polymer membranes were conducted in the early development in the 1960s. In 1968, EIDu Pont de Nemours, Inc. As a result of the development of a perfluorinated sulfonic acid (Nafion) membrane made of perfluoronate sulfonic acid, research has been in full swing. The development is progressing.

しかし、ナフィオン(Nafion)系を使用した燃料電池は、80℃以下の駆動にともなう電極触媒のCO被毒(poisoning)問題と直接メタノール燃料電池(Direct methanol fuel cell;DMFC)における、メタノールクロスオーバー(cross over)によって燃料電池の特性を低下させ、寿命を規制させる主要因になるので、この問題を解決する為に多くの研究がなされている。
また、最近はナフィオン等のフッ素系高分子電解質膜の場合、90℃以上の温度で熱安定性がないという問題と、合成が難しく材料の価格が高いという問題点があり、膜の熱安定性の確保とコストの低下のために、スルホン化された炭化水素系高分子電解質膜が開発されている。
しかし、スルホン化された炭化水素系高分子電解質膜は、水分がないとプロトン伝導しないシステムである為、100℃以上の高温駆動においては膜の内部での脱水現象が発生し、水素イオン伝導度が急激に低下する問題を抱えている。
However, the fuel cell using the Nafion system has a methanol crossover (Direct methanol fuel cell; DMFC) due to the CO poisoning problem of the electrocatalyst with driving below 80 ° C and the direct methanol fuel cell (DMFC). Many studies have been made to solve this problem because cross over) is a major factor that degrades the characteristics of fuel cells and regulates their lifespan.
Recently, in the case of fluorinated polymer electrolyte membranes such as Nafion, there is a problem that there is no thermal stability at a temperature of 90 ° C. or more, and there is a problem that synthesis is difficult and the price of the material is high. Sulfonated hydrocarbon polymer electrolyte membranes have been developed in order to ensure the cost and reduce the cost.
However, since the sulfonated hydrocarbon polymer electrolyte membrane is a system that does not conduct protons without moisture, dehydration occurs inside the membrane when driven at a high temperature of 100 ° C. or higher, and the hydrogen ion conductivity. Have a problem of sudden drop.

米国特許第5525436号では、ポリベンズイミタゾールをリン酸のような強酸に含浸させ、130℃以上の高温でしかも低加湿において、水素イオン伝導度をもった電解質膜の製造方法を提案した。このように燃料電池が商用化されるためには、長期間の運転でも電池の特性が低下しない耐久性が重要な特性として注目されており、最近の多くの研究チームが電池の寿命低下の原因の一つと予想される電解質膜の劣化問題を改善するために努力している。
米国特許第5525436号明細書
In US Pat. No. 5,525,436, a method for producing an electrolyte membrane having hydrogen ion conductivity was proposed by impregnating polybenzimidazole with a strong acid such as phosphoric acid and at a high temperature of 130 ° C. or higher and low humidification. In order for fuel cells to be commercialized in this way, durability that does not deteriorate the characteristics of the battery even during long-term operation has attracted attention as an important characteristic, and many recent research teams have caused the decrease in battery life. Efforts are being made to improve the electrolyte membrane degradation problem, which is expected to be one of the above.
US Pat. No. 5,525,436

本発明は、大韓民国特許出願2006−15710におけるイミダゾル基を含有するポリイミド高分子電解質膜の耐化学性を向上させ、長期間の耐久性の確保が可能な、架橋化された燃料電池用高分子電解質膜、及びこれを利用した膜-電極接合体並びに燃料電池に関するもので、より詳細には、高分子電解質膜用ポリイミドの架橋剤を導入して耐化学性と機械強度が高い、新しい高分子構造を形成して膜を製造することによって、燃料電池の駆動時に発生するラジカルに対する耐性を向上し、高温で安定して水素イオンの伝導性を発現し、高温無加湿燃料電池システムに適するように使用することができる、燃料電池用高分子電解質膜及び、これを利用した膜-電極接合体、燃料電池を提供することを目的とする。
尚、本発明が解決しようとする技術的課題は以上で述べたものに限らず、言及しなかった他の技術的な課題は後述の記載から明確になる。
The present invention improves the chemical resistance of a polyimide polymer electrolyte membrane containing an imidazole group in Korean Patent Application No. 2006-15710, and ensures a long-term durability. The present invention relates to a membrane, a membrane-electrode assembly using the same, and a fuel cell. More specifically, a new polymer structure having high chemical resistance and high mechanical strength by introducing a polyimide crosslinking agent for a polymer electrolyte membrane. By forming a membrane and improving the resistance to radicals generated when driving a fuel cell, it stably expresses hydrogen ions at high temperatures and is used to suit high-temperature, non-humidified fuel cell systems It is an object of the present invention to provide a polymer electrolyte membrane for a fuel cell, a membrane-electrode assembly using the same, and a fuel cell.
The technical problems to be solved by the present invention are not limited to those described above, and other technical problems that are not mentioned will become clear from the following description.

上記の目的を達成するために、本発明は以下の構成を採用した。
本発明の燃料電池用高分子電解質膜は、下記式(1)に示すポリイミド重合体が、下記式(2)〜(5)のうちの何れか一種の架橋剤によって架橋されるとともに、酸が含浸されてなることを特徴とする。
但し、下記式(1)において、Bは下記式(6)で表示された構造であり、A及びPは独立して、下記式(7)〜(17)に示す構造の中から選択されたうちの一つであり、Dは下記式(18)〜(25)に示す構造中から選択されたうちの一つである。また、下記式(1)中、mは10000〜1000000の範囲であり、nは5000〜500000の範囲である。
また、式(2)において、Rは脂環族、芳香族、ヘテロ芳香族の何れかであり、反応基であるエポキシ基の数を示すaは2以上である。
また、式(3)において、R1は芳香族、ヘテロ芳香族の何れかであり、反応基であるアミン基の数を示すbは3以上である。
In order to achieve the above object, the present invention employs the following configuration.
In the polymer electrolyte membrane for a fuel cell of the present invention, the polyimide polymer represented by the following formula (1) is cross-linked by any one of the cross-linking agents of the following formulas (2) to (5). It is characterized by being impregnated.
However, in the following formula (1), B is a structure represented by the following formula (6), and A and P were independently selected from the structures represented by the following formulas (7) to (17). And D is one selected from the structures represented by the following formulas (18) to (25). Moreover, in following formula (1), m is the range of 10,000-1 million, and n is the range of 5000-500000.
Moreover, in Formula (2), R is any of alicyclic, aromatic, and heteroaromatic, and a which shows the number of the epoxy groups which are reactive groups is 2 or more.
Moreover, in Formula (3), R1 is either aromatic or heteroaromatic, and b indicating the number of amine groups as reactive groups is 3 or more.

Figure 0005079306
Figure 0005079306

Figure 0005079306
Figure 0005079306

Figure 0005079306
Figure 0005079306

Figure 0005079306
Figure 0005079306

Figure 0005079306
Figure 0005079306

また、本発明の燃料電池用高分子電解質膜においては、前記エポキシ基の数を示すaが2〜4の範囲であり、上記式(2)に示す架橋剤が選択された場合の前記ポリイミド重合体に対する前記架橋剤の含有率が1〜40質量%であることが好ましい。
また、本発明の燃料電池用高分子電解質膜においては、前記アミン基の数を示すaが3〜4の範囲であり、上記式(3)に示す架橋剤が選択された場合の前記ポリイミド重合体に対する前記架橋剤の含有率が1〜40質量%であることが好ましい。
また、本発明の燃料電池用高分子電解質膜においては、上記式(4)に示す架橋剤が選択された場合、前記式(1)におけるBと架橋剤とのモル比が、B:架橋剤=90:20〜99:2となるように調整されることが好ましい。
また、本発明の燃料電池用高分子電解質膜においては、上記式(5)に示す架橋剤が選択された場合、前記式(1)におけるA及びPと架橋剤とのモル比が、(A+P):架橋剤=90:20〜99:2となるように調整されることが好ましい。
In the polymer electrolyte membrane for a fuel cell of the present invention, the polyimide weight when a indicating the number of the epoxy groups is in the range of 2 to 4 and the crosslinking agent represented by the above formula (2) is selected. It is preferable that the content rate of the said crosslinking agent with respect to coalescence is 1-40 mass%.
Moreover, in the polymer electrolyte membrane for fuel cells of the present invention, the polyimide weight when a indicating the number of amine groups is in the range of 3 to 4 and the crosslinking agent represented by the above formula (3) is selected. It is preferable that the content rate of the said crosslinking agent with respect to coalescence is 1-40 mass%.
In the polymer electrolyte membrane for a fuel cell of the present invention, when the crosslinking agent represented by the above formula (4) is selected, the molar ratio of B to the crosslinking agent in the above formula (1) is B: crosslinking agent. It is preferable to adjust so that it may become = 90: 20-99: 2.
In the polymer electrolyte membrane for a fuel cell of the present invention, when the cross-linking agent represented by the above formula (5) is selected, the molar ratio of A and P to the cross-linking agent in the above formula (1) is (A + P). ): Cross-linking agent = 90: 20 to 99: 2 is preferably adjusted.

次に、本発明の燃料電池用の膜−電極接合体は、先のいずれかに記載の燃料電池用高分子電解質膜と、前記燃料電池用高分子電解質膜の両面に配置された一対の触媒層と、前記触媒層の前記燃料電池用高分子電解質膜の側とは反対側に配置された気体拡散層とを具備してなることを特徴とする。
また、本発明の燃料電池は、先に記載の膜−電極接合体と、前記膜−電極接合体の両面に配置されたバイポーラプレートとを具備してなることを特徴とする。
Next, a membrane-electrode assembly for a fuel cell according to the present invention includes a polymer electrolyte membrane for a fuel cell according to any one of the above, and a pair of catalysts disposed on both surfaces of the polymer electrolyte membrane for a fuel cell. And a gas diffusion layer disposed on the opposite side of the catalyst layer from the polymer electrolyte membrane for a fuel cell.
The fuel cell of the present invention comprises the membrane-electrode assembly described above and bipolar plates disposed on both surfaces of the membrane-electrode assembly.

本発明の架橋剤を導入した燃料電池用高分子電解質膜によれば、優秀なリン酸含浸特性を示すとともに、150℃以上の高温無加湿条件においても高いイオン伝導度を示すので、高分子電解質膜として十分な特性を提供するとともに、耐化学安定性が改善されて燃料電池に応用して長期運転時に、安定した電池特性を提供できるという優秀な特性を示すことができる。   According to the polymer electrolyte membrane for a fuel cell in which the crosslinking agent of the present invention is introduced, the polymer electrolyte exhibits excellent phosphoric acid impregnation characteristics and high ionic conductivity even under high temperature non-humidified conditions of 150 ° C. or higher. In addition to providing sufficient characteristics as a membrane, the chemical stability can be improved, and excellent characteristics can be exhibited in that it can be applied to fuel cells to provide stable battery characteristics during long-term operation.

以下、本発明の実施形態を図面を参照して説明する。図1は、本実施形態の燃料電池一例を示す分解斜視図であり、図2は、図1の燃料電池を構成する膜−電極接合体の断面模式図である。
図1に示す燃料電池1は、2つの単セル11が一対のホルダ12、12に狭持されて概略構成されている。単セル11は、膜−電極接合体10と、膜−電極接合体10の厚み方向両側に配置されたバイポーラプレート20、20とから構成されている。バイポーラプレート20、20は、導電性を有する金属またはカーボン等から構成されており、膜−電極接合体10にそれぞれ接合することで、集電体として機能するとともに、膜−電極接合体10の触媒層に対して、酸素および燃料を供給する。
また、図1に示す燃料電池1は、単セル11の数が2つだが、数は2つに限らず、燃料電池に要求される特性に応じて数十〜数百程度まで増やしてもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an exploded perspective view showing an example of the fuel cell of the present embodiment, and FIG. 2 is a schematic sectional view of a membrane-electrode assembly constituting the fuel cell of FIG.
The fuel cell 1 shown in FIG. 1 has a schematic configuration in which two single cells 11 are sandwiched between a pair of holders 12 and 12. The single cell 11 includes a membrane-electrode assembly 10 and bipolar plates 20, 20 arranged on both sides in the thickness direction of the membrane-electrode assembly 10. The bipolar plates 20 and 20 are made of conductive metal, carbon, or the like, and function as current collectors by being joined to the membrane-electrode assembly 10 respectively, and the catalyst of the membrane-electrode assembly 10. Supply oxygen and fuel to the bed.
The fuel cell 1 shown in FIG. 1 has two single cells 11, but the number is not limited to two, and may be increased to several tens to several hundreds depending on the characteristics required for the fuel cell. .

膜−電極接合体10は、図2に示すように、本発明に係る燃料電池用高分子電解質膜(以下、電解質膜という)100と、電解質膜100の厚み方向両側に配置された触媒層110、110’と、触媒層110、110’にそれぞれ積層された第1の気体拡散層121、121’と、第1の気体拡散層121、121’にそれぞれ積層された第2の気体拡散層120、120’とから構成されている。   As shown in FIG. 2, the membrane-electrode assembly 10 includes a polymer electrolyte membrane for fuel cells (hereinafter referred to as an electrolyte membrane) 100 according to the present invention, and a catalyst layer 110 disposed on both sides in the thickness direction of the electrolyte membrane 100. , 110 ′, the first gas diffusion layers 121, 121 ′ stacked on the catalyst layers 110, 110 ′, and the second gas diffusion layers 120 stacked on the first gas diffusion layers 121, 121 ′, respectively. , 120 ′.

触媒層110、110’は、燃料極及び酸素極として機能するものであって、活性炭等の触媒物質と、この触媒物質を固化成形するバインダとが含まれてそれぞれ構成されている。バインダは、耐熱性に優れたフッ素樹脂を用いても良く、本発明に係る電解質膜を構成する材料を用いてもよい。バインダとして電解質膜を構成する材料を用いることで、触媒層110、110’内部のプロトン拡散を効率よく行なわれ、触媒層110、110’のインピーダンスが低下して燃料電池の出力が向上する。
第1の気体拡散層121、121’及び第2の気体拡散層120、120’はそれぞれ、たとえばカーボンシート等から形成されており、バイポーラプレート20、20を介して供給された酸素および燃料を触媒層110、110’の全面に拡散させる。
The catalyst layers 110 and 110 ′ function as a fuel electrode and an oxygen electrode, and are each configured to include a catalyst material such as activated carbon and a binder that solidifies and forms the catalyst material. As the binder, a fluororesin excellent in heat resistance may be used, or a material constituting the electrolyte membrane according to the present invention may be used. By using the material constituting the electrolyte membrane as the binder, proton diffusion inside the catalyst layers 110 and 110 ′ is efficiently performed, the impedance of the catalyst layers 110 and 110 ′ is lowered, and the output of the fuel cell is improved.
The first gas diffusion layers 121 and 121 ′ and the second gas diffusion layers 120 and 120 ′ are each formed of, for example, a carbon sheet, and catalyze oxygen and fuel supplied via the bipolar plates 20 and 20. Diffusion over the entire surface of the layers 110, 110 ′.

この膜−電極接合体10を含む燃料電池1は、100℃〜300℃の温度で作動し、一方の触媒層側にバイポーラプレート20を介して燃料として例えば水素が供給され、他方の触媒層側にはバイポーラプレート20を介して酸化剤として例えば酸素が供給される。そして、一方の触媒層において水素が酸化されてプロトンが生じ、このプロトンが電解質膜4を伝導して他方の触媒層に到達し、他方の触媒層においてプロトンと酸素が電気化学的に反応して水を生成するとともに、電気エネルギーを発生させる。
なお、燃料として供給される水素は、炭化水素若しくはアルコールの改質により発生された水素でもよく、また、酸化剤として供給される酸素は、空気に含まれる状態で供給されても良い。
The fuel cell 1 including the membrane-electrode assembly 10 operates at a temperature of 100 ° C. to 300 ° C., for example, hydrogen is supplied as fuel to the one catalyst layer side via the bipolar plate 20, and the other catalyst layer side For example, oxygen is supplied as an oxidizing agent through the bipolar plate 20. Then, hydrogen is oxidized in one catalyst layer to generate protons, and the protons pass through the electrolyte membrane 4 to reach the other catalyst layer, and the proton and oxygen react electrochemically in the other catalyst layer. In addition to producing water, it generates electrical energy.
The hydrogen supplied as the fuel may be hydrogen generated by reforming hydrocarbons or alcohols, and the oxygen supplied as the oxidant may be supplied in a state of being included in the air.

次に、膜−電極接合体1に備えられる電解質膜4について説明する。
本発明に係る電解質膜4は、下記式(26)に示すポリイミド重合体が、下記式(27)〜(30)に示す化合物のうちの何れか一種の架橋剤によって架橋されるとともに、酸が含浸されて構成されている。但し、下記式(26)において、Bは下記式(31)で表示された構造であり、A及びPは独立して、下記式(32)〜(42)に示す構造の中から選択されたうちの一つであり、Dは下記式(43)〜(50)に示す構造中から選択されたうちの一つである。また、下記式(26)中、mは1000〜1000000の範囲であり、nは5000〜500000の範囲である。
また、式(27)において、Rは脂環族、芳香族、ヘテロ芳香族の何れかであり、反応基であるエポキシ基の数を示すaは2以上が好ましく、2〜4の範囲がより好ましい。
また、式(28)において、R1は芳香族、ヘテロ芳香族の何れかであり、反応基であるアミン基の数を示すbは3以上が好ましく、3〜4の範囲がより好ましい。
Next, the electrolyte membrane 4 provided in the membrane-electrode assembly 1 will be described.
In the electrolyte membrane 4 according to the present invention, the polyimide polymer represented by the following formula (26) is crosslinked by any one of the compounds represented by the following formulas (27) to (30), and the acid It is configured to be impregnated. However, in the following formula (26), B is a structure represented by the following formula (31), and A and P were independently selected from the structures represented by the following formulas (32) to (42). And D is one selected from the structures represented by the following formulas (43) to (50). Moreover, in following formula (26), m is the range of 1000-1 million, n is the range of 5000-500000.
In the formula (27), R is any of alicyclic, aromatic, and heteroaromatic, and a indicating the number of epoxy groups as a reactive group is preferably 2 or more, more preferably in the range of 2-4. preferable.
In the formula (28), R1 is either aromatic or heteroaromatic, and b indicating the number of amine groups as a reactive group is preferably 3 or more, and more preferably in the range of 3-4.

Figure 0005079306
Figure 0005079306

Figure 0005079306
Figure 0005079306

Figure 0005079306
Figure 0005079306

Figure 0005079306
Figure 0005079306

Figure 0005079306
Figure 0005079306

上記式(26)に示すポリイミド重合体は、分子中に上式(31)に示すベンズイミダゾール基が備えられると共に多数のカルボニル基(C=O基)が備えられている。このように、上式(26)に示すポリイミド重合体は、多数の極性官能基を備えているので、リン酸等の酸を安定して保持することができる。上記式(26)中、mが10000未満またはnが5000未満になると、電解質膜の耐熱性が低下するので好ましくなく、mが2000000を超えるか、またはnが1000000を超えると、ポリイミド重合体の溶媒に対する溶解性が低下して電解質膜の成形が困難なるので好ましくない。
このポリイミド重合体は、ベンズイミダゾール基を有するジアミン化合物と、ピロメット酸二無水物等のジカルボン酸無水物等とを反応させ、イミド結合を形成させることによって製造される。式(26)におけるBが、ジアミン化合物に由来する構造であり、A及びPが、ジカルボン酸無水物に由来する構造である。
The polyimide polymer represented by the above formula (26) is provided with a benzimidazole group represented by the above formula (31) and a large number of carbonyl groups (C═O groups) in the molecule. Thus, since the polyimide polymer represented by the above formula (26) has a large number of polar functional groups, it can stably hold an acid such as phosphoric acid. In the above formula (26), if m is less than 10000 or n is less than 5000, the heat resistance of the electrolyte membrane is lowered, which is not preferable. If m exceeds 2000000 or n exceeds 1000000, the polyimide polymer Since the solubility with respect to a solvent falls and shaping | molding of an electrolyte membrane becomes difficult, it is not preferable.
This polyimide polymer is produced by reacting a diamine compound having a benzimidazole group with a dicarboxylic acid anhydride such as pyrometic dianhydride to form an imide bond. B in Formula (26) is a structure derived from a diamine compound, and A and P are structures derived from a dicarboxylic acid anhydride.

次に、式(27)に示す架橋剤は、脂環族、芳香族、ヘテロ芳香族の何れかであるRに、反応基であるエポキシ基が複数結合されてなるエポキシ化合物である。エポキシ化合物に含まれるエポキシ基が、ポリイミド重合体の分子鎖と反応して、ポリイミド重合体を架橋化させる。エポキシ基の数を示すaは2以上が好ましく、2〜4の範囲がより好ましい。エポキシ基の数が2未満では架橋構造を形成することが困難になるので好ましくない。またエポキシ基の数の上限は、Rの構造によって変動するが、エポキシ基の数が4を超えると、架橋が進みすぎて酸の含浸率が低下し、プロトン伝導度が低下する場合がある。式(27)に示す架橋剤の一例としては、下記式(27−1)に示す化合物を例示できる。   Next, the crosslinking agent represented by the formula (27) is an epoxy compound in which a plurality of reactive epoxy groups are bonded to R which is alicyclic, aromatic or heteroaromatic. The epoxy group contained in the epoxy compound reacts with the molecular chain of the polyimide polymer to crosslink the polyimide polymer. 2 or more is preferable and, as for a showing the number of epoxy groups, the range of 2-4 is more preferable. If the number of epoxy groups is less than 2, it is difficult to form a crosslinked structure, which is not preferable. In addition, the upper limit of the number of epoxy groups varies depending on the structure of R. However, when the number of epoxy groups exceeds 4, cross-linking proceeds too much, so that the acid impregnation rate may decrease and proton conductivity may decrease. As an example of the crosslinking agent represented by the formula (27), a compound represented by the following formula (27-1) can be exemplified.

Figure 0005079306
Figure 0005079306

次に、式(28)に示す架橋剤は、芳香族、ヘテロ芳香族の何れかであるR1に、反応基であるアミン基が複数結合されてなるアミン化合物である。アミン化合物に含まれるアミン基が、ポリイミド重合体の分子鎖と反応してポリイミド重合体を架橋化させる。アミン基の数を示すbは3以上が好ましく、3〜4の範囲がより好ましい。アミン基の数が3未満では架橋構造を形成することが困難になるので好ましくない。またアミン基の数の上限は、R1の構造によって変動するが、アミン基の数が4を超えると、架橋が進みすぎて酸の含浸率が低下し、プロトン伝導度が低下する場合がある。式(28)に示す架橋剤の一例としては、下記式(28−1)に示す化合物を例示できる。   Next, the crosslinking agent represented by the formula (28) is an amine compound in which a plurality of amine groups as reactive groups are bonded to R1 which is either aromatic or heteroaromatic. The amine group contained in the amine compound reacts with the molecular chain of the polyimide polymer to crosslink the polyimide polymer. As for b which shows the number of amine groups, 3 or more are preferable and the range of 3-4 is more preferable. If the number of amine groups is less than 3, it is difficult to form a crosslinked structure, which is not preferable. In addition, the upper limit of the number of amine groups varies depending on the structure of R1, but when the number of amine groups exceeds 4, crosslinking proceeds too much, so that the acid impregnation rate may decrease and proton conductivity may decrease. As an example of the crosslinking agent represented by the formula (28), a compound represented by the following formula (28-1) can be exemplified.

Figure 0005079306
Figure 0005079306

上記式(27)または(28)に示す架橋剤のポリイミド重合体に対する含有率は、1〜40質量%の範囲が好ましく、3質量%〜30質量%の範囲がより好ましく、5〜20質量%が特に理想的であり好ましい。含有率が1質量%未満では架橋化が不十分になって電解質膜4の耐久性が低下するので好ましくない。また、含有率が49質量%を超えると架橋化が進みすぎて酸の含浸率が低下し、プロトン伝導度が低下するので好ましくない。   The content of the crosslinking agent represented by the formula (27) or (28) with respect to the polyimide polymer is preferably in the range of 1 to 40% by mass, more preferably in the range of 3% to 30% by mass, and 5 to 20% by mass. Is particularly ideal and preferred. If the content is less than 1% by mass, crosslinking is insufficient and the durability of the electrolyte membrane 4 is lowered, which is not preferable. On the other hand, if the content exceeds 49% by mass, crosslinking is excessively advanced, the acid impregnation rate is lowered, and the proton conductivity is lowered.

次に、式(29)に示す架橋剤は、アミン基とエチニル基がベンゼン環に結合されたp−エチニルアニリンである。p−エチニルアニリンによる架橋機構は、まず、分子中のアミン基が、ポリイミド重合体分子鎖の末端と結合する。このときのポリイミド重合体の末端には、ジカルボン酸無水物が位置している場合がよい。p−エチニルアニリンのアミン基とジカルボン酸無水物とが反応してアミド結合が形成される。次に、重合体の末端に結合した形のエチニル基が、他の重合体末端のエチニル基と重合反応し、これにより重合体同士が各末端で架橋される。
また、式(30)に示す架橋剤は、無水マレイン酸である。無水マレイン酸による架橋機構は、まず、分子中のカルボニル基が、ポリイミド重合体を構成する分子鎖の末端と結合する。このときのポリイミド重合体の末端には、ジアミン化合物が位置している場合がよい。無水マレイン酸のカルボニル基とジアミン化合物のアミン基とが反応してアミド結合が形成される。次に、重合体の末端に結合した形の無水マレイン酸の分子内二重結合が、他の重合体末端の二重結合と重合反応し、これにより重合体同士が各末端で架橋される。
Next, the crosslinking agent shown in Formula (29) is p-ethynylaniline in which an amine group and an ethynyl group are bonded to a benzene ring. In the crosslinking mechanism by p-ethynylaniline, first, the amine group in the molecule is bonded to the end of the polyimide polymer molecular chain. At this time, a dicarboxylic acid anhydride may be located at the end of the polyimide polymer. The amine group of p-ethynylaniline reacts with the dicarboxylic anhydride to form an amide bond. Next, the ethynyl group in a form bonded to the end of the polymer undergoes a polymerization reaction with the ethynyl group at the other end of the polymer, thereby cross-linking the polymers at each end.
Moreover, the crosslinking agent shown in Formula (30) is maleic anhydride. In the crosslinking mechanism by maleic anhydride, first, the carbonyl group in the molecule is bonded to the end of the molecular chain constituting the polyimide polymer. At this time, a diamine compound may be located at the end of the polyimide polymer. The carbonyl group of maleic anhydride reacts with the amine group of the diamine compound to form an amide bond. Next, the intramolecular double bond of maleic anhydride in a form bonded to the end of the polymer undergoes a polymerization reaction with the double bond at the other end of the polymer, whereby the polymers are cross-linked at each end.

上記式(29)に示す架橋剤が選択された場合の架橋剤の含有率は、前記式(26)におけるBと架橋剤とのモル比が、B:架橋剤=90:20〜99:2となるように調整される。
同様に、上記式(30)に示す架橋剤が選択された場合の架橋剤の含有率は、前記式(26)におけるA及びPと架橋剤とのモル比が、(A+P):架橋剤=90:20〜99:2となるように調整される。
尚、式(26)におけるBのモル量は、ジアミン化合物のモル量に対応する量であり、A及びPのモル量は、ジカルボン酸無水物のモル量に対応する量である。
架橋剤のモル比が上記の範囲より少なくなると、架橋化が不十分になって電解質膜4の耐久性が低下するので好ましくない。また、架橋剤のモル比が上記の範囲より過剰になると、架橋化が進みすぎて酸の含浸率が低下し、プロトン伝導度が低下するので好ましくない。
When the crosslinking agent represented by the above formula (29) is selected, the content ratio of the crosslinking agent is such that the molar ratio of B to the crosslinking agent in the above formula (26) is B: crosslinking agent = 90: 20 to 99: 2. It is adjusted to become.
Similarly, when the crosslinking agent represented by the above formula (30) is selected, the content of the crosslinking agent is such that the molar ratio of A and P to the crosslinking agent in the above formula (26) is (A + P): crosslinking agent = It is adjusted to be 90:20 to 99: 2.
In addition, the molar amount of B in Formula (26) is an amount corresponding to the molar amount of a diamine compound, and the molar amount of A and P is an amount corresponding to the molar amount of a dicarboxylic anhydride.
When the molar ratio of the crosslinking agent is less than the above range, crosslinking is insufficient and durability of the electrolyte membrane 4 is lowered, which is not preferable. On the other hand, when the molar ratio of the cross-linking agent is excessive from the above range, the cross-linking proceeds excessively, the acid impregnation rate decreases, and the proton conductivity decreases, which is not preferable.

次に、ポリイミド重合体に含浸される酸は、りん酸、ホスホン酸、硫酸、エチルホスフォリック酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、トリフルオロメタンスルホイミド酸、リンタングステン酸等を例示できるが、耐熱性、腐食性、揮発性、導電性の観点から、りん酸が好ましい。これらの酸はいずれも、ポリイミド重合体に含浸(ドープ)されてプロトン伝導度を発現させる。酸のドープ率は、酸の種類にもよるが、50%以上400%以下の範囲が好ましく、100%以上300%以下の範囲がより好ましい。ドープ率が低すぎるとプロトン伝導度が低下してしまうので好ましくなく、またドープ率が高すぎると電解質膜の機械的強度が低下するので好ましくない。   Next, examples of the acid impregnated in the polyimide polymer include phosphoric acid, phosphonic acid, sulfuric acid, ethylphosphoric acid, trifluoroacetic acid, trifluoromethanesulfonic acid, trifluoromethanesulfimidic acid, and phosphotungstic acid. From the viewpoints of heat resistance, corrosivity, volatility, and conductivity, phosphoric acid is preferred. Any of these acids is impregnated (doped) into a polyimide polymer to develop proton conductivity. The acid doping ratio is preferably in the range of 50% to 400%, more preferably in the range of 100% to 300%, although it depends on the type of acid. If the doping rate is too low, the proton conductivity is lowered, which is not preferred. If the doping rate is too high, the mechanical strength of the electrolyte membrane is lowered, which is not preferred.

次に、本発明に係る電解質膜4の製造方法について説明する。上記のポリイミド重合体を利用して、燃料電池用高分子電解質膜を製造する上で、まず高分子フィルムを製造しなければならないが、この高分子フィルムの製造方法は、一般的に広く知られている方法を選択することができる。これは先に出願された大韓民国特許出願2006−15710に記載された方法である。但し、架橋剤を添加する方法については、上記の4種類の架橋剤を大きく2つに分類して適用することができる。   Next, a method for manufacturing the electrolyte membrane 4 according to the present invention will be described. In order to produce a polymer electrolyte membrane for a fuel cell using the above polyimide polymer, a polymer film must first be produced. A method for producing this polymer film is generally widely known. You can choose the method you have. This is the method described in Korean Patent Application 2006-15710 filed earlier. However, with respect to the method of adding a crosslinking agent, the above four types of crosslinking agents can be broadly classified and applied.

1つ目は、上記式(27)に示すエポキシ化合物または上記式(28)に示すアミン化合物からなる架橋剤を用いる場合である。この場合は、まず、ベンズイミダゾール基を有するジアミン化合物と、ピロメット酸二無水物等のジカルボン酸無水物等とを、N−メチル−2−ピロリドンなどの溶媒中で反応させることによって、ポリイミド重合体を形成する。
次に、重合が完結した後、エポキシ化合物またはアミン化合物からなる架橋剤を添加する。添加量は、上述したようにポリイミド重合体に対して1〜40質量%の範囲が好ましく、3質量%〜30質量%の範囲がより好ましく、5〜20質量%が特に理想的であり好ましい。
その後、重合体と架橋剤とを含む溶媒をガラス板等にキャストし、300℃以上の温度で段階的に加熱することによって、架橋化させて架橋化膜を形成する。その後、架橋化膜に酸を含浸させることによって、本発明に係る電解質膜を製造する。
The first is a case where a crosslinking agent comprising an epoxy compound represented by the above formula (27) or an amine compound represented by the above formula (28) is used. In this case, first, a polyimide polymer is prepared by reacting a diamine compound having a benzimidazole group with a dicarboxylic acid anhydride such as pyrometic dianhydride in a solvent such as N-methyl-2-pyrrolidone. Form.
Next, after the polymerization is completed, a crosslinking agent composed of an epoxy compound or an amine compound is added. As described above, the addition amount is preferably in the range of 1 to 40% by mass, more preferably in the range of 3% by mass to 30% by mass, and particularly preferably 5 to 20% by mass with respect to the polyimide polymer.
Thereafter, a solvent containing a polymer and a crosslinking agent is cast on a glass plate or the like, and is crosslinked stepwise at a temperature of 300 ° C. or higher to form a crosslinked film. Thereafter, the electrolyte membrane according to the present invention is manufactured by impregnating the crosslinked membrane with an acid.

2つ目は、上記式(28)または上記式(29)に示す架橋剤を用いる場合である。
上記式(28)に示すp−エチニルアニリンのような一官能アミン末端架橋剤を用いる場合には、N−メチル−2−ピロリドンなどの溶媒に、ピロメット酸二無水物等のジカルボン酸無水物等を、ポリイミド重合体の重合に必要である理論モル量の100%を添加するとともに、ジアミン化合物を、ポリイミド重合体の重合に必要である理論モル量の90%から99%を添加する。更に、一官能アミン末端架橋剤を、ジアミン化合物の添加量に応じて理論モル量の2〜20%の量で添加する。これにより、式(26)におけるBと架橋剤とのモル比が、B:架橋剤=90:20〜99:2に調整される。
その後、ジカルボン酸無水物、ジアミン化合物及び架橋剤を含む溶媒をガラス板等にキャストし、300℃以上の温度で段階的に加熱することによって、ポリイミド重合体を重合させると共に重合体を架橋化させて架橋化膜を形成する。その後、架橋化膜に酸を含浸させることによって、本発明に係る電解質膜を製造する。
The second is a case where the crosslinking agent represented by the above formula (28) or the above formula (29) is used.
When a monofunctional amine terminal cross-linking agent such as p-ethynylaniline represented by the above formula (28) is used, a dicarboxylic acid anhydride such as pyrometic dianhydride is used in a solvent such as N-methyl-2-pyrrolidone. In addition to 100% of the theoretical molar amount necessary for the polymerization of the polyimide polymer, 90% to 99% of the theoretical molar amount necessary for the polymerization of the polyimide polymer is added to the diamine compound. Furthermore, the monofunctional amine terminal crosslinking agent is added in an amount of 2 to 20% of the theoretical molar amount depending on the addition amount of the diamine compound. Thereby, the molar ratio of B in Formula (26) and a crosslinking agent is adjusted to B: crosslinking agent = 90: 20-99: 2.
Thereafter, a solvent containing a dicarboxylic acid anhydride, a diamine compound and a crosslinking agent is cast on a glass plate and the like, and the polyimide polymer is polymerized and polymerized by stepwise heating at a temperature of 300 ° C. or higher. To form a crosslinked film. Thereafter, the electrolyte membrane according to the present invention is manufactured by impregnating the crosslinked membrane with an acid.

また、上記式(29)に示す無水マレイン酸のような酸無水物末端架橋剤を用いる場合は、N−メチル−2−ピロリドンなどの溶媒に、ジアミン化合物を、理論モル量の100%添加するとともに、ピロメット酸二無水物等のジカルボン酸無水物等を、ポリイミド重合に必要である理論モル量の90%から99%添加する。更に、酸無水物末端架橋剤を、ジカルボン酸無水物の添加量に応じて20%〜2%の量で添加する。これにより、式(26)におけるA及びPと架橋剤とのモル比が、(A+P):架橋剤=90:20〜99:2に調整される
その後、ジカルボン酸無水物、ジアミン化合物及び架橋剤を含む溶媒をガラス板等にキャストし、300℃以上の温度で段階的に加熱することによって、ポリイミド重合体を重合させると共に重合体を架橋化させて架橋化膜を形成する。その後、架橋化膜に酸を含浸させることによって、本発明に係る電解質膜を製造する。
When an acid anhydride terminal cross-linking agent such as maleic anhydride represented by the above formula (29) is used, a diamine compound is added to a solvent such as N-methyl-2-pyrrolidone at 100% of the theoretical molar amount. At the same time, dicarboxylic acid anhydride such as pyrometic dianhydride is added from 90% to 99% of the theoretical molar amount necessary for polyimide polymerization. Furthermore, an acid anhydride terminal cross-linking agent is added in an amount of 20% to 2% depending on the amount of dicarboxylic acid anhydride added. Thereby, the molar ratio of A and P in Formula (26) and a crosslinking agent is adjusted to (A + P): crosslinking agent = 90: 20-99: 2 Then, dicarboxylic acid anhydride, a diamine compound, and a crosslinking agent Is cast onto a glass plate or the like and heated stepwise at a temperature of 300 ° C. or higher to polymerize the polyimide polymer and crosslink the polymer to form a crosslinked film. Thereafter, the electrolyte membrane according to the present invention is manufactured by impregnating the crosslinked membrane with an acid.

架橋化膜に酸を含浸させるには、架橋化膜に水素イオン、すなわちプロトン(proton)伝導性を付与するためである。酸としては、例えば、リン酸等の強酸の含浸(impregnation)が好ましい。本発明では85%の濃度を持ったリン酸を使用し、上記で製造された架橋化膜をドーピングしてもよく、硫酸やエチルホスフォリック酸のような変性酸等を使用してもプロトン伝導性を付与することが可能である。   The purpose of impregnating the cross-linked membrane with acid is to impart hydrogen ions, that is, proton conductivity to the cross-linked membrane. As the acid, for example, impregnation with a strong acid such as phosphoric acid is preferable. In the present invention, phosphoric acid having a concentration of 85% may be used, the cross-linked membrane produced above may be doped, or a modified acid such as sulfuric acid or ethylphosphoric acid may be used as a proton. It is possible to impart conductivity.

上記のように、高分子フィルムに酸を含浸させればプロトン伝導性がある本発明に係る電解質膜4の製造が完了する。
そして、製造された電解質膜4を用いて、図2に示す膜−電極接合体10を製造し、更にこの膜−電極接合体10を用いて、図1に示す本発明に係る燃料電池1を製造する。
As described above, when the polymer film is impregnated with an acid, the production of the electrolyte membrane 4 according to the present invention having proton conductivity is completed.
Then, the membrane-electrode assembly 10 shown in FIG. 2 is manufactured using the manufactured electrolyte membrane 4, and the fuel cell 1 according to the present invention shown in FIG. 1 is further manufactured using this membrane-electrode assembly 10. To manufacture.

以上、説明したように、上記の電解質膜によれば、ポリイミド重合体が、上記式(27)〜(30)のうちの何れか一種の架橋剤によって架橋されているので、耐酸化性等の化学的安定性が向上する。これにより、本発明に係る電解質膜を用いた燃料電池の耐久性を向上することができる。
また、ポリイミド重合体に酸が含浸されているので、プロトン伝導度を高めることができる。
更に、ポリイミド重合体に、上記式(31)に示すベンズイミダゾール基が導入されているので、耐熱性を高めることができ、燃料電池用の電解質として好適に用いることができる。
また、上記の電解質膜においては、架橋剤の含有量が所定の範囲とされているので、化学的安定性及びプロトン伝導性をより高めることかできる。
As described above, according to the electrolyte membrane, since the polyimide polymer is crosslinked by any one of the above-described formulas (27) to (30), the oxidation resistance, etc. Chemical stability is improved. Thereby, the durability of the fuel cell using the electrolyte membrane according to the present invention can be improved.
Moreover, since the polyimide polymer is impregnated with an acid, proton conductivity can be increased.
Furthermore, since the benzimidazole group represented by the above formula (31) is introduced into the polyimide polymer, the heat resistance can be improved and it can be suitably used as an electrolyte for a fuel cell.
Moreover, in said electrolyte membrane, since content of a crosslinking agent is made into the predetermined range, chemical stability and proton conductivity can be improved more.

以下に本発明の具体的な実施例及び比較例によって本発明の構成及び効果をより詳細に説明する。ただし下記の実施例は、本発明をより明確に理解してもらうために提供するものであり、本発明の範囲を限定するものではない。   Hereinafter, the configuration and effects of the present invention will be described in more detail by way of specific examples and comparative examples of the present invention. However, the following examples are provided for a clearer understanding of the present invention, and do not limit the scope of the present invention.

「実施例1」
攪拌機、温度調節装置、窒素ガス注入装置及び冷却機が装着された4ツ口フラスコに窒素を通過させながら、ジアミン化合物として下記式(51)で表示される6,4’−ジアミノ−2−フェニルベンズイミダゾル1モルを入れ、さらにN−メチル−2−ピロリドン(以下、NMPという)を入れてジアミン化合物を溶解させた。その後、ピロメット酸二無水物(以下、という。東京化成(株)製、Cat.No.B0040)1モルを入れて激しく攪拌した。この時の固形分含有量は質量比で15重量%であり、温度を25℃未満に維持しながら、24時間反応させてポリアミック酸溶液を調製した。
次に、上記の固形分に対して20%の分量のイソシアヌル酸トリグリシジルエーテル(Isocyanuric Acid Triglycidyl Ester(東京化成(株)、Cat.No.I0428))を、NMPに溶解して濃度15質量%の溶液とし、この溶液ポリアミック酸溶液に混合した。混合後、機械式攪拌機で激しく6時間攪拌して均一な高分子溶液を製造した。
その後、高分子溶液をガラス板上にキャストし、300℃で加熱することによって、厚さ28μmの実施例1の架橋化膜を製造した。
"Example 1"
6,4′-Diamino-2-phenyl represented by the following formula (51) as a diamine compound while passing nitrogen through a four-necked flask equipped with a stirrer, a temperature control device, a nitrogen gas injection device and a cooler. 1 mol of benzimidazole was added, and further N-methyl-2-pyrrolidone (hereinafter referred to as NMP) was added to dissolve the diamine compound. Thereafter, 1 mol of pyrometic dianhydride (hereinafter referred to as “Catalog No. B0040” manufactured by Tokyo Chemical Industry Co., Ltd.) was added and vigorously stirred. The solid content at this time was 15% by weight in terms of mass ratio, and a polyamic acid solution was prepared by reacting for 24 hours while maintaining the temperature below 25 ° C.
Next, an isocyanuric acid triglycidyl ether (Isocyanuric Acid Triglycidyl Ester (Tokyo Kasei Co., Ltd., Cat. No. I0428)) in an amount of 20% based on the above solid content is dissolved in NMP to a concentration of 15% by mass. The solution was mixed with this polyamic acid solution. After mixing, the mixture was vigorously stirred for 6 hours with a mechanical stirrer to produce a uniform polymer solution.
Thereafter, the polymer solution was cast on a glass plate and heated at 300 ° C. to produce a crosslinked film of Example 1 having a thickness of 28 μm.

Figure 0005079306
Figure 0005079306

「実施例2」
上記の固形分に対して5%の分量のイソシアヌル酸トリグリシジルエーテルを、NMPに溶解して濃度15質量%の溶液とし、この溶液ポリアミック酸溶液に混合したこと以外は、上記実施例1と同様にして、実施例2の架橋化膜を製造した。
"Example 2"
Except that 5% isocyanuric acid triglycidyl ether was dissolved in NMP to give a solution having a concentration of 15% by mass and mixed with this solution polyamic acid solution. Thus, a crosslinked film of Example 2 was produced.

「実施例3」
まず、実施例1と同様にして、ポリアミック酸溶液を調製した。
次に、上記の固形分に対して10%の分量のメラニンモノマー(Melamine Monomer(東京化成(株)、Cat.No.T0337)を、NMPに溶解して濃度15質量%の溶液とし、この溶液ポリアミック酸溶液に混合した。混合後、機械式攪拌機で激しく6時間攪拌して均一な高分子溶液を製造した。
その後、高分子溶液をガラス板上にキャストし、300℃で加熱することによって、厚さ27μmの実施例3の架橋化膜を製造した。
"Example 3"
First, a polyamic acid solution was prepared in the same manner as in Example 1.
Next, a 10% amount of melanin monomer (Melamine Monomer (Tokyo Kasei Co., Ltd., Cat. No. T0337)) is dissolved in NMP to obtain a solution having a concentration of 15% by mass. After mixing, the mixture was mixed vigorously with a mechanical stirrer for 6 hours to produce a uniform polymer solution.
Thereafter, the polymer solution was cast on a glass plate and heated at 300 ° C. to produce a crosslinked film of Example 3 having a thickness of 27 μm.

「実施例4」
実施例1と同様にして、攪拌機、温度調節装置、窒素ガス注入装置及び冷却機が装着された4ツ口フラスコに窒素を通過させながら、6,4’−ジアミノ−2−フェニルベンズイミダゾル0.95モルを入れ、さらにNMPを入れてジアミン化合物を溶解させた。その後、ピロメット酸二無水物1モルと、4−エチニルアニリン(4-Ethynylaniline(東京化成(株)、Cat.No.E0505)0.1モルとを入れて激しく攪拌した。溶液の温度を25℃未満に維持しながら、24時間反応させてポリアミック酸溶液を調製した。
その後、ポリアミック酸溶液をガラス板上にキャストし、300℃で加熱することによって、厚さ31μmの実施例4の架橋化膜を製造した。
Example 4
In the same manner as in Example 1, while passing nitrogen through a four-necked flask equipped with a stirrer, a temperature controller, a nitrogen gas injection device and a cooler, 6,4′-diamino-2-phenylbenzimidazole 0 .95 mol was added, and NMP was further added to dissolve the diamine compound. Thereafter, 1 mol of pyrometic dianhydride and 0.1 mol of 4-ethynylaniline (Tokyo Kasei Co., Ltd., Cat. No. E0505) were added and stirred vigorously. The polyamic acid solution was prepared by reacting for 24 hours while maintaining below.
Thereafter, the polyamic acid solution was cast on a glass plate and heated at 300 ° C. to produce a crosslinked film of Example 4 having a thickness of 31 μm.

「実施例5」
実施例1と同様にして、攪拌機、温度調節装置、窒素ガス注入装置及び冷却機が装着された4ツ口フラスコに窒素を通過させながら、6,4’−ジアミノ−2−フェニルベンズイミダゾル1モルを入れ、さらにNMPを入れてジアミン化合物を溶解させた。その後、ピロメット酸二無水物0.95モルと、無水マレイン酸(Maleic anhydride(東京化成(株)、Cat.No.M0005)0.1モルとを入れて激しく攪拌した。溶液の温度を25℃未満に維持しながら、24時間反応させてポリアミック酸溶液を調製した。
その後、ポリアミック酸溶液をガラス板上にキャストし、300℃で加熱することによって、厚さ27μmの実施例5の架橋化膜を製造した。
"Example 5"
In the same manner as in Example 1, while passing nitrogen through a four-necked flask equipped with a stirrer, a temperature controller, a nitrogen gas injection device and a cooler, 6,4′-diamino-2-phenylbenzimidazole 1 Mole was added, and NMP was further added to dissolve the diamine compound. Thereafter, 0.95 mole of pyrometic dianhydride and 0.1 mole of maleic anhydride (Maleic anhydride (Tokyo Kasei Co., Ltd., Cat. No. M0005)) were added and stirred vigorously. The polyamic acid solution was prepared by reacting for 24 hours while maintaining below.
Thereafter, the polyamic acid solution was cast on a glass plate and heated at 300 ° C. to produce a crosslinked film of Example 5 having a thickness of 27 μm.

「比較例1」
実施例1と同様にして、攪拌機、温度調節装置、窒素ガス注入装置及び冷却機が装着された4ツ口フラスコに窒素を通過させながら、6,4’−ジアミノ−2−フェニルベンズイミダゾル1モルを入れ、さらにN−メチル−2−ピロリドン(以下、NMPという)を入れてジアミン化合物を溶解させた。その後、ピロメット酸二無水物1モルを入れて激しく攪拌した。この溶液の温度を25℃未満に維持しながら、24時間反応させてポリアミック酸溶液を調製した。
その後、ポリアミック酸溶液をガラス板上にキャストし、300℃で加熱することによって、厚さ32μmの比較例1の未架橋化膜を製造した。
“Comparative Example 1”
In the same manner as in Example 1, while passing nitrogen through a four-necked flask equipped with a stirrer, a temperature controller, a nitrogen gas injection device and a cooler, 6,4′-diamino-2-phenylbenzimidazole 1 Mole was added, and further N-methyl-2-pyrrolidone (hereinafter referred to as NMP) was added to dissolve the diamine compound. Thereafter, 1 mol of pyrometic dianhydride was added and vigorously stirred. While maintaining the temperature of this solution below 25 ° C., a reaction was carried out for 24 hours to prepare a polyamic acid solution.
Thereafter, the polyamic acid solution was cast on a glass plate and heated at 300 ° C. to produce an uncrosslinked film of Comparative Example 1 having a thickness of 32 μm.

「フェントン試験」
実施例1〜5の架橋化膜及び比較例1の未架橋化膜について、耐化学性試験を行った。耐化学性試験は、フェントン(Fenton)実験を通じて遂行した。FeSOを20ppmの濃度で過酸化水素水へ溶解してフェントン試験溶液を調製し、準備した各架橋化膜をフェントン試験溶液に投じた。架橋化膜が入ったフェントン試験溶液を80℃の湯せんで温め、シェーカー(shaker)を利用して6時間撹拌した。攪拌後、溶液中の架橋化膜を取り出し、水で洗浄した後、60℃の真空オーブンで3時間乾燥させ、架橋化膜の重量を測定した。結果を表1に示す。
"Fenton test"
A chemical resistance test was performed on the crosslinked films of Examples 1 to 5 and the uncrosslinked film of Comparative Example 1. The chemical resistance test was performed through a Fenton experiment. FeSO 4 was dissolved in hydrogen peroxide at a concentration of 20 ppm to prepare a Fenton test solution, and each of the prepared crosslinked films was poured into the Fenton test solution. The Fenton test solution containing the crosslinked film was warmed with a hot water bath at 80 ° C. and stirred for 6 hours using a shaker. After stirring, the crosslinked film in the solution was taken out, washed with water, dried in a vacuum oven at 60 ° C. for 3 hours, and the weight of the crosslinked film was measured. The results are shown in Table 1.

Figure 0005079306
Figure 0005079306

表1に示すように、実施例1〜5の架橋化膜は、質量保全率が78〜94%と高い値を示し、耐酸化性に優れていることが分かった。一方、比較例1の未架橋化膜は、フェントン試験後に膜が粉々に粉砕されてしまい、質量の測定自体が不可能になった。これは、比較例1の膜は架橋化が全く行われず耐化学性が低下したためと考えられる。尚、実施例1〜5及び比較例1の膜については、キャスト法による成膜性は表1に示すように全て良好であった。   As shown in Table 1, it was found that the crosslinked films of Examples 1 to 5 had a high mass maintenance rate of 78 to 94% and were excellent in oxidation resistance. On the other hand, the uncrosslinked film of Comparative Example 1 was shattered after the Fenton test, making it impossible to measure the mass itself. This is presumably because the film of Comparative Example 1 was not crosslinked at all and the chemical resistance was lowered. In addition, about the film | membrane of Examples 1-5 and the comparative example 1, as shown in Table 1, all the film formability by the casting method was favorable.

「電解質膜の特性」
実施例2の架橋化膜及び比較例1の架橋化膜に、濃度85%のりん酸を含浸させて、電解質膜とした。
得られた電解質膜を、市販の燃料電池用電極(Electrochem社)で挟持し、更に電極にカーボンシートを重ねて膜−電極接合体とした。この膜−電極接合体を2つ用意し、各膜−電極接合体を一対のバイポーラプレートでそれぞれ狭持することにより、図1に示すような燃料電池を製造した。そして、150℃、無加湿の条件下、燃料として水素、酸化剤として空気をそれぞれ燃料電池に供給して発電試験を行った。
“Characteristics of electrolyte membrane”
The crosslinked membrane of Example 2 and the crosslinked membrane of Comparative Example 1 were impregnated with phosphoric acid having a concentration of 85% to obtain an electrolyte membrane.
The obtained electrolyte membrane was sandwiched between commercially available fuel cell electrodes (Electrochem), and a carbon sheet was stacked on the electrode to form a membrane-electrode assembly. Two membrane-electrode assemblies were prepared, and each membrane-electrode assembly was sandwiched between a pair of bipolar plates to produce a fuel cell as shown in FIG. Then, a power generation test was performed by supplying hydrogen as a fuel and air as an oxidant to the fuel cell under conditions of 150 ° C. and no humidification.

図3には、実施例2の電解質膜を利用して製作された燃料電池を、150℃の無加湿条件で発電させた際のI−V特性を示すグラフである。図3に示す通り、実施例2の電解質膜を利用して製作された燃料電池は、電流密度が0.3A/cmで670mV以上の電圧を示すことがわかる。
また図4には、実施例2の電解質膜を利用した燃料電池の長期駆動安定性を評価した結果を示す。ポリイミド重合体に架橋剤を導入しない比較例1の場合、300時間未満の耐久性を示す一方、実施例2の電解質膜を適用した場合は、電流密度0.2A/cmの長期運転条件で耐久性が3500時間以上となり、充分な耐久性を有していることが判明した。
FIG. 3 is a graph showing IV characteristics when a fuel cell manufactured using the electrolyte membrane of Example 2 is generated under a non-humidified condition at 150 ° C. As shown in FIG. 3, it can be seen that the fuel cell manufactured using the electrolyte membrane of Example 2 shows a voltage of 670 mV or more at a current density of 0.3 A / cm 2 .
FIG. 4 shows the results of evaluating the long-term driving stability of the fuel cell using the electrolyte membrane of Example 2. In the case of Comparative Example 1 in which no cross-linking agent is introduced into the polyimide polymer, the durability of less than 300 hours is exhibited. On the other hand, when the electrolyte membrane of Example 2 is applied, the long-term operation condition is a current density of 0.2 A / cm 2. The durability was 3500 hours or longer, and it was found that the durability was sufficient.

図1は、本発明の実施形態である燃料電池の要部を示す斜視分解図である。FIG. 1 is a perspective exploded view showing a main part of a fuel cell according to an embodiment of the present invention. 図2は、図1の燃料電池に備えられた膜−電極接合体を示す断面模式図である。FIG. 2 is a schematic cross-sectional view showing the membrane-electrode assembly provided in the fuel cell of FIG. 図3は、実施例2の電解質膜を用いた燃料電池の電圧の電流密度依存性(I−V特性)を示すグラフである。FIG. 3 is a graph showing the current density dependence (IV characteristics) of the voltage of the fuel cell using the electrolyte membrane of Example 2. 図4は、実施例2の電解質膜を用いた燃料電池の電圧と運転時間との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the voltage of the fuel cell using the electrolyte membrane of Example 2 and the operation time.

符号の説明Explanation of symbols

1…燃料電池、10… 膜−電極 接合体、20…バイポーラプレート、100…電解質膜(燃料電池用高分子電解質膜)、110、110’…触媒層、120、120’、121,121’…気体拡散層 DESCRIPTION OF SYMBOLS 1 ... Fuel cell, 10 ... Membrane-electrode assembly, 20 ... Bipolar plate, 100 ... Electrolyte membrane (polymer electrolyte membrane for fuel cells), 110, 110 '... Catalyst layer, 120, 120', 121, 121 '... Gas diffusion layer

Claims (7)

下記式(1)に示すポリイミド重合体が、下記式(2)〜(5)のうちの何れか一種の架橋剤によって架橋されるとともに、酸が含浸されてなることを特徴とする燃料電池用高分子電解質膜。
但し、下記式(1)において、Bは下記式(6)で表示された構造であり、A及びPは独立して、下記式(7)〜(17)に示す構造の中から選択されたうちの一つであり、Dは下記式(18)〜(25)に示す構造中から選択されたうちの一つである。また、下記式(1)中、mは10000〜1000000の範囲であり、nは5000〜500000の範囲である。
また、式(2)において、Rは脂環族、芳香族、ヘテロ芳香族の何れかであり、反応基であるエポキシ基の数を示すaは2以上である。
また、式(3)において、R1は芳香族、ヘテロ芳香族の何れかであり、反応基であるアミン基の数を示すbは3以上である。
Figure 0005079306
Figure 0005079306
Figure 0005079306
Figure 0005079306
Figure 0005079306
A polyimide polymer represented by the following formula (1) is crosslinked by any one of the following formulas (2) to (5) and impregnated with an acid. Polymer electrolyte membrane.
However, in the following formula (1), B is a structure represented by the following formula (6), and A and P were independently selected from the structures represented by the following formulas (7) to (17). And D is one selected from the structures represented by the following formulas (18) to (25). Moreover, in following formula (1), m is the range of 10,000-1 million, and n is the range of 5000-500000.
Moreover, in Formula (2), R is any of alicyclic, aromatic, and heteroaromatic, and a which shows the number of the epoxy groups which are reactive groups is 2 or more.
Moreover, in Formula (3), R1 is either aromatic or heteroaromatic, and b indicating the number of amine groups as reactive groups is 3 or more.
Figure 0005079306
Figure 0005079306
Figure 0005079306
Figure 0005079306
Figure 0005079306
前記エポキシ基の数を示すaが2〜4の範囲であり、上記式(2)に示す架橋剤が選択された場合の前記ポリイミド重合体に対する前記架橋剤の含有率が1〜40質量%であることを特徴とする請求項1に記載の燃料電池用高分子電解質膜。   A indicating the number of the epoxy groups is in the range of 2 to 4, and the content of the crosslinking agent relative to the polyimide polymer when the crosslinking agent represented by the formula (2) is selected is 1 to 40% by mass. The polymer electrolyte membrane for fuel cells according to claim 1, wherein the polymer electrolyte membrane is for fuel cells. 前記アミン基の数を示すaが3〜4の範囲であり、上記式(3)に示す架橋剤が選択された場合の前記ポリイミド重合体に対する前記架橋剤の含有率が1〜40質量%であることを特徴とする請求項1に記載の燃料電池用高分子電解質膜。   A indicating the number of amine groups is in the range of 3 to 4, and the content of the cross-linking agent relative to the polyimide polymer when the cross-linking agent represented by the formula (3) is selected is 1 to 40% by mass. The polymer electrolyte membrane for fuel cells according to claim 1, wherein the polymer electrolyte membrane is for fuel cells. 上記式(4)に示す架橋剤が選択された場合、前記式(1)におけるBと架橋剤とのモル比が、B:架橋剤=90:20〜99:2となるように調整されることを特徴とする請求項1に記載の燃料電池用高分子電解質膜。   When the crosslinking agent represented by the above formula (4) is selected, the molar ratio of B to the crosslinking agent in the above formula (1) is adjusted to be B: crosslinking agent = 90: 20 to 99: 2. The polymer electrolyte membrane for a fuel cell according to claim 1, wherein 上記式(5)に示す架橋剤が選択された場合、前記式(1)におけるA及びPと架橋剤とのモル比が、(A+P):架橋剤=90:20〜99:2となるように調整されることを特徴とする請求項1に記載の燃料電池用高分子電解質膜。   When the crosslinking agent represented by the above formula (5) is selected, the molar ratio of A and P in the formula (1) to the crosslinking agent is (A + P): crosslinking agent = 90: 20 to 99: 2. The polymer electrolyte membrane for a fuel cell according to claim 1, wherein the polymer electrolyte membrane is adjusted to 請求項1ないし請求項5のいずれかに記載の燃料電池用高分子電解質膜と、前記燃料電池用高分子電解質膜の両面に配置された一対の触媒層と、前記触媒層の前記燃料電池用高分子電解質膜の側とは反対側に配置された気体拡散層とを具備してなることを特徴とする膜−電極接合体。   The polymer electrolyte membrane for fuel cells according to any one of claims 1 to 5, a pair of catalyst layers disposed on both surfaces of the polymer electrolyte membrane for fuel cells, and the catalyst layer for the fuel cell A membrane-electrode assembly comprising a gas diffusion layer disposed on the opposite side of the polymer electrolyte membrane. 請求項6に記載の膜−電極接合体と、前記膜−電極接合体の両面に配置されたバイポーラプレートとを具備してなることを特徴とする燃料電池。   A fuel cell comprising the membrane-electrode assembly according to claim 6 and a bipolar plate disposed on both surfaces of the membrane-electrode assembly.
JP2006300390A 2006-02-17 2006-11-06 Polymer electrolyte membrane for fuel cell, membrane-electrode assembly, and fuel cell Expired - Fee Related JP5079306B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006300390A JP5079306B2 (en) 2006-11-06 2006-11-06 Polymer electrolyte membrane for fuel cell, membrane-electrode assembly, and fuel cell
KR1020060131390A KR100810683B1 (en) 2006-11-06 2006-12-20 High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell
PCT/KR2006/005902 WO2007094561A1 (en) 2006-02-17 2006-12-29 High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell
CN200680052875XA CN101375444B (en) 2006-02-17 2006-12-29 High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell
TW096105902A TWI347962B (en) 2006-02-17 2007-02-16 High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell
US12/191,689 US20080305379A1 (en) 2006-02-17 2008-08-14 Polymer Electrolyte Membrane for Fuel Cell and Membrane-Electrode Assembly and Fuel Cell Including the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006300390A JP5079306B2 (en) 2006-11-06 2006-11-06 Polymer electrolyte membrane for fuel cell, membrane-electrode assembly, and fuel cell

Publications (2)

Publication Number Publication Date
JP2008117663A JP2008117663A (en) 2008-05-22
JP5079306B2 true JP5079306B2 (en) 2012-11-21

Family

ID=39397821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006300390A Expired - Fee Related JP5079306B2 (en) 2006-02-17 2006-11-06 Polymer electrolyte membrane for fuel cell, membrane-electrode assembly, and fuel cell

Country Status (2)

Country Link
JP (1) JP5079306B2 (en)
KR (1) KR100810683B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110366576A (en) * 2017-02-23 2019-10-22 旭化成株式会社 Composition, composite membrane, membrane-electrode assembly
KR102578356B1 (en) 2023-02-28 2023-09-15 최병렬 High-performance Green Hydrogen Production Cell Stack using Freshwater and Seawater, Hydrogen FuelCell and Liquefied Hydrogen Production, Ammonia Production and Hydrogen Separation Cell Stack Device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326643A (en) * 1991-10-07 1994-07-05 International Business Machines Corporation Adhesive layer in multi-level packaging and organic material as a metal diffusion barrier
JP2965278B2 (en) * 1991-12-24 1999-10-18 松下電工株式会社 Thermosetting polyimide resin composition, thermosetting product, and method for producing the same
SG90693A1 (en) * 1993-10-06 2002-08-20 Enichem Spa Highly efficient nonlinear optical polyimides
JPH07138537A (en) * 1993-11-17 1995-05-30 Matsushita Electric Works Ltd Thermosetting adhesive sheet
JP2001233974A (en) * 2000-02-23 2001-08-28 Sumitomo Electric Ind Ltd Ion-exchange membrane and method for producing it
JP2004131533A (en) * 2002-10-08 2004-04-30 Toyobo Co Ltd Polybenzimidazole compound having sulfonic acid group and/or phosphonic acid group and resin composition comprising the same and method for producing the same
JP2004269658A (en) * 2003-03-07 2004-09-30 Toyota Motor Corp Branched sulfonated polyimide resin, method for producing the same, sulfonated polyimide electrolytic film, its solution and fuel cell
JP4133561B2 (en) * 2003-05-07 2008-08-13 Jsr株式会社 Polyamic acid oligomers, polyimide oligomers, solution compositions, and fiber reinforced composite materials
US7071282B2 (en) * 2003-06-03 2006-07-04 General Electric Company Benzimidazole diamine-based polyetherimide compositions and methods for making them
JP4554179B2 (en) 2003-09-09 2010-09-29 有限会社山口ティー・エル・オー Production method and use of crosslinked sulfonated polyimide
KR20060019492A (en) * 2004-08-26 2006-03-03 주식회사 엘지화학 Novel sulphonated polyimide copolymer and electrolyte membrane using the same
US20080075999A1 (en) * 2004-09-03 2008-03-27 Toray Industries, Inc. Polyelectrolyte Material, Polyelectrolyte Component, Membrane Electrode Composite Body, and Polyelectrolyte Type Fuel Cell
JP2006216531A (en) * 2004-12-03 2006-08-17 Nitto Denko Corp Electrolyte membrane and solid polymer fuel cell using the same
KR100601984B1 (en) * 2005-01-20 2006-07-18 삼성에스디아이 주식회사 Supported catalyst and preparing method thereof
JP2007002055A (en) * 2005-06-22 2007-01-11 Toyobo Co Ltd Composite ion exchange membrane and method for producing the same
KR100654244B1 (en) 2006-02-17 2006-12-05 제일모직주식회사 High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell

Also Published As

Publication number Publication date
KR100810683B1 (en) 2008-03-07
JP2008117663A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
Qu et al. Proton exchange membranes for high temperature proton exchange membrane fuel cells: Challenges and perspectives
Kim et al. Polybenzimidazoles for high temperature fuel cell applications
Yin et al. Branched/crosslinked sulfonated polyimide membranes for polymer electrolyte fuel cells
US7622220B2 (en) Polymer electrolyte and fuel cell using the same
US8202664B2 (en) Membrane electrode assembly, fuel cell stack and fuel cell system
US8206873B2 (en) Electrolyte for fuel cell, membrane electrode assembly, fuel cell stack and fuel cell system
JP2007107003A (en) Ion-conductive crosslinked copolymer, polyelectrolyte membrane, membrane electrode junction and fuel battery
Jung et al. Advances in ion conducting membranes and binders for high temperature polymer electrolyte membrane fuel cells
Hu et al. Cross‐linked polymer electrolyte membrane based on a highly branched sulfonated polyimide with improved electrochemical properties for fuel cell applications
JP3896105B2 (en) ELECTROLYTE MEMBRANE FOR FUEL CELL AND FUEL CELL
US20100159350A1 (en) Membrane-electrode assembly, method for production thereof, and solid polymer fuel cell
JP5627198B2 (en) Proton conducting polymer electrolyte membrane, membrane-electrode assembly and polymer electrolyte fuel cell using the same
JP5079306B2 (en) Polymer electrolyte membrane for fuel cell, membrane-electrode assembly, and fuel cell
KR100654244B1 (en) High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell
US20080305379A1 (en) Polymer Electrolyte Membrane for Fuel Cell and Membrane-Electrode Assembly and Fuel Cell Including the Same
JP4762695B2 (en) Proton conducting solid polymer electrolyte and fuel cell
JP5032087B2 (en) Polymer electrolyte membrane, membrane electrode assembly, and fuel cell
KR102629899B1 (en) Compound, polymer comprising monomer derived from same, polymer separation membrane using same, membrane electrode assembly, fuel cell and redox flow cell using same
KR100637211B1 (en) Polymer electrolyte and fuel cell using the same
JP4913397B2 (en) Proton conducting solid polymer electrolyte and fuel cell
Daletou et al. 6 Materials, Proton Conductivity and Electrocatalysis in High-Temperature PEM Fuel Cells
JP2002373674A (en) Electrode assembly for solid polymer fuel cell
JP4271390B2 (en) Method for producing electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell
US8628895B2 (en) Hyper-branched polymer, electrode including the polymer, electrolyte membrane including the polymer, and fuel cell including the electrode and/or the electrolyte membrane
JP3563372B2 (en) Electrode structure for polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees