JP4813218B2 - Proton conducting electrolyte and fuel cell - Google Patents

Proton conducting electrolyte and fuel cell Download PDF

Info

Publication number
JP4813218B2
JP4813218B2 JP2006064140A JP2006064140A JP4813218B2 JP 4813218 B2 JP4813218 B2 JP 4813218B2 JP 2006064140 A JP2006064140 A JP 2006064140A JP 2006064140 A JP2006064140 A JP 2006064140A JP 4813218 B2 JP4813218 B2 JP 4813218B2
Authority
JP
Japan
Prior art keywords
group
acid
polyamic acid
proton
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006064140A
Other languages
Japanese (ja)
Other versions
JP2007242453A (en
Inventor
裕子 遠藤
篤夫 宗内
宏之 西出
貴広 多胡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2006064140A priority Critical patent/JP4813218B2/en
Priority to KR1020060055414A priority patent/KR100784999B1/en
Priority to US11/650,956 priority patent/US7829218B2/en
Priority to CN2007100862075A priority patent/CN101074281B/en
Publication of JP2007242453A publication Critical patent/JP2007242453A/en
Application granted granted Critical
Publication of JP4813218B2 publication Critical patent/JP4813218B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Conductive Materials (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、燃料電池用材料として好適なプロトン伝導性電解質、及びこれを用いた燃料電池に関する。   The present invention relates to a proton conductive electrolyte suitable as a fuel cell material and a fuel cell using the same.

燃料電池用電解質としては、プロトン伝導性や化学的安定性に優れる等の理由から、食塩電解や海水淡水化、水処理等の用途にも用いられているフッ化ポリエチレンスルホン酸膜が広く利用されている。例えば、Nafion膜、Flemion膜、Aciplex膜、Dow膜(いずれも商品名)等が市販されている。しかしながら、これらの電解質膜はフッ素を含有するため、環境面から好ましくなく、かつ高価格である。
フッ素を含有しない電解質膜としては、水処理用イオン交換樹脂やイオン交換膜等としてポリスチレンスルホン酸、燃料電池用としてスルホン酸化芳香族ポリマー等が提案されている(特許文献1、非特許文献1)。しかしながらこれらは、耐熱性や化学的安定性が燃料電池として実用化するには不充分である。
As electrolytes for fuel cells, fluorinated polyethylene sulfonic acid membranes, which are also used in applications such as salt electrolysis, seawater desalination, and water treatment, are widely used for reasons such as excellent proton conductivity and chemical stability. ing. For example, a Nafion film, a Flemion film, an Aciplex film, a Dow film (all of which are trade names) are commercially available. However, since these electrolyte membranes contain fluorine, they are not preferable from an environmental viewpoint and are expensive.
As electrolyte membranes not containing fluorine, polystyrene sulfonic acid for water treatment ion exchange resins and ion exchange membranes, and sulfonated aromatic polymers for fuel cells have been proposed (Patent Document 1, Non-Patent Document 1). . However, these have insufficient heat resistance and chemical stability for practical use as a fuel cell.

また、燃料電池の発電効率やシステム効率、及び構成部材の長期耐久性の観点から、特に、100℃から200℃程度の作動温度で、無加湿あるいは相対湿度50%以下の低加湿な作動条件下において、良好な発電性能が長期間安定的に得られる燃料電池が望まれているが、上記材料を電解質膜に用いた場合でも、安定した性能を得るのは困難であった。
特表平11−502245号公報 T.Kobayashi,M.Rikukawa,K.Sanui,N.Ogata,Solid State Ionics,106巻,1998年,p.219
In addition, from the viewpoint of power generation efficiency and system efficiency of the fuel cell and long-term durability of the constituent members, in particular, at an operating temperature of about 100 ° C. to 200 ° C., operating conditions of no humidification or low humidity of 50% or less relative humidity. However, there is a demand for a fuel cell in which good power generation performance can be stably obtained over a long period of time. However, even when the above material is used for the electrolyte membrane, it is difficult to obtain stable performance.
Japanese National Patent Publication No. 11-502245 T.A. Kobayashi, M .; Rikukawa, K .; Sanui, N .; Ogata, Solid State Ionics, 106, 1998, p. 219

燃料電池の発電性能を向上させるため、電解質膜の材料に用いられる芳香族ポリマーへの官能基の導入率を高くすることにより、プロトン伝導性を向上させる方法がある。しかしながら、官能基の導入率が高くなるほど、電解質膜として成膜した際の柔軟性が低下し、脆い膜となってしまうという問題があった。   In order to improve the power generation performance of the fuel cell, there is a method of improving proton conductivity by increasing the introduction rate of functional groups into the aromatic polymer used for the material of the electrolyte membrane. However, the higher the functional group introduction rate, the lower the flexibility when forming an electrolyte membrane, resulting in a fragile membrane.

本発明は上記事情に鑑みてなされたものであり、プロトン伝導性及び成膜後の柔軟性に優れ、上述のような作動条件下においても良好な発電性能を長期間安定的に得ることができる、固体高分子型燃料電池用材料として好適なプロトン伝導性電解質、及びこれを用いた燃料電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, is excellent in proton conductivity and flexibility after film formation, and can stably obtain good power generation performance for a long period of time even under the above operating conditions. An object of the present invention is to provide a proton conductive electrolyte suitable as a material for a polymer electrolyte fuel cell, and a fuel cell using the same.

本発明者は上記課題を解決するべく鋭意検討した結果、成膜可能な高分子量体が得られるとともに、スルファミド基を高導入率で導入した場合でも成膜後の柔軟性が保たれるポリアミック酸に着目し、これを前駆体として優れたプロトン伝導性及び柔軟性を兼ね備えたポリアミド酸誘導体が得られることを見出し、本発明を完成された。   As a result of intensive studies to solve the above problems, the present inventor obtained a high molecular weight polymer capable of film formation, and a polyamic acid that maintains flexibility after film formation even when a sulfamide group is introduced at a high introduction rate. As a precursor, it was found that a polyamic acid derivative having excellent proton conductivity and flexibility was obtained, and the present invention was completed.

すなわち、本発明のプロトン伝導性電解質は、主鎖にアルキレン基を含むポリアミドに、側鎖としてカルボン酸、あるいはスルファミド酸基が導入されたポリアミド酸誘導体を含むことを特徴とする。 That is, the proton conductive electrolyte of the present invention is characterized in that it contains a polyamic acid derivative in which a carboxylic acid or a sulfamic acid group is introduced as a side chain in a polyamide containing an alkylene group in the main chain.

本発明のプロトン伝導性電解質は、前記ポリアミド酸誘導体として、下記一般式(1)で示されるものが好適である。   The proton conductive electrolyte of the present invention is preferably the polyamic acid derivative represented by the following general formula (1).

Figure 0004813218
(但し、一般式(1)中、Arは芳香族環又は芳香族環を含む基であり、Rはアルキレン基であり、a,bは、0≦a≦2,0≦b≦2,且つa+b=2を満たす数であり、nは平均重合度であって100〜300000の整数である。)
Figure 0004813218
(In the general formula (1), Ar is an aromatic ring or a group containing an aromatic ring, R is an alkylene group , a and b are 0 ≦ a ≦ 2, 0 ≦ b ≦ 2, and (It is a number satisfying a + b = 2, and n is an average degree of polymerization and is an integer of 100 to 300,000.)

また、本発明のプロトン伝導性電解質は、上記一般式(1)で示されるポリアミド酸誘導体におけるRが、炭素数が3〜12の範囲のアルキレン基とされた構成とすることができる。 Moreover, the proton conductive electrolyte of this invention can be set as the structure by which R in the polyamic-acid derivative shown by the said General formula (1) was made into the alkylene group whose carbon number is 3-12.

また、本発明のプロトン伝導性電解質は、前記ポリアミド酸誘導体が、ポリアミド酸の側鎖カルボン酸基の全部、または一部がスルファミド化されてなる化合物として構成とすることができる。   In addition, the proton conductive electrolyte of the present invention can be configured such that the polyamic acid derivative is a compound in which all or part of the side chain carboxylic acid group of the polyamic acid is sulfamidated.

また、本発明のプロトン伝導性電解質は、前記ポリアミド酸誘導体が、ポリアミド酸の側鎖カルボン酸基の全部、又は一部を酸クロライド化後、アミド硫酸トリエチルアミン塩と反応させ、さらに陽イオン交換して得られるものが好適である。   In the proton conductive electrolyte of the present invention, the polyamic acid derivative may be reacted with a triethylamine salt of amidosulfuric acid after all or part of the side chain carboxylic acid group of the polyamic acid is acid chlorideed, and further subjected to cation exchange. What is obtained is preferable.

本発明のプロトン伝導性電解質は、上記本発明のポリアミド酸誘導体と、下記一般式(2)で表されるポリビニルスルファミド酸とが混合されてなる構成とすることができる。   The proton conductive electrolyte of the present invention can be configured by mixing the polyamic acid derivative of the present invention and polyvinyl sulfamic acid represented by the following general formula (2).

Figure 0004813218
(但し、一般式(2)中、RはH,COOH,CONHSOH,芳香族基であり、RはH,CHであり、R,はそれぞれCOOH,アルコキシ基,ハロゲン基,エステル基,芳香族基を示し、m,nはそれぞれ平均重合度であって100〜1000000の整数である。)
Figure 0004813218
(In the general formula (2), R 1 is H, COOH, CONHSO 3 H, an aromatic group, R 2 is H, CH 3 , and R 3 is COOH, an alkoxy group, a halogen group, An ester group and an aromatic group are shown, m and n are average degrees of polymerization, respectively, and are integers of 100 to 1000000.)

また、本発明のプロトン伝導性電解質は、上記本発明のポリアミド酸誘導体と、上記一般式(2)で表されるポリビニルスルファミド酸との混合比が、質量比で9/1〜1/1の範囲であることが好ましい。   Further, the proton conductive electrolyte of the present invention has a mass ratio of 9/1 to 1/1 / of the polyamic acid derivative of the present invention and the polyvinylsulfamic acid represented by the general formula (2). A range of 1 is preferable.

本発明の燃料電池は、一対の電極と各電極の間に配置された電解質膜とを具備してなり、該電解質膜が、上記本発明のプロトン伝導性電解質からなることを特徴とする。
また、本発明の燃料電池においては、前記電極の一部に上記本発明のプロトン伝導性電解質が含有された構成としても良い。
The fuel cell of the present invention comprises a pair of electrodes and an electrolyte membrane disposed between the electrodes, and the electrolyte membrane is composed of the proton conductive electrolyte of the present invention.
Further, the fuel cell of the present invention may be configured such that the proton conductive electrolyte of the present invention is contained in a part of the electrode.

本発明によれば、上記ポリアミド酸誘導体を含む構成とすることにより、プロトン伝導性、及び成膜後の柔軟性に優れたプロトン伝導性電解質を実現することができる。また、本発明のプロトン伝導性電解質を燃料電池用の電解質膜として用いることにより、作動温度が100℃以上200℃以下で無加湿、あるいは相対湿度50%以下であっても、電流密度が高く、高出力、高寿命な固体高分子型の燃料電池を提供することができる。   According to the present invention, a proton-conducting electrolyte excellent in proton conductivity and flexibility after film formation can be realized by adopting a configuration containing the polyamic acid derivative. Further, by using the proton conductive electrolyte of the present invention as an electrolyte membrane for a fuel cell, the current density is high even when the operating temperature is 100 ° C. or higher and 200 ° C. or lower and no relative humidity is 50% or less, A high-power, long-life polymer electrolyte fuel cell can be provided.

以下、本発明のプロトン伝導性電解質及び燃料電池について詳述する。   Hereinafter, the proton conductive electrolyte and the fuel cell of the present invention will be described in detail.

[プロトン伝導性電解質]
「第1の例(ポリアミド酸誘導体)」
本発明のプロトン伝導性電解質は、主鎖にアルキレン基を含むポリアミドに、側鎖としてカルボン酸、あるいはスルファミド酸基が導入されたポリアミド酸誘導体を含むことを特徴とする。
[Proton conducting electrolyte]
"First example (polyamic acid derivative)"
The proton conductive electrolyte of the present invention is characterized in that it includes a polyamic acid derivative in which a carboxylic acid or a sulfamic acid group is introduced as a side chain in a polyamide containing an alkylene group in the main chain.

本発明では、上記ポリアミドの主鎖にアルキレン基を含むことにより、電解質膜として成膜した際に優れた柔軟性が得られ、また、ポリアミドの側鎖としてスルファミド酸基を高導入率で導入した場合には高いプロトン伝導性を備えたポリアミド酸誘導体が得られる。このようなポリアミド酸誘導体を含む構成とすることにより、優れたプロトン伝導性、及び成膜後の柔軟性を兼ね備えたプロトン伝導性電解質が得られる。 In the present invention, by including an alkylene group in the main chain of the polyamide, excellent flexibility can be obtained when forming as an electrolyte membrane, and a sulfamic acid group is introduced at a high introduction rate as a side chain of the polyamide. In some cases, a polyamic acid derivative having high proton conductivity is obtained. By comprising such a polyamic acid derivative, a proton conductive electrolyte having excellent proton conductivity and flexibility after film formation can be obtained.

本発明のポリアミド酸誘導体としては、特に、下記一般式(1)で示されるものが、プロトン伝導性及び柔軟性に優れている点で好適である。   As the polyamic acid derivative of the present invention, a compound represented by the following general formula (1) is particularly preferable in terms of excellent proton conductivity and flexibility.

Figure 0004813218
上記一般式(1)中、Arは芳香族環又は芳香族環を含む基であり、Rはアルキレン基であり、a,bは、0≦a≦2,0≦b≦2,且つa+b=2を満たす数であり、nは平均重合度であって100〜300000の整数である。
芳香族環、又は芳香族環を含む基としては、フェニル基、ナフチル基等が挙げられるが、何ら限定されるものでは無い。
Figure 0004813218
In the general formula (1), Ar is an aromatic ring or a group containing an aromatic ring, R is an alkylene group , a and b are 0 ≦ a ≦ 2, 0 ≦ b ≦ 2, and a + b = 2, n is an average degree of polymerization and is an integer of 100 to 300,000.
Examples of the aromatic ring or the group containing an aromatic ring include a phenyl group and a naphthyl group, but are not limited thereto.

また、ポリアミド酸誘導体(1)におけるRは、炭素数が3〜12の範囲のアルキレン基であることが好ましい。 R in the polyamic acid derivative (1) is preferably an alkylene group having 3 to 12 carbon atoms.

本発明では、ポリアミド酸誘導体として、ポリアミド酸の側鎖カルボン酸基の全部、または一部がスルファミド化されてなる化合物とすることが好適である。
また、ポリアミド酸誘導体としては、ポリアミド酸の側鎖カルボン酸基の全部、または一部を酸クロライド化後、アミド硫酸トリエチルアミン塩と反応させ、さらに陽イオン交換して得られるものを好適に用いることができる。
In the present invention, the polyamic acid derivative is preferably a compound in which all or part of the side chain carboxylic acid group of the polyamic acid is sulfamidated.
Further, as the polyamic acid derivative, a polyamic acid derivative obtained by subjecting all or a part of the side chain carboxylic acid group of the polyamic acid to acid chloride, reacting with amidosulfuric acid triethylamine salt, and further cation exchange should be preferably used. Can do.

なお、上記一般式(1)で示されるポリアミド酸誘導体の官能基の導入率:a/a+bは、80%〜100%の範囲であることが好ましい。官能基の導入率:a/a+bが80%未満だと、充分なプロトン伝導性が得られない。 The functional group introduction rate: a / a + b of the polyamic acid derivative represented by the general formula (1) is preferably in the range of 80% to 100%. Introduction rate of functional group: If a / a + b is less than 80%, sufficient proton conductivity cannot be obtained.

上述のようなプロトン伝導性電解質において、ポリアミドの側鎖としてスルファミド酸基を高導入率で導入した場合、電解質膜として成膜した際の柔軟性が低下し、脆い膜となる虞がある。
本発明では、ポリアミドの主鎖にアルキレン基を含む構成のポリアミド酸誘導体としているため、ポリアミドの側鎖としてスルファミド酸基を高導入率で導入した場合であっても、電解質膜として成膜した際の柔軟性に優れていることから、膜が脆くなるのを抑制することができる。従って、優れたプロトン伝導性及び成膜後の柔軟性を兼ね備えたプロトン伝導性電解質が得られる。
以上により、本発明のプロトン伝導性電解質は、ポリアミド酸誘導体を単独で用いた場合でも、燃料電池の電解質膜として好適に用いることができる。
In the proton conductive electrolyte as described above, when a sulfamic acid group is introduced as a side chain of polyamide at a high introduction rate, flexibility when forming as an electrolyte membrane is lowered, and there is a possibility that a brittle membrane is formed.
In the present invention, because the polyamide main chain contains an alkylene group in the polyamic acid derivative, even when a sulfamic acid group is introduced as a side chain of the polyamide at a high introduction rate, it is formed as an electrolyte membrane. Since the film is excellent in flexibility, it is possible to prevent the film from becoming brittle. Therefore, a proton conductive electrolyte having both excellent proton conductivity and flexibility after film formation can be obtained.
As described above, the proton conductive electrolyte of the present invention can be suitably used as an electrolyte membrane of a fuel cell even when a polyamic acid derivative is used alone.

「第2の例(ポリアミド酸+ポリビニルスルファミド酸)」
本発明のプロトン伝導性電解質は、上記本発明のポリアミド酸誘導体と、下記一般式(2)で表されるポリビニルスルファミド酸とが混合されてなる構成とすることができる。
"Second example (polyamic acid + polyvinylsulfamic acid)"
The proton conductive electrolyte of the present invention can be configured by mixing the polyamic acid derivative of the present invention and polyvinyl sulfamic acid represented by the following general formula (2).

Figure 0004813218
上記一般式(2)中、RはH,COOH,CONHSOH,芳香族基であり、RはH,CHであり、R,はそれぞれCOOH,アルコキシ基,ハロゲン基,エステル基,芳香族基を示し、m,nはそれぞれ平均重合度であって100〜1000000の整数である。
芳香族基としては、フェニル基、ナフチル基等が挙げられるが、何ら限定されるものでは無い。
Figure 0004813218
In the general formula (2), R 1 is H, COOH, CONHSO 3 H, an aromatic group, R 2 is H, CH 3 , and R 3 is COOH, an alkoxy group, a halogen group, and an ester group, respectively. , Represents an aromatic group, and m and n each represent an average degree of polymerization and an integer of 100 to 1,000,000.
Examples of the aromatic group include a phenyl group and a naphthyl group, but are not limited in any way.

本発明におけるポリビニルスルファミド酸は、上記一般式(2)に示すようにメチレン基が導入されていることにより、溶解性が良好となる。これにより、ポリビニルスルファミド酸の官能基の導入率が高められ、プロトン伝導性が向上する。
また、ポリビニルスルファミド酸(2)は、より高い分子量で合成するのが容易なため、プロトン伝導性電解質膜としての成膜が可能な高分子量のポリビニルスルファミド酸を得ることができる。
The polyvinylsulfamic acid in the present invention has good solubility by introducing a methylene group as shown in the above general formula (2). Thereby, the introduction rate of the functional group of polyvinylsulfamic acid is increased, and proton conductivity is improved.
Moreover, since polyvinyl sulfamic acid (2) is easy to synthesize | combine with a higher molecular weight, the high molecular weight polyvinyl sulfamic acid which can be formed into a film as a proton-conductive electrolyte film can be obtained.

本発明のプロトン伝導性電解質は、プロトン伝導性及び成膜後の柔軟性に優れた前記ポリアミド酸誘導体と、前記ポリビニルスルファミド酸(2)とが混合されてなる構成とすることにより、優れたプロトン伝導性を有するとともに、電解質膜として成膜した際の柔軟性が一層向上する。   The proton conductive electrolyte of the present invention is excellent in that the polyamic acid derivative having excellent proton conductivity and flexibility after film formation is mixed with the polyvinylsulfamic acid (2). In addition to proton conductivity, the flexibility when forming an electrolyte membrane is further improved.

なお、本発明のプロトン伝導性電解質では、上記一般式(2)で示されるポリビニルスルファミド酸共重合体の平均重合度:n/mの比率が、3/7〜7/3の範囲であることが好ましい。平均重合度:n/mの比率が3/7未満では充分なプロトン伝導性が得られず、また、n/mの比率が7/3を超えるとポリマーが水に溶解してしまう。   In the proton conductive electrolyte of the present invention, the ratio of the average degree of polymerization of the polyvinylsulfamic acid copolymer represented by the general formula (2): n / m is in the range of 3/7 to 7/3. Preferably there is. Average polymerization degree: When the ratio of n / m is less than 3/7, sufficient proton conductivity cannot be obtained, and when the ratio of n / m exceeds 7/3, the polymer is dissolved in water.

また、本発明では、上記本発明のポリアミド酸と、上記一般式(2)で表されるポリビニルスルファミド酸との混合比が、質量比で9/1〜1/1の範囲であることが好ましい。混合比を上記範囲とすることにより、プロトン伝導性電解質のプロトン伝導性、及び成膜後の柔軟性を一層向上させることができる。   Moreover, in this invention, the mixing ratio of the polyamic acid of the said invention and the polyvinyl sulfamic acid represented by the said General formula (2) is the range of 9/1-1/1 by mass ratio. Is preferred. By setting the mixing ratio within the above range, the proton conductivity of the proton conductive electrolyte and the flexibility after film formation can be further improved.

[プロトン伝導性電解質の製造方法]
(ポリアミド酸誘導体)
本発明のプロトン伝導性電解質に用いられる、上記一般式(1)で示されるポリアミド酸誘導体を合成する場合、例えば、以下のような方法で行なうことができる。
[Proton Producing Electrolyte Manufacturing Method]
(Polyamide acid derivative)
When synthesizing the polyamic acid derivative represented by the general formula (1) used in the proton conductive electrolyte of the present invention, for example, the following method can be used.

ポリアミド酸誘導体を、スルファミド化されたポリアミドスルファミド酸として合成する場合、合成の容易さの点から、ポリアミド酸の側鎖カルボン酸をスルファミド化する方法によって行なうことが好ましい。
特に、ポリアミド酸の側鎖カルボン酸基を酸クロライド化後、アミド硫酸トリエチルアミン塩と反応させ、さらに陽イオン交換して得る方法とすることが好ましい。
このポリアミドスルファミド酸の合成スキームの例を以下に示す。
When the polyamic acid derivative is synthesized as a sulfamidated polyamide sulfamic acid, it is preferable to carry out by a method of sulfamidating the side chain carboxylic acid of the polyamic acid from the viewpoint of ease of synthesis.
In particular, it is preferable that the side chain carboxylic acid group of the polyamic acid is converted to an acid chloride, reacted with an amidosulfuric acid triethylamine salt, and further subjected to cation exchange.
An example of a synthesis scheme of this polyamidesulfamic acid is shown below.

Figure 0004813218
Figure 0004813218

上記合成スキームに示すように、出発ポリマーとして用いる一般式(5)のポリアミド酸は、例えば、一般式(3)の芳香族四酢酸二無水物と一般式(4)の芳香族ジアミンとの重縮合により生成することができる。また、一般式(3)〜(5)中のAr、及びR、nは、上記一般式(1)(目的生成物)と同じものである。   As shown in the above synthesis scheme, the polyamic acid of the general formula (5) used as the starting polymer is, for example, a polymer of an aromatic tetraacetic acid dianhydride of the general formula (3) and an aromatic diamine of the general formula (4). It can be produced by condensation. Ar, R, and n in the general formulas (3) to (5) are the same as those in the general formula (1) (target product).

上記ポリアミド酸(5)と塩化チオニル(SOCl)とを、アミド系溶媒中において、室温若しくは低温下にて数時間〜24時間攪拌混合することにより、ポリアミド酸(5)の側鎖カルボン酸の全部、又は少なくとも一部が酸クロライド基に変換される(酸クロライド化)。一般式(6)に示す例では、ポリアミド酸(5)の側鎖カルボン酸の一方のみが酸クロライド基に変換され、他方がカルボン酸のままとなっているが、この他方の側鎖カルボン酸も酸クロライド基に変換することができる。この際に用いるアミド系溶媒としては、N,N’−ジメチルアセトアミド、N,N’−ジメチルホルムアミド等が挙げられる。反応終了後、反応溶液をメタノール等に注入し、沈殿物をろ別及び洗浄することにより、生成ポリマー(6)が分離される。 By mixing the polyamic acid (5) and thionyl chloride (SOCl 2 ) in an amide solvent with stirring at room temperature or low temperature for several hours to 24 hours, the polyamic acid (5) has a side chain carboxylic acid. All or at least a part is converted to an acid chloride group (acid chloride). In the example shown in the general formula (6), only one of the side chain carboxylic acids of the polyamic acid (5) is converted into an acid chloride group and the other remains as a carboxylic acid. Can also be converted to acid chloride groups. Examples of the amide solvent used at this time include N, N′-dimethylacetamide, N, N′-dimethylformamide and the like. After completion of the reaction, the reaction solution is poured into methanol or the like, and the precipitate is filtered and washed to separate the produced polymer (6).

得られたポリマー(6)とアミド硫酸トリエチルアミン塩(NHSOH・N(C)とを、アミド系溶媒中において、室温若しくは低温下にて数時間〜24時間攪拌混合することにより、一般式(7)のポリアミドスルファミド酸トリエチルアミン塩が合成される。一般式(7)に示す例では、ポリアミド酸(5)の側鎖の内、上記反応で酸クロライド化された一方のみがスルファミド酸塩に変換されているが、上述したように他方の側鎖カルボン酸も酸クロライド化しておけば、この他方の側鎖もスルファミド酸塩に変換することができる。この際に用いるアミド系溶媒としては、上記酸クロライド化反応と同様のものが用いられる。反応終了後、反応溶液をメタノール等に注入し、沈殿物をろ別及び洗浄することにより、生成ポリマー(7)が分離される。 The obtained polymer (6) and amidosulfuric acid triethylamine salt (NH 2 SO 3 H · N (C 2 H 5 ) 3 ) were stirred and mixed in an amide solvent at room temperature or low temperature for several hours to 24 hours. By doing so, the polyamide sulfamic acid triethylamine salt of the general formula (7) is synthesized. In the example shown in the general formula (7), only one of the side chains of the polyamic acid (5) that has been converted to an acid chloride by the above reaction is converted to a sulfamate, but as described above, the other side chain If the carboxylic acid is converted to an acid chloride, the other side chain can be converted into a sulfamate. As the amide-based solvent used in this case, the same amide solvent as that used in the acid chloride reaction is used. After completion of the reaction, the reaction solution is poured into methanol or the like, and the precipitate is filtered and washed to separate the produced polymer (7).

最後に、得られたポリアミドスルファミド酸トリエチルアミン塩(7)の溶液(例えばN,N’−ジメチルアセトアミド溶液等)を、陽イオン交換樹脂に通液することで陽イオン交換(スルファミド酸塩をスルファミド酸に変換)し、プロトン化する。処理液をメタノール、ジクロロメタン、又はクロロホルム等に注入し、沈殿物をろ別及び洗浄することにより、目的物である一般式(1)で表されるポリアミド酸誘導体が得られる。   Finally, the resulting solution of the polyamidesulfamic acid triethylamine salt (7) (for example, N, N′-dimethylacetamide solution, etc.) is passed through a cation exchange resin to convert the cation exchange (sulfamide acid salt). Converted to sulfamic acid) and protonated. The treatment liquid is poured into methanol, dichloromethane, chloroform or the like, and the precipitate is filtered and washed to obtain the target polyamic acid derivative represented by the general formula (1).

なお、本例のポリアミド酸誘導体(1)は、上記各反応の結果、ポリアミド酸の側鎖の一部にのみスルファミド酸基が導入された構造となっているが、上述したようにポリアミド酸の側鎖の各反応形態は限定されないため、ポリアミド酸の側鎖の一部のみならず、例えば、側鎖全部をスルファミド酸基に変換することも可能である。
また、上述したように、上記一般式(1)で示されるポリアミド酸誘導体中のa,bは、0≦a≦2,0≦b≦2,且つa+b=2であり、それぞれの官能基が異なる比率で存在している。
The polyamic acid derivative (1) of this example has a structure in which a sulfamic acid group is introduced only in a part of the side chain of the polyamic acid as a result of the above reactions. Since each reaction form of the side chain is not limited, it is possible to convert not only a part of the side chain of the polyamic acid but also the entire side chain into a sulfamic acid group, for example.
Further, as described above, a and b in the polyamic acid derivative represented by the general formula (1) are 0 ≦ a ≦ 2, 0 ≦ b ≦ 2, and a + b = 2, and each functional group is Exist in different proportions.

(ポリビニルスルファミド酸)
本発明のプロトン伝導性電解質に用いられる、上記一般式(2)で表されるポリビニルスルファミド酸を合成する方法としては、原料ポリマーをスルファミド化して合成する方法が挙げられる。
原料ポリマーをスルファミド化して合成する場合、例えば、以下のような方法で合成することができる。
(Polyvinylsulfamic acid)
Examples of the method for synthesizing the polyvinylsulfamic acid represented by the general formula (2) used in the proton conductive electrolyte of the present invention include a method of synthesizing a raw material polymer by sulfamidation.
When the raw material polymer is synthesized by sulfamidation, for example, it can be synthesized by the following method.

まず、出発ポリマーとして少なくともCOOHを有する原料ポリマー、例えば、ポリアクリル酸を用い、脱水N,N’−ジメチルホルムアミド(DMF)に溶解させた後、窒素雰囲気下で塩化チオニルを徐々に滴下し、このポリマー溶液を室温で24時間攪拌する。
次いで、脱水ジクロロメタンに、所定量のアミド硫酸及びトリエチルアミンを混合してアミド硫酸トリエチルアミン塩を生成させ、この溶液を、窒素雰囲気下で上記ポリマー溶液に徐々に滴下し、室温下で16時間攪拌する。
次いで、反応溶液中の溶媒を50℃の温度で減圧留去した後、粘稠体に純水を加え、室温下で1時間攪拌する。そして、析出物をろ別し、純水で洗浄後、70℃の温度で一昼夜、加熱真空乾燥を行うことにより、薄茶色粉末のポリビニルスルファミド酸トリエチルアミン塩が得られる。このポリビニルスルファミド酸トリエチルアミン塩の粉末をDMFに溶解させ、陽イオン交換樹脂中に通液してプロトン交換を行なう。そして、処理液を濃縮し、純水中に滴下して沈殿物をろ別し、純水で洗浄した後、70℃の温度で一昼夜、加熱真空乾燥を行うことにより、薄茶色粉末のポリビニルスルファミド酸を得ることができる。
First, a raw material polymer having at least COOH as a starting polymer, such as polyacrylic acid, is dissolved in dehydrated N, N′-dimethylformamide (DMF), and then thionyl chloride is gradually added dropwise under a nitrogen atmosphere. The polymer solution is stirred at room temperature for 24 hours.
Next, dehydrated dichloromethane is mixed with a predetermined amount of amidosulfuric acid and triethylamine to form an amidosulfuric acid triethylamine salt. This solution is gradually added dropwise to the polymer solution under a nitrogen atmosphere and stirred at room temperature for 16 hours.
Subsequently, after distilling off the solvent in the reaction solution under reduced pressure at a temperature of 50 ° C., pure water is added to the viscous material, followed by stirring at room temperature for 1 hour. Then, the precipitate is filtered off, washed with pure water, and then heated and vacuum dried at a temperature of 70 ° C. for 24 hours to obtain a light brown powdered polyvinyl sulfamic acid triethylamine salt. This powder of polyvinyl sulfamic acid triethylamine salt is dissolved in DMF and passed through a cation exchange resin for proton exchange. Then, the treatment liquid is concentrated, dropped into pure water to filter out precipitates, washed with pure water, and then heated and dried at 70 ° C. for a whole day and night. Famic acid can be obtained.

なお、本発明のプロトン伝導性電解質に用いられるポリビニルスルファミド酸を合成する方法は、上記方法に限定されない。例えば、ビニルモノマーを原料とし、該ビニルモノマーにスルファミド酸基を予め導入してから重合する方法としても良い。   The method for synthesizing polyvinylsulfamic acid used for the proton conductive electrolyte of the present invention is not limited to the above method. For example, a method may be used in which a vinyl monomer is used as a raw material, and a sulfamic acid group is previously introduced into the vinyl monomer before polymerization.

なお、本発明のプロトン伝導性電解質は、本発明の趣旨を逸脱しない範囲内において、必要に応じて、ポリビニルスルファミド酸及びポリアミドスルファミド酸以外の成分を含むものであっても良い。
例えば、得られる膜の強度を高めるために、補強剤としてポリテトラフルオロエチレン等の含フッ素ポリマーを併用することができる。
その他、塩基性を示す含窒素ポリマー、含酸素ポリマー、含硫黄ポリマー等を併用し、イオンコンプレックス電解質として用いることもできる。
また、オルト燐酸、メタ燐酸、ポリ燐酸等を併用し、ゲル状電解質とすることもできる。
The proton conductive electrolyte of the present invention may contain components other than polyvinyl sulfamic acid and polyamide sulfamic acid as necessary within a range not departing from the gist of the present invention.
For example, in order to increase the strength of the obtained film, a fluorine-containing polymer such as polytetrafluoroethylene can be used in combination as a reinforcing agent.
In addition, a basic nitrogen-containing polymer, oxygen-containing polymer, sulfur-containing polymer, and the like can be used in combination as an ion complex electrolyte.
Further, ortho-phosphoric acid, metaphosphoric acid, polyphosphoric acid and the like can be used together to form a gel electrolyte.

本発明のプロトン伝導性電解質によれば、上述のポリアミド酸誘導体を含む構成とすることにより、プロトン伝導性、及び成膜後の柔軟性に優れたプロトン伝導性電解質を実現することができる。   According to the proton conductive electrolyte of the present invention, a proton conductive electrolyte excellent in proton conductivity and flexibility after film formation can be realized by including the above-described polyamic acid derivative.

「燃料電池」
図1に、本実施形態の燃料電池を構成する単セルの模式図を示す。図1に示す単セル(燃料電池)1は、酸素極(電極)2と、燃料極(電極)3と、酸素極2および燃料極3の間に挟持された本実施形態のプロトン伝導性電解質膜4(以下、電解質膜4と表記する場合がある)と、酸素極2の外側に配置された酸化剤流路5aを有する酸化剤配流板5と、燃料極3の外側に配置された燃料流路6aを有する燃料配流板6とから構成され、作動温度100℃〜200℃、湿度が無加湿若しくは相対湿度50%以下の条件で作動するものである。
また、本実施形態の燃料電池は、上記構成において、電解質膜4が上述した本発明のプロトン伝導性電解質とされている。また、酸素極2及び燃料極3の一部に本発明のプロトン伝導性電解質が含有された構成とすることができる。
"Fuel cell"
In FIG. 1, the schematic diagram of the single cell which comprises the fuel cell of this embodiment is shown. A single cell (fuel cell) 1 shown in FIG. 1 includes an oxygen electrode (electrode) 2, a fuel electrode (electrode) 3, and a proton conductive electrolyte of the present embodiment sandwiched between the oxygen electrode 2 and the fuel electrode 3. A membrane 4 (hereinafter may be referred to as an electrolyte membrane 4), an oxidant distribution plate 5 having an oxidant flow path 5a disposed outside the oxygen electrode 2, and a fuel disposed outside the fuel electrode 3. It is composed of a fuel distribution plate 6 having a flow path 6a, and operates under conditions of an operating temperature of 100 ° C. to 200 ° C. and a humidity of no humidification or a relative humidity of 50% or less.
Further, in the fuel cell of the present embodiment, in the above configuration, the electrolyte membrane 4 is the above-described proton conductive electrolyte of the present invention. Moreover, it can be set as the structure by which the proton conductive electrolyte of this invention contained in the oxygen electrode 2 and a part of fuel electrode 3. FIG.

燃料極3及び酸素極2は、それぞれ多孔質性の触媒層2a、3aと、各触媒層2a、3aを保持する多孔質カーボンシート(カーボン多孔質体)2b、3bから概略構成されている。触媒層2a、3aには、電極触媒(触媒)と、この電極触媒を固化成形するための疎水性結着剤と、導電材とが含まれている。   The fuel electrode 3 and the oxygen electrode 2 are each generally composed of porous catalyst layers 2a and 3a and porous carbon sheets (carbon porous bodies) 2b and 3b that hold the catalyst layers 2a and 3a, respectively. The catalyst layers 2a and 3a contain an electrode catalyst (catalyst), a hydrophobic binder for solidifying and molding the electrode catalyst, and a conductive material.

触媒は、水素の酸化反応及び酸素の還元反応を促進する金属であれば、特に限定されないが、例えば鉛、鉄、マンガン、コバルト、クロム、ガリウム、バナジウム、タングステン、ルテニウム、イリジウム、パラジウム、白金、ロジウムまたはそれらの合金を挙げることができる。こうした金属または合金を活性炭に担持させることによって電極触媒を構成することができる。   The catalyst is not particularly limited as long as it is a metal that promotes a hydrogen oxidation reaction and an oxygen reduction reaction. For example, lead, iron, manganese, cobalt, chromium, gallium, vanadium, tungsten, ruthenium, iridium, palladium, platinum, There may be mentioned rhodium or an alloy thereof. An electrode catalyst can be constituted by supporting such a metal or alloy on activated carbon.

疎水性結着剤には、本発明に係るプロトン伝導性電解質を使用するのが好ましいが、他の樹脂を用いることもでき、例えば、揆水性を有するフッ素樹脂等を用いることができる。フッ素樹脂の中でも融点が400℃以下のものが好ましく、そのようなフッ素樹脂としてポリ四フッ化エチレン、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、ポリフッ化ビニリデン、テトラフルオロエチレン・ヘキサフルオロエチレン共重合体、パーフルオロエチレン等といった疎水性および耐熱性に優れた樹脂を用いることができる。疎水性結着剤を添加することにより、発電反応に伴って生成した水によって触媒層2a、3aが過剰に濡れるのを防止することができ、燃料極3及び酸素極2内部における燃料ガス及び酸素の拡散阻害を防止することができる。   As the hydrophobic binder, it is preferable to use the proton conductive electrolyte according to the present invention, but other resins can be used, for example, a fluororesin having hydrophobicity can be used. Among the fluororesins, those having a melting point of 400 ° C. or less are preferable. Examples of such fluororesins include polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polyvinylidene fluoride, tetrafluoroethylene / hexafluoroethylene copolymer. A resin excellent in hydrophobicity and heat resistance such as a polymer and perfluoroethylene can be used. By adding the hydrophobic binder, it is possible to prevent the catalyst layers 2a and 3a from being wetted excessively by the water generated in response to the power generation reaction, and the fuel gas and oxygen in the fuel electrode 3 and the oxygen electrode 2 can be prevented. Can be prevented.

更に、導電材としては、電気伝導性物質であればどのようなものでもよく、各種金属や炭素材料などが挙げられる。例えば、アセチレンブラック等のカーボンブラック、活性炭および黒鉛等が挙げられ、これらを単独あるいは混合して使用される。   Further, the conductive material may be any material as long as it is an electrically conductive material, and examples thereof include various metals and carbon materials. Examples thereof include carbon black such as acetylene black, activated carbon and graphite, and these are used alone or in combination.

触媒層2a、3aには、上述したように、疎水性結着剤に代えて、または疎水性結着剤とともに、本発明に係るプロトン伝導性電解質を含有させた構成とすることができる。本発明に係るプロトン伝導性電解質を添加することによって、燃料極3及び酸素極2におけるプロトン伝導度を向上させることができ、燃料極3及び酸素極2の内部抵抗を低減することができる。   As described above, the catalyst layers 2a and 3a may be configured to contain the proton conductive electrolyte according to the present invention instead of the hydrophobic binder or together with the hydrophobic binder. By adding the proton conductive electrolyte according to the present invention, the proton conductivity in the fuel electrode 3 and the oxygen electrode 2 can be improved, and the internal resistance of the fuel electrode 3 and the oxygen electrode 2 can be reduced.

酸化剤配流板5及び燃料配流板6は、導電性を有する金属等から構成されており、酸素極2および燃料極3にそれぞれ接合することで、集電体として機能するとともに、酸素極2および燃料極3に対して、酸素および燃料ガスを供給する。すなわち、燃料極3には、燃料配流板6の燃料流路6aを介して水素を主成分とする燃料ガスが供給され、また酸素極2には、酸化剤配流板5の酸化剤流路5aを介して酸化剤としての酸素が供給される。
なお、燃料として供給される水素は、炭化水素若しくはアルコールの改質により発生された水素が供給されるものでも良く、また、酸化剤として供給される酸素は、空気に含まれる状態で供給されても良い。
The oxidant distribution plate 5 and the fuel distribution plate 6 are made of a conductive metal or the like, and function as a current collector by joining to the oxygen electrode 2 and the fuel electrode 3 respectively. Oxygen and fuel gas are supplied to the fuel electrode 3. That is, the fuel electrode mainly containing hydrogen is supplied to the fuel electrode 3 through the fuel flow path 6 a of the fuel flow distribution plate 6, and the oxidant flow path 5 a of the oxidant flow distribution plate 5 is supplied to the oxygen electrode 2. Through this, oxygen as an oxidizing agent is supplied.
The hydrogen supplied as fuel may be supplied by hydrogen generated by reforming hydrocarbon or alcohol, and oxygen supplied as oxidant is supplied in a state of being contained in air. Also good.

この単セル1においては、燃料極3側で水素が酸化されてプロトンが生じ、このプロトンが電解質膜4を伝導して酸素極2に到達し、酸素極2においてプロトンと酸素が電気化学的に反応して水を生成するとともに、電気エネルギーを発生させる。   In this single cell 1, hydrogen is oxidized on the fuel electrode 3 side to generate protons, which are conducted through the electrolyte membrane 4 to reach the oxygen electrode 2, and protons and oxygen are electrochemically connected to the oxygen electrode 2. It reacts to produce water and generates electrical energy.

上記燃料電池によれば、100℃以上200℃以下の作動温度範囲で、無加湿あるいは相対湿度50%以下の作動条件であっても、電流密度が高く、高出力、高寿命であり、良好な発電性能を長期間安定的に示す固体高分子型の燃料電池を得ることができ、自動車用、家庭発電用または携帯機器用として好適に用いることができる。   According to the fuel cell, even in an operating temperature range of 100 ° C. or higher and 200 ° C. or lower with no humidification or a relative humidity of 50% or lower, the current density is high, the output is high, and the life is long. A polymer electrolyte fuel cell that stably exhibits power generation performance for a long period of time can be obtained, and can be suitably used for automobiles, home power generation, or portable devices.

以下、実施例を挙げて本発明をさらに詳しく説明するが、本発明は下記例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in more detail, this invention is not limited by the following example.

[実施例1]
「ポリアミド酸の合成」
ポリアミド酸誘導体の前駆体であるポリアミド酸として、上記一般式(1)においてAr:ベンゼン,R:(CH10であるものを目的生成物とし、以下に示すように前駆体を合成した。
まず、1,10−ジアミノデカン3.45g(20mmol)を脱水N,N’−ジメチルホルムアミド(DMF)170mLに溶解させ、アセトン/ヘキサンから再結晶した無水ピロメリット酸4.36g(20mmol)を徐々に加え、15℃で1時間、25℃で60時間、700rpmで攪拌し、反応させた。次いで、反応溶液を4Lのアセトン/塩酸(1/4)中に沈殿させ、ろ過により回収し、1mol/L塩酸水溶液、アセトンで洗浄し、60℃で36時間加熱真空乾燥させることにより、下記一般式(8)で示されるポリアミド酸を、白色粉末7.65g(収率98%)として得た。
[Example 1]
"Synthesis of polyamic acid"
As the polyamic acid which is a precursor of the polyamic acid derivative, the target product was Ar: benzene, R: (CH 2 ) 10 in the general formula (1), and the precursor was synthesized as shown below.
First, 3.45 g (20 mmol) of 1,10-diaminodecane was dissolved in 170 mL of dehydrated N, N′-dimethylformamide (DMF), and 4.36 g (20 mmol) of pyromellitic anhydride recrystallized from acetone / hexane was gradually added. In addition, the mixture was stirred at 700 rpm for 1 hour at 15 ° C, 60 hours at 25 ° C, and reacted. Next, the reaction solution was precipitated in 4 L of acetone / hydrochloric acid (1/4), recovered by filtration, washed with 1 mol / L hydrochloric acid aqueous solution and acetone, and heated and vacuum dried at 60 ° C. for 36 hours to obtain the following general solution. Polyamic acid represented by the formula (8) was obtained as white powder 7.65 g (yield 98%).

Figure 0004813218
Figure 0004813218

得られた白色粉末のH−NMRスペクトル(DMSO−d,500MHz)は1.20−1.38(br,−CH−),1.43−1.57(br,−CH−),3.13−3.24(br,−CH−),7.34,7.68,8.08(s,Ph),8.39,8.44(m,NH)のスペクトルを示し、更にIRスペクトルにおけるカルボニル基由来の吸収(1719,1655cm−1(vC=O))を示した。 1 H-NMR spectrum (DMSO-d 6 , 500 MHz) of the obtained white powder was 1.20-1.38 (br, —CH 2 —), 1.43-1.57 (br, —CH 2 —). ), 3.13-3.24 (br, -CH 2 -), 7.34,7.68,8.08 (s, Ph), the spectrum of 8.39,8.44 (m, NH) Furthermore, the absorption (1719,1655 cm < -1 > (vC = O )) derived from the carbonyl group in IR spectrum was shown.

上記ポリマーは、DMF,N,N’−ジメチルアセトアミド(DNAc)、N−メチルピロリジン(NMP)、ジメチルスルホキシド(DMSO)などに可溶で、水、メタノール、クロロホルム、ヘキサン、ベンゼン、トルエンに不溶であった。   The above polymer is soluble in DMF, N, N′-dimethylacetamide (DNAc), N-methylpyrrolidine (NMP), dimethylsulfoxide (DMSO), etc., and insoluble in water, methanol, chloroform, hexane, benzene and toluene. there were.

「ポリアミド酸誘導体の合成」
上記のようにして合成したポリアミド酸(8)1.17g(3 unit mmol)を、脱水DMF100mLに溶解させ、窒素雰囲気下、塩化チオニル1.78g(15mmol)を徐々に滴下し、室温で6時間攪拌した。次いで、脱水ジクロロメタン15mLにアミド硫酸(キシダ化学社製)2.91g(30mmol),トリエチルアミン3.03g(30mmol)を混合し、アミド硫酸トリエチルアミン塩を生成させた後、窒素雰囲気下でポリマー溶液に徐々に滴下し、室温で16時間攪拌した。反応溶液中の溶媒を50℃で減圧留去した後、粘稠体に純水100mLを加え、室温で1時間攪拌した。その後、溶液を4000rpmで10分遠心分離にかけ、上澄液を除去した後、残った固形分をろ過した。回収物をDMF100mLに溶解させ、陽イオン交換樹脂(オルガノ社製アンバーリスト15JWET)250mL中に通液しプロトン交換した。そして、処理液を10mLに濃縮し、純水200mL中に滴下して沈殿物をろ別し、一昼夜70℃にて加熱真空乾燥し、下記一般式(9)で示されるポリアミドスルファミド酸を、薄茶色粉末として0.68g(収率42%)得た。
"Synthesis of polyamic acid derivatives"
1.17 g (3 unit mmol) of the polyamic acid (8) synthesized as described above was dissolved in 100 mL of dehydrated DMF, and 1.78 g (15 mmol) of thionyl chloride was gradually added dropwise under a nitrogen atmosphere, and the mixture was stirred at room temperature for 6 hours. Stir. Next, 2.91 g (30 mmol) of amidosulfuric acid (manufactured by Kishida Chemical Co., Ltd.) and 3.03 g (30 mmol) of triethylamine were mixed with 15 mL of dehydrated dichloromethane to form an amidosulfuric acid triethylamine salt, and then gradually added to the polymer solution under a nitrogen atmosphere. And stirred at room temperature for 16 hours. After the solvent in the reaction solution was distilled off under reduced pressure at 50 ° C., 100 mL of pure water was added to the viscous body, and the mixture was stirred at room temperature for 1 hour. Thereafter, the solution was centrifuged at 4000 rpm for 10 minutes, the supernatant was removed, and the remaining solid was filtered. The recovered product was dissolved in 100 mL of DMF and passed through 250 mL of a cation exchange resin (Amberlyst 15JWET manufactured by Organo) to exchange protons. Then, the treatment liquid is concentrated to 10 mL, dropped into 200 mL of pure water, and the precipitate is filtered off, and dried by heating and vacuuming at 70 ° C. overnight to obtain a polyamide sulfamic acid represented by the following general formula (9). As a light brown powder, 0.68 g (yield 42%) was obtained.

Figure 0004813218
Figure 0004813218

得られた薄茶色粉末のH−NMRスペクトル(DMSO−d,500MHz)は1.20−1.35(br,−CH−),1.49−1.65(br,−CH−),3.20−3.30(m,−CH−),3.52−3.64(m,−CH−)のスペクトルを示し、更にIRスペクトルにおけるカルボニル基由来の吸収(1716,1635cm−1(vC=O))と、スルホン酸基由来の吸収(1192,1055cm−1(vS=O))とを示した。 1 H-NMR spectrum (DMSO-d 6 , 500 MHz) of the obtained light brown powder was 1.20-1.35 (br, —CH 2 —), 1.49-1.65 (br, —CH 2). -), 3.20-3.30 (m, -CH 2- ), 3.52-3.64 (m, -CH 2- ) spectra, and further absorption from carbonyl group in IR spectrum (1716) , and 1635cm -1 (v C = O) ), showed an absorption derived from a sulfonic acid group (1192,1055cm-1 (v S = O)).

上記ポリマーは、DMF,DMAc,NMP,DMSOなどに可溶で、水、メタノール、クロロホルム、ヘキサン、ベンゼン、トルエンに不溶であった。
また、上記ポリマーの硫黄の元素分析を行なったところ、上記一般式(9)中の官能基は、導入率a:b=9:1であった。
上記のようにして得られたポリアミドスルファミド酸(9)をDMAcに溶解させ、ガラス板上にキャストして60℃で加熱乾燥させたところ、薄茶色透明な膜が得られた。
The polymer was soluble in DMF, DMAc, NMP, DMSO, etc., and insoluble in water, methanol, chloroform, hexane, benzene, and toluene.
Further, when elemental analysis of sulfur of the polymer was performed, the functional group in the general formula (9) had an introduction ratio a: b = 9: 1.
The polyamide sulfamic acid (9) obtained as described above was dissolved in DMAc, cast on a glass plate, and heated and dried at 60 ° C. to obtain a light brown transparent film.

「プロトン伝導度測定」
実施例1のプロトン伝導性電解質膜を、直径13mmの円板状の白金電極に挟み込み、複素インピーダンス測定よりイオン伝導度を決定した。図2のグラフに、プロトン伝導度の温度依存性を示す。
表1に示すように、実施例1のプロトン伝導性電解質膜は、150℃におけるイオン伝導度は3.2×10−3Scm−1であった。
"Proton conductivity measurement"
The proton conductive electrolyte membrane of Example 1 was sandwiched between disc-shaped platinum electrodes having a diameter of 13 mm, and the ionic conductivity was determined by measuring complex impedance. The graph of FIG. 2 shows the temperature dependence of proton conductivity.
As shown in Table 1, the proton conductive electrolyte membrane of Example 1 had an ionic conductivity at 150 ° C. of 3.2 × 10 −3 Scm −1 .

「燃料電池評価」
次に、実施例1で作製した電解質膜のDMAc溶液に、白金が50質量%担持されたカーボン粉末を加え、十分攪拌して懸濁液を得た。この際、固形分の重量比で白金担持カーボン粉末とプロトン伝導性電解質との重量比が2:1になるように調整した。この懸濁液をカーボン多孔質体(気孔率75%)上に塗布し、これを乾燥して燃料電池用の多孔質電極とした。
そして、一対の上記多孔質電極の問に、実施例1で得られた電解質膜を挟み込んで単セルとした。燃料に水素、酸化剤に空気をそれぞれ供給して、150℃にて発電試験を行ったところ、開路電圧が0.985Vで、100mA/cmの電流密度において0.524Vの電圧が得られた。
"Fuel cell evaluation"
Next, carbon powder carrying 50% by mass of platinum was added to the DMAc solution of the electrolyte membrane prepared in Example 1 and sufficiently stirred to obtain a suspension. At this time, the weight ratio of the platinum-supported carbon powder and the proton conductive electrolyte was adjusted to 2: 1 by the weight ratio of the solid content. This suspension was applied onto a carbon porous body (porosity 75%) and dried to obtain a porous electrode for a fuel cell.
The electrolyte membrane obtained in Example 1 was sandwiched between the pair of porous electrodes to form a single cell. Hydrogen was supplied to the fuel and air was supplied to the oxidant, and a power generation test was conducted at 150 ° C. As a result, the open circuit voltage was 0.985 V and a voltage of 0.524 V was obtained at a current density of 100 mA / cm 2 . .

[実施例2〜7]
「電解質膜の他の例」
実施例1で用いたポリアミド酸(8)の代わりに、下記表1に示すポリマーを原料とし、実施例1と同様の方法で合成したポリマーを、下記表1に示す割合で各々混合し、実施例1と同様の方法で作製した電解質膜を用いて、プロトン伝導度測定、並びに燃料電池の評価を行なった。
なお、実施例1〜3に示すA成分は、式中のa,bが、a:b=1.8:0.2であり、実施例4、5に示すA成分は、式中のa,bが、a:b=1.7:0.3であり、実施例6、7に示すA成分は、式中のa,bが、a:b=1.9:0.1であった。
[Examples 2 to 7]
"Other examples of electrolyte membrane"
Instead of the polyamic acid (8) used in Example 1, the polymers shown in Table 1 below were used as raw materials, and the polymers synthesized by the same method as in Example 1 were mixed in the proportions shown in Table 1 below. Using the electrolyte membrane produced by the same method as in Example 1, proton conductivity measurement and evaluation of the fuel cell were performed.
In addition, as for A component shown in Examples 1-3, a and b in a formula are a: b = 1.8: 0.2, A component shown in Examples 4 and 5 is a in formula. , B is a: b = 1.7: 0.3, and the components A shown in Examples 6 and 7 are such that a and b in the formula are a: b = 1.9: 0.1. It was.

上記各実施例における原料、電解質構成成分の一覧を表1に示すとともに、評価測定結果の一覧を表2に示す。   A list of raw materials and electrolyte components in each of the above examples is shown in Table 1, and a list of evaluation measurement results is shown in Table 2.

Figure 0004813218
Figure 0004813218

Figure 0004813218
Figure 0004813218

表2に示すように、実施例2〜7で得られたプロトン伝導性電解質を用いてなる電解質膜も、150℃におけるプロトン伝導度が1.7×10−3Scm−1(実施例7)〜2.8×10−3Scm−1(実施例3)の範囲となり、良好なプロトン伝導度が得られた。また、実施例1と同様、これらのプロトン伝導性電解質を用いることにより、高品位な燃料電池が得られた。 As shown in Table 2, the electrolyte membrane using the proton conductive electrolyte obtained in Examples 2 to 7 also has a proton conductivity of 1.7 × 10 −3 Scm −1 at 150 ° C. (Example 7). It became the range of -2.8 * 10 < -3 > Scm < -1 > (Example 3), and favorable proton conductivity was obtained. Further, as in Example 1, a high-quality fuel cell was obtained by using these proton conductive electrolytes.

[比較例]
実施例1と同様にして、スルホン化ポリエーテルエーテルケトンをN−メチルピロリドンに溶解して溶液を調整し、ガラス板上にキャストして60℃で加熱乾燥したところ、薄黄色透明な膜が得られた。このようにして作製した膜を使用し、150℃でプロトン伝導度測定を行ったが、伝導度は発現しなかった。
[Comparative example]
In the same manner as in Example 1, a sulfonated polyetheretherketone was dissolved in N-methylpyrrolidone to prepare a solution, which was cast on a glass plate and heat-dried at 60 ° C. to obtain a light yellow transparent film. It was. Proton conductivity was measured at 150 ° C. using the membrane thus prepared, but no conductivity was exhibited.

本発明のプロトン伝導性電解質は、プロトン伝導性及び成膜後の柔軟性に優れ、燃料電池の電解質膜及び電極に好ましく用いられる。本発明のプロトン伝導性電解質を用いることにより、作動温度が100℃以上200℃以下で、無加湿あるいは相対湿度50%以下であっても、電流密度が高く、高出力、高寿命な固体高分子型の燃料電池を提供することができる。   The proton conductive electrolyte of the present invention is excellent in proton conductivity and flexibility after film formation, and is preferably used for an electrolyte membrane and an electrode of a fuel cell. By using the proton conductive electrolyte of the present invention, a solid polymer having a high current density, high output, and long life even when the operating temperature is 100 ° C. or higher and 200 ° C. or lower and no humidification or relative humidity is 50% or less. A fuel cell of the type can be provided.

本発明のプロトン伝導性電解質が用いられた燃料電池の一例を模式的に説明する図であり、単セルの断面を示す概略図である。It is a figure which illustrates typically an example of the fuel cell using the proton-conductive electrolyte of this invention, and is the schematic which shows the cross section of a single cell. 本発明のプロトン伝導性電解質の一例を説明する図であり、プロトン伝導性の温度依存性を示すグラフである。It is a figure explaining an example of the proton conductive electrolyte of this invention, and is a graph which shows the temperature dependence of proton conductivity.

符号の説明Explanation of symbols

1…単セル(燃料電池)、2…酸素極(電極)、3…燃料極(電極)、4…プロトン伝導性電解質膜(プロトン伝導性電解質)
DESCRIPTION OF SYMBOLS 1 ... Single cell (fuel cell), 2 ... Oxygen electrode (electrode), 3 ... Fuel electrode (electrode), 4 ... Proton conductive electrolyte membrane (proton conductive electrolyte)

Claims (7)

下記一般式(1)で示される主鎖にアルキレン基を含むポリアミドに、側鎖としてカルボン酸、あるいはスルファミド酸基が導入されたポリアミド酸誘導体を含むことを特徴とするプロトン伝導性電解質。
Figure 0004813218
(但し、一般式(1)中、Rは炭素数が3〜12の範囲のアルキレン基であり、Arは芳香族環又は芳香族環を含む基であり、a,bは、0≦a≦2,0≦b≦2,且つa+b=2を満たす数であり、a/a+bは80%〜100%の範囲であり、nは平均重合度であって100〜300000の整数である。)
A proton conductive electrolyte comprising a polyamide having an alkylene group in the main chain represented by the following general formula (1) and a polyamic acid derivative in which a carboxylic acid or a sulfamic acid group is introduced as a side chain.
Figure 0004813218
(In the general formula (1), R is an alkylene group having 3 to 12 carbon atoms, Ar is an aromatic ring or a group containing an aromatic ring, and a 1 and b are 0 ≦ a ≦ (2, 0 ≦ b ≦ 2, and a + b = 2), a / a + b is in the range of 80% to 100%, and n is the average degree of polymerization and is an integer of 100 to 300,000.)
前記ポリアミド酸誘導体が、ポリアミド酸の側鎖カルボン酸基の全部、又は一部がスルファミド化されてなる化合物であることを特徴とする請求項1に記載のプロトン伝導性電解質。   2. The proton conductive electrolyte according to claim 1, wherein the polyamic acid derivative is a compound in which all or a part of the side chain carboxylic acid group of the polyamic acid is sulfamidated. 3. 前記ポリアミド酸誘導体が、ポリアミド酸の側鎖カルボン酸基の全部、又は一部を酸クロライド化後、アミド硫酸トリエチルアミン塩と反応させ、さらに陽イオン交換して得られるものであることを特徴とする請求項2に記載のプロトン伝導性電解質。   The polyamic acid derivative is obtained by acid chloride of all or a part of the side chain carboxylic acid group of the polyamic acid, and then reacting with an amidosulfuric acid triethylamine salt, followed by cation exchange. The proton conductive electrolyte according to claim 2. 請求項1〜3の何れかに記載のポリアミド酸誘導体と、下記一般式(2)で表されるポリビニルスルファミド酸とが混合されてなることを特徴とするプロトン伝導性電解質。
Figure 0004813218
(但し、一般式(2)中、RはH,COOH,CONHSOH,芳香族基であり、RはH,CHであり、R,はそれぞれCOOH,アルコキシ基,ハロゲン基,エステル基,芳香族基を示し、m,nはそれぞれ平均重合度であって100〜1000000の整数であり、n/mの比率は3/7〜7/3の範囲である。)
A proton conductive electrolyte comprising the polyamic acid derivative according to any one of claims 1 to 3 and a polyvinylsulfamic acid represented by the following general formula (2).
Figure 0004813218
(In the general formula (2), R 1 is H, COOH, CONHSO 3 H, an aromatic group, R 2 is H, CH 3 , and R 3 is COOH, an alkoxy group, a halogen group, An ester group and an aromatic group are shown, m and n are average degrees of polymerization, respectively, and are integers of 100 to 1000000, and the ratio of n / m is in the range of 3/7 to 7/3.)
請求項1〜3の何れかに記載のポリアミド酸誘導体と、上記一般式(2)で表されるポリビニルスルファミド酸との混合比が、質量比で9/1〜1/1の範囲であることを特徴とする請求項4に記載のプロトン伝導性電解質。   The mixing ratio of the polyamic acid derivative according to any one of claims 1 to 3 and the polyvinylsulfamic acid represented by the general formula (2) is in a range of 9/1 to 1/1 by mass ratio. The proton conducting electrolyte according to claim 4, wherein the proton conducting electrolyte is provided. 一対の電極と各電極の間に配置された電解質膜とを具備してなり、該電解質膜が、請求項1〜5の何れかに記載のプロトン伝導性電解質からなることを特徴とする燃料電池。   A fuel cell comprising a pair of electrodes and an electrolyte membrane disposed between the electrodes, wherein the electrolyte membrane comprises the proton conductive electrolyte according to any one of claims 1 to 5. . 前記電極の一部に、請求項1〜5の何れかに記載のプロトン伝導性電解質が含有されていることを特徴とする請求項6に記載の燃料電池。   The fuel cell according to claim 6, wherein the proton-conducting electrolyte according to claim 1 is contained in a part of the electrode.
JP2006064140A 2006-03-09 2006-03-09 Proton conducting electrolyte and fuel cell Expired - Fee Related JP4813218B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006064140A JP4813218B2 (en) 2006-03-09 2006-03-09 Proton conducting electrolyte and fuel cell
KR1020060055414A KR100784999B1 (en) 2006-03-09 2006-06-20 Proton conductive electrolyte and fuel cell comprising the same
US11/650,956 US7829218B2 (en) 2006-03-09 2007-01-09 Proton conductive electrolyte and fuel cell comprising the same
CN2007100862075A CN101074281B (en) 2006-03-09 2007-03-09 Proton conductive electrolyte and fuel cell comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006064140A JP4813218B2 (en) 2006-03-09 2006-03-09 Proton conducting electrolyte and fuel cell

Publications (2)

Publication Number Publication Date
JP2007242453A JP2007242453A (en) 2007-09-20
JP4813218B2 true JP4813218B2 (en) 2011-11-09

Family

ID=38587777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006064140A Expired - Fee Related JP4813218B2 (en) 2006-03-09 2006-03-09 Proton conducting electrolyte and fuel cell

Country Status (1)

Country Link
JP (1) JP4813218B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4554541B2 (en) * 2006-03-09 2010-09-29 三星エスディアイ株式会社 Proton conducting electrolyte and fuel cell
JP5264068B2 (en) * 2006-11-16 2013-08-14 三星エスディアイ株式会社 Proton conducting polymer electrolyte and fuel cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031231A (en) * 2001-07-12 2003-01-31 Mitsui Chemicals Inc Ion conductive polymer membrane for fuel cell and fuel cell using the same
JP4959115B2 (en) * 2004-03-03 2012-06-20 三星エスディアイ株式会社 Proton conducting electrolyte and fuel cell
JP2007165071A (en) * 2005-12-13 2007-06-28 Toray Ind Inc Electrolyte film and fuel cell
JP4554541B2 (en) * 2006-03-09 2010-09-29 三星エスディアイ株式会社 Proton conducting electrolyte and fuel cell

Also Published As

Publication number Publication date
JP2007242453A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
JP2003187826A (en) Fuel cell, and polymer electrolyte and ion exchange resin used for the same
JP2002289222A (en) Ion-conductive polymer, and polymer film and fuel cell using it
JP4886675B2 (en) Electrolyte membrane
US7829218B2 (en) Proton conductive electrolyte and fuel cell comprising the same
JP4210659B2 (en) Polyimide having sulfonic acid group at the end of side chain, polymer electrolyte and fuel cell employing the same
US20050113469A1 (en) Method for preparing poly(2,5-benzimidazole)
JP4554541B2 (en) Proton conducting electrolyte and fuel cell
JP4170973B2 (en) Polymer containing terminal sulfonic acid group and polymer electrolyte and fuel cell employing the same
US7560184B2 (en) Proton-conducting electrolyte and fuel cell using the same
JP4813218B2 (en) Proton conducting electrolyte and fuel cell
JP2003147075A (en) Sulfonated fluorine-containing polymer, resin composition containing the same and polymer electrolyte membrane
JP4959115B2 (en) Proton conducting electrolyte and fuel cell
KR100668318B1 (en) Proton conducting electrolyte and fuel cell using the same
JP4762695B2 (en) Proton conducting solid polymer electrolyte and fuel cell
JP2004288497A (en) Solid polymer electrolyte and manufacturing method of the same, as well as film , catalytic electrode layer, film/electrode junction and fuel cell using the same
WO2006048942A1 (en) Sulfonated polymer comprising nitrile-type hydrophobic block and solid polymer electrolyte
US20040101732A1 (en) Ion conductive membrane for electrochemical application
JP4913397B2 (en) Proton conducting solid polymer electrolyte and fuel cell
KR100784999B1 (en) Proton conductive electrolyte and fuel cell comprising the same
JP4489715B2 (en) Proton conducting material, proton conducting electrolyte for fuel cell and fuel cell
JP5264068B2 (en) Proton conducting polymer electrolyte and fuel cell
JP2003031231A (en) Ion conductive polymer membrane for fuel cell and fuel cell using the same
JP2005290318A (en) Solid polyelectrolyte
JP2009026638A (en) Solid polymer electrolyte
JP5054309B2 (en) Solid polymer electrolyte

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees