JP2006040709A - Electrolyte membrane for fuel cell and fuel cell - Google Patents

Electrolyte membrane for fuel cell and fuel cell Download PDF

Info

Publication number
JP2006040709A
JP2006040709A JP2004218928A JP2004218928A JP2006040709A JP 2006040709 A JP2006040709 A JP 2006040709A JP 2004218928 A JP2004218928 A JP 2004218928A JP 2004218928 A JP2004218928 A JP 2004218928A JP 2006040709 A JP2006040709 A JP 2006040709A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
fuel cell
group
active hydrogen
polyurea resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004218928A
Other languages
Japanese (ja)
Other versions
JP4851072B2 (en
Inventor
Atsuo Muneuchi
篤夫 宗内
Toshihiko Matsuda
敏彦 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2004218928A priority Critical patent/JP4851072B2/en
Priority to KR1020040111373A priority patent/KR100695107B1/en
Priority to US11/188,780 priority patent/US7648790B2/en
Publication of JP2006040709A publication Critical patent/JP2006040709A/en
Application granted granted Critical
Publication of JP4851072B2 publication Critical patent/JP4851072B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3819Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
    • C08G18/3823Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen containing -N-C=O groups
    • C08G18/3829Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen containing -N-C=O groups containing ureum groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • C08G18/5033Polyethers having heteroatoms other than oxygen having nitrogen containing carbocyclic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8108Unsaturated isocyanates or isothiocyanates having only one isocyanate or isothiocyanate group
    • C08G18/8116Unsaturated isocyanates or isothiocyanates having only one isocyanate or isothiocyanate group esters of acrylic or alkylacrylic acid having only one isocyanate or isothiocyanate group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyte membrane for a fuel cell excellent in proton conductivity, heat resistance, and mechanical strength. <P>SOLUTION: The electrolyte membrane for a fuel cell, composed of proton conductive resin formed by bonding side chains, on a terminal part of which an active hydrogen group is bonded, to a principal chain composed of poly-urea resin, is adopted. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池用電解質膜及びそれを用いた燃料電池に関する。   The present invention relates to an electrolyte membrane for a fuel cell and a fuel cell using the same.

近年、地球環境の悪化に伴い、クリーンエネルギーの普及開発が全世界的に焦眉の課題となっている。例えば交通関係においては、交通網の発達に伴う車両の走行台数の増大により、自動車等の内燃機関の排気ガスによる都市大気汚染が問題になっている。この対策として、電気自動車、ハイブリッドカーと呼ばれる電気・内燃機関併用自動車などが開発されてきているが、軽量かつ取り扱いが容易で、しかも大気を汚染しないエネルギー源として燃料電池などの利用もその一つとして有望である。また家庭への燃料電池導入も交通分野の場合と同様である。   In recent years, with the deterioration of the global environment, the widespread development of clean energy has become a serious issue worldwide. For example, in traffic relations, urban air pollution due to exhaust gas from an internal combustion engine such as an automobile has become a problem due to an increase in the number of vehicles traveling with the development of a traffic network. As countermeasures, electric vehicles and vehicles with electric / internal combustion engines called hybrid cars have been developed, but the use of fuel cells as an energy source that is lightweight and easy to handle and does not pollute the atmosphere is one of them. As promising. The introduction of fuel cells into the home is the same as in the transportation field.

燃料電池には電解液の種類によって、アルカリ型、リン酸型、溶融炭酸塩型、固体電解質型、固体高分子型等、いろいろなタイプの燃料電池があるが、低温で稼動でき、扱い易く、且つ出力密度の高い固体高分子型が電気自動車、家庭等のエネルギー源として注目を集めている。   There are various types of fuel cells, such as alkaline type, phosphoric acid type, molten carbonate type, solid electrolyte type, solid polymer type, etc., depending on the type of electrolyte, but it can operate at low temperatures and is easy to handle. In addition, a solid polymer type having a high output density is attracting attention as an energy source for electric vehicles, homes and the like.

この固体高分子型の燃料電池の電解質にはプロトン伝導膜が用いられる。プロトン伝導膜には、燃料電池の電極反応に関与するプロトンについて高いイオン伝導性が要求される。このようなプロトン伝導膜として、従来から超強酸基含有フッ素系高分子が知られている。しかしこれらの高分子電解材料はフッ素系高分子であるために、非常に高価であり、またプロトン伝導の媒体が水であることから常に加湿して水を補給する必要がある等の問題がある。   A proton conductive membrane is used for the electrolyte of this polymer electrolyte fuel cell. The proton conducting membrane is required to have high ionic conductivity for protons involved in the electrode reaction of the fuel cell. As such a proton conducting membrane, a super strong acid group-containing fluorine-based polymer has been conventionally known. However, since these polymer electrolyte materials are fluoropolymers, they are very expensive, and since the proton conducting medium is water, it is necessary to always humidify and replenish water. .

ところで、プロトン伝導性を持たせるため、芳香族骨格にカルボン酸基、スルホン酸基、リン酸基などのイオン解離基を含有させることは、特許文献1または2に記載されている。しかし、これらのイオン解離基は、特に高温で脱離しやすく、またプロトン伝導膜の柔軟性を損なうおそれがあり、更にプロトン伝導度が低い等の問題点がある。特許文献3にも関連した記載があるが、プロトン伝導度については開示されていない。   By the way, Patent Document 1 or 2 discloses that an aromatic skeleton contains an ionic dissociation group such as a carboxylic acid group, a sulfonic acid group, and a phosphoric acid group in order to impart proton conductivity. However, these ion dissociation groups are liable to be removed particularly at high temperatures, there is a risk that the flexibility of the proton conductive membrane may be impaired, and there are further problems such as low proton conductivity. Although there is a description related to Patent Document 3, proton conductivity is not disclosed.

また、非特許文献1には、ポリベンズイミダゾールにサルトンを反応させて活性水素基を導入する方法について記載されているが、当該法で導入できるのはスルホン酸基のみであり、他の活性水素基には適用できない。
特開2002−280019号公報 特開2002−358978号公報 特表平8−504293号公報 「固体高分子型燃料電池用イオン交換膜の開発」、(株)シーエムシー発行、2000年5月発行、p.98
Non-Patent Document 1 describes a method of introducing an active hydrogen group by reacting sultone with polybenzimidazole. However, only a sulfonic acid group can be introduced by this method, and other active hydrogen groups can be introduced. Not applicable to the group.
JP 2002-280019 A JP 2002-358978 A Japanese National Patent Publication No. 8-504293 “Development of ion exchange membrane for polymer electrolyte fuel cell”, issued by CMC Co., Ltd., May 2000, p. 98

本発明は、上記事情に鑑みてなされたものであって、プロトン伝導度、耐熱性、力学的強度に優れた燃料電池用電解質膜およびこの電解質膜を備えた燃料電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an electrolyte membrane for a fuel cell excellent in proton conductivity, heat resistance, and mechanical strength, and a fuel cell provided with the electrolyte membrane. To do.

上記の目的を達成するために、本発明は以下の構成を採用した。
本発明の燃料電池用電解質膜は、ポリウレア樹脂からなる主鎖に、活性水素基が末端に結合されてなる側鎖が結合されてなるプロトン伝導性樹脂から構成されることを特徴とする。
In order to achieve the above object, the present invention employs the following configuration.
The electrolyte membrane for a fuel cell according to the present invention is characterized in that it is composed of a proton conductive resin in which a side chain in which an active hydrogen group is bonded to a terminal is bonded to a main chain made of a polyurea resin.

上記の構成によれば、プロトン伝導度、耐熱性および力学的強度に優れた燃料電池用電解質膜を得ることができる。   According to said structure, the electrolyte membrane for fuel cells excellent in proton conductivity, heat resistance, and mechanical strength can be obtained.

また本発明の燃料電池用電解質膜は、先に記載の燃料電池用電解質膜であって、ポリウレア樹脂中に含まれるウレア基またはウレタン基のいずれか一方または両方に、アクリルイソシアネート化合物が化合され、化合された前記アクリルイソシアネート化合物に活性水素基含有アクリレート化合物が化合されてなることを特徴とする。
なお、アクリルイソシアネート化合物には、α位にメチル基が結合されたメタアクリルイソシアネート化合物も含まれる。また、活性水素基含有アクリルイソシアネート化合物には、α位にメチル基が結合された活性水素基含有メタアクリルイソシアネート化合物も含まれる。
The electrolyte membrane for a fuel cell according to the present invention is the electrolyte membrane for a fuel cell described above, wherein an acrylic isocyanate compound is combined with one or both of a urea group and a urethane group contained in the polyurea resin, An active hydrogen group-containing acrylate compound is combined with the combined acrylic isocyanate compound.
The acrylic isocyanate compound also includes a methacryl isocyanate compound in which a methyl group is bonded to the α-position. The active hydrogen group-containing acrylic isocyanate compound also includes an active hydrogen group-containing methacrylic isocyanate compound in which a methyl group is bonded to the α-position.

上記の構成によれば、プロトン伝導度により優れた燃料電池用電解質膜を得ることができる。   According to said structure, the electrolyte membrane for fuel cells excellent in proton conductivity can be obtained.

また本発明の燃料電池用電解質膜は、先に記載の燃料電池用電解質膜であって、前記活性水素基が、スルホン酸基、カルボン酸基、リン酸基、水酸基うちのいずれかであることを特徴とする。   The fuel cell electrolyte membrane of the present invention is the fuel cell electrolyte membrane described above, wherein the active hydrogen group is any one of a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, and a hydroxyl group. It is characterized by.

上記の構成によれば、プロトン伝導度および柔軟性に優れた燃料電池用電解質膜を得ることができる。   According to said structure, the electrolyte membrane for fuel cells excellent in proton conductivity and a softness | flexibility can be obtained.

また本発明の燃料電池用電解質膜は、先に記載の燃料電池用電解質膜であって、ポリウレア樹脂中に含まれるウレア基またはウレタン基のいずれか一方または両方に、サルトン化合物が化合されてなることを特徴とする。   The electrolyte membrane for a fuel cell according to the present invention is the electrolyte membrane for a fuel cell described above, wherein a sultone compound is combined with one or both of a urea group and a urethane group contained in the polyurea resin. It is characterized by that.

上記の構成によれば、プロトン伝導度により優れた燃料電池用電解質膜を得ることができる。   According to said structure, the electrolyte membrane for fuel cells excellent in proton conductivity can be obtained.

また本発明の燃料電池用電解質膜は、先に記載の燃料電池用電解質膜であって、前記水酸基がポリオキシアルキレン鎖に結合されていることを特徴とする。   The fuel cell electrolyte membrane of the present invention is the fuel cell electrolyte membrane described above, wherein the hydroxyl group is bonded to a polyoxyalkylene chain.

上記の構成によれば、プロトン伝導度により優れた燃料電池用電解質膜を得ることができる。   According to said structure, the electrolyte membrane for fuel cells excellent in proton conductivity can be obtained.

また本発明の燃料電池用電解質膜は、先に記載の燃料電池用電解質膜であって、熱分解温度が180℃以上であるともに、150℃における貯蔵弾性率が1×10Pa以上1×10Pa以下の範囲であることを特徴とする。 The fuel cell electrolyte membrane of the present invention is the fuel cell electrolyte membrane described above, having a thermal decomposition temperature of 180 ° C. or higher and a storage elastic modulus at 150 ° C. of 1 × 10 7 Pa or higher and 1 ×. It is the range of 10 9 Pa or less.

上記構成によれば、耐熱性を有する燃料電池用電解質膜を得ることができる。   According to the said structure, the electrolyte membrane for fuel cells which has heat resistance can be obtained.

次に本発明の燃料電池は、先のいずれかに記載の燃料電池用電解質膜を備えていることを特徴とする。   Next, a fuel cell of the present invention is characterized by including any one of the electrolyte membranes for fuel cells described above.

上記の構成によれば、発電特性に優れた高性能の燃料電池を提供することができる。   According to said structure, the high performance fuel cell excellent in the electric power generation characteristic can be provided.

本発明の燃料電池用電解質膜によれば、プロトン伝導度、耐熱性、力学的強度に優れたプロトン伝導膜を提供することができる。   According to the electrolyte membrane for a fuel cell of the present invention, a proton conducting membrane excellent in proton conductivity, heat resistance, and mechanical strength can be provided.

以下、本発明の実施の形態について詳細に説明する。
本発明の燃料電池用電解質膜は、ポリウレア樹脂からなる主鎖に、活性水素基が末端に結合されてなる側鎖が結合されて形成されたプロトン伝導性樹脂から構成されている。本発明における側鎖はポリウレア樹脂の主鎖中のウレア基及び/またはウレタン基から分岐している。この構造以外では高いプロトン伝導度を得ることができない。
Hereinafter, embodiments of the present invention will be described in detail.
The electrolyte membrane for a fuel cell of the present invention is composed of a proton conductive resin formed by bonding a main chain made of a polyurea resin with a side chain having an active hydrogen group bonded to the terminal. The side chain in the present invention is branched from a urea group and / or a urethane group in the main chain of the polyurea resin. Other than this structure, high proton conductivity cannot be obtained.

より具体的には、本発明の燃料電池用電解質膜は、ポリウレア樹脂中に含まれるウレア基またはウレタン基のいずれか一方または両方に、アクリルイソシアネート化合物が化合され、更に化合された前記アクリルイソシアネート化合物に活性水素基含有アクリレート化合物が化合されて構成されている。化合された活性水素基含有アクリレート化合物には、スルホン酸基、カルボン酸基、リン酸基、水酸基うちのいずれかの活性水素基が備えられており、この活性水素基の存在によってプロトンの伝導が起こり、燃料電池用電解質膜にプロトン伝導性が付与される。なお、活性水素基は、上記のいずれかの活性水素基が混合されたものであってもよい。これらのうち、特に好ましいのはスルホン酸基及びリン酸基である。   More specifically, in the electrolyte membrane for fuel cells of the present invention, the acrylic isocyanate compound is obtained by combining an acrylic isocyanate compound with one or both of the urea group and the urethane group contained in the polyurea resin, and further combining them. Are combined with an active hydrogen group-containing acrylate compound. The combined active hydrogen group-containing acrylate compound has an active hydrogen group of any one of a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, and a hydroxyl group. Proton conduction is achieved by the presence of this active hydrogen group. Occurs, and proton conductivity is imparted to the fuel cell electrolyte membrane. The active hydrogen group may be a mixture of any of the above active hydrogen groups. Of these, sulfonic acid groups and phosphoric acid groups are particularly preferred.

また、主鎖を構成するポリウレア樹脂は、耐熱性および対薬品性に優れる特徴があり、燃料電池用電解質膜の耐熱性および力学的強度を高めることができる。   In addition, the polyurea resin constituting the main chain is characterized by excellent heat resistance and chemical resistance, and can increase the heat resistance and mechanical strength of the electrolyte membrane for fuel cells.

ポリウレア樹脂には、原料モノマーの種類によって、その分子構造中にウレア基またはウレタン基のいずれか一方または両方を備えることになる。これらウレア基およびウレタン基には、窒素に結合した活性水素が存在する。この活性水素に対して、アクリルイソシアネート化合物のイソシアネート基が反応することにより、ポリウレア樹脂にはアクリルイソシアネート化合物からなる側鎖が形成される。この化合されたアクリルイソシアネート化合物には、分子内に炭素二重結合が存在する。この炭素二重結合に対し、分子内に炭素二重結合を有する活性水素基含有アクリレート化合物が重合する。活性水素基含有アクリレート化合物には、上記の活性水素基が含まれており、この活性水素基が形成された側鎖のほぼ末端に位置することになる。
なお、アクリルイソシアネート化合物には、α位にメチル基が結合されたメタアクリルイソシアネート化合物も含まれる。また、活性水素基含有アクリルイソシアネート化合物には、α位にメチル基が結合された活性水素基含有メタアクリルイソシアネート化合物も含まれる。
Depending on the type of raw material monomer, the polyurea resin has either or both of a urea group and a urethane group in its molecular structure. These urea groups and urethane groups have active hydrogen bonded to nitrogen. By reacting the isocyanate group of the acrylic isocyanate compound with this active hydrogen, a side chain composed of the acrylic isocyanate compound is formed in the polyurea resin. This combined acrylic isocyanate compound has a carbon double bond in the molecule. An active hydrogen group-containing acrylate compound having a carbon double bond in the molecule is polymerized with respect to the carbon double bond. The active hydrogen group-containing acrylate compound contains the active hydrogen group described above, and is located almost at the end of the side chain where the active hydrogen group is formed.
The acrylic isocyanate compound also includes a methacryl isocyanate compound in which a methyl group is bonded to the α-position. The active hydrogen group-containing acrylic isocyanate compound also includes an active hydrogen group-containing methacrylic isocyanate compound in which a methyl group is bonded to the α-position.

以上のようにして、ポリウレア樹脂からなる主鎖に、活性水素基が末端に結合されてなる側鎖が結合されてなるプロトン伝導性樹脂が形成される。このプロトン伝導性樹脂を膜状に形成することで、本発明に係る燃料電池用電解質膜が得られる。   As described above, a proton conductive resin is formed in which a side chain formed by binding an active hydrogen group to a terminal is bonded to a main chain formed of a polyurea resin. By forming this proton conductive resin into a membrane, the fuel cell electrolyte membrane according to the present invention is obtained.

ポリウレア樹脂は、例えば、ポリイソシアネートとポリアミンとの反応により得られる。
ポリイソシアネートの例としては次のものが挙げられる。芳香環を持つ化合物としてトリレンジイソシアネート、ジフェニルメタンジイソシアネート(以下、MDIと略す)、キシリレンジイソシアネート、ナフタレンジイソシアネート等、脂環を持つ化合物としてイソホロンジイソシアネート、シクロヘキサンジイソシアネート等、脂肪族の化合物としてヘキサメチレンジイソシアネート、リジンジイソシアネート等である。更には、これらに記載の化合物の誘導体も使用できる。
これらポリイソシアネートは、必要により併用してもよい。ポリイソシアネートのNCO%は通常、20%以上48%以下、好ましくは25%以上48%以下であるこの範囲外では燃料電池用電解質膜の耐熱性、力学的強度が低下する。
A polyurea resin is obtained by reaction of polyisocyanate and polyamine, for example.
The following are mentioned as an example of polyisocyanate. Tolylene diisocyanate, diphenylmethane diisocyanate (hereinafter abbreviated as MDI), xylylene diisocyanate, naphthalene diisocyanate, etc. as an aromatic ring compound, isophorone diisocyanate, cyclohexane diisocyanate, etc. as an alicyclic compound, hexamethylene diisocyanate as an aliphatic compound, Lysine diisocyanate and the like. Furthermore, derivatives of the compounds described in these can also be used.
These polyisocyanates may be used in combination if necessary. The NCO% of the polyisocyanate is usually 20% or more and 48% or less, preferably 25% or more and 48% or less.

ポリアミンとしては、脂肪族ジアミン(エチレンジアミン、プロピレンジアミン等)、脂環族ジアミン(イソホロンジアミン等)、芳香族ジアミン[(ポリテトラメチレンオキシドージーP一アミノベンゾエート)、(4,4’一ジアミノー3,3’一ジエチルアミノー5,5’一ジアミノジフェニルメタン)、(2,2’,3,3’一テトラクロロー4,4’一ジアミノジフェニルメタン)、(3,3’一ジクロロー4,4’一ジアミノジフェニルメタン)、(トリメチレンービス(4一アミノベンゾアート))、(3,5’一ジメチルチオトルエンジアミン)等]が挙げられる。これらは混合して使用してもよい。ポリアミンのうち特に芳香族ジアミンが好ましく、なかでも特にポリアルキレンオキシドージーP一アミノベンゾエートが好ましい。アミン価は通常、28以上200以下の範囲が好ましく、28以上150以下がより好ましい。この範囲外では燃料電池電解質膜の力学的強度が低下する。   Polyamines include aliphatic diamines (ethylene diamine, propylene diamine, etc.), alicyclic diamines (isophorone diamine, etc.), aromatic diamines ((polytetramethylene oxide P-aminobenzoate), (4,4'-diamino-3). , 3′-diethylamino-5,5′-diaminodiphenylmethane), (2,2 ′, 3,3′-tetrachloro-4,4′-didiaminodiphenylmethane), (3,3′-dichloro-4,4′-diaminodiphenylmethane) ), (Trimethylene-bis (41-aminobenzoate)), (3,5′-dimethylthiotoluenediamine) and the like. These may be used as a mixture. Of the polyamines, aromatic diamines are particularly preferred, and polyalkylene oxide P monoaminobenzoate is particularly preferred. The amine value is usually preferably in the range of 28 to 200, more preferably 28 to 150. Outside this range, the mechanical strength of the fuel cell electrolyte membrane decreases.

ポリイソシアネートとポリアミンの反応は通常、NCO指数90以上110以下、好ましくは95以上105以下である。この範囲外では良好な耐熱性及び強度を持った膜を得ることができない。   The reaction between the polyisocyanate and the polyamine is usually an NCO index of 90 to 110, preferably 95 to 105. Outside this range, a film having good heat resistance and strength cannot be obtained.

また、アクリルイソシアネート化合物の具体例としては、2一メタアクロイルオキシエチルイソシアネート、MOI(2−イソシアナートエチルメタクリーレート)等が挙げられる。   Specific examples of the acrylic isocyanate compound include 2-methacryloyloxyethyl isocyanate, MOI (2-isocyanatoethyl methacrylate) and the like.

活性水素基含有アクリレート化合物としては、スルホン酸基をもつ例として2一アクリルアミドー2一メチルプロパンスルホン酸(以下、TBASと略す)、スチレンスルホン酸等が挙げられる。カルボン酸基をもつ例としてアクリル酸β一メタクロイルオキシエチルハイドロゲンサクシネートβ一メタクロイルオキシエチルハイドロゲンフタレート等が挙げられる。リン酸基をもつ例としてモノ(2一アクリロイロキシエチル)アシッドフォスフェート、モノ(2一メタクロイキシエチル)アシッドフォスフェート等が挙げられる。水酸基をもつものとして1官能のポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等、2官能のポリオキシアルキレンジグリコールモノ(メタ)アクリレート等、3官能のポリオキシアルキレントリグリコールモノ(メタ)アクリレート等を挙げることができる。これらのうち、2官能以上のものが好ましい。   Examples of the active hydrogen group-containing acrylate compound include 2-acrylamido-2-monomethylpropane sulfonic acid (hereinafter abbreviated as TBAS), styrene sulfonic acid and the like as examples having a sulfonic acid group. Examples having a carboxylic acid group include acrylate β-methacryloyloxyethyl hydrogen succinate β-methacryloyloxyethyl hydrogen phthalate. Examples of having a phosphate group include mono (21-acryloyloxyethyl) acid phosphate, mono (21-methacryloxyethyl) acid phosphate, and the like. Monofunctional polyethylene glycol mono (meth) acrylate having a hydroxyl group, polypropylene glycol mono (meth) acrylate, etc., bifunctional polyoxyalkylene diglycol mono (meth) acrylate, etc., trifunctional polyoxyalkylene triglycol mono ( And (meth) acrylate. Of these, those having two or more functional groups are preferred.

ポリウレア樹脂中のウレア基(1)及び/またはウレタン基と、アクリルイソシアネート化合物(2)との反応は、溶媒の存在下、ポリウレタンにおける公知の反応により行われる。反応の一例を下記に示す。この反応において、溶媒としてはジメチルフォルムアミド、ジメチルスルホオキシド、ジメチルアセトアミド等が好ましい。必要によりウレタン化触媒を使用してもよい。ウレタン化触媒としては錫化合物が好ましい。   The reaction between the urea group (1) and / or the urethane group in the polyurea resin and the acrylic isocyanate compound (2) is carried out by a known reaction in polyurethane in the presence of a solvent. An example of the reaction is shown below. In this reaction, the solvent is preferably dimethylformamide, dimethylsulfoxide, dimethylacetamide or the like. If necessary, a urethanization catalyst may be used. A tin compound is preferred as the urethanization catalyst.

Figure 2006040709
Figure 2006040709

また、ポリウレア樹脂中のウレア基及び/またはウレタン基とアクリルイソシアネート化合物との反応物(3)に、活性水素基含有アクリレート化合物(4)を反応させるには、公知の熱重合及び/または紫外線重合が挙げられる。このうち特に紫外線重合が好ましい。反応式の例を下記に示す。このようにして、プロトン伝導性樹脂(5)が得られる。   In order to react the active hydrogen group-containing acrylate compound (4) with the reaction product (3) of the urea group and / or urethane group and the acrylic isocyanate compound in the polyurea resin, known thermal polymerization and / or ultraviolet polymerization is performed. Is mentioned. Of these, ultraviolet polymerization is particularly preferred. Examples of reaction formulas are shown below. In this way, a proton conductive resin (5) is obtained.

Figure 2006040709
Figure 2006040709

また、上記の活性水素基のうちスルホン酸基は、上記記載の方法以外に、ポリウレア樹脂中のウレア基またはウレタン基のいずれか一方または両方に、とサルトン化合物を反応させることによっても導入させることができる。反応式の一例を下記に示す。具体的には、水素化ナトリウム等をポリウレア樹脂(6)に添加して、ウレア基またはウレタン基に含まれる窒素に結合された活性水素をナトリウムと置換(7)した上で、このナトリウムにサルトン化合物(8)を反応させる。このときサルトン化合物が開裂して側鎖となってウレア樹脂に化合(9)する。更に酸で置換することにより、側鎖の末端にサルトン化合物に由来するスルホン酸基(10)が形成される。サルトン化合物としては、(アルキル)プロパンサルトン、ブタンサルトンが挙げられる。   In addition to the above-described method, the sulfonic acid group among the active hydrogen groups may be introduced by reacting a sultone compound with one or both of the urea group and the urethane group in the polyurea resin. Can do. An example of the reaction formula is shown below. Specifically, sodium hydride or the like is added to the polyurea resin (6), the active hydrogen bonded to nitrogen contained in the urea group or urethane group is replaced with sodium (7), and then sultone is added to the sodium. Compound (8) is reacted. At this time, the sultone compound is cleaved to form a side chain and combine (9) with the urea resin. Furthermore, by substituting with an acid, a sulfonic acid group (10) derived from a sultone compound is formed at the end of the side chain. Examples of the sultone compounds include (alkyl) propane sultone and butane sultone.

Figure 2006040709
Figure 2006040709

また、上記の活性水素基のうち水酸基は、ポリオキシアルキレン鎖に結合されていてもよい。ポリオキシアルキレン鎖の例としては、ポリエチレンオキシド鎖、ポリプロピレンオキシド鎖、ポリテトラメチレンオキシド鎖が挙げられ、このうちポリエチレンオキシド鎖及びポリテトラメチレンオキシド鎖がプロトン伝導度および力学的性質の観点から好ましい。ポリオキシアルキレン鎖を導入する反応の一例を下記に示す。この例では、ポリウレア樹脂(11)にアクリルイソシアネート化合物(12)を化合させ、更に化合されたアクリルイソシアネート化合物の末端の炭素二重結合に、エチレンオキサイド鎖を有する分岐構造のアクリレート(13)を重合させる。   Further, among the active hydrogen groups, a hydroxyl group may be bonded to a polyoxyalkylene chain. Examples of the polyoxyalkylene chain include a polyethylene oxide chain, a polypropylene oxide chain, and a polytetramethylene oxide chain. Among these, a polyethylene oxide chain and a polytetramethylene oxide chain are preferable from the viewpoint of proton conductivity and mechanical properties. An example of a reaction for introducing a polyoxyalkylene chain is shown below. In this example, an acrylic isocyanate compound (12) is combined with a polyurea resin (11), and a branched acrylate (13) having an ethylene oxide chain is polymerized on the terminal carbon double bond of the combined acrylic isocyanate compound. Let

Figure 2006040709
Figure 2006040709

また、ポリオキシアルキレン鎖を導入する反応の他の一例を下記に示す。この例では、ポリウレア樹脂(11)にアクリルイソシアネート化合物(12)を化合させ、更に化合されたアクリルイソシアネート化合物の末端の炭素二重結合に、多官能のアクリレート(14)と、エチレンオキサイド鎖を有する分岐構造のアクリレート(13)を重合させる。   Another example of the reaction for introducing a polyoxyalkylene chain is shown below. In this example, an acrylic isocyanate compound (12) is combined with a polyurea resin (11), and a polyfunctional acrylate (14) and an ethylene oxide chain are added to the terminal carbon double bond of the combined acrylic isocyanate compound. The branched acrylate (13) is polymerized.

Figure 2006040709
Figure 2006040709

上記の燃料電池用電解質膜の熱分解温度は180℃以上であり、また150℃における貯蔵弾性率が1×10Pa以上1×10Pa以下の範囲になる。この範囲外では好ましい耐熱性および力学的性質が得られない。 The thermal decomposition temperature of the fuel cell electrolyte membrane is 180 ° C. or higher, and the storage elastic modulus at 150 ° C. is in the range of 1 × 10 7 Pa to 1 × 10 9 Pa. Outside this range, preferred heat resistance and mechanical properties cannot be obtained.

次に本発明に係る燃料電池について具体的に説明する。本発明に係る燃料電池にはプロトン伝導性を有する高分子膜として、前記した燃料電池用電解質膜が備えられている。   Next, the fuel cell according to the present invention will be specifically described. The fuel cell according to the present invention includes the above-described electrolyte membrane for a fuel cell as a polymer membrane having proton conductivity.

燃料電池はプロトン伝導性を有する高分子膜とこの両側に接触して配置される正極及び負極(一対の電極)から構成される。燃料の水素は負極において電気化学的に酸化されて、プロトンと電子を生成する。このプロトンは電解質膜内で輸送されて酸素が供給される正極に達する。一方、負極で生成した電子は燃料電池に接続された外部負荷を通り、正極に流れ、正極においてプロトンと酸素と電子が反応して水が生成される。   The fuel cell is composed of a polymer film having proton conductivity and a positive electrode and a negative electrode (a pair of electrodes) arranged in contact with both sides. Fuel hydrogen is electrochemically oxidized at the negative electrode to produce protons and electrons. The protons are transported in the electrolyte membrane and reach the positive electrode to which oxygen is supplied. On the other hand, electrons generated at the negative electrode pass through an external load connected to the fuel cell and flow to the positive electrode, where protons, oxygen, and electrons react to generate water.

前記燃料電池を構成する電極は、導電材、バインダーおよび触媒から成っている。導電材としては、電気伝導性物質であればいずれのものでもよく、各種金属や炭素材料などが挙げられる。たとえばアセチレンブラック等のカーボンブラック、活性炭および黒鉛等が挙げられ、これらは単独あるいは混合して使用される。   The electrode constituting the fuel cell is composed of a conductive material, a binder and a catalyst. As the conductive material, any conductive material may be used, and various metals and carbon materials may be used. Examples thereof include carbon black such as acetylene black, activated carbon and graphite, and these are used alone or in combination.

また、バインダーとしては本発明のプロトン伝導性樹脂を使用するのが好ましいが、他の樹脂を用いることもできる。その場合、他の樹脂は揆水性を有するフッ素樹脂が好ましい。フッ素樹脂の中でも融点が400℃以下のものがより好ましく、例えばポリテトラフルオロエチレン、テトラフルオロエチレンーパーフルオロアルキルビニルエーテル共重合体などが挙げられる。   Moreover, although it is preferable to use the proton conductive resin of this invention as a binder, other resin can also be used. In that case, the other resin is preferably a fluororesin having hydrophobicity. Among the fluororesins, those having a melting point of 400 ° C. or lower are more preferable, and examples thereof include polytetrafluoroethylene and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymers.

電極の触媒としては、水素の酸化反応および酸素の還元反応を促進する金属であれば、特に限定されることはないが、例えば鉛、鉄、マンガン、コバルト、クロム、ガリウム、バナジウム、タングステン、ルテニウム、イリジウム、パラジウム、白金、ロジウムまたはそれらの合金が挙げられる。   The electrode catalyst is not particularly limited as long as it is a metal that promotes hydrogen oxidation reaction and oxygen reduction reaction. For example, lead, iron, manganese, cobalt, chromium, gallium, vanadium, tungsten, ruthenium. , Iridium, palladium, platinum, rhodium or an alloy thereof.

以上説明したように、本発明の燃料電池用電解質膜によれば、プロトン伝導度、耐熱性および力学的強度を向上させることができる。また本発明の燃料電池によれば、発電特性をより向上させることができる。   As described above, according to the electrolyte membrane for fuel cells of the present invention, proton conductivity, heat resistance and mechanical strength can be improved. Moreover, according to the fuel cell of the present invention, the power generation characteristics can be further improved.

以下、実施例により本発明を説明するが、本発明はこれに限定されるものではない。
なお、下記の実施例における物性の測定条件は次の通りである。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to this.
In addition, the measurement conditions of the physical properties in the following examples are as follows.

プロトン伝導度:短冊状の電解質膜の表面に5mm間隔で白金線(直径0.2mm)を押しあてて電極とし、交流(1kHz)を印加した時の抵抗をインピーダンスアナライザーで測定した。電極間隔と抵抗の傾き(R)、電解質膜の厚み(t)、電解質膜の幅(D)から1/(R×T×D)によりプロトン伝導度を求めた。測定は80℃、湿度95%で行った。
貯蔵弾性率:粘弾性測定装置(ユービーエム社製Rheogel-E4000)を使用し、昇温速度2℃、温度範囲が20℃から300℃の範囲、周波数100Hz、変位5μmで行った。
熱分解温度:熱分析装置(マックスサイエンス製熱分析システムWSOO2)を使用し、昇温速度5℃/分で行った。
Proton conductivity: A platinum wire (diameter 0.2 mm) was pressed against the surface of a strip-shaped electrolyte membrane at an interval of 5 mm to form an electrode, and the resistance when alternating current (1 kHz) was applied was measured with an impedance analyzer. The proton conductivity was determined by 1 / (R × T × D) from the electrode interval and the slope of resistance (R), the thickness (t) of the electrolyte membrane, and the width (D) of the electrolyte membrane. The measurement was performed at 80 ° C. and a humidity of 95%.
Storage modulus: A viscoelasticity measuring device (Rheogel-E4000 manufactured by UBM Co., Ltd.) was used, and the heating rate was 2 ° C., the temperature range was 20 ° C. to 300 ° C., the frequency was 100 Hz, and the displacement was 5 μm.
Thermal decomposition temperature: A thermal analyzer (thermal analysis system WSOO2 manufactured by Max Science) was used and the temperature was increased at a rate of 5 ° C./min.

(実施例1)
20.8重量部のMDIと、100重量部のポリテトラメチレンオキシドージーP一アミノベンゾエート(アミン価89)とを混合し、400重量部のテトラヒドロフラン(以下、THFと略す)に溶解し、フッ素製のシャーレーに注入し、THFを除去することにより、ポリウレア樹脂を得た。
Example 1
20.8 parts by weight of MDI and 100 parts by weight of polytetramethylene oxide P monoaminobenzoate (amine number 89) are mixed and dissolved in 400 parts by weight of tetrahydrofuran (hereinafter abbreviated as THF), and fluorine A polyurea resin was obtained by pouring into a petri dish and removing THF.

得られたポリウレア樹脂1gを10mlのTHFに溶解し、0.4gのMOI(2−イソシアナートエチルメタクリーレート)と、0.002gのジブチル錫ジラウレートを加えて室温で反応させ、イソシアネート基の消失を確認した。この溶液全量に対し、質量濃度50%のTBAS水溶液を1重量部と、重合開始剤として0.002重量部の2一ヒドロキシー2一メチルプロピオフェノンと、6重量部のTHFとを混合し、脱気後、紫外線(400W)を7分照射した。その後、反応物を熱水(80℃)で1時間洗浄してから乾燥した。このようにして、実施例1のプロトン伝導性樹脂を得た。
得られた樹脂をシート状に成形して電解質膜とし、プロトン伝導度を測定したところ、
4×10−4S/cmとなった。
Dissolve 1 g of the resulting polyurea resin in 10 ml of THF, add 0.4 g of MOI (2-isocyanatoethyl methacrylate) and 0.002 g of dibutyltin dilaurate, and react at room temperature to eliminate isocyanate groups. It was confirmed. 1 part by weight of a TBAS aqueous solution having a mass concentration of 50%, 0.002 part by weight of 21-hydroxy-2-methylpropiophenone as a polymerization initiator, and 6 parts by weight of THF are mixed with respect to the total amount of the solution. After deaeration, ultraviolet rays (400 W) were irradiated for 7 minutes. Thereafter, the reaction product was washed with hot water (80 ° C.) for 1 hour and then dried. In this way, the proton conductive resin of Example 1 was obtained.
The resulting resin was molded into a sheet to form an electrolyte membrane, and the proton conductivity was measured.
It became 4 × 10 −4 S / cm.

(実施例2)
上記実施例1と同様にして、ポリウレア樹脂を製造した。
得られたポリウレア樹脂1gを10mlのTHFに溶解し、0.4gのMOIと、0.002gのジブチル錫ジラウレートを加えて室温で反応させ、イソシアネート基の消失を確認した。この溶液全量に対し、1.18重量部のポリエチレングリコール400モノアクリレートと、重合開始剤として0.002重量部の2一ヒドロキシー2一メチルプロピオフェノンと、6重量部のTHFとを混合し、脱気後、紫外線(400W)を7分照射した。その後、反応物を熱水(80℃)で1時間洗浄してから乾燥した。このようにして、実施例2のプロトン伝導性樹脂を得た。
得られた樹脂をシート状に成形して電解質膜とし、プロトン伝導度を測定したところ、8×10−3S/cmとなった。
(Example 2)
A polyurea resin was produced in the same manner as in Example 1.
1 g of the resulting polyurea resin was dissolved in 10 ml of THF, 0.4 g of MOI and 0.002 g of dibutyltin dilaurate were added and reacted at room temperature, and disappearance of isocyanate groups was confirmed. 1.18 parts by weight of polyethylene glycol 400 monoacrylate, 0.002 parts by weight of 21-hydroxy-2-methylpropiophenone as a polymerization initiator, and 6 parts by weight of THF are mixed with respect to the total amount of the solution. After deaeration, ultraviolet rays (400 W) were irradiated for 7 minutes. Thereafter, the reaction product was washed with hot water (80 ° C.) for 1 hour and then dried. In this way, the proton conductive resin of Example 2 was obtained.
The obtained resin was molded into a sheet shape to form an electrolyte membrane, and when proton conductivity was measured, it was 8 × 10 −3 S / cm.

(実施例3)
上記実施例1と同様にして、ポリウレア樹脂を製造した。
得られたポリウレア樹脂2.5gを50mlのジメチルフォルムアミド(DMF)に溶解して反応容器中に入れ、容器内の雰囲気を窒素に置換した。次に、反応容器に純度60%、195mgのNaHを加え、−5℃で15分間反応させた。次に、360mgの1,3プロパンサルトンを5mlのDMFに溶解させた溶液を加え、50℃で2時間反応させた。反応物をろ過し、300mlのジエチルエーテルに移してポリマーを析出させた。遠心分離機にかけて上澄みを除去し、5mlのDMFに再度溶解させ、15体積%の塩酸水溶液200mlを加えてプロトン交換を行った。更に洗浄、乾燥した後、THFに溶解させ、シャーレにキャストし、乾燥後、熱水洗浄して更に乾燥させることにより、実施例3のプロトン伝導性樹脂を得た。
(Example 3)
A polyurea resin was produced in the same manner as in Example 1.
2.5 g of the resulting polyurea resin was dissolved in 50 ml of dimethylformamide (DMF) and placed in a reaction vessel, and the atmosphere in the vessel was replaced with nitrogen. Next, 195 mg of NaH having a purity of 60% was added to the reaction vessel and reacted at −5 ° C. for 15 minutes. Next, a solution in which 360 mg of 1,3 propane sultone was dissolved in 5 ml of DMF was added and reacted at 50 ° C. for 2 hours. The reaction was filtered and transferred to 300 ml diethyl ether to precipitate the polymer. The supernatant was removed by centrifuging, dissolved again in 5 ml of DMF, and proton exchange was performed by adding 200 ml of a 15 vol% hydrochloric acid aqueous solution. Further, after washing and drying, the product was dissolved in THF, cast into a petri dish, dried, washed with hot water and further dried to obtain the proton conductive resin of Example 3.

得られた樹脂をシート状に成形して電解質膜とし、プロトン伝導度を測定したところ、5.4×10−4S/cmとなった。
また、得られたプロトン導電性樹脂の熱分解温度は230℃であった。更に150℃における貯蔵弾性率は1.0×10Paであった。
The obtained resin was molded into a sheet shape to form an electrolyte membrane, and the proton conductivity was measured to be 5.4 × 10 −4 S / cm.
Moreover, the thermal decomposition temperature of the obtained proton conductive resin was 230 degreeC. Furthermore, the storage elastic modulus at 150 ° C. was 1.0 × 10 8 Pa.

(実施例4)
実施例2と実施例3のプロトン伝導性樹脂各々0.5gを、THFに溶解させ、シャーレにキャストして実施例4の電解質膜を得た。プロトン伝導度を測定したところ、5.4×10−4〜8×10−3S/cmとなった。
Example 4
0.5 g of each of the proton conductive resins of Example 2 and Example 3 was dissolved in THF and cast into a petri dish to obtain an electrolyte membrane of Example 4. When proton conductivity was measured, it was 5.4 × 10 −4 to 8 × 10 −3 S / cm.

(比較例1)
上記実施例1と同様にして、ポリウレア樹脂を製造した。このポリウレア樹脂をTHFに溶解させ、シャーレにキャストして比較例1の電解質膜を得た。プロトン伝導度を測定したところ、3×10−6S/cmとなった。
(Comparative Example 1)
A polyurea resin was produced in the same manner as in Example 1. This polyurea resin was dissolved in THF and cast into a petri dish to obtain an electrolyte membrane of Comparative Example 1. When proton conductivity was measured, it was 3 × 10 −6 S / cm.

以上のように、実施例1ないし実施例4の電解質膜は、比較例1の電解質膜と比べて、プロトン伝導度が大幅に向上していることがわかる。

As described above, it can be seen that the proton conductivity of the electrolyte membranes of Examples 1 to 4 is significantly improved as compared with the electrolyte membrane of Comparative Example 1.

Claims (7)

ポリウレア樹脂からなる主鎖に、活性水素基が末端に結合されてなる側鎖が結合されてなるプロトン伝導性樹脂から構成されることを特徴とする燃料電池用電解質膜。   An electrolyte membrane for a fuel cell comprising a proton conductive resin in which a side chain formed by binding an active hydrogen group to a terminal is bonded to a main chain made of a polyurea resin. ポリウレア樹脂中に含まれるウレア基またはウレタン基のいずれか一方または両方に、アクリルイソシアネート化合物が化合され、化合された前記アクリルイソシアネート化合物に活性水素基含有アクリレート化合物が化合されてなることを特徴とする請求項1に記載の燃料電池用電解質膜。   An acrylic isocyanate compound is combined with one or both of a urea group and a urethane group contained in the polyurea resin, and an active hydrogen group-containing acrylate compound is combined with the combined acrylic isocyanate compound. The electrolyte membrane for fuel cells according to claim 1. 前記活性水素基が、スルホン酸基、カルボン酸基、リン酸基、水酸基うちのいずれかであることを特徴とする請求項1または請求項2に記載の燃料電池用電解質膜。   The fuel cell electrolyte membrane according to claim 1 or 2, wherein the active hydrogen group is any one of a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, and a hydroxyl group. ポリウレア樹脂中に含まれるウレア基またはウレタン基のいずれか一方または両方に、サルトン化合物が化合されてなることを特徴とする請求項1に記載の燃料電池用電解質膜。   The electrolyte membrane for a fuel cell according to claim 1, wherein a sultone compound is combined with one or both of a urea group and a urethane group contained in the polyurea resin. 前記水酸基がポリオキシアルキレン鎖に結合されていることを特徴とする請求項3に記載の燃料電池用電解質膜。   The electrolyte membrane for a fuel cell according to claim 3, wherein the hydroxyl group is bonded to a polyoxyalkylene chain. 熱分解温度が180℃以上であるともに、150℃における貯蔵弾性率が1×10Pa以上1×10Pa以下の範囲であることを特徴とする請求項1ないし請求項5のいずれかに記載の燃料電池用電解質膜。 6. The thermal decomposition temperature is 180 ° C. or higher, and the storage elastic modulus at 150 ° C. is in the range of 1 × 10 7 Pa to 1 × 10 9 Pa. The electrolyte membrane for fuel cells as described. 請求項1ないし請求項6のいずれかに記載の燃料電池用電解質膜を備えていることを特徴とする燃料電池。

A fuel cell comprising the fuel cell electrolyte membrane according to any one of claims 1 to 6.

JP2004218928A 2004-07-27 2004-07-27 ELECTROLYTE MEMBRANE FOR FUEL CELL AND FUEL CELL Expired - Fee Related JP4851072B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004218928A JP4851072B2 (en) 2004-07-27 2004-07-27 ELECTROLYTE MEMBRANE FOR FUEL CELL AND FUEL CELL
KR1020040111373A KR100695107B1 (en) 2004-07-27 2004-12-23 Electrolyte for fuel cell and fuel cell employing the same
US11/188,780 US7648790B2 (en) 2004-07-27 2005-07-26 Electrolyte for fuel cell and fuel cell employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004218928A JP4851072B2 (en) 2004-07-27 2004-07-27 ELECTROLYTE MEMBRANE FOR FUEL CELL AND FUEL CELL

Publications (2)

Publication Number Publication Date
JP2006040709A true JP2006040709A (en) 2006-02-09
JP4851072B2 JP4851072B2 (en) 2012-01-11

Family

ID=35905479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004218928A Expired - Fee Related JP4851072B2 (en) 2004-07-27 2004-07-27 ELECTROLYTE MEMBRANE FOR FUEL CELL AND FUEL CELL

Country Status (2)

Country Link
JP (1) JP4851072B2 (en)
KR (1) KR100695107B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120518A (en) * 2004-10-22 2006-05-11 Samsung Sdi Co Ltd Solid polymer electrolyte for fuel cell and fuel cell
KR100695114B1 (en) 2005-12-12 2007-03-14 삼성에스디아이 주식회사 Proton conductive solid polymer electrolyte, and fuel cell employing the proton conductive electrolyte
JP2007197663A (en) * 2005-12-27 2007-08-09 Canon Inc Compound, solid polymer electrolyte membrane, electrolyte membrane-electrode assembly, and solid polymer fuel cell
WO2010147044A1 (en) 2009-06-19 2010-12-23 日産自動車株式会社 Polyurea electrolyte and production method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100612897B1 (en) * 2005-05-27 2006-08-14 삼성에스디아이 주식회사 Proton conductive electrolyte, preparing method thereof, and fuel cell using the same
KR101305209B1 (en) * 2012-03-30 2013-11-21 서울시립대학교 산학협력단 Capacitor having improved charge and discharge, and preparing the same
WO2013125904A1 (en) * 2012-02-23 2013-08-29 서울시립대학교 산학협력단 Electrolyte having improved high-rate charging and discharging characteristics and capacitor using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003335835A (en) * 2002-05-22 2003-11-28 Mitsui Chemicals Inc Sulfo group-containing resin varnish and sulfo group- containing crosslinked resin

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562520B1 (en) 1999-11-22 2003-05-13 Hitachi Maxell, Ltd. Polymer electrolyte and rechargeable cell comprising the same
JP4562896B2 (en) 1999-11-22 2010-10-13 日立マクセル株式会社 Gel polymer electrolyte and secondary battery
JP2001229730A (en) * 2000-02-21 2001-08-24 Showa Denko Kk Electrolyte material and its use
KR20020010251A (en) * 2000-07-28 2002-02-04 이 행 우 Polyurethanes Having Good Hydrophilic and Ion-conductive Properties and Method for Preparing Thereof
JP4095289B2 (en) 2001-11-30 2008-06-04 Tdk株式会社 Dye-sensitized solar cell
JP2003257491A (en) 2002-03-06 2003-09-12 Sanyo Chem Ind Ltd Gel polymer electrolyte and electrochemical element using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003335835A (en) * 2002-05-22 2003-11-28 Mitsui Chemicals Inc Sulfo group-containing resin varnish and sulfo group- containing crosslinked resin

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120518A (en) * 2004-10-22 2006-05-11 Samsung Sdi Co Ltd Solid polymer electrolyte for fuel cell and fuel cell
JP4684620B2 (en) * 2004-10-22 2011-05-18 三星エスディアイ株式会社 Solid polymer electrolyte for fuel cell and fuel cell
KR100695114B1 (en) 2005-12-12 2007-03-14 삼성에스디아이 주식회사 Proton conductive solid polymer electrolyte, and fuel cell employing the proton conductive electrolyte
JP2007197663A (en) * 2005-12-27 2007-08-09 Canon Inc Compound, solid polymer electrolyte membrane, electrolyte membrane-electrode assembly, and solid polymer fuel cell
WO2010147044A1 (en) 2009-06-19 2010-12-23 日産自動車株式会社 Polyurea electrolyte and production method therefor
US9196391B2 (en) 2009-06-19 2015-11-24 Nissan Motor Co., Ltd. Polyurea electrolyte and method for manufacturing the same

Also Published As

Publication number Publication date
KR20060010690A (en) 2006-02-02
JP4851072B2 (en) 2012-01-11
KR100695107B1 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
Zhang et al. Development of a high-performance anion exchange membrane using poly (isatin biphenylene) with flexible heterocyclic quaternary ammonium cations for alkaline fuel cells
Lin et al. Novel alkaline anion exchange membranes containing pendant benzimidazolium groups for alkaline fuel cells
US6989212B2 (en) Fuel cell, polyelectrolyte and ion-exchange resin used for same
Zhang et al. Influence of solvent on polymer prequaternization toward anion-conductive membrane fabrication for all-vanadium flow battery
Kim et al. Poly (arylene ether ketone) with pendant pyridinium groups for alkaline fuel cell membranes
Li et al. Boosting the performance of an anion exchange membrane by the formation of well-connected ion conducting channels
JP2007246901A (en) Multiblock copolymer, method for producing the same, polymer electrolyte film, method for producing the same and fuel cell
US20230265571A1 (en) Polymer electrolyte composites
Zhou et al. Solvent processible, high-performance partially fluorinated copoly (arylene ether) alkaline ionomers for alkaline electrodes
Xu et al. Novel piperidinium-functionalized crosslinked anion exchange membrane with flexible spacers for water electrolysis
JP4851072B2 (en) ELECTROLYTE MEMBRANE FOR FUEL CELL AND FUEL CELL
JP4919941B2 (en) Inspection method for polymer electrolyte membrane
JPWO2017022775A1 (en) Anion exchanger, ion conductivity imparting agent, catalyst electrode layer, membrane-electrode assembly, anion exchange membrane fuel cell and anion exchange membrane water electrolysis device
CA2766016A1 (en) Polyurea electrolyte and method for manufacturing the same
Abdi et al. Synthesis of ionic polybenzimidazoles with broad ion exchange capacity range for anion exchange membrane fuel cell application
CN116235324A (en) Polycyclic olefin polymers and anion exchange membranes derived therefrom
JP4440616B2 (en) Proton conducting electrolyte and fuel cell
Msomi et al. Quaternized poly (2, 6 dimethyl–1, 4 phenylene oxide)/polysulfone blended anion exchange membrane for alkaline fuel cells application
US7648790B2 (en) Electrolyte for fuel cell and fuel cell employing the same
KR101042960B1 (en) Solid polymer electrolyte for fuel cell and fuel cell using the same
KR102629899B1 (en) Compound, polymer comprising monomer derived from same, polymer separation membrane using same, membrane electrode assembly, fuel cell and redox flow cell using same
JP4161751B2 (en) Proton conducting material, proton conducting material membrane, and fuel cell
JP4913397B2 (en) Proton conducting solid polymer electrolyte and fuel cell
JP2010015960A (en) Electrolyte film for fuel cell
US7829209B2 (en) Solid polymer electrolyte for fuel cell and fuel cell containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees