JP2006119087A - Magnetic field detection device and its manufacturing method - Google Patents

Magnetic field detection device and its manufacturing method Download PDF

Info

Publication number
JP2006119087A
JP2006119087A JP2004309620A JP2004309620A JP2006119087A JP 2006119087 A JP2006119087 A JP 2006119087A JP 2004309620 A JP2004309620 A JP 2004309620A JP 2004309620 A JP2004309620 A JP 2004309620A JP 2006119087 A JP2006119087 A JP 2006119087A
Authority
JP
Japan
Prior art keywords
magnetic field
field detection
substrate
magnetic
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004309620A
Other languages
Japanese (ja)
Inventor
Hiroshi Abe
博史 阿部
Tatsuya Ito
達也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2004309620A priority Critical patent/JP2006119087A/en
Publication of JP2006119087A publication Critical patent/JP2006119087A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic field detection device and its manufacturing method capable of miniaturizing the device by arranging a magnetic field detection element in the unprojected state from a substrate. <P>SOLUTION: The second magnetic field detection device in this invention is a magnetic field detection device 100 equipped with three magnetic field detection elements 102, 103, 104 for detecting respectively the magnetic field in the mutually-orthogonal triaxial directions on the substrate 101'(101), and at least one 104 of the magnetic field detection elements is formed by using a magnetic material 107 filled in a through hole penetrating the substrate 101'(101). Figures 107a-107d show through holes filled with the magnetic material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、磁場検出装置およびその製造方法に係り、より詳細には、基板の厚み方向に磁場検出素子を内蔵させてなる磁場検出装置と、基板に設けた貫通孔を利用して磁場検出素子を形成する製造方法に関する。   The present invention relates to a magnetic field detection device and a method for manufacturing the same, and more specifically, a magnetic field detection device in which a magnetic field detection element is built in the thickness direction of the substrate, and a magnetic field detection element using a through hole provided in the substrate. The present invention relates to a manufacturing method for forming a film.

近年、情報機器や計測、制御機器の高性能化、小型薄型化および低コスト化が急速に進み、これらの急速な発展に伴い、それらに用いられる磁気センサにも小型、低コスト、高感度などの要求が高くなってきている。   In recent years, high performance, miniaturization, thinning, and cost reduction of information equipment, measurement, and control equipment have progressed rapidly. With these rapid developments, the magnetic sensors used for them are also small, low cost, high sensitivity, etc. The demand for is getting higher.

従来から用いられている磁気センサとしてはホール素子、磁気抵抗効果素子(MR素子)、巨大磁気抵抗効果素子(GMR素子)、フラックスゲートセンサなどが知られている。これらセンサへの小型化、高感度化、大レンジ化への要求としては、例えば、コンピュータの外部記憶装置としてのハードディスク装置に用いられる磁気ヘッドには、従来のバルクタイプの誘導型磁気ヘッドからMRヘッドへと高性能化が進んでおり、現在ではGMR素子を適用しようとする研究が活発に行われている。また、モータの回転センサであるロータリエンコーダではマグネットリングの微小化に伴い、外部に漏れる磁束が微小になっており、現在のMR素子に変わり高感度な磁気センサが要求されている。   Known magnetic sensors include Hall elements, magnetoresistive elements (MR elements), giant magnetoresistive elements (GMR elements), fluxgate sensors, and the like. As a demand for miniaturization, high sensitivity, and wide range of these sensors, for example, a magnetic head used in a hard disk device as an external storage device of a computer is different from a conventional bulk type inductive magnetic head in MR. High performance has been advanced to the head, and research to apply the GMR element is being actively conducted now. Further, in a rotary encoder which is a rotation sensor of a motor, a magnetic flux leaking to the outside has become minute with the miniaturization of a magnet ring, and a highly sensitive magnetic sensor is required instead of the current MR element.

これらの要求を満たす為、磁気インピーダンス素子(以下、MI素子とも略称する)と呼ばれる、外部印加磁界や周波数の関数としてそのインピーダンスの変化から、外部磁場の大きさそのものを検出する検出素子が提案されている(例えば、特許文献1、特許文献2参照)。   In order to satisfy these requirements, a detection element called a magnetic impedance element (hereinafter also abbreviated as MI element), which detects the magnitude of the external magnetic field itself from the change in impedance as a function of the externally applied magnetic field and frequency, has been proposed. (For example, refer to Patent Document 1 and Patent Document 2).

また、この磁気インピーダンス素子と呼ばれる高周波キャリア型磁場検出素子を用いて、磁場ベクトルの異なる2成分を測定する装置が提案されている(例えば、特許文献3、特許文献4参照)。   In addition, an apparatus for measuring two components having different magnetic field vectors using a high-frequency carrier type magnetic field detection element called a magnetic impedance element has been proposed (see, for example, Patent Document 3 and Patent Document 4).

磁界検出センサは1つの素子で一軸磁界成分を検出することが可能である。2つの素子を用いる場合、外部磁界の第一軸成分を検出する為に配設された第一感磁素子と、第一感磁素子が配設される面と共通法線を有する面に配設された外部磁界の少なくとも他の一つの第二成分を検出する為に配設された第二感磁素子とからなる磁界検出装置として用いることにより、第一軸、第二軸を水平面に取れば水平成分中の第一軸方向の地磁気と第二軸方向の地磁気との大きさの比から、水平面における方向を検出する方位検出装置として用いることが可能となる。   The magnetic field detection sensor can detect a uniaxial magnetic field component with one element. When two elements are used, they are arranged on the first magnetosensitive element arranged for detecting the first axis component of the external magnetic field, and on the plane having the common normal with the plane on which the first magnetosensitive element is arranged. By using it as a magnetic field detection device comprising a second magnetosensitive element arranged to detect at least another second component of the external magnetic field provided, the first axis and the second axis can be taken on a horizontal plane. For example, it can be used as an azimuth detecting device that detects the direction in the horizontal plane from the ratio of the magnitude of the geomagnetism in the first axis direction and the geomagnetism in the second axis direction in the horizontal component.

しかしながら、上記技術により検出可能となるのは任意の磁場ベクトルの2成分までである。従来、2個の磁気センサだけでは水平回転の二次元の方向もしくは回転角しか検出することができない。正確な方位の検出や姿勢制御には任意の磁場ベクトルの第三成分を検出する必要がある。   However, up to two components of an arbitrary magnetic field vector can be detected by the above technique. Conventionally, only two magnetic sensors can detect only a two-dimensional direction or rotation angle of horizontal rotation. For accurate azimuth detection and attitude control, it is necessary to detect the third component of an arbitrary magnetic field vector.

この第三成分を検出するためには、例えば、予め一方向の磁場を検出する磁場検出センサを作製した後、装置基板上に3つの成分を検出する素子として個別に配置するか、または面内に2つの成分を検出する素子を作製した後、残り1つの成分を検出する素子を配置しなければならない。従来の技術においては、同一基板上に作製可能な素子は基板面に平行な2つの成分までであった(特許文献3参照)。   In order to detect the third component, for example, a magnetic field detection sensor that detects a magnetic field in one direction in advance is prepared, and then individually arranged as an element for detecting three components on the device substrate, or in-plane After an element for detecting two components is prepared, an element for detecting the remaining one component must be arranged. In the prior art, the elements that can be manufactured on the same substrate are up to two components parallel to the substrate surface (see Patent Document 3).

図5は、従来の磁場検出装置の一例を示す図であり、(a)は平面図を、(b)は線分B−B’における断面図を表す。図5において、200は磁場検出装置、201は第一基板、202はX素子(第一軸成分を検出する為に配設された第一感磁素子)、203はY素子(第二成分を検出する為に配設された第二感磁素子)、204はZ素子(第三成分を検出する為に配設された第三感磁素子)、205は第二基板である。   5A and 5B are diagrams illustrating an example of a conventional magnetic field detection device, where FIG. 5A is a plan view and FIG. 5B is a cross-sectional view taken along line B-B ′. In FIG. 5, 200 is a magnetic field detection device, 201 is a first substrate, 202 is an X element (first magnetosensitive element arranged to detect a first axis component), and 203 is a Y element (second component). A second magnetosensitive element arranged for detection), 204 is a Z element (third magnetosensitive element arranged for detecting the third component), and 205 is a second substrate.

図5に示すように、3つの成分を検出する為には、予め2つの成分(例えば第一成分と第二成分)を検出するためのX素子202とY素子203が一面に配された第一基板(装置基板ともよぶ)201と、残り1つの成分(例えば第三成分)を検出するためのZ素子204を備えた第二基板205とを用意し、Z素子204を含む面が第一基板201の一面に対して垂直をなすように、第二基板205を第一基板201に搭載する必要がある。   As shown in FIG. 5, in order to detect three components, an X element 202 and a Y element 203 for detecting two components (for example, a first component and a second component) are arranged on one surface in advance. One substrate (also referred to as an apparatus substrate) 201 and a second substrate 205 including a Z element 204 for detecting the remaining one component (for example, a third component) are prepared, and the surface including the Z element 204 is the first surface. The second substrate 205 needs to be mounted on the first substrate 201 so as to be perpendicular to one surface of the substrate 201.

しかしながら、磁場検出素子は検出する磁場方向に長さが必要となるので、第一基板201に垂直方向の磁場を検出する素子(Z素子204)を搭載する場合は高さ成分が増加してしまい、必然的に小型化には限界が生じるため、磁場検出装置が大型になってしまうという問題があった。
特開平06−176930号公報 特開平06−281712号公報 特開2003−35757号公報 特開2001−296127号公報
However, since the magnetic field detection element requires a length in the direction of the magnetic field to be detected, when the element (Z element 204) for detecting the magnetic field in the vertical direction is mounted on the first substrate 201, the height component increases. However, there is a problem that the size of the magnetic field detector becomes large because there is a limit to downsizing.
Japanese Patent Laid-Open No. 06-176930 Japanese Patent Laid-Open No. 06-281712 JP 2003-35757 A JP 2001-296127 A

本発明は上記事情に鑑みてなされたもので、基板から突出させることなく磁場検出素子を配し、装置の小型化を図ることが可能な、磁場検出装置およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a magnetic field detection device and a method for manufacturing the same, in which a magnetic field detection element is arranged without protruding from a substrate, and the device can be reduced in size. And

本発明の請求項1に係る磁場検出装置(以下、第一の磁場検出装置とも呼ぶ)は、基板を貫通する貫通孔に充填された磁性材料を用いてなる磁場検出素子を具備したことを特徴とする。   A magnetic field detection apparatus according to claim 1 of the present invention (hereinafter also referred to as a first magnetic field detection apparatus) includes a magnetic field detection element using a magnetic material filled in a through hole penetrating a substrate. And

本発明の請求項2に係る磁場検出装置(以下、第二の磁場検出装置とも呼ぶ)は、互いに直交する3軸方向の磁場をそれぞれ検出する3つの磁場検出素子を基板に備えてなる磁場検出装置であって、前記磁場検出素子のうち少なくとも1つは、前記基板を貫通する貫通孔に充填された磁性材料を用いてなることを特徴とする。   A magnetic field detection apparatus according to claim 2 of the present invention (hereinafter also referred to as a second magnetic field detection apparatus) includes a magnetic field detection device including three magnetic field detection elements for detecting magnetic fields in three axial directions orthogonal to each other. The apparatus is characterized in that at least one of the magnetic field detection elements is made of a magnetic material filled in a through hole penetrating the substrate.

本発明の請求項3に係る磁場検出装置は、請求項1又は2において、前記基板は、前記磁場検出素子の出力電圧を検出する検出手段を具備したことを特徴とする。   A magnetic field detection apparatus according to a third aspect of the present invention is the magnetic field detection device according to the first or second aspect, wherein the substrate includes detection means for detecting an output voltage of the magnetic field detection element.

本発明の請求項4に係る磁場検出装置の製造方法は、基板を貫通する貫通孔に磁性材料を充填して磁場検出素子を形成する工程を少なくとも具備していることを特徴とする。   According to a fourth aspect of the present invention, there is provided a method for manufacturing a magnetic field detection device comprising at least a step of forming a magnetic field detection element by filling a through-hole penetrating a substrate with a magnetic material.

本発明に係る第一の磁場検出装置は、基板を貫通する貫通孔に充填された磁性材料を用いてなる磁場検出素子を備えているので、磁場検出素子の本体すなわち磁場検出素子が検出する磁場方向に要する長さ部分を、基板の厚み方向に収納した形態とすることができる。つまり、第一の磁場検出装置は、磁場検出素子を基板の外部に突出させずに設けることが可能となるので、磁場検出装置の小型化、薄型化および軽量化が図れる。   The first magnetic field detection device according to the present invention includes a magnetic field detection element using a magnetic material filled in a through-hole penetrating the substrate. Therefore, the magnetic field detected by the main body of the magnetic field detection element, that is, the magnetic field detection element The length required in the direction can be stored in the thickness direction of the substrate. That is, the first magnetic field detection device can be provided without projecting the magnetic field detection element outside the substrate, so that the magnetic field detection device can be reduced in size, thickness, and weight.

本発明に係る第二の磁場検出装置は、互いに直交する3軸方向の磁場をそれぞれ検出する3つの磁場検出素子を基板に備えてなる磁場検出装置であって、前記磁場検出素子のうち少なくとも1つは、前記基板を貫通する貫通孔に充填された磁性材料を用いてなる。
かかる構成によれば、2つの成分(例えば第一成分と第二成分)を検出するためのX素子とY素子が基板の一面に配置し、かつ、残り1つの成分(例えば第三成分)を検出するためのZ素子の本体すなわち磁場検出素子が検出する磁場方向に要する長さ部分を、基板の厚み方向に収納した形態とすることができる。ここで、基板の厚み方向に収納した形態とは、基板を貫通する貫通孔に充填された磁性材料を意味する。ゆえに、本発明は、第一成分と第二成分を検出するX素子とY素子は基板面内に、第三成分を検出するためのZ素子は基板の外部に突出させず基板の肉厚内に、それぞれ設けることが可能となるので、小型化、薄型化および軽量化の図れた3軸方向磁場検出装置(第二の磁場検出装置)をもたらす。
A second magnetic field detection device according to the present invention is a magnetic field detection device comprising three magnetic field detection elements for detecting magnetic fields in three axial directions orthogonal to each other on a substrate, and at least one of the magnetic field detection elements. One uses a magnetic material filled in a through hole penetrating the substrate.
According to this configuration, the X element and the Y element for detecting two components (for example, the first component and the second component) are arranged on one surface of the substrate, and the remaining one component (for example, the third component) is disposed. The main body of the Z element for detection, that is, the length required in the magnetic field direction detected by the magnetic field detection element can be stored in the thickness direction of the substrate. Here, the form accommodated in the thickness direction of the substrate means a magnetic material filled in a through hole penetrating the substrate. Therefore, according to the present invention, the X element and the Y element for detecting the first component and the second component are within the surface of the substrate, and the Z element for detecting the third component is not projected outside the substrate. Therefore, a three-axis direction magnetic field detection device (second magnetic field detection device) that is reduced in size, thickness, and weight can be provided.

本発明に係る磁場検出装置の製造方法は、基板を貫通する貫通孔に磁性材料を充填して磁場検出素子を形成する工程を少なくとも具備している。
かかる構成よれば、前述した第一または第二の磁場検出装置において、基板の厚み方向に収納した形態をなす磁場検出素子を作製できる。ゆえに、上記工程を少なくとも備えた製法は、本発明に係る第一または第二の磁場検出装置の提供に寄与する。
The manufacturing method of the magnetic field detection apparatus according to the present invention includes at least a step of forming a magnetic field detection element by filling a through hole penetrating the substrate with a magnetic material.
According to such a configuration, in the first or second magnetic field detection device described above, a magnetic field detection element having a form accommodated in the thickness direction of the substrate can be produced. Therefore, the production method including at least the above steps contributes to the provision of the first or second magnetic field detection device according to the present invention.

以下では、本発明に係る磁場検出装置の一実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of a magnetic field detection apparatus according to the present invention will be described with reference to the drawings.

図1〜図4は、本発明に係る磁場検出装置を作製する手順の一例を示す図であり、分かりやすいように構成要素を適宜誇張して描いてある。
図1は、本発明に係る磁場検出装置の基板に貫通孔を設けた状態の一例を示す図であり、(a)は平面図を、(b)は線分A−A’における断面図を表す。
図2は、基板に設けた貫通孔内に磁性材料を充填し、磁性材料を線状に結合させて1つ目の素子(例えばZ素子)を形成した状態を示す断面図である。
図3は、2つ目及び3つ目の素子(例えばX素子、Y素子)用の開口部を確保しつつ、基板面に絶縁層を設けた状態を示す平面図である。
図4は絶縁層上に2つ目及び3つ目の素子を形成した状態を示す平面図であり、本例に係る3軸方向磁場検出装置の一例を示す図である。
1-4 is a figure which shows an example of the procedure which produces the magnetic field detection apparatus based on this invention, and has drawn the component exaggerated suitably for easy understanding.
FIG. 1 is a diagram showing an example of a state in which a through hole is provided in a substrate of a magnetic field detection device according to the present invention, where (a) is a plan view and (b) is a cross-sectional view taken along line AA ′. To express.
FIG. 2 is a cross-sectional view showing a state in which a first element (for example, a Z element) is formed by filling a through hole provided in a substrate with a magnetic material and linearly coupling the magnetic material.
FIG. 3 is a plan view showing a state where an insulating layer is provided on the substrate surface while securing openings for the second and third elements (for example, the X element and the Y element).
FIG. 4 is a plan view showing a state in which the second and third elements are formed on the insulating layer, and is a diagram showing an example of a three-axis direction magnetic field detection apparatus according to this example.

先ず、図1に示すように、磁気インピーダンス素子(MI素子)の電子回路(不図示)を集積化してある磁場検出素子用の基板101に貫通孔106を形成する。
基板101としてシリコンを用いる場合は、貫通孔を形成する手法として光電解研磨法を用いることにより指定の箇所に貫通孔を設けることが可能となる。光電解研磨法により指定の箇所に貫通孔を形成する手法については、ここでは詳細は省略するが、例えば特開2002−161400号公報に開示されている手法などが適用できる。
なお、基板101を構成する材料としてはシリコンの他に、例えばセラミックス、PCB樹脂、ガラス等などからなる平板状の基材が好適に用いられる。また、貫通孔の形成方法については光電解研磨法の他に、例えばDeepRIE法、ドリル法、サンドブラスト法などを用いても良い。
First, as shown in FIG. 1, a through hole 106 is formed in a magnetic field detecting element substrate 101 in which electronic circuits (not shown) of magnetic impedance elements (MI elements) are integrated.
When silicon is used as the substrate 101, a through hole can be provided at a specified location by using a photoelectrolytic polishing method as a method for forming the through hole. Details of the method of forming a through hole at a specified location by the photoelectrolytic polishing method are omitted here, but the method disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-161400 can be applied.
As a material constituting the substrate 101, in addition to silicon, a flat base material made of, for example, ceramics, PCB resin, glass or the like is preferably used. In addition to the photoelectrolytic polishing method, for example, a deep RIE method, a drill method, or a sand blast method may be used as a method for forming the through hole.

次に、基板101の貫通孔106に溶融金属吸引法を用いてCoNbZr等の磁性材料107を充填する。この後、基板101の両面に対してフォトレジストを用いたフォトリソグラフィおよびCuめっき法等を用い、磁性材料で充填された貫通孔107a〜107dを導電材料108b、108c、108dで接続し、Z軸方向のMI素子をつづら折り状とする。また導電材料108a、108eを用い、搬送波信号回路と接続された入出力端子104a、104bと貫通孔107a、107dとをそれぞれ接続する。その後、フォトレジストをアルカリ剥離液又はプラズマエッチング法で除去する。
これにより、図2に示すような磁性材料が充填された貫通孔107を導電材料108で接続してなる基板101を得る。
ここで作製した導電材料は、貫通孔に充填した個々の磁性材料を接続することにより、素子長を延ばした形態を実現する。この形態は、磁気検出素子のインピーダンスの増加をもたらし、ひいては検出磁界感度の向上に寄与する。
Next, the through hole 106 of the substrate 101 is filled with a magnetic material 107 such as CoNbZr using a molten metal suction method. Thereafter, the through holes 107a to 107d filled with the magnetic material are connected to the both surfaces of the substrate 101 by the conductive material 108b, 108c, and 108d by using photolithography using a photoresist and Cu plating, etc. The MI element in the direction is formed in a folded shape. In addition, conductive materials 108a and 108e are used to connect the input / output terminals 104a and 104b connected to the carrier wave signal circuit and the through holes 107a and 107d, respectively. Thereafter, the photoresist is removed by an alkali stripping solution or a plasma etching method.
As a result, a substrate 101 is obtained in which through holes 107 filled with a magnetic material as shown in FIG.
The conductive material produced here realizes a form in which the element length is extended by connecting individual magnetic materials filled in the through holes. This form causes an increase in the impedance of the magnetic detection element, which in turn contributes to an improvement in detection magnetic field sensitivity.

この発明に係る磁気検出素子は、上記溶融金属吸引法で作製した磁性材料に限らず、全ての磁性材料で有効である。つまり、NiFeやFeCoSiB、CoNbZr等の非晶質磁性材料や結晶性磁性材料を用いた場合においても同様である。また、貫通孔充填方法についても何ら限定されるものではなく、スパッタ法、真空蒸着、CVD、めっき法等が使用できる。貫通孔を接続する材料もCuに限らず、成膜方法もスパッタ法等を用いることにより、AgやAl、Ti、Nb、Cr、W、Ta、Au、Ni、Pt等、Cu以外に多様な材料を用いることができる。   The magnetic detection element according to the present invention is not limited to the magnetic material produced by the molten metal attraction method, but is effective for all magnetic materials. That is, the same applies to the case where an amorphous magnetic material or a crystalline magnetic material such as NiFe, FeCoSiB, or CoNbZr is used. Also, the through hole filling method is not limited at all, and sputtering, vacuum deposition, CVD, plating, and the like can be used. The material for connecting the through-holes is not limited to Cu, and the film formation method is not limited to Cu, such as Ag, Al, Ti, Nb, Cr, W, Ta, Au, Ni, Pt, etc. by using a sputtering method or the like. Materials can be used.

次いで、図3に示すように、X軸方向を検知するMI素子(X素子)とY軸方向を検知するMI素子(Y素子)に対して、それぞれ搬送波信号の入出力端子に整合する位置に開口部102a、102b、103a、103bを有する絶縁層を形成する。図3において、101’は例えば絶縁層を設けて表面の絶縁化を図った状態の基板を表す。
その際、絶縁層を構成する材料としては、例えば窒化シリコン、酸化シリコン、ポリイミド樹脂、エポキシ樹脂、シリコーン樹脂等が挙げられる。このような絶縁層は、例えばCVD法、回転塗布法、印刷法、ラミネート法等により形成することができる。
また、開口部102a、102b、103a、103bは、例えば樹脂層を構成するポリイミド等の膜を全面的に成膜した後にフォトリソグラフィ技術によりパターニングすることによって形成することができる。
Next, as shown in FIG. 3, the MI element (X element) for detecting the X-axis direction and the MI element (Y element) for detecting the Y-axis direction are respectively aligned with the input / output terminals of the carrier wave signal. An insulating layer having openings 102a, 102b, 103a, and 103b is formed. In FIG. 3, 101 ′ represents a substrate in a state where an insulating layer is provided to insulate the surface.
In that case, as a material which comprises an insulating layer, silicon nitride, a silicon oxide, a polyimide resin, an epoxy resin, a silicone resin etc. are mentioned, for example. Such an insulating layer can be formed by, for example, a CVD method, a spin coating method, a printing method, a laminating method, or the like.
Further, the openings 102a, 102b, 103a, and 103b can be formed by, for example, forming a film of polyimide or the like constituting the resin layer on the entire surface and then patterning the film by a photolithography technique.

次いで、絶縁層を設けて表面の絶縁化を図った状態にある基板101’の上に、X素子およびY素子を形成する。その形成方法としては、例えばCoNbZr等合金ターゲットを用いたRFスパッタ法により厚さ1μm乃至10μmのアモルファス磁性薄膜を成膜する方法が挙げられる。
このアモルファス磁性薄膜を加工する際に用いるマスクとしては、例えば感光性の樹脂を用いたフォトリソグラフィ技術により磁性薄膜上に設けた任意のレジストパターンを利用する。マスク形成後、感光性樹脂をエッチングマスクとして、例えばイオンビームエッチングを用い、任意のレジストパターンに沿ってアモルファス磁性薄膜を微細加工すればよい。このエッチング処理により、所望のパターンからなるX素子やY素子を形成することができる。
Next, an X element and a Y element are formed on the substrate 101 ′ in a state where an insulating layer is provided to insulate the surface. Examples of the formation method include a method of forming an amorphous magnetic thin film having a thickness of 1 μm to 10 μm by an RF sputtering method using an alloy target such as CoNbZr.
As a mask used when processing this amorphous magnetic thin film, for example, an arbitrary resist pattern provided on the magnetic thin film by a photolithography technique using a photosensitive resin is used. After the mask formation, the amorphous magnetic thin film may be finely processed along an arbitrary resist pattern using, for example, ion beam etching using the photosensitive resin as an etching mask. By this etching process, an X element or a Y element having a desired pattern can be formed.

以上の説明においては、アモルファス磁性薄膜の微細加工法としてイオンビームエッチング法を挙げているが、反応性イオンエッチング法等の他のドライエッチッグ加工法を適用しても良いし、ウェットエッチング加工法や、メタルマスク法を用いた加工法を用いても構わない。また、上述したレジストパターンとは反転したレジストパターンを形成し、リフトオフ法により所望のパターンからなるX素子やY素子を形成しても良い。   In the above description, the ion beam etching method is cited as a fine processing method of the amorphous magnetic thin film, but other dry etching methods such as a reactive ion etching method may be applied, a wet etching processing method, A processing method using a metal mask method may be used. Alternatively, a resist pattern reversed from the resist pattern described above may be formed, and an X element or a Y element having a desired pattern may be formed by a lift-off method.

上記説明においては、磁気検出素子を構成する磁性材料としてCoNbZrを用いる例を挙げたが、この材料に限定されるものではなく、搬送波信号の周波数帯において軟磁性であり、高透磁率を示す材料であれば如何なる材料でも用いることができる。   In the above description, CoNbZr is used as a magnetic material constituting the magnetic detection element. However, the present invention is not limited to this material, and is a material that is soft magnetic in the frequency band of the carrier wave signal and exhibits high permeability. Any material can be used as long as it is.

最後に、感光性樹脂を剥離液又はプラズマエッチングで除去することにより、X素子102およびY素子103を得る。その後、X素子102およびY素子103の電極となる部分(102’、102”、103’、103”)とX素子用およびY素子用の搬送波信号の入出力端子(102a、102b、103a、103b)との間を、Z素子104と同様に、めっき法又はスパッタ法により作製されたCu等の導電材料で接続する。あるいは、特に導電材料を成膜せずに、磁性薄膜を直接接続しても構わない。
以上の手順により、図5に外観構成を平面図により示した形態の3軸方向磁場検出装置が得られる。
Finally, the X element 102 and the Y element 103 are obtained by removing the photosensitive resin with a stripping solution or plasma etching. Thereafter, the portions (102 ′, 102 ″, 103 ′, 103 ″) serving as the electrodes of the X element 102 and the Y element 103 and the carrier signal input / output terminals (102a, 102b, 103a, 103b) for the X element and the Y element ) In the same manner as the Z element 104 by a conductive material such as Cu produced by plating or sputtering. Alternatively, the magnetic thin film may be directly connected without particularly forming a conductive material.
By the above procedure, the three-axis direction magnetic field detection device having the external configuration shown in FIG.

ところで、上述した磁場検出装置は、これを構成する基板に、磁場検出素子(例えばZ素子)の出力電圧を検出する検出手段を具備しても良い。検出手段が基板に設けてあれば、別体として基板に付設する必要がなくなるので、磁場検出装置の小型化、薄型化および軽量化が損なわれないので好ましい。   By the way, the magnetic field detection apparatus mentioned above may comprise a detection means for detecting an output voltage of a magnetic field detection element (for example, a Z element) on a substrate constituting the magnetic field detection apparatus. If the detection means is provided on the substrate, it is not necessary to attach the detection means to the substrate as a separate body, which is preferable because the magnetic field detection device is not reduced in size, thickness, and weight.

なお、上述した態様例に係るX素子、Y素子および/またはZ素子に磁気異方性を付与したり、あるいは熱処理を施したアモルファス磁性材料を用いても良い。   In addition, you may use the amorphous magnetic material which provided the magnetic anisotropy to the X element based on the example of an aspect mentioned above, and / or the Z element, or gave heat processing.

また、各素子の近傍や各素子の周囲に、コイルや磁石を配置することにより、各素子の磁界検出方向にバイアス磁界を印加しても構わない。バイアス磁界を印加することにより、各素子の動作点を最も高感度な位置にすることが可能となり、各素子における検出出力の直線性を向上できる。   Further, a bias magnetic field may be applied in the magnetic field detection direction of each element by arranging a coil or a magnet in the vicinity of each element or around each element. By applying a bias magnetic field, the operating point of each element can be set to the most sensitive position, and the linearity of the detection output in each element can be improved.

さらに、上述した態様例においては、単一の基板101上に3つの素子(X素子、Y素子、Z素子)を作製する場合を例にして説明したが、貫通孔を用いたZ素子を有する基板に、これとは別体として作製されたX素子およびY素子を実装することにより3軸方向磁場検出装置を形成しても良い。   Further, in the above-described embodiment example, the case where three elements (X element, Y element, and Z element) are formed on a single substrate 101 has been described as an example, but the Z element using a through hole is provided. A triaxial magnetic field detection device may be formed by mounting an X element and a Y element separately manufactured on a substrate.

なお、上述した態様例においては、磁場検出素子として磁気インピーダンス素子(MI素子)を設ける場合を例として説明したが、MI素子に代えてホール素子や磁気抵抗効果素子(MR素子)、巨大磁気抵抗効果素子(GMR素子)、フラックスゲートセンサ等を適用しても、本発明に係る作用・効果が得られることは言うまでもない。   In the above-described embodiment, the case where the magnetic impedance element (MI element) is provided as the magnetic field detection element has been described as an example. However, instead of the MI element, a Hall element, a magnetoresistive effect element (MR element), a giant magnetoresistance Needless to say, even if an effect element (GMR element), a fluxgate sensor, or the like is applied, the functions and effects of the present invention can be obtained.

本発明によれば、磁場検出素子を基板の外部に突出させずに設けることが可能となるので、磁場検出装置の小型化、薄型化および軽量化が図れる。また、基板に内蔵された素子(例えばZ素子)に加えて、この基板の一方の面もしくは両方の面にX素子やY素子を設けることにより、小型化、薄型化および軽量化が図れた3軸方向磁場検出装置の提供が可能となる。   According to the present invention, the magnetic field detection element can be provided without projecting outside the substrate, so that the magnetic field detection device can be reduced in size, thickness, and weight. Further, in addition to the element (for example, Z element) built in the substrate, the X element and the Y element are provided on one surface or both surfaces of the substrate, thereby reducing the size, thickness, and weight. An axial magnetic field detection device can be provided.

ゆえに、本発明に係る磁場検出装置は、従来の装置と比較して特に薄型で軽量とすることができるので、この装置を搭載してなる機器、例えば携帯電話やPDA、腕時計、GPS等の各種機器の軽薄短小化に貢献する。   Therefore, the magnetic field detection device according to the present invention can be made particularly thin and lightweight as compared with the conventional device, so that various devices such as mobile phones, PDAs, watches, GPS, etc., on which this device is mounted. Contributes to the miniaturization of equipment.

磁場検出装置の基板に貫通孔を設けた状態の一例を示す図であり、(a)は平面図を、(b)は線分A−A’における断面図を表す。It is a figure which shows an example of the state which provided the through-hole in the board | substrate of a magnetic field detection apparatus, (a) represents a top view, (b) represents sectional drawing in line segment A-A '. 磁場検出装置の基板に設けた貫通孔に磁性材料を充填し、磁性材料を線状に結合させて1つ目の素子を形成した状態を示す断面図である。It is sectional drawing which shows the state which filled the through-hole provided in the board | substrate of the magnetic field detection apparatus with the magnetic material, and combined the magnetic material linearly and formed the 1st element. 磁場検出装置の基板に2つ目及び3つ目の素子用の開口部を確保しつつ、基板面に絶縁層を設けた状態を示す平面図である。It is a top view which shows the state which provided the insulating layer in the board | substrate surface, ensuring the opening part for 2nd and 3rd elements in the board | substrate of a magnetic field detection apparatus. 絶縁層上に2つ目及び3つ目の素子を形成した状態を示す平面図であり、本発明に係る3軸方向磁場検出装置の一例を示す図である。It is a top view which shows the state which formed the 2nd and 3rd element on the insulating layer, and is a figure which shows an example of the 3-axis direction magnetic field detection apparatus which concerns on this invention. 従来の磁場検出装置の一例を示す図であり、(a)は平面図を、(b)は線分B−B’における断面図を表す。It is a figure which shows an example of the conventional magnetic field detection apparatus, (a) is a top view, (b) represents sectional drawing in line segment B-B '.

符号の説明Explanation of symbols

100 磁場検出装置、101 基板、101’ 絶縁化を図った状態にある基板、102 磁場検出素子(X素子)、102’、102” X素子の電極部、102a、102b X素子用の開口部、103 磁場検出素子(Y素子)、103’、103” Y素子の電極部、103a、103b Y素子用の開口部、104 磁場検出素子(Z素子)、106 貫通孔、107 磁性材料、107a〜107d 磁性材料が充填された貫通孔、108 導電材料。
DESCRIPTION OF SYMBOLS 100 Magnetic field detection apparatus, 101 board | substrate, 101 'board | substrate in the state which aimed at insulation, 102 Magnetic field detection element (X element), 102', 102 '' X element electrode part, 102a, 102b The opening part for X element, 103 Magnetic field detection element (Y element), 103 ′, 103 ″ Y element electrode part, 103a, 103b Y element opening, 104 Magnetic field detection element (Z element), 106 Through hole, 107 Magnetic material, 107a to 107d Through hole filled with magnetic material, 108 conductive material.

Claims (4)

基板を貫通する貫通孔に充填された磁性材料を用いてなる磁場検出素子を具備したことを特徴とする磁場検出装置。   A magnetic field detection device comprising a magnetic field detection element using a magnetic material filled in a through hole penetrating a substrate. 互いに直交する3軸方向の磁場をそれぞれ検出する3つの磁場検出素子を基板に備えてなる磁場検出装置であって、
前記磁場検出素子のうち少なくとも1つは、前記基板を貫通する貫通孔に充填された磁性材料を用いてなることを特徴とする磁場検出装置。
A magnetic field detection device comprising three substrates for detecting magnetic fields in three axial directions orthogonal to each other on a substrate,
At least one of the magnetic field detection elements is made of a magnetic material filled in a through hole that penetrates the substrate.
前記基板は、前記磁場検出素子の出力電圧を検出する検出手段を具備したことを特徴とする請求項1又は2に記載の磁場検出装置。   The magnetic field detection apparatus according to claim 1, wherein the substrate includes detection means for detecting an output voltage of the magnetic field detection element. 基板を貫通する貫通孔に磁性材料を充填して磁場検出素子を形成する工程を少なくとも具備していることを特徴とする磁場検出装置の製造方法。
A method of manufacturing a magnetic field detection device comprising at least a step of forming a magnetic field detection element by filling a through-hole penetrating a substrate with a magnetic material.
JP2004309620A 2004-10-25 2004-10-25 Magnetic field detection device and its manufacturing method Withdrawn JP2006119087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004309620A JP2006119087A (en) 2004-10-25 2004-10-25 Magnetic field detection device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004309620A JP2006119087A (en) 2004-10-25 2004-10-25 Magnetic field detection device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006119087A true JP2006119087A (en) 2006-05-11

Family

ID=36537099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004309620A Withdrawn JP2006119087A (en) 2004-10-25 2004-10-25 Magnetic field detection device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006119087A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11279398B2 (en) * 2017-04-11 2022-03-22 Kyb Corporation Magnetic detection device, torque sensor and electric power steering device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11279398B2 (en) * 2017-04-11 2022-03-22 Kyb Corporation Magnetic detection device, torque sensor and electric power steering device

Similar Documents

Publication Publication Date Title
JP5152495B2 (en) Magnetic sensor and portable information terminal device
US8134361B2 (en) Magnetic sensor including magnetic field detectors and field resistors arranged on inclined surfaces
KR101267246B1 (en) Flux gate senior and electronic azimuth indicator making use thereof
US9752877B2 (en) Electronic device having electronic compass with demagnetizing coil and annular flux concentrating yokes
JP2009020092A (en) Magnetic sensor and method of manufacturing the same
JP2009216390A (en) Triaxial magnetic sensing device, and manufacturing method therefor
JP2009122041A (en) Composite sensor
US7444872B2 (en) Acceleration sensor and magnetic disk drive apparatus
JP5348080B2 (en) Magnetic sensor and manufacturing method thereof
JP2006234615A (en) Magnetic sensor element, its manufacturing method, and electronic goniometer
JP2004271481A (en) Triaxial magnetic sensor
JP4331630B2 (en) Magnetic sensor
JP2006119087A (en) Magnetic field detection device and its manufacturing method
JP2006010591A (en) Triaxial azimuth sensor
JP4244807B2 (en) Direction sensor
JP2004325344A (en) Magnetosensitive element integrated with control element
KR100485591B1 (en) Compact Micro Magnetic Field Detecting Sensor Using Magneto Impedance Effects and Method for Making the Same
JP2003161770A (en) Magnetism detecting element
JP4896800B2 (en) Magnetic sensor and manufacturing method thereof
JP5240657B2 (en) Sensing element, sensing device, orientation detection device, and information device
KR100649781B1 (en) 3-axis Magnetic Sensor Using Magnetoimpedance Sensor and All-Orientation Magnetic Sensor Using the Same
JP2004045119A (en) Magnetic sensor, azimuth detection system using the same, and mobile communication terminal
JP2002207071A (en) Magnetic sensing element and azimuth-sensing system using the element
JP2007205748A (en) Magnetometric sensor and magnetic device
KR20110060681A (en) Planar hall resistance sensor and multi axis sensor using a planar hall resistance sensor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108