JP2009020092A - Magnetic sensor and method of manufacturing the same - Google Patents

Magnetic sensor and method of manufacturing the same Download PDF

Info

Publication number
JP2009020092A
JP2009020092A JP2008108061A JP2008108061A JP2009020092A JP 2009020092 A JP2009020092 A JP 2009020092A JP 2008108061 A JP2008108061 A JP 2008108061A JP 2008108061 A JP2008108061 A JP 2008108061A JP 2009020092 A JP2009020092 A JP 2009020092A
Authority
JP
Japan
Prior art keywords
substrate
sensor
magnetic sensor
same
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008108061A
Other languages
Japanese (ja)
Other versions
JP5157611B2 (en
Inventor
Junichi Azumi
純一 安住
太好 ▲高▼
Hiroyoshi Ko
Akihiro Fuse
晃広 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2008108061A priority Critical patent/JP5157611B2/en
Priority to DE200860000820 priority patent/DE602008000820D1/en
Priority to US12/137,902 priority patent/US8134361B2/en
Priority to EP08158117A priority patent/EP2003462B1/en
Priority to KR20080056029A priority patent/KR100996712B1/en
Priority to CN2008101254584A priority patent/CN101325210B/en
Publication of JP2009020092A publication Critical patent/JP2009020092A/en
Application granted granted Critical
Publication of JP5157611B2 publication Critical patent/JP5157611B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0047Housings or packaging of magnetic sensors ; Holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic sensor that has a plurality of axes at the same time and can be produced in a small number of steps, and to provide a method of manufacturing the same. <P>SOLUTION: A pair of detecting sections in a plurality of sensor bridge circuits are arranged on a slope where the normal line directions of the inclination intersect with each other in a three-dimensional manner, and a pair of detecting sections in the same sensor bridge circuit are arranged on the slopes whose normal directions are the same. Accordingly, a pinned layer of the detecting section in the same bridge can be magnetized by once performing heat treatment in the magnetic field while applying a magnetic field of one direction, and the magnetizing direction of the pinned layer in each coordinate system can be magnetized in three magnetizing directions three-dimensionally crossing. Therefore, the number of producing steps can be reduced, and production yield is improved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、磁気抵抗素子を用いた磁気センサおよびその製造方法に関する。   The present invention relates to a magnetic sensor using a magnetoresistive element and a manufacturing method thereof.

従来、各種の磁気抵抗素子を用いたセンサとして、磁気抵抗効果素子(MR素子)、磁気インピーダンス素子(MI素子)、フラックスゲートセンサ、半導体ホール効果センサ等が用いられている。
例えば、MIセンサによれば、MI素子という磁気抵抗素子を用いることで薄膜化・小型化が容易であり、その改良も盛んに行われている。また、MR素子の場合には、高周波電流を流した場合のその高周波インピーダンスの磁界による変化をもって磁界強度を検知することができる。
Conventionally, as a sensor using various magnetoresistive elements, a magnetoresistive effect element (MR element), a magnetic impedance element (MI element), a fluxgate sensor, a semiconductor Hall effect sensor, and the like are used.
For example, according to the MI sensor, the use of a magnetoresistive element called an MI element facilitates thinning and miniaturization, and improvements are being actively made. In the case of an MR element, the magnetic field strength can be detected by a change due to the magnetic field of the high frequency impedance when a high frequency current is passed.

磁気抵抗効果素子(MR素子)を用いた磁気センサの素子として、巨大磁気抵抗効果素子(GMR素子)や、トンネル磁気抵抗効果素子(TMR素子)等が知られている。GMR素子とは、強磁性層と非強磁性層とが交互に複数層形成され、隣接する2つの磁性層の磁化方向が、外部磁界の強さに応じて平行な場合と反平行な場合とで変化する抵抗を利用して磁気検知を行うものである。
また、TMR素子とは、磁性薄膜層が絶縁層を介して複数層形成され、伝導に関わる電子がスピンを維持しながら絶縁層をトンネル現象によって伝導されることで、このときの磁化の状態によってトンネル透過係数が異なることを利用して磁界検知を行うものである。
As a magnetic sensor element using a magnetoresistive effect element (MR element), a giant magnetoresistive effect element (GMR element), a tunnel magnetoresistive effect element (TMR element) and the like are known. In the GMR element, a plurality of ferromagnetic layers and non-ferromagnetic layers are alternately formed, and the magnetization directions of two adjacent magnetic layers are parallel or antiparallel depending on the strength of the external magnetic field. Magnetic detection is performed by using a resistance that changes in the above.
In addition, a TMR element is formed by forming a plurality of magnetic thin film layers through an insulating layer, and electrons related to conduction are conducted through the insulating layer by a tunnel phenomenon while maintaining spin, depending on the magnetization state at this time. Magnetic field detection is performed using the fact that the tunnel transmission coefficient is different.

これら磁気抵抗効果素子は磁化の向きが所定の向きに固定されたピンド層(固定層)と、磁化の向きが外部磁界の向きに応じて変化するフリー層(自由層)とを備えている。磁気センサとして外部磁界を検知する時は固定されたピンド層の磁化方向に対して外部磁界の向きに応じて変化するフリー層の磁化方向の相対関係に応じて抵抗値は変化することを利用して磁界の方向を検知するものである。   These magnetoresistive elements include a pinned layer (fixed layer) whose magnetization direction is fixed to a predetermined direction, and a free layer (free layer) whose magnetization direction changes according to the direction of the external magnetic field. When detecting an external magnetic field as a magnetic sensor, use the fact that the resistance value changes according to the relative relationship of the magnetization direction of the free layer that changes according to the direction of the external magnetic field with respect to the magnetization direction of the fixed pinned layer. The direction of the magnetic field is detected.

ところで、近年、カーナビゲーションや携帯電話機器などGPSを用いた機器が増えてきている。そのような中で、GPSからの電波が遮られる場所における現在地確認での使用などにおいて、超小型の磁気センサが求められている。そのため、ICと一体化ができるシリコンウエハ上に作られた磁気センサは好都合である。また、磁気センサを二次元平面若しくは三次元空間での方位検知が要求されている。   By the way, in recent years, devices using GPS such as car navigation and mobile phone devices are increasing. Under such circumstances, there is a demand for an ultra-small magnetic sensor for use in confirming the current location in a place where radio waves from GPS are blocked. Therefore, a magnetic sensor made on a silicon wafer that can be integrated with an IC is advantageous. Further, it is required to detect the orientation of the magnetic sensor in a two-dimensional plane or a three-dimensional space.

二次元平面の方位検知ができる磁気センサとして特許文献1に開示された技術がある。
また、三次元空間の方位検知ができる磁気センサとして特許文献2、特許文献3、特許文献3に開示されたがある。
There is a technique disclosed in Patent Document 1 as a magnetic sensor capable of detecting the orientation of a two-dimensional plane.
Further, Patent Document 2, Patent Document 3, and Patent Document 3 disclose magnetic sensors that can detect the orientation of a three-dimensional space.

特許文献1に記載の発明は、直交する2方向(X軸方向,Y軸方向)の磁界の変化をそれぞれ検出するように磁気抵抗効果素子それぞれ直交する位置関係になるよう基板上に平面配置し、各方向数個の磁気抵抗効果素子でホイーストンブリッジ接続したものである。   In the invention described in Patent Document 1, the magnetoresistive effect elements are arranged in a plane on the substrate so as to be orthogonal to each other so as to detect magnetic field changes in two orthogonal directions (X-axis direction and Y-axis direction). The Wheatstone bridge is connected by several magnetoresistive elements in each direction.

特許文献2に記載の発明は、TMR素子を適用した技術が開示されており、TMR素子を3軸上に独立に配置している。この1軸の磁界変化を検出する磁気センサが実装技術を用いてお互いに直交する3軸へ配置した説明図になっている。   The invention described in Patent Document 2 discloses a technique to which a TMR element is applied, and the TMR elements are arranged independently on three axes. The magnetic sensor for detecting the change in the uniaxial magnetic field is an explanatory diagram arranged on three axes orthogonal to each other using a mounting technique.

特許文献3に記載の発明は、MR素子からなる2軸の磁気検知部と1軸の検知部を可撓性基板上に形成し、両検知部を電気的に接続する薄膜導体部で可撓性基材を曲げることで3軸方位センサを構成している。   In the invention described in Patent Document 3, a biaxial magnetic detection unit and a uniaxial detection unit composed of MR elements are formed on a flexible substrate, and the thin film conductor unit that electrically connects both detection units is flexible. A triaxial azimuth sensor is configured by bending a conductive substrate.

特許文献4に記載の発明は、直交する2方向(X軸方向,Y軸方向)の磁界の変化をそれぞれ検出するように磁気抵抗効果素子それぞれ直交する位置関係になるよう基板上に平面配置し、さらに基板上に形成した斜面上にZ軸方向の磁界の変化を検出するように磁気抵抗効果素子を配置している。また、各方向数個の磁気抵抗効果素子でホイーストンブリッジ接続している。
特許第3498737号公報 特開2003−008101号公報 特開2006−010591号公報 特開2006−308573号公報
In the invention described in Patent Document 4, the magnetoresistive effect elements are arranged in a plane so as to be orthogonal to each other so as to detect magnetic field changes in two orthogonal directions (X-axis direction and Y-axis direction). Further, a magnetoresistive effect element is arranged on a slope formed on the substrate so as to detect a change in the magnetic field in the Z-axis direction. In addition, Wheatstone bridges are connected by several magnetoresistive elements in each direction.
Japanese Patent No. 3498737 JP 2003008101 A JP 2006-010591 A JP 2006-308573 A

3軸の磁気センサとして、特許文献2に記載の発明のように単軸の磁気センサチップを直交する3軸方向に実装させた3軸磁気センサや、特許文献3に記載の発明のように2軸の磁気検知部と1軸の検知部を可撓性基板上に形成し、可撓性基材を曲げることで3軸磁気センサを構成したものが提案されている。   As a three-axis magnetic sensor, a three-axis magnetic sensor in which a single-axis magnetic sensor chip is mounted in three orthogonal directions as in the invention described in Patent Document 2, or two as in the invention described in Patent Document 3. There has been proposed a configuration in which a three-axis magnetic sensor is formed by forming a magnetic detection unit of a shaft and a detection unit of a single axis on a flexible substrate and bending a flexible base material.

特許文献2に記載の発明は、三次元実装になることで各軸の直交度の精度を向上させるのは難しく、電気配線の引き回しも複雑である。必然的に3軸の磁気センサとしては比較的大きなものになる。特許文献3に記載の発明は、2軸の磁気検知部は各々の軸のピンド層(固定層)の磁化方向の相対位置関係は高い精度で作りこむことができる。   In the invention described in Patent Document 2, it is difficult to improve the accuracy of the orthogonality of each axis due to the three-dimensional mounting, and the routing of the electrical wiring is also complicated. Inevitably, this is a relatively large three-axis magnetic sensor. In the invention described in Patent Document 3, the relative position relationship of the magnetization direction of the pinned layer (fixed layer) of each axis can be made with high accuracy in the biaxial magnetic detection unit.

一方、2軸の磁気検知部と1軸の検知部との磁化方向の相対位置関係は可撓性基材の曲げ方(曲がり方)により精度が決まってくる。そのため、2軸の磁気検知部と1軸の検知部との磁化方向の相対位置関係は2軸の磁気検知部内の位置関係と比較すると精度は低下する。また、可撓性基材を曲げて固定するためにある幅の糊代が必要となるため、可撓性基材を固定する基材は厚く大きくなってくる。   On the other hand, the accuracy of the relative positional relationship in the magnetization direction between the biaxial magnetic detector and the uniaxial detector depends on how the flexible substrate is bent (bent). Therefore, the relative positional relationship in the magnetization direction between the biaxial magnetic detector and the uniaxial detector is less accurate than the positional relationship in the biaxial magnetic detector. Also, since a certain amount of paste is required to bend and fix the flexible base material, the base material for fixing the flexible base material becomes thicker and larger.

このように3軸間での相対位置精度のバラツキは測定した外部磁界の出力から読み取る位置精度の低下に繋がる。
また、携帯電話などの機器への搭載を行う場合、小型で薄型のセンサが要求されるが、特許文献2、特許文献3に記載の発明では限界が生じる。これらの特許文献1〜3に記載の発明の課題を解決した構成例として、特許文献4に記載の発明がある。
Thus, the variation in the relative position accuracy between the three axes leads to a decrease in the position accuracy read from the output of the measured external magnetic field.
Further, when mounting on a device such as a mobile phone, a small and thin sensor is required, but the inventions described in Patent Document 2 and Patent Document 3 have limitations. As a configuration example that solves the problems of the inventions described in Patent Documents 1 to 3, there is an invention described in Patent Document 4.

磁気抵抗効果素子(MR素子)を用いた磁気センサは前述の通り、磁化の向きが所定の向きに固定されたピンド層(固定層)と、磁化の向きが外部磁界の向きに応じて変化するフリー層(自由層)とを備えている。磁気センサとして外部磁界を検知する時は固定されたピンド層の磁化方向に対して外部磁界の向きに応じて変化するフリー層の磁化方向の相対関係に応じて抵抗値は変化することを利用して磁界の方向を検知するものなので、ピンド層(固定層)の磁化の方向は多軸のセンサでは最適な方向は異なってくる。ピンド層の磁化方向は磁場中で所定の温度で熱処理することで決定される。そのため、同一基板上へ2軸以上のセンサでは各軸毎に磁界の向きを変えてピンド層(固定層)の着磁を行っていた(特許文献1、特許文献4参照。)。   As described above, the magnetic sensor using the magnetoresistive effect element (MR element) has a pinned layer (fixed layer) in which the magnetization direction is fixed to a predetermined direction, and the magnetization direction changes according to the direction of the external magnetic field. And a free layer (free layer). When detecting an external magnetic field as a magnetic sensor, use the fact that the resistance value changes according to the relative relationship of the magnetization direction of the free layer that changes according to the direction of the external magnetic field with respect to the magnetization direction of the fixed pinned layer. Therefore, the direction of magnetization of the pinned layer (fixed layer) differs in the optimum direction in a multi-axis sensor. The magnetization direction of the pinned layer is determined by heat treatment in a magnetic field at a predetermined temperature. Therefore, in a sensor having two or more axes on the same substrate, the pinned layer (fixed layer) is magnetized by changing the direction of the magnetic field for each axis (see Patent Document 1 and Patent Document 4).

本発明はこのような問題に鑑みてなされたものであって、その目的とするところは、同一基板上に3軸の磁気センサを配置することで各軸の相対位置関係を高精度にし、ブリッジ接続される基準抵抗(外部磁界の方向の影響を受けることなく一定の抵抗値を示す抵抗)を同一基板中に形成し、全ての軸のピンド層(固定層)の着磁を一方向の磁界からなる磁場中で熱処理をすることで同時に形成できる3軸の磁気センサ及びその製造方法を提供することにある。
すなわち、本発明の目的は、製造工数が少なく、同時に複数の軸を有する磁気センサ及びその製造方法を提供することにある。
The present invention has been made in view of such a problem, and the object of the present invention is to arrange a triaxial magnetic sensor on the same substrate so that the relative positional relationship of each axis becomes high accuracy, and the bridge. The reference resistance to be connected (resistance that shows a constant resistance value without being affected by the direction of the external magnetic field) is formed in the same substrate, and the pinned layers (fixed layers) of all axes are magnetized in one direction. It is an object of the present invention to provide a triaxial magnetic sensor that can be simultaneously formed by heat treatment in a magnetic field consisting of
That is, an object of the present invention is to provide a magnetic sensor having a small number of manufacturing steps and simultaneously having a plurality of axes, and a manufacturing method thereof.

上記課題を解決するため、請求項1記載の発明は、基板上に磁気抵抗効果素子からなる一対の検知部と、一対の固定抵抗とがブリッジ接続された複数のセンサブリッジ回路が形成され、前記検知部の磁化の向きが互いに三次元方向に交差するように形成されている磁気センサにおいて、前記基板は、傾斜の法線方向が三次元的に交差する複数の傾斜面を有し、各センサブリッジ回路内の一対の検知部は、同一の傾斜面上にそれぞれ配されていることを特徴とする。   In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that a plurality of sensor bridge circuits in which a pair of detection units made of magnetoresistive elements and a pair of fixed resistors are bridge-connected on a substrate are formed, In the magnetic sensor formed so that the magnetization directions of the detectors cross each other in a three-dimensional direction, the substrate has a plurality of inclined surfaces in which the normal directions of the inclination cross three-dimensionally, and each sensor The pair of detection units in the bridge circuit are arranged on the same inclined surface.

請求項2記載の発明は、基板上に磁気抵抗効果素子からなる一対の検知部と、外部の磁界に影響されること無く一定の抵抗値を示す一対の固定抵抗とがブリッジ接続された第1から第3のセンサブリッジ回路が形成され、これら第1から第3のセンサブリッジ回路における検知部の磁化の向きが互いに三次元方向に交差するように形成されている磁気センサにおいて、前記基板は傾斜の法線方向が三次元的に交差する複数の傾斜面を有し、第1から第3のセンサブリッジ回路における検知部は傾斜の法線方向が三次元的に交差する傾斜面上にそれぞれ配し、同一センサブリッジ回路内の一対の検知部は傾斜面の法線方向が同一である傾斜面上に配したことを特徴とする。   According to a second aspect of the present invention, a pair of detection units made of magnetoresistive elements on a substrate and a pair of fixed resistors having a constant resistance value without being affected by an external magnetic field are bridge-connected. A third sensor bridge circuit is formed, and in the first to third sensor bridge circuits, the magnetization direction of the detection unit is formed so as to intersect each other in a three-dimensional direction, the substrate is inclined Each of the detectors in the first to third sensor bridge circuits is arranged on an inclined surface where the normal direction of the inclination intersects three-dimensionally. And a pair of detection part in the same sensor bridge circuit is arranged on the inclined surface where the normal line direction of the inclined surface is the same.

請求項3記載の発明は、基板上に磁気抵抗効果素子からなる一対の検知部と、一対の固定抵抗とがブリッジ接続された複数のセンサブリッジ回路が形成され、前記検知部の磁化の向きが互いに三次元方向に交差するように形成されている磁気センサにおいて、(100)単結晶シリコンウエハからなり、該基板表面と約55°の傾斜角度を成す(111)方向の結晶方位面を傾斜面とし斜面の法線方向が三次元的に交差する傾斜面を有し、各センサブリッジ回路内の一対の検知部は、同一の傾斜面上にそれぞれ配されていることを特徴とする。   According to a third aspect of the present invention, a plurality of sensor bridge circuits in which a pair of detection units made of magnetoresistive elements and a pair of fixed resistors are bridge-connected are formed on a substrate, and the magnetization direction of the detection units is In a magnetic sensor formed so as to intersect with each other in a three-dimensional direction, it is made of a (100) single crystal silicon wafer, and a (111) direction crystal orientation plane that forms an inclination angle of about 55 ° with the substrate surface is an inclined plane. And the normal direction of the slope has an inclined surface that intersects three-dimensionally, and the pair of detection units in each sensor bridge circuit are arranged on the same inclined surface.

請求項4記載の発明は、基板上に磁気抵抗効果素子からなる一対の検知部と外部の磁界に影響されること無く一定の抵抗値を示す一対の固定抵抗とがブリッジ接続された第1から第3のセンサブリッジ回路が形成され、これら第1から第3のセンサブリッジ回路における検知部の磁化の向きが互いに三次元方向に交差するように形成されている磁気センサにおいて、(100)単結晶シリコンウエハからなり、該基板表面と約55°の傾斜角度を成す(111)方向の結晶方位面を傾斜面とし斜面の法線方向が三次元的に交差する傾面を有し、第1から第3のセンサブリッジ回路における検知部は傾斜の法線方向が三次元的に交差する傾斜面上にそれぞれ配し、同一センサブリッジ回路内の一対の検知部は傾斜面の法線方向が同一である斜面上に配したことを特徴とする。   According to a fourth aspect of the present invention, a pair of detection units made of a magnetoresistive effect element and a pair of fixed resistors having a constant resistance value without being affected by an external magnetic field are bridge-connected on the substrate. In a magnetic sensor in which a third sensor bridge circuit is formed and formed so that the magnetization directions of the detectors in the first to third sensor bridge circuits intersect each other in a three-dimensional direction, (100) single crystal A silicon wafer having an inclined surface in which a crystal orientation plane in the (111) direction that forms an inclination angle of about 55 ° with the substrate surface is an inclined surface and the normal direction of the inclined surface intersects three-dimensionally; The detection units in the third sensor bridge circuit are arranged on inclined surfaces where the normal directions of the inclination intersect three-dimensionally, and the pair of detection units in the same sensor bridge circuit have the same normal direction of the inclined surfaces. A slope Characterized in that arranged on.

請求項5記載の発明は、請求項1から4のいずれか1項記載の発明において、前記固定抵抗は、前記検知部と同一膜種から構成される磁気抵抗効果素子からなり、電気的な絶縁が得られる絶縁部材を介して磁気シールド部材で覆われていることを特徴とする。   According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the fixed resistor is composed of a magnetoresistive effect element composed of the same film type as the detecting portion, and is electrically insulated. It is characterized by being covered with a magnetic shield member through an insulating member from which can be obtained.

請求項6記載の発明は、請求項1から5のいずれか1項記載の発明において、前記固定抵抗は前記基板へ形成した傾斜面上へ配置したことを特徴とする。   A sixth aspect of the invention is characterized in that, in the invention of any one of the first to fifth aspects, the fixed resistor is arranged on an inclined surface formed on the substrate.

請求項7記載の発明は、請求項1から6のいずれか1項記載の発明において、前記磁気抵抗効果素子は、トンネル磁気抵抗効果素子であることを特徴とする。   The invention described in claim 7 is the invention according to any one of claims 1 to 6, wherein the magnetoresistive effect element is a tunnel magnetoresistive effect element.

請求項8記載の発明は、基板を準備する工程と、前記基板に傾斜の法線方向が三次元的に交差する複数の傾斜面を形成する工程と、各センサブリッジ回路内の一対の検知部を同一の傾斜面上にそれぞれ配する工程と、前記基板全体を加熱しながら前記基板表面に対して垂直方向からの磁場をかけることで磁気抵抗効果素子からなる検知部のピンド層の着磁を行う工程とを備えたことを特徴とする。   The invention according to claim 8 includes a step of preparing a substrate, a step of forming a plurality of inclined surfaces in which the normal directions of the inclination intersect three-dimensionally on the substrate, and a pair of detection units in each sensor bridge circuit Are arranged on the same inclined surface, and the magnetization of the pinned layer of the detection unit made of a magnetoresistive effect element is performed by applying a magnetic field from the vertical direction to the substrate surface while heating the entire substrate. And performing the process.

請求項9記載の発明は、請求項8記載の発明において、前記固定抵抗を前記検知部と同一膜種から構成される磁気抵抗効果素子とし、電気的な絶縁が得られる絶縁部材を介して磁気シールド部材で覆う工程を備えたことを特徴とする。   According to a ninth aspect of the present invention, in the eighth aspect of the invention, the fixed resistor is a magnetoresistive effect element composed of the same film type as the detecting portion, and magnetically passes through an insulating member capable of obtaining electrical insulation. A step of covering with a shield member is provided.

請求項10記載の発明は、請求項8または9記載の発明において、前記磁気抵抗効果素子にトンネル磁気抵抗効果素子を用いることを特徴とする。   The invention described in claim 10 is characterized in that, in the invention described in claim 8 or 9, a tunnel magnetoresistive effect element is used as the magnetoresistive effect element.

本発明によれば、複数のセンサブリッジ回路における一対の検知部を傾斜の法線方向が三次元的に交差する傾斜斜面上にそれぞれ配し、同一センサブリッジ回路内の一対の検知部は傾斜斜面の法線方向が同一である斜面上に配しているので、一方向の磁界を付与しながらの磁場中熱処理を1回行うだけで、同一ブリッジ内検知部のピンド層は同一方向に着磁でき、かつ各座標系のピンド層の磁化方向を三次元的に交差する三つの磁化方向に着磁できるため、製造工程の低減ができ、製造歩留まりの向上に繋がる。また、同一基板上へ一体配置できるため小型且つ薄型にできる。小型にできることでセンサの取れ数も増え生産性向上に繋がる。   According to the present invention, a pair of detection units in a plurality of sensor bridge circuits are arranged on inclined slopes whose normal directions of inclination intersect three-dimensionally, and the pair of detection units in the same sensor bridge circuit are inclined slopes. The pinned layer of the detection unit in the same bridge is magnetized in the same direction by performing the heat treatment in the magnetic field only once while applying the magnetic field in one direction. In addition, since the magnetization directions of the pinned layers in each coordinate system can be magnetized in three magnetization directions that intersect three-dimensionally, the manufacturing process can be reduced, leading to an improvement in manufacturing yield. Further, since it can be integrally disposed on the same substrate, it can be made small and thin. By making it compact, the number of sensors that can be taken increases, leading to improved productivity.

本発明に係る磁気センサの一実施の形態は、基板上に磁気抵抗効果素子からなる一対の検知部と、一対の固定抵抗とがブリッジ接続された複数のセンサブリッジ回路が形成され、検知部の磁化の向きが互いに三次元方向に交差するように形成されている磁気センサにおいて、基板は、傾斜の法線方向が三次元的に交差する複数の傾斜面を有し、各センサブリッジ回路内の一対の検知部は、同一の傾斜面上にそれぞれ配されていることを特徴とする。   In one embodiment of the magnetic sensor according to the present invention, a plurality of sensor bridge circuits in which a pair of detection units made of magnetoresistive elements and a pair of fixed resistors are bridge-connected are formed on a substrate. In the magnetic sensor formed such that the magnetization directions intersect with each other in the three-dimensional direction, the substrate has a plurality of inclined surfaces in which the normal directions of the inclination intersect three-dimensionally, and each of the sensor bridge circuits The pair of detection units are respectively arranged on the same inclined surface.

上記構成によれば、基板は、傾斜の法線方向が三次元的に交差する複数の傾斜面を有し、各センサブリッジ回路内の一対の検知部は、同一の傾斜面上にそれぞれ配されていることにより、一方向の磁界を付与しながらの磁場中熱処理を1回行うだけで、同一ブリッジ内検知部のピンド層は同一方向に着磁でき、かつ各座標系のピンド層の磁化方向を三次元的に交差する三つの磁化方向に着磁できるため、製造工程の低減ができ、製造歩留まりの向上に繋がる。また、同一基板上へ一体配置できるため小型且つ薄型にできる。小型にできることでセンサの取れ数も増え生産性向上に繋がる。   According to the above configuration, the substrate has a plurality of inclined surfaces in which the normal directions of the inclination intersect three-dimensionally, and the pair of detection units in each sensor bridge circuit are arranged on the same inclined surface, respectively. Therefore, the pinned layer of the detection unit in the same bridge can be magnetized in the same direction with only one heat treatment in the magnetic field while applying a magnetic field in one direction, and the magnetization direction of the pinned layer in each coordinate system Can be magnetized in three magnetization directions intersecting three-dimensionally, the manufacturing process can be reduced and the manufacturing yield can be improved. Further, since it can be integrally disposed on the same substrate, it can be made small and thin. By making it compact, the number of sensors that can be taken increases, leading to improved productivity.

本発明に係る磁気センサの他の実施の形態は、基板上に磁気抵抗効果素子からなる一対の検知部と、外部の磁界に影響されること無く一定の抵抗値を示す一対の固定抵抗とがブリッジ接続された第1から第3のセンサブリッジ回路が形成され、これら第1から第3のセンサブリッジ回路における検知部の磁化の向きが互いに三次元方向に交差するように形成されている磁気センサにおいて、基板は傾斜の法線方向が三次元的に交差する複数の傾斜面を有し、第1から第3のセンサブリッジ回路における検知部は傾斜の法線方向が三次元的に交差する傾斜面上にそれぞれ配し、同一センサブリッジ回路内の一対の検知部は傾斜面の法線方向が同一である傾斜面上に配したことを特徴とする。   In another embodiment of the magnetic sensor according to the present invention, there is a pair of detection units made of magnetoresistive elements on a substrate and a pair of fixed resistors that exhibit a constant resistance value without being affected by an external magnetic field. Magnetic sensors are formed in which first to third sensor bridge circuits connected in a bridge are formed, and the magnetization directions of the detection units in the first to third sensor bridge circuits cross each other in a three-dimensional direction. The substrate has a plurality of inclined surfaces in which the normal direction of the inclination intersects three-dimensionally, and the detection unit in the first to third sensor bridge circuits is inclined so that the normal direction of the inclination intersects three-dimensionally. Each pair of detection units in the same sensor bridge circuit is arranged on the inclined surface having the same normal direction of the inclined surface.

上記構成によれば、基板は傾斜の法線方向が三次元的に交差する複数の傾斜面を有し、第1から第3のセンサブリッジ回路における検知部は傾斜の法線方向が三次元的に交差する傾斜面上にそれぞれ配し、同一センサブリッジ回路内の一対の検知部は傾斜面の法線方向が同一である傾斜面上に配したことにより、一方向の磁界を付与しながらの磁場中熱処理を1回行うだけで、同一ブリッジ内検知部のピンド層は同一方向に着磁でき、かつ各座標系のピンド層の磁化方向を三次元的に交差する三つの磁化方向に着磁できるため、製造工程の低減ができ、製造歩留まりの向上に繋がる。また、同一基板上へ一体配置できるため小型且つ薄型にできる。小型にできることでセンサの取れ数も増え生産性向上に繋がる。   According to the above configuration, the substrate has a plurality of inclined surfaces in which the normal direction of the inclination intersects three-dimensionally, and the detection unit in the first to third sensor bridge circuits has the three-dimensional normal direction of the inclination. Each pair of detectors in the same sensor bridge circuit is arranged on an inclined surface having the same normal direction of the inclined surface, thereby applying a magnetic field in one direction. The pinned layer in the same bridge detector can be magnetized in the same direction with only one heat treatment in a magnetic field, and magnetized in three magnetization directions that three-dimensionally intersect the magnetization directions of the pinned layers in each coordinate system. Therefore, the manufacturing process can be reduced and the manufacturing yield can be improved. Further, since it can be integrally disposed on the same substrate, it can be made small and thin. By making it compact, the number of sensors that can be taken increases, leading to improved productivity.

本発明に係る磁気センサの他の実施の形態は、基板上に磁気抵抗効果素子からなる一対検知部と、一対の固定抵抗とがブリッジ接続された複数のセンサブリッジ回路が形成され、知部の磁化の向きが互いに三次元方向に交差するように形成されている磁気センサにおいて、(100)単結晶シリコンウエハからなり、基板表面と約55°の傾斜角度を成す(111)方向の結晶方位面を傾斜面とし斜面の法線方向が三次元的に交差する傾斜面を有し、各センサブリッジ回路内の一対の検知部は、同一の傾斜面上にそれぞれ配されていることを特徴とする。   In another embodiment of the magnetic sensor according to the present invention, a plurality of sensor bridge circuits in which a pair of detection units composed of magnetoresistive elements and a pair of fixed resistors are bridge-connected on a substrate are formed. In a magnetic sensor formed such that the directions of magnetization intersect each other in a three-dimensional direction, the crystal orientation plane in the (111) direction is made of a (100) single crystal silicon wafer and forms an inclination angle of about 55 ° with the substrate surface. And the normal direction of the slope intersects three-dimensionally, and the pair of detection units in each sensor bridge circuit are respectively arranged on the same slope. .

上記構成によれば、基板が(100)単結晶シリコンウエハからなり、基板表面と約55°の傾斜角度を成す(111)方向の結晶方位面からなる傾斜斜面を有し、第1から第3のセンサブリッジ回路における一対の検知部を傾斜の法線方向が三次元的に交差する傾斜斜面上にそれぞれ配し、同一センサブリッジ回路内の一対の検知部は傾斜斜面の法線方向が同一である斜面上に配しているので、一方向の磁界を付与しながらの磁場中熱処理を1回行うだけで、同一ブリッジ内検知部のピンド層は同一方向に着磁でき、かつ各座標系のピンド層の磁化方向を三次元的に交差する三つの磁化方向に着磁できるため、製造工程の低減ができ、製造歩留まりの向上に繋がる。また、同一基板上へ一体配置できるため小型且つ薄型にできる。小型にできることでセンサの取れ数も増え生産性向上に繋がる。さらには検知部を配置する斜面は結晶面で規定されるため各軸間での検知部位置精度が高くなり、3軸間での位置関係が結晶面位置関係で一意的に決まるため、ばらつきの少ない安定した製造ができる。   According to the above configuration, the substrate is made of a (100) single crystal silicon wafer, and has an inclined slope formed by a crystal orientation plane in the (111) direction that forms an inclination angle of about 55 ° with the substrate surface. A pair of detectors in the sensor bridge circuit are arranged on inclined slopes where the normal direction of the inclination intersects three-dimensionally, and the pair of detection parts in the same sensor bridge circuit have the same normal direction of the inclined slope. Since it is arranged on a certain slope, the pinned layer of the detection unit in the same bridge can be magnetized in the same direction with only one heat treatment in the magnetic field while applying a magnetic field in one direction, and each coordinate system Since the magnetization direction of the pinned layer can be magnetized in three magnetization directions that cross three-dimensionally, the manufacturing process can be reduced, leading to an improvement in manufacturing yield. Further, since it can be integrally disposed on the same substrate, it can be made small and thin. By making it compact, the number of sensors that can be taken increases, leading to improved productivity. Furthermore, since the slope on which the detector is arranged is defined by the crystal plane, the position accuracy of the detector between each axis is high, and the positional relationship between the three axes is uniquely determined by the crystal plane positional relationship, so there is Less stable production is possible.

本発明に係る磁気センサの他の実施の形態は、基板上に磁気抵抗効果素子からなる一対の検知部と外部の磁界に影響されること無く一定の抵抗値を示す一対の固定抵抗とがブリッジ接続された第1から第3のセンサブリッジ回路が形成され、これら第1から第3のセンサブリッジ回路における検知部の磁化の向きが互いに三次元方向に交差するように形成されている磁気センサにおいて、(100)単結晶シリコンウエハからなり、基板表面と約55°の傾斜角度を成す(111)方向の結晶方位面を傾斜面とし斜面の法線方向が三次元的に交差する傾斜面を有し、第1から第3のセンサブリッジ回路における検知部は傾斜の法線方向が三次元的に交差する傾斜面上にそれぞれ配し、同一センサブリッジ回路内の一対の検知部は傾斜面の法線方向が同一である斜面上に配したことを特徴とする。   In another embodiment of the magnetic sensor according to the present invention, a pair of detection units made of magnetoresistive elements on a substrate and a pair of fixed resistors showing a constant resistance value without being affected by an external magnetic field are bridged. In the magnetic sensor in which the connected first to third sensor bridge circuits are formed, and the magnetization directions of the detection units in the first to third sensor bridge circuits are crossed in a three-dimensional direction. , (100) made of a single crystal silicon wafer, and has an inclined surface in which the (111) direction crystal orientation plane forming an inclination angle of about 55 ° with the substrate surface is inclined and the normal direction of the inclined surface intersects three-dimensionally. The detection units in the first to third sensor bridge circuits are respectively arranged on the inclined surfaces in which the normal directions of the inclinations intersect three-dimensionally, and the pair of detection units in the same sensor bridge circuit are the methods of the inclined surfaces. line Direction, characterized in that the arranged on the slopes are identical.

上記構成によれば、基板が(100)単結晶シリコンウエハからなり、基板表面と約55°の傾斜角度を成す(111)方向の結晶方位面からなる傾斜斜面を有し、第1から第3のセンサブリッジ回路における一対の検知部を傾斜の法線方向が三次元的に交差する傾斜斜面上にそれぞれ配し、同一センサブリッジ回路内の一対の検知部は傾斜斜面の法線方向が同一である斜面上に配しているので、一方向の磁界を付与しながらの磁場中熱処理を1回行うだけで、同一ブリッジ内検知部のピンド層は同一方向に着磁でき、かつ各座標系のピンド層の磁化方向を三次元的に交差する三つの磁化方向に着磁できるため、製造工程低減ができ、製造歩留まりの向上に繋がる。また、同一基板上へ一体配置できるため小型且つ薄型にできる。小型にできることでセンサの取れ数も増え生産性向上に繋がる。さらには検知部を配置する斜面は結晶面で規定されるため各軸間での検知部位置精度が高くなり、3軸間での位置関係が結晶面位置関係で一意的に決まるため、ばらつきの少ない安定した製造ができる。   According to the above configuration, the substrate is made of a (100) single crystal silicon wafer, and has an inclined slope formed by a crystal orientation plane in the (111) direction that forms an inclination angle of about 55 ° with the substrate surface. A pair of detectors in the sensor bridge circuit are arranged on inclined slopes where the normal direction of the inclination intersects three-dimensionally, and the pair of detection parts in the same sensor bridge circuit have the same normal direction of the inclined slope. Since it is arranged on a certain slope, the pinned layer of the detection unit in the same bridge can be magnetized in the same direction with only one heat treatment in the magnetic field while applying a magnetic field in one direction, and each coordinate system Since the magnetization direction of the pinned layer can be magnetized in three magnetization directions that cross three-dimensionally, the manufacturing process can be reduced and the manufacturing yield can be improved. Further, since it can be integrally disposed on the same substrate, it can be made small and thin. By making it compact, the number of sensors that can be taken increases, leading to improved productivity. Furthermore, since the slope on which the detector is arranged is defined by the crystal plane, the position accuracy of the detector between each axis is high, and the positional relationship between the three axes is uniquely determined by the crystal plane positional relationship, so there is Less stable production is possible.

本発明に係る磁気センサの他の実施の形態は、上記構成に加え、固定抵抗は、検知部と同一膜種から構成される磁気抵抗効果素子からなり、電気的な絶縁が得られる絶縁部材を介して磁気シールド部材で覆われていることを特徴とする。   In another embodiment of the magnetic sensor according to the present invention, in addition to the above-described configuration, the fixed resistor is composed of a magnetoresistive effect element composed of the same film type as that of the detection unit, and an insulating member capable of obtaining electrical insulation is provided. It is covered with a magnetic shield member.

上記構成によれば、固定抵抗は電気的な絶縁が取れる絶縁部材を介して磁気シールド部材で覆われているので、磁気抵抗効果素子等の外部磁界に対して感度をもつ素子を提供した場合でも外部磁界に影響されること無く固定抵抗として機能するとともに、検知部と同一膜種から構成される磁気抵抗効果素子なので、素子の温度特性を同一にでき、磁気センサ特性が安定する。   According to the above configuration, since the fixed resistor is covered with the magnetic shield member via the insulating member that can be electrically insulated, even when an element having sensitivity to an external magnetic field such as a magnetoresistive effect element is provided. Since the magnetoresistive element is made of the same film type as that of the detection unit and functions as a fixed resistor without being affected by an external magnetic field, the temperature characteristics of the element can be made the same, and the magnetic sensor characteristics are stabilized.

本発明に係る磁気センサの他の実施の形態は、上記構成に加え、固定抵抗は前記基板に形成した傾斜面上へ配置したことを特徴とする。   Another embodiment of the magnetic sensor according to the present invention is characterized in that, in addition to the above configuration, the fixed resistor is disposed on an inclined surface formed on the substrate.

上記構成によれば、磁気センサの占有面積を小さくすることができるので、シリコンウエハから切り出せるチップ数が増えることになり、コスト低減に繋がる。   According to the above configuration, since the area occupied by the magnetic sensor can be reduced, the number of chips that can be cut out from the silicon wafer is increased, leading to cost reduction.

本発明に係る磁気センサの他の実施の形態は、上記構成に加え、磁気抵抗効果素子は、トンネル磁気抵抗効果素子であることを特徴とする。   Another embodiment of the magnetic sensor according to the present invention is characterized in that, in addition to the above configuration, the magnetoresistive element is a tunnel magnetoresistive element.

上記構成によれば、磁気抵抗効果素子は、トンネル磁気抵抗効果素子であることにより、少ない消費電力で磁気検知が可能となるため地球環境負荷が低減できる。   According to the above configuration, since the magnetoresistive effect element is a tunnel magnetoresistive effect element, it is possible to detect the magnetism with less power consumption, and thus the global environmental load can be reduced.

本発明の磁気センサの製造方法に係る一実施の形態は、基板を準備する工程と、基板に傾斜の法線方向が三次元的に交差する複数の傾斜面を形成する工程と、各センサブリッジ回路内の一対の検知部を同一の傾斜面上にそれぞれ配する工程と、基板全体を加熱しながら基板表面に対して垂直方向からの磁場をかけることで磁気抵抗効果素子からなる検知部のピンド層の着磁を行う工程とを備えたことを特徴とする。   One embodiment of the method for manufacturing a magnetic sensor according to the present invention includes a step of preparing a substrate, a step of forming a plurality of inclined surfaces in which the normal directions of the inclination intersect three-dimensionally on the substrate, and each sensor bridge A step of arranging a pair of detection units in the circuit on the same inclined surface, and a pin of the detection unit composed of a magnetoresistive effect element by applying a magnetic field from the vertical direction to the substrate surface while heating the entire substrate And a step of magnetizing the layer.

上記構成によれば、基板全体を加熱しながら基板表面に対して垂直方向からの磁場をかけることで磁気抵抗効果素子からなる検知部のピンド層の着磁(磁化方向を固定する)を行うので、一度の着磁工程で検知部の着磁ができる。   According to the above configuration, the magnetization of the pinned layer (fixing the magnetization direction) of the detection unit composed of the magnetoresistive effect element is performed by applying a magnetic field from the vertical direction to the substrate surface while heating the entire substrate. The detector can be magnetized in a single magnetizing process.

本発明の磁気センサの製造方法に係る他の実施の形態は、上記構成に加え、固定抵抗を検知部と同一膜種から構成される磁気抵抗効果素子とし、電気的な絶縁が得られる絶縁部材を介して磁気シールド部材で覆う工程を備えたことを特徴とする。   In addition to the above-described configuration, another embodiment of the magnetic sensor manufacturing method of the present invention uses a magnetoresistive effect element composed of the same film type as that of the detection unit as a fixed resistor, and provides an insulating member that provides electrical insulation. A step of covering with a magnetic shield member is provided.

上記構成によれば、固定抵抗を検知部と同一膜種から構成される磁気抵抗効果素子とし、電気的な絶縁が得られる絶縁部材を介して磁気シールド部材で覆う工程を備えたことにより、磁気抵抗効果素子等の外部磁界に対して感度をもつ素子を提供した場合でも外部磁界に影響されること無く固定抵抗として機能するとともに、検知部と同一膜種から構成される磁気抵抗効果素子なので、素子の温度特性を同一にでき、磁気センサ特性が安定する。   According to the above configuration, the magnetoresistive effect element including the same film type as that of the detection unit is used as the fixed resistance, and the magnetic resistance member is provided with the step of covering with the magnetic shield member via the insulating member capable of obtaining electrical insulation. Even when an element having sensitivity to an external magnetic field such as a resistance effect element is provided, it functions as a fixed resistance without being affected by the external magnetic field, and is a magnetoresistive effect element composed of the same film type as the detection unit. The temperature characteristics of the elements can be made the same, and the magnetic sensor characteristics are stabilized.

本発明の磁気センサの製造方法に係る他の実施の形態は、上記構成に加え、磁気抵抗効果素子にトンネル磁気抵抗効果素子を用いることを特徴とする。   Another embodiment of the method for manufacturing a magnetic sensor of the present invention is characterized in that a tunnel magnetoresistive element is used as the magnetoresistive element in addition to the above configuration.

上記構成によれば、少ない消費電力で磁気検知が可能となるため地球環境負荷が低減できる。   According to the above configuration, magnetic detection can be performed with low power consumption, so that the global environmental load can be reduced.

なお、上述した実施の形態は、本発明の好適な実施の形態の一例を示すものであり、本発明はそれに限定されることなく、その要旨を逸脱しない範囲内において、種々変形実施が可能である。   The above-described embodiment shows an example of a preferred embodiment of the present invention, and the present invention is not limited thereto, and various modifications can be made without departing from the scope of the invention. is there.

以下、本発明の実施例について添付図面を参照して説明する。
<検知部を一定の角度をもつ同一傾斜面上に配置した例>
以下に、本実施例の磁気抵抗効果素子を用いた磁気センサについて図面を用いて説明する。なお、本発明はこれらの実施例に述べるものに限定されることなく、その目的を逸脱しない範囲において適宜変更して実施することが可能である。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
<Example of detectors arranged on the same inclined surface with a certain angle>
Hereinafter, a magnetic sensor using the magnetoresistive effect element of this embodiment will be described with reference to the drawings. In addition, this invention is not limited to what is described in these Examples, It can change suitably in the range which does not deviate from the objective.

図1は、本実施例の磁気抵抗効果素子がブリッジ回路配線されて配置した磁気センサの構成の一例で、概略平面を模式的に示す図である。また、図2は図1のII−II線断面で斜面上に磁気抵抗効果素子を配置した概略断面図である。図3は図1の磁気抵抗効果素子構造であり、図3(a)はその平面図、図3(b)は図1のIIIb−IIIb線断面図である。図4はブリッジ結線を示すブロック図である。   FIG. 1 is an example of a configuration of a magnetic sensor in which the magnetoresistive effect element of the present embodiment is arranged by bridge circuit wiring, and is a diagram schematically showing a schematic plane. FIG. 2 is a schematic cross-sectional view in which a magnetoresistive effect element is arranged on the slope in the cross section taken along line II-II in FIG. 3 is the magnetoresistive effect element structure of FIG. 1, FIG. 3 (a) is the top view, FIG.3 (b) is the IIIb-IIIb sectional view taken on the line of FIG. FIG. 4 is a block diagram showing the bridge connection.

本実施例の磁気センサ1は、二つの検知部2A,2Bと二つの固定抵抗部3A,3Bを備えている。なお、検知部2A,2B及び固定抵抗部3A,3BはTMR素子であり、これらの各素子の膜構成は同等である。固定抵抗部3A,3Bには磁気シールド膜を形成し外部磁界に対する感度を持たないようにしている。磁気シールド膜の構成については第3の実施例で具体的に説明するとして、ここでは説明を省略する。   The magnetic sensor 1 of the present embodiment includes two detection units 2A and 2B and two fixed resistance units 3A and 3B. The detection units 2A and 2B and the fixed resistance units 3A and 3B are TMR elements, and the film configurations of these elements are the same. A magnetic shield film is formed on the fixed resistance portions 3A and 3B so as not to have sensitivity to an external magnetic field. The configuration of the magnetic shield film will be specifically described in the third embodiment, and the description thereof is omitted here.

検知部2A,2B及び固定抵抗部3A,3Bは基板4に設けられた斜面上に形成されており、磁化の向きは斜面内になるように形成されているとともに、磁化の感度方向は磁気抵抗効果素子(検知部2A,2B及び固定抵抗部3A,3B)の長手方向対して交差する方向であり、斜面の深さ方向になるように磁化の方向を決めている。本実施例の磁気センサ1の基板4は(100)シリコンウエハを使用した。(100)シリコンウエハはシリコン窒化膜をエッチングマスクにし、KOH溶液(TMAH溶液でも適用可)にて100μmの深さで二つの溝5Aと溝5Bとが形成されている。溝5A,5Bの形状はシリコンウエハの表面に対して約55°の角度を有する4つの斜面から構成されている。   The detection units 2A and 2B and the fixed resistance units 3A and 3B are formed on an inclined surface provided on the substrate 4, and the direction of magnetization is formed in the inclined surface, and the direction of sensitivity of magnetization is magnetoresistive. The direction of magnetization is determined so as to be in the direction intersecting the longitudinal direction of the effect elements (detecting portions 2A and 2B and fixed resistance portions 3A and 3B) and in the depth direction of the slope. The substrate 4 of the magnetic sensor 1 of this example was a (100) silicon wafer. The (100) silicon wafer has a silicon nitride film as an etching mask, and two grooves 5A and 5B are formed at a depth of 100 μm with a KOH solution (also applicable to a TMAH solution). The shape of the grooves 5A and 5B is composed of four inclined surfaces having an angle of about 55 ° with respect to the surface of the silicon wafer.

本実施例では溝底面に平坦部(基板4の表面と略平行な面)を有しているが、平坦部を有しない形状でも発明上は何ら影響が無い。そのため、図示しないが溝底面に平坦部を有しないV溝構造を有する基板への適用も可能である。溝底面に平坦部を有しないV溝構造の場合は溝底面に平坦部を有しない分磁気センサの占有エリアが狭くなりより小型化が狙える。   In this embodiment, the groove bottom surface has a flat portion (a surface substantially parallel to the surface of the substrate 4), but the shape having no flat portion has no influence on the invention. Therefore, although not shown, it can be applied to a substrate having a V-groove structure that does not have a flat portion on the bottom surface of the groove. In the case of a V-groove structure that does not have a flat portion on the groove bottom surface, the area occupied by the magnetic sensor is narrowed by not having a flat portion on the groove bottom surface, so that further downsizing can be aimed at.

また、本実施例の図1のように磁気抵抗効果素子は斜面に対して幅方向に長く形成しており、磁気抵抗効果素子をお互い向かい合う傾斜面にのみ形成するようにすることで、よりV溝形状に近い形状とすることができるため磁気センサの小型に有利である。検知部2A,2B及び固定抵抗部3A,3Bはそれぞれ、図4のブリッジ結線ブロック図を反映した配線6で結線されそれぞれ入出力端子にあたるボンディングパッド7A,7B,7C,7Dに接続されている。二つの溝5Aと溝5Bとの間は配線6が形成できるようなスペースからなる。   Further, as shown in FIG. 1 of the present embodiment, the magnetoresistive effect element is formed long in the width direction with respect to the inclined surface, and by forming the magnetoresistive effect element only on the inclined surfaces facing each other, V Since the shape can be made close to the groove shape, it is advantageous for miniaturization of the magnetic sensor. The detection units 2A and 2B and the fixed resistance units 3A and 3B are connected to the bonding pads 7A, 7B, 7C, and 7D that are connected by the wiring 6 reflecting the bridge connection block diagram of FIG. A space is formed between the two grooves 5A and 5B so that the wiring 6 can be formed.

また、本実施例では基板4に二つの溝5A,5Bを掘り込む形態をとったが、この溝が逆に突起となるようエッチングマスクを反転しKOH溶液(TMAH溶液でも適用可)にて加工した基板4としても適用できる。   In this embodiment, two grooves 5A and 5B are formed in the substrate 4. However, the etching mask is reversed so that these grooves become protrusions and processed with a KOH solution (also applicable to a TMAH solution). The substrate 4 can also be applied.

但し、配線6とボンディングパッド7A〜7Dがエッチング加工された平面上に配置されるためエッチング加工された平面の平坦性が要求される。さらに、本実施例の磁気抵抗効果素子に用いられる基板には、(100)シリコンウエハの他に(110)シリコンウエハ、シリコン以外の半導体、ガラス材、セラミック材、非磁性金属などが適用可能である。本実施例では4角錐の頂部を切り取った逆台形形状を適用しているが、4角錐のほかに3角錐以上の多角錐、円錐でももちろんよい。   However, since the wiring 6 and the bonding pads 7A to 7D are arranged on the etched plane, flatness of the etched plane is required. In addition to the (100) silicon wafer, a (110) silicon wafer, a semiconductor other than silicon, a glass material, a ceramic material, a nonmagnetic metal, etc. can be applied to the substrate used in the magnetoresistive effect element of this embodiment. is there. In the present embodiment, an inverted trapezoidal shape in which the top of a four-sided pyramid is cut off is applied.

これらの基板の中でも本実施例で採用した(100)シリコンウエハはKOH溶液等を用いた異方性ウエットエッチングで基板表面に対して約55°の傾斜角度で(111)方向の結晶面が安定して作れるため、検知部2A,2Bの位置関係が一定となり、再現性の高い製造と高い製造歩留まりが得られることから本発明の基板構成としては最適である。   Among these substrates, the (100) silicon wafer employed in this example is stable in the (111) crystal plane at an inclination angle of about 55 ° with respect to the substrate surface by anisotropic wet etching using a KOH solution or the like. Therefore, the positional relationship between the detectors 2A and 2B is constant, and a highly reproducible manufacturing and a high manufacturing yield are obtained, so that the substrate configuration of the present invention is optimal.

次に、図4のブリッジ結線ブロック図を参照してブリッジ回路について説明する。
本実施例のブリッジ回路を構成する抵抗は同一傾斜面に形成した検知部2A,2Bと検知部2とは異なる斜面で平行な二つの面にそれぞれ一つずつ形成した固定抵抗部3A,3Bとからなる。
図4のR1は検知部2B、R2は固定抵抗部3A、R3は固定抵抗部3B、R4は検知部2Aに相当する。このように本実施例の磁気センサはブリッジ回路を構成してなるので、電源電圧の変動それに検出器の入力インピーダンスや非直線性などに依存しない零位法による高精度の磁界検出が可能である。
Next, the bridge circuit will be described with reference to the bridge connection block diagram of FIG.
The resistors constituting the bridge circuit of the present embodiment are the detection units 2A and 2B formed on the same inclined surface and the fixed resistance units 3A and 3B formed respectively on two parallel surfaces with different slopes from the detection unit 2. Consists of.
In FIG. 4, R1 corresponds to the detector 2B, R2 corresponds to the fixed resistor 3A, R3 corresponds to the fixed resistor 3B, and R4 corresponds to the detector 2A. As described above, the magnetic sensor of this embodiment is configured as a bridge circuit, so that it is possible to detect a magnetic field with high accuracy by the null method that does not depend on fluctuations in the power supply voltage, input impedance or non-linearity of the detector. .

次に、図3を参考に検知部2Aを例に挙げて磁気抵抗効果素子であるTMR素子について説明する。
検知部2Aは、フリー層21、ピンド層22、絶縁層23、ピンド層側電極24、及びキャップ層25の各層からなる。また、基板との絶縁を保つ絶縁性薄膜26、パッシベーション膜27で表裏覆われている。パッシベーション膜27にはピンド層側電極24及びキャップ層25のそれぞれに配線電極を接合させるためのピンド層側コンタクトホール31とフリー層側コンタクトホール32が開口しており、それらコンタクトホールを通して電気配線される(電気配線用の配線は図中省略)。フリー層21は、外部磁界の向きに応じて磁化の方向が変化する層であり、一方、ピンド層22は、外部磁化の向きに関わらず磁化の方向が固定される層である。また、絶縁層23は、フリー層21およびピンド層22に挟持されトンネル層としての役割を果たす。
Next, a TMR element that is a magnetoresistive effect element will be described with reference to FIG.
The detection unit 2 </ b> A includes a free layer 21, a pinned layer 22, an insulating layer 23, a pinned layer side electrode 24, and a cap layer 25. In addition, the front and back surfaces are covered with an insulating thin film 26 and a passivation film 27 that maintain insulation from the substrate. In the passivation film 27, a pinned layer side contact hole 31 and a free layer side contact hole 32 for bonding wiring electrodes to the pinned layer side electrode 24 and the cap layer 25 are opened, and electric wiring is performed through these contact holes. (The wiring for electrical wiring is omitted in the figure). The free layer 21 is a layer in which the direction of magnetization changes according to the direction of the external magnetic field, while the pinned layer 22 is a layer in which the direction of magnetization is fixed regardless of the direction of external magnetization. The insulating layer 23 is sandwiched between the free layer 21 and the pinned layer 22 and serves as a tunnel layer.

TMR素子としては、基板4上に、例えばFe−Niのような反強磁性体22−1とCo−Fe22−2などの磁性層とで構成されたピンド層22が積層される。そして、このピンド層22の上部に絶縁層23を積層して、さらにその上層にフリー層21を積層する。絶縁層23としては、SiO2などの絶縁材料や、Al23, MgOのような非磁性金属酸化物などが用いられる。また、フリー層21としては、例えばCo−FeやFe−Niなどを用いることができる。
また、磁気抵抗効果素子はTMR素子に限定されず、GMR素子を用いることも可能である。
As the TMR element, a pinned layer 22 composed of an antiferromagnetic material 22-1 such as Fe—Ni and a magnetic layer such as Co—Fe 22-2 is stacked on the substrate 4. Then, an insulating layer 23 is laminated on the pinned layer 22 and a free layer 21 is further laminated thereon. As the insulating layer 23, an insulating material such as SiO 2 or a nonmagnetic metal oxide such as Al 2 O 3 or MgO is used. As the free layer 21, for example, Co—Fe, Fe—Ni, or the like can be used.
In addition, the magnetoresistive effect element is not limited to the TMR element, and a GMR element can also be used.

図5は、1軸の磁気センサを3組、組み合わせて配置した3軸磁気センサ構成の一例で、概略平面を模式的に示す図である。本実施例の3軸磁気センサ1Aは、検知部2(2A,2B,2C,2D,2E,2F)と固定抵抗部3(3A,3B,3C,3D,3E,3F)とをそれぞれ6個ずつと合計12個のボンディングパッド7さらには各ボンディングパッド7と各検知部2及び各固定抵抗部3を電気的に接続する配線6とを備えている。   FIG. 5 is a diagram schematically showing a schematic plane in an example of a three-axis magnetic sensor configuration in which three sets of one-axis magnetic sensors are arranged in combination. The three-axis magnetic sensor 1A of the present embodiment includes six detection units 2 (2A, 2B, 2C, 2D, 2E, 2F) and six fixed resistance units 3 (3A, 3B, 3C, 3D, 3E, 3F). A total of twelve bonding pads 7 are provided, and each bonding pad 7 and wiring 6 that electrically connects each detection unit 2 and each fixed resistance unit 3 are provided.

なお、検知部2及び固定抵抗部3はTMR素子であり、これらの各素子の膜構成は同等である。検知部2及び固定抵抗部3は基板4に設けられた斜面上に形成されていて、磁化の向きは斜面内になるように形成されているとともに、磁化の感度方向は磁気抵抗効果素子(検知部2及び固定抵抗部3)の長手方向対して交差する方向であり、斜面の深さ方向になるように磁化の方向を決めている。   The detection unit 2 and the fixed resistance unit 3 are TMR elements, and the film configurations of these elements are the same. The detection unit 2 and the fixed resistance unit 3 are formed on a slope provided on the substrate 4 and are formed so that the direction of magnetization is within the slope, and the direction of sensitivity of magnetization is a magnetoresistive element (detection). The direction of magnetization is determined so as to cross the longitudinal direction of the portion 2 and the fixed resistance portion 3) and to be the depth direction of the slope.

本実施例の磁気センサ1Aの基板4は(100)シリコンウエハを使用した。(100)シリコンウエハはシリコン窒化膜をエッチングマスクにし、KOH溶液(TMAH溶液でも適用可)にて100μmの深さで5つの溝5(5A,5B,5C,5D,5E)が形成されている。溝5の形状はシリコンウエハの表面に対して約55°の角度を有する4つの斜面から構成されている。   The substrate 4 of the magnetic sensor 1A of this example was a (100) silicon wafer. The (100) silicon wafer has a silicon nitride film as an etching mask, and five grooves 5 (5A, 5B, 5C, 5D, 5E) are formed at a depth of 100 μm with a KOH solution (also applicable to a TMAH solution). . The shape of the groove 5 is composed of four inclined surfaces having an angle of about 55 ° with respect to the surface of the silicon wafer.

本実施例では溝底面に平坦部(基板104の表面と略平行な面)を有しているが、平坦部を有しない形状でも本発明上は何ら影響が無い。そのため、図示しないが溝底面に平坦部を有しないV溝構造を有する基板への適用も可能である。溝底面に平坦部を有しないV溝構造の場合は溝底面に平坦部を有しない分、磁気センサの占有エリアが狭くなりより小型化が狙える。
また、本実施例の図1のように磁気抵抗効果素子は斜面に対して幅方向に長く形成しており、磁気抵抗効果素子をお互い向かい合う傾斜面にのみ形成するようにすることで、よりV溝形状に近い形状とすることができるため磁気センサの小型に有利である。
In this embodiment, the groove bottom surface has a flat portion (a surface substantially parallel to the surface of the substrate 104), but a shape having no flat portion has no effect on the present invention. Therefore, although not shown, it can be applied to a substrate having a V-groove structure that does not have a flat portion on the bottom surface of the groove. In the case of a V-groove structure that does not have a flat portion on the bottom surface of the groove, the area occupied by the magnetic sensor is narrowed and the size can be further reduced because the flat portion is not formed on the bottom surface of the groove.
Further, as shown in FIG. 1 of the present embodiment, the magnetoresistive effect element is formed long in the width direction with respect to the inclined surface, and by forming the magnetoresistive effect element only on the inclined surfaces facing each other, V Since the shape can be made close to the groove shape, it is advantageous for miniaturization of the magnetic sensor.

検知部2A,2Bは一つの軸方向の磁気センサとして働き、固定抵抗部3A,3Bと組み合わせたセンサブリッジ回路を回路1とする。
検知部2C,2Dは一つの軸方向の磁気センサとして働き、固定抵抗部3C,3Dと組み合わせたセンサブリッジ回路を回路2とする。検知部2E,2Fは一つの軸方向の磁気センサとして働き、固定抵抗部3E,3Fと組み合わせたセンサブリッジ回路を回路3とする。検知部2におけるピンド層21の磁化方向は回路1、回路2、回路3の磁気センサでそれぞれ異なるように配置している。軸Yに対して軸Xと軸Zのピンド層21の磁化方向は紙面上で直行する位置関係を持ち、軸Xと軸Yのピンド層21の磁化方向は紙面上で平行逆向きになる位置関係を持っている。つまり、立体的には基板面から約55°の角度で3方向に放射方向を示す位置関係を持っている。
The detection units 2A and 2B function as a magnetic sensor in one axial direction, and a sensor bridge circuit combined with the fixed resistance units 3A and 3B is a circuit 1.
The detection units 2C and 2D function as a magnetic sensor in one axial direction, and a sensor bridge circuit combined with the fixed resistance units 3C and 3D is a circuit 2. The detection units 2E and 2F function as a magnetic sensor in one axial direction, and a circuit 3 is a sensor bridge circuit combined with the fixed resistance units 3E and 3F. The magnetization direction of the pinned layer 21 in the detection unit 2 is arranged differently in the magnetic sensors of the circuit 1, the circuit 2, and the circuit 3. The magnetization direction of the pinned layer 21 of the axis X and the axis Z is perpendicular to the axis Y on the paper surface, and the magnetization direction of the pinned layer 21 of the axis X and the axis Y is parallel and opposite on the paper surface. Have a relationship. That is, three-dimensionally, there is a positional relationship indicating the radiation directions in three directions at an angle of about 55 ° from the substrate surface.

<検知部を一定の角度をもつ同一傾斜面上に配置した他の例>
図14は、本実施例の磁気抵抗効果素子がブリッジ回路配線されて配置した磁気センサの構成の一例で、概略平面を模式的に示す図である。また、図15は、図14のXV−XV線断面で斜面上へ磁気抵抗効果素子を配置した概略断面図である。
本実施例の磁気センサ301は第1の実施例の固定抵抗部303を基板304の上ボンディングパッド307形成面と同一の面へ形成した構成で、二つの検知部302A,302Bと二つの固定抵抗部303A,303Bとを備えている。
<Another example in which detectors are arranged on the same inclined surface with a certain angle>
FIG. 14 is a diagram schematically showing a schematic plane in an example of the configuration of the magnetic sensor in which the magnetoresistive effect element of the present embodiment is arranged by bridge circuit wiring. FIG. 15 is a schematic cross-sectional view in which magnetoresistive elements are arranged on the slope in the cross section taken along the line XV-XV in FIG.
The magnetic sensor 301 of the present embodiment has a configuration in which the fixed resistor portion 303 of the first embodiment is formed on the same surface as the bonding pad 307 formation surface of the substrate 304, and has two detectors 302A and 302B and two fixed resistors. Parts 303A and 303B.

なお、検知部302A,302B及び固定抵抗部303A,303BはTMR素子であり、これらの各素子の膜構成は同等である。固定抵抗部303には磁気シールド膜を形成し外部磁界に対する感度を持たないようにしている。
磁気シールド膜の構成については第5の実施例で具体的に説明するとして、ここでは説明を省略する。
検知部302A,302Bは基板304に設けられた斜面上に形成されており、磁化の向きは斜面内になるように形成されているとともに、磁化の感度方向は磁気抵抗効果素子(検知部302A,302B)の長手方向対して交差する方向であり、斜面の深さ方向になるように磁化の方向を決めている。
The detection units 302A and 302B and the fixed resistance units 303A and 303B are TMR elements, and the film configurations of these elements are the same. A magnetic shield film is formed on the fixed resistance portion 303 so as not to have sensitivity to an external magnetic field.
The configuration of the magnetic shield film will be specifically described in the fifth embodiment, and the description thereof is omitted here.
The detection units 302A and 302B are formed on a slope provided on the substrate 304, and are formed such that the direction of magnetization is within the slope, and the direction of sensitivity of magnetization is a magnetoresistive effect element (detection unit 302A, 302). 302B) is a direction intersecting with the longitudinal direction, and the magnetization direction is determined so as to be the depth direction of the slope.

本実施例の磁気センサ301の基板304は(100)シリコンウエハを使用した。(100)シリコンウエハはシリコン窒化膜をエッチングマスクにし、KOH溶液(TMAH溶液でも適用可)にて200μmの深さで溝305Aが形成されている。溝305Aの形はシリコンウエハの表面に対して約55°の角度を有する4つの斜面から構成されている。
本実施例では溝305底面に平坦部(基板304の表面と略平行な面)をもつ構造にしているが、平坦部(基板304の表面と略平行な面)をもたないV溝構造を有する溝305も本発明上は何ら影響が無い。検知部302A,302B及び固定抵抗部303A,303Bはそれぞれ、図4のブリッジ結線ブロック図を反映した配線306で結線されそれぞれ出力端子にあたるボンディングパッド307A,307B,307C,307Dに繋がっている。
The substrate 304 of the magnetic sensor 301 of this embodiment was a (100) silicon wafer. The (100) silicon wafer has a silicon nitride film as an etching mask, and a groove 305A is formed at a depth of 200 μm with a KOH solution (also applicable to a TMAH solution). The shape of the groove 305A is composed of four inclined surfaces having an angle of about 55 ° with respect to the surface of the silicon wafer.
In this embodiment, the bottom surface of the groove 305 has a flat portion (a surface substantially parallel to the surface of the substrate 304), but a V-groove structure having no flat portion (a surface substantially parallel to the surface of the substrate 304) is used. The groove 305 having no influence on the present invention. The detection units 302A and 302B and the fixed resistance units 303A and 303B are connected to the bonding pads 307A, 307B, 307C, and 307D that are connected by the wiring 306 reflecting the bridge connection block diagram of FIG.

本実施例の磁気抵抗効果素子に用いられる基板304には、(100)シリコンウエハの他に(110)シリコンウエハ、シリコン以外の半導体、ガラス材、セラミック材、非磁性金属などが適用可能である。
これらの基板の中でも本実施例で採用した(100)シリコンウエハはKOH溶液等を用いた異方性ウエットエッチングで基板表面に対して約55°の傾斜角度で(111)方向の結晶面が安定して作れるため、異なる二つの平行な斜面にそれぞれ配置した検知部302A,302Bの位置関係は一定となり、再現性の高い製造と高い製造歩留まりが得られることから本発明の基板304構成としては最適である。
In addition to the (100) silicon wafer, a (110) silicon wafer, a semiconductor other than silicon, a glass material, a ceramic material, a nonmagnetic metal, or the like can be applied to the substrate 304 used in the magnetoresistive effect element of this embodiment. .
Among these substrates, the (100) silicon wafer employed in this example is stable in the (111) crystal plane at an inclination angle of about 55 ° with respect to the substrate surface by anisotropic wet etching using a KOH solution or the like. Therefore, the positional relationship between the detectors 302A and 302B arranged on two different parallel slopes is constant, and a highly reproducible manufacturing and a high manufacturing yield can be obtained. It is.

次に、図4のブリッジ結線ブロック図を参照してブリッジ回路について説明する。
本実施例のブリッジ回路を構成する抵抗は同一斜面にそれぞれ配置した検知部302A,302Bと基板304の平坦な面に形成した固定抵抗部303A,303Bとからなる。R1は検知部302B、R2は固定抵抗部303A、R3は固定抵抗部303B、R4は検知部302Aに相当する。
このように本実施例の磁気センサはブリッジ回路を構成してなるので、電源電圧の変動それに検出器の入力インピーダンスや非直線性などに依存しない零位法による高精度の磁界検出が可能である。
本実施例の検知部302と固定抵抗部303を構成する磁気抵抗効果素子としてTMR素子を適用しているが、TMR素子については実施例1と同様な構成をとることができるので、説明を割愛する。
1軸の磁気センサを3組、組み合わせて配置した3軸磁気センサ構成は図14を3組組み合わせ実施例1と同様に配列した構成をとることができるので、説明を割愛する。
また、本実施例においても磁気抵抗効果素子はTMR素子に限定されず、GMR素子を用いることも可能である。
Next, the bridge circuit will be described with reference to the bridge connection block diagram of FIG.
The resistors constituting the bridge circuit of the present embodiment are composed of detection portions 302A and 302B arranged on the same slope and fixed resistance portions 303A and 303B formed on a flat surface of the substrate 304, respectively. R1 corresponds to the detection unit 302B, R2 corresponds to the fixed resistance unit 303A, R3 corresponds to the fixed resistance unit 303B, and R4 corresponds to the detection unit 302A.
As described above, the magnetic sensor of this embodiment is configured as a bridge circuit, so that it is possible to detect a magnetic field with high accuracy by the null method that does not depend on fluctuations in the power supply voltage, input impedance or non-linearity of the detector. .
Although the TMR element is applied as the magnetoresistive effect element that constitutes the detection unit 302 and the fixed resistance unit 303 of the present embodiment, the description of the TMR element is omitted because it can have the same configuration as that of the first embodiment. To do.
Since the three-axis magnetic sensor configuration in which three sets of one-axis magnetic sensors are combined and arranged can be configured in the same manner as in the first embodiment by combining three sets of FIG. 14, description thereof will be omitted.
Also in this embodiment, the magnetoresistive effect element is not limited to the TMR element, and a GMR element can also be used.

(本実施例の効果)
検知部402を配置する溝(突起でも構わない)に配置し、固定抵抗部303を基板304の上ボンディングパッド307形成面と同一の面へ形成した構成を取ることにより、実施例1と比較して磁気センサ401の占有面積が小さくできる。したがって、シリコンウエハから切り出せるチップ数が増えることになり、コスト低減に繋がる。
(Effect of this embodiment)
Compared with the first embodiment by adopting a configuration in which the detection resistor 402 is arranged in a groove (which may be a protrusion) and the fixed resistor 303 is formed on the same surface as the upper bonding pad 307 formation surface of the substrate 304. Thus, the area occupied by the magnetic sensor 401 can be reduced. Therefore, the number of chips that can be cut out from the silicon wafer increases, leading to cost reduction.

<検知部と固定抵抗部を一つの溝の斜面上へ配置した例>
図16は、本実施例の磁気抵抗効果素子がブリッジ回路配線されて配置した磁気センサの構成の一例で、概略平面を模式的に示す図である。また、図17は、図16のXVII−XVII線概略断面である。
本実施例の磁気センサ401は第1の実施例の固定抵抗部403を検知部402と同一溝の斜面上へ形成した構成で、二つの検知部402A,402Bと二つの固定抵抗部403A,403Bを備えている。
なお、検知部402A,402B及び固定抵抗部403A,403BはTMR素子であり、これらの各素子の膜構成は同等である。固定抵抗部403には磁気シールド膜を形成し外部磁界に対する感度を持たないようにしている。
<Example of the detector and the fixed resistor placed on the slope of one groove>
FIG. 16 is an example of a configuration of a magnetic sensor in which the magnetoresistive effect element of the present embodiment is arranged by bridge circuit wiring, and is a diagram schematically showing a schematic plane. FIG. 17 is a schematic cross-sectional view taken along line XVII-XVII in FIG.
The magnetic sensor 401 of the present embodiment has a configuration in which the fixed resistance portion 403 of the first embodiment is formed on the slope of the same groove as the detection portion 402, and has two detection portions 402A and 402B and two fixed resistance portions 403A and 403B. It has.
The detection units 402A and 402B and the fixed resistance units 403A and 403B are TMR elements, and the film configurations of these elements are the same. A magnetic shield film is formed on the fixed resistance portion 403 so as not to have sensitivity to an external magnetic field.

磁気シールド膜の構成については第5の実施例で具体的に説明するとして、ここでは説明を省略する。
検知部402A,402Bは基板404に設けられた斜面上に形成されており、磁化の向きは斜面内になるように形成されているとともに、磁化の感度方向は磁気抵抗効果素子(検知部402A,402B)の長手方向対して交差する方向であり、斜面の深さ方向になるように磁化の方向を決めている。
本実施例の磁気センサ401の基板404は(100)シリコンウエハを使用した。(100)シリコンウエハはシリコン窒化膜をエッチングマスクにし、KOH溶液(TMAH溶液でも適用可)にて200μmの深さで溝405が形成されている。溝405の形状はシリコンウエハの表面に対して約55°の角度を有する4つの斜面から構成されている。
The configuration of the magnetic shield film will be specifically described in the fifth embodiment, and the description thereof is omitted here.
The detection units 402A and 402B are formed on a slope provided on the substrate 404, and are formed so that the direction of magnetization is within the slope, and the sensitivity direction of the magnetization is a magnetoresistive element (the detection unit 402A, 402B) is a direction intersecting the longitudinal direction, and the magnetization direction is determined so as to be the depth direction of the slope.
The substrate 404 of the magnetic sensor 401 of this embodiment is a (100) silicon wafer. In the (100) silicon wafer, a silicon nitride film is used as an etching mask, and a groove 405 is formed at a depth of 200 μm with a KOH solution (also applicable to a TMAH solution). The shape of the groove 405 is composed of four inclined surfaces having an angle of about 55 ° with respect to the surface of the silicon wafer.

本実施例では溝405底面に平坦部(基板404の表面と略平行な面)をもつ構造にしているが、平坦部(基板404の表面と略平行な面)をもたないV溝構造を有する溝405でも本発明上は何ら影響が無い。検知部402A,402B及び固定抵抗部403A,403Bはそれぞれ、図4のブリッジ結線ブロック図を反映した配線406で結線されそれぞれ入出力端子にあたるボンディングパッド407A,407B,407C,407Dに繋がっている。
二本の配線406が交差するところができる。その配線間は直接接触しないように層間絶縁膜409を形成して絶縁を取っている。層間絶縁膜としてはプラズマCVD装置を使ったシリコン酸化膜が特に適している。シリコン酸化膜以外にも絶縁性の層間膜材料であればその製法もこの限りではない。
In this embodiment, the bottom surface of the groove 405 has a flat portion (a surface substantially parallel to the surface of the substrate 404). However, a V-groove structure having no flat portion (a surface substantially parallel to the surface of the substrate 404) is used. Even the groove 405 has no effect on the present invention. The detection units 402A and 402B and the fixed resistance units 403A and 403B are connected to the bonding pads 407A, 407B, 407C, and 407D respectively connected to the input / output terminals by the wiring 406 reflecting the bridge connection block diagram of FIG.
There is a place where two wirings 406 intersect. Insulation is performed by forming an interlayer insulating film 409 so that the wirings are not in direct contact. A silicon oxide film using a plasma CVD apparatus is particularly suitable as the interlayer insulating film. The manufacturing method is not limited to this as long as it is an insulating interlayer film material other than the silicon oxide film.

本実施例の磁気抵抗効果素子に用いられる基板404には、(100)シリコンウエハの他に(110)シリコンウエハ、シリコン以外の半導体、ガラス材、セラミック材、非磁性金属などが適用可能である。
これらの基板の中でも本実施例で採用した(100)シリコンウエハはKOH溶液等を用いた異方性ウエットエッチングで基板表面に対して約55°の傾斜角度で(111)方向の結晶面が安定して作れるため、異なる二つの平行な斜面にそれぞれ配置した検知部402A,402Bの位置関係は一定となり、再現性の高い製造と高い製造歩留まりが得られることから本発明の基板404構成としては最適である。
In addition to the (100) silicon wafer, a (110) silicon wafer, a semiconductor other than silicon, a glass material, a ceramic material, a nonmagnetic metal, or the like can be applied to the substrate 404 used in the magnetoresistive effect element of this embodiment. .
Among these substrates, the (100) silicon wafer employed in this example is stable in the (111) crystal plane at an inclination angle of about 55 ° with respect to the substrate surface by anisotropic wet etching using a KOH solution or the like. Therefore, the positional relationship between the detectors 402A and 402B arranged on two different parallel slopes is constant, and a highly reproducible manufacturing and a high manufacturing yield can be obtained. It is.

次に、図4のブリッジ結線ブロック図を参照してブリッジ回路について説明する。
本実施例のブリッジ回路を構成する抵抗は同一斜面にそれぞれ配置した検知部402A,402Bと検知部402を配した斜面を構成する溝405の検知部402と対向する斜面に形成した固定抵抗部403A,403Bとからなる。R1は検知部402B、R2は固定抵抗部403A、R3は固定抵抗部403B、R4は検知部402Aに相当する。
Next, the bridge circuit will be described with reference to the bridge connection block diagram of FIG.
The resistors constituting the bridge circuit of the present embodiment are the fixed resistance portion 403A formed on the slope facing the detection portion 402 of the groove 405 constituting the slope where the detection portions 402A and 402B and the detection portion 402 are arranged on the same slope, respectively. , 403B. R1 corresponds to the detection unit 402B, R2 corresponds to the fixed resistance unit 403A, R3 corresponds to the fixed resistance unit 403B, and R4 corresponds to the detection unit 402A.

このように本実施例の磁気センサはブリッジ回路を構成してなるので、電源電圧の変動それに検出器の入力インピーダンスや非直線性などに依存しない零位法による高精度の磁界検出が可能である。
本実施例の検知部402と固定抵抗部403を構成する磁気抵抗効果素子としてTMR素子を適用しているが、TMR素子については実施例1と同様な構成をとることができるので、説明を割愛する。
1軸の磁気センサを3組、組み合わせて配置した3軸磁気センサ構成は図16を実施例1と同様に配列した構成をとることができるので、説明を割愛する。
また、本実施例においても磁気抵抗効果素子はTMR素子に限定されず、GMR素子を用いることも可能である。
As described above, the magnetic sensor of this embodiment is configured as a bridge circuit, so that it is possible to detect a magnetic field with high accuracy by the null method that does not depend on fluctuations in the power supply voltage, input impedance or non-linearity of the detector. .
Although the TMR element is applied as the magnetoresistive effect element that configures the detection unit 402 and the fixed resistance unit 403 of the present embodiment, the TMR element can have the same configuration as that of the first embodiment, and thus the description thereof is omitted. To do.
A three-axis magnetic sensor configuration in which three sets of one-axis magnetic sensors are arranged in combination can take the configuration in which FIG. 16 is arranged in the same manner as in the first embodiment, and will not be described.
Also in this embodiment, the magnetoresistive effect element is not limited to the TMR element, and a GMR element can also be used.

(本実施例の効果)
検知部402と固定抵抗部403を配置する溝(突起でも構わない)を一つにする構成を取る本実施例の構成をとることにより、実施例1と比較して磁気センサ401の占有面積が小さくできる。よって、シリコンウエハから切り出せるチップ数が増えることになり、コスト低減に繋がる。また、固定抵抗部403も斜面上へ作ることで、検知部402と固定抵抗部403の温度特性などの素子特性が実施例2と比較してより近くできる。よって、より高精度な磁界検出が可能になる。
(Effect of this embodiment)
By adopting the configuration of the present embodiment in which the groove (which may be a protrusion) in which the detection unit 402 and the fixed resistance unit 403 are arranged is one, the area occupied by the magnetic sensor 401 is larger than that of the first embodiment. Can be small. Therefore, the number of chips that can be cut out from the silicon wafer increases, leading to cost reduction. In addition, by making the fixed resistance unit 403 on the slope, the element characteristics such as the temperature characteristics of the detection unit 402 and the fixed resistance unit 403 can be made closer to those of the second embodiment. Therefore, magnetic field detection with higher accuracy is possible.

<二つの検知部を平行な二つの傾斜斜面上に配した例>
図6は、本実施例の磁気抵抗効果素子がブリッジ回路配線されて配置した磁気センサの構成の一例で、概略平面を模式的に示す図である。また、図7は図6のVII−VII線断面で斜面上へ磁気抵抗効果素子を配置した概略断面図である。図8はブリッジ結線を示すブロック図である。
本実施例の磁気センサ1は第1の実施例の検知部2と固定抵抗部3との位置を入れ替えた構成で、二つの検知部102A,102Bと二つの固定抵抗部103A,103Bを備えている。
<Example of arranging two detectors on two parallel inclined slopes>
FIG. 6 is an example of a configuration of a magnetic sensor in which the magnetoresistive effect element of the present embodiment is arranged by bridge circuit wiring, and is a diagram schematically showing a schematic plane. FIG. 7 is a schematic cross-sectional view in which magnetoresistive elements are arranged on the slope in the cross section taken along line VII-VII in FIG. FIG. 8 is a block diagram showing the bridge connection.
The magnetic sensor 1 of the present embodiment has a configuration in which the positions of the detection unit 2 and the fixed resistance unit 3 of the first example are interchanged, and includes two detection units 102A and 102B and two fixed resistance units 103A and 103B. Yes.

なお、検知部102A,102B及び固定抵抗部103A,103BはTMR素子であり、これらの各素子の膜構成は同等である。固定抵抗部103には磁気シールド膜を形成し外部磁界に対する感度を持たないようにしている。
磁気シールド膜の構成については第3の実施例で具体的に説明するとして、ここでは説明を省略する。
The detection units 102A and 102B and the fixed resistance units 103A and 103B are TMR elements, and the film configurations of these elements are the same. A magnetic shield film is formed on the fixed resistance portion 103 so as not to have sensitivity to an external magnetic field.
The configuration of the magnetic shield film will be specifically described in the third embodiment, and the description thereof is omitted here.

検知部102A,102B及び固定抵抗部103A,103Bは基板104に設けられた斜面上に形成されており、磁化の向きは斜面内になるように形成されているとともに、磁化の感度方向は磁気抵抗効果素子(検知部102A,102B及び固定抵抗部103A,103B)の長手方向対して交差する方向であり、斜面の深さ方向になるように磁化の方向を決めている。   The detection units 102A and 102B and the fixed resistance units 103A and 103B are formed on a slope provided on the substrate 104, and the direction of magnetization is formed within the slope, and the direction of sensitivity of magnetization is magnetoresistive. The direction of magnetization is determined so as to be the direction intersecting the longitudinal direction of the effect elements (detecting portions 102A and 102B and fixed resistance portions 103A and 103B) and in the depth direction of the slope.

本実施例の磁気センサ101の基板104は(100)シリコンウエハを使用した。(100)シリコンウエハはシリコン窒化膜をエッチングマスクにし、KOH溶液(TMAH溶液でも適用可)にて200μmの深さで二つの溝105Aと溝105Bが形成されている。溝105A,105Bの形状はシリコンウエハの表面に対して約55°の角度を有する4つの斜面から構成されている。   The substrate 104 of the magnetic sensor 101 of this embodiment is a (100) silicon wafer. The (100) silicon wafer has a silicon nitride film as an etching mask, and two grooves 105A and 105B are formed at a depth of 200 μm with a KOH solution (also applicable to a TMAH solution). The shape of the grooves 105A and 105B is composed of four inclined surfaces having an angle of about 55 ° with respect to the surface of the silicon wafer.

本実施例では溝105底面に平坦部(基板104の表面と略平行な面)をもたないV溝構造にしているが、第1の実施例と同様の平坦部(基板104の表面と略平行な面)を有する溝105でも本発明上は何ら影響が無い。検知部102A,102B及び固定抵抗部103A,103Bはそれぞれ、図8のブリッジ結線ブロック図を反映した配線106で結線されそれぞれ入出力端子にあたるボンディングパッド107A,107B,107C,107Dに繋がっている。二つの溝105Aと溝105Bの間は配線106が這いまわせるスペースからなる。   In this embodiment, a V-groove structure having no flat portion (a surface substantially parallel to the surface of the substrate 104) on the bottom surface of the groove 105 is used. However, the same flat portion as the first embodiment (substantially the same as the surface of the substrate 104). The groove 105 having a parallel plane) has no effect on the present invention. The detection units 102A and 102B and the fixed resistance units 103A and 103B are connected by the wiring 106 reflecting the bridge connection block diagram of FIG. A space between the two grooves 105A and 105B is formed by the wiring 106.

本実施例の磁気抵抗効果素子に用いられる基板104には、(100)シリコンウエハの他に(110)シリコンウエハ、シリコン以外の半導体、ガラス材、セラミック材、非磁性金属などが適用可能である。
これらの基板の中でも本実施例で採用した(100)シリコンウエハはKOH溶液等を用いた異方性ウエットエッチングで基板表面に対して約55°の傾斜角度で(111)方向の結晶面が安定して作れるため、異なる二つの平行な斜面にそれぞれ配置した検知部102A,102Bの位置関係は一定となり、再現性の高い製造と高い製造歩留まりが得られることから本発明の基板104構成としては最適である。
In addition to the (100) silicon wafer, a (110) silicon wafer, a semiconductor other than silicon, a glass material, a ceramic material, a nonmagnetic metal, or the like can be applied to the substrate 104 used in the magnetoresistive effect element of this embodiment. .
Among these substrates, the (100) silicon wafer employed in this example is stable in the (111) crystal plane at an inclination angle of about 55 ° with respect to the substrate surface by anisotropic wet etching using a KOH solution or the like. Therefore, the positional relationship between the detectors 102A and 102B arranged on two different parallel slopes is constant, and a highly reproducible manufacturing and a high manufacturing yield can be obtained. It is.

次に、図8のブリッジ結線ブロック図を参照してブリッジ回路について説明する。
本実施例のブリッジ回路を構成する抵抗は異なる二つの平行な斜面にそれぞれ配置した検知部102A,102Bと検知部102とは異なる斜面に形成した固定抵抗部103A,103Bとからなる。R1は検知部102B、R2は固定抵抗部103A、R3は固定抵抗部103B、R4は検知部102Aに相当する。
Next, the bridge circuit will be described with reference to the bridge connection block diagram of FIG.
The resistors constituting the bridge circuit of the present embodiment are composed of detection units 102A and 102B arranged on two different parallel inclined surfaces, and fixed resistance units 103A and 103B formed on different inclined surfaces of the detection unit 102, respectively. R1 corresponds to the detection unit 102B, R2 corresponds to the fixed resistance unit 103A, R3 corresponds to the fixed resistance unit 103B, and R4 corresponds to the detection unit 102A.

このように本実施例の磁気センサはブリッジ回路を構成してなるので、電源電圧の変動それに検出器の入力インピーダンスや非直線性などに依存しない零位法による高精度の磁界検出が可能である。
本実施例の検知部102と固定抵抗部103を構成する磁気抵抗効果素子としてTMR素子を適用しているが、TMR素子については実施例1と同様な構成をとることができるので、説明を割愛する。
As described above, the magnetic sensor of this embodiment is configured as a bridge circuit, so that it is possible to detect a magnetic field with high accuracy by the null method that does not depend on fluctuations in the power supply voltage, input impedance or non-linearity of the detector. .
Although the TMR element is applied as the magnetoresistive effect element that constitutes the detection unit 102 and the fixed resistance unit 103 of the present embodiment, the TMR element can have the same configuration as that of the first embodiment, and thus the description is omitted. To do.

また、本実施例においても磁気抵抗効果素子はTMR素子に限定されず、GMR素子を用いることも可能である。   Also in this embodiment, the magnetoresistive effect element is not limited to the TMR element, and a GMR element can also be used.

図9は、1軸の磁気センサを3組、組み合わせて配置した3軸磁気センサ構成の一例で、概略平面を模式的に示す図である。本実施例の3軸磁気センサ101Aは、検知部102(102A,102B,102C,102D,102E,102F)と固定抵抗部103(103A,103B,103C,103D,103E,103F)をそれぞれ6個ずつと合計12個のボンディングパッド107さらには各ボンディングパッド107と各検知部102及び各固定抵抗部103を電気的に接続する配線106とを備えている。   FIG. 9 is a diagram schematically showing a schematic plane in an example of a three-axis magnetic sensor configuration in which three sets of one-axis magnetic sensors are arranged in combination. The three-axis magnetic sensor 101A of this embodiment includes six detection units 102 (102A, 102B, 102C, 102D, 102E, 102F) and six fixed resistance units 103 (103A, 103B, 103C, 103D, 103E, 103F). And a total of twelve bonding pads 107, and further, each bonding pad 107 and wiring 106 for electrically connecting each detection unit 102 and each fixed resistance unit 103.

なお、検知部102及び固定抵抗部103はTMR素子であり、これらの各素子の膜構成は同等である。検知部102及び固定抵抗部103は基板104に設けられた斜面上に形成されており、磁化の向きは斜面内になるように形成されているとともに、磁化の感度方向は磁気抵抗効果素子(検知部102及び固定抵抗部103)の長手方向対して交差する方向であり、斜面の深さ方向になるように磁化の方向を決めている。   Note that the detection unit 102 and the fixed resistance unit 103 are TMR elements, and the film configurations of these elements are the same. The detection unit 102 and the fixed resistance unit 103 are formed on an inclined surface provided on the substrate 104, and the magnetization direction is formed in the inclined surface, and the sensitivity direction of the magnetization is a magnetoresistive effect element (detection). The direction of magnetization is determined so as to cross the longitudinal direction of the portion 102 and the fixed resistance portion 103) and to be the depth direction of the slope.

本実施例の磁気センサ101Aの基板104は(100)シリコンウエハを使用した。
(100)シリコンウエハはシリコン窒化膜をエッチングマスクにし、KOH溶液(TMAH溶液でも適用可)にて200μmの深さで5つの溝105(5A,5B,5C,5D,5E)が形成されている。溝5の形状はシリコンウエハの表面に対して約55°の角度を有する4つの斜面から構成されている。本実施例では溝105底面に平坦部(基板104の表面と略平行な面)をもたないV溝構造にしているが、第1の実施例同様の平坦部(基板104の表面と略平行な面)を有する溝105でも本発明上は何ら影響が無い。
The substrate 104 of the magnetic sensor 101A of this embodiment is a (100) silicon wafer.
The (100) silicon wafer has a silicon nitride film as an etching mask, and five grooves 105 (5A, 5B, 5C, 5D, 5E) are formed at a depth of 200 μm with a KOH solution (also applicable to a TMAH solution). . The shape of the groove 5 is composed of four inclined surfaces having an angle of about 55 ° with respect to the surface of the silicon wafer. In this embodiment, a V-groove structure having no flat portion (a surface substantially parallel to the surface of the substrate 104) on the bottom surface of the groove 105 is used. However, the flat portion (substantially parallel to the surface of the substrate 104) as in the first embodiment is used. The groove 105 having a flat surface has no influence on the present invention.

検知部102A,102Bは一つの軸方向の磁気センサとして働き、固定抵抗部103A,103Bと組み合わせたセンサブリッジ回路を回路1とする。
検知部102C,102Dは一つの軸方向の磁気センサとして働き、固定抵抗部103C,103Dと組み合わせたセンサブリッジ回路を回路2とする。検知部102E,102Fは一つの軸方向の磁気センサとして働き、固定抵抗部103E,103Fと組み合わせたセンサブリッジ回路を回路3とする。
The detection units 102A and 102B function as a magnetic sensor in one axial direction, and a sensor bridge circuit combined with the fixed resistance units 103A and 103B is a circuit 1.
The detection units 102C and 102D function as a magnetic sensor in one axial direction, and a sensor bridge circuit combined with the fixed resistance units 103C and 103D is a circuit 2. The detection units 102E and 102F function as a magnetic sensor in one axial direction, and a sensor bridge circuit combined with the fixed resistance units 103E and 103F is a circuit 3.

検知部102におけるピンド層21(第1の実施例と同様構成のTMR素子のピンド層21)の磁化方向は回路1、回路2、回路3の磁気センサでそれぞれ異なるように配置している。回路2に対して回路1と回路3のピンド層21の磁化方向は紙面上で直行する位置関係を持ち、回路1及び回路2のピンド層21の磁化方向は紙面上で平行逆向きになる位置関係を持っている。つまり、立体的には基板面から約55°の角度で3方向に放射方向を示す位置関係を持っている。   The magnetization directions of the pinned layer 21 (the pinned layer 21 of the TMR element having the same configuration as that of the first embodiment) in the detection unit 102 are arranged differently in the magnetic sensors of the circuit 1, the circuit 2, and the circuit 3. The magnetization direction of the pinned layer 21 of the circuit 1 and the circuit 3 is perpendicular to the paper surface with respect to the circuit 2, and the magnetization direction of the pinned layer 21 of the circuit 1 and the circuit 2 is parallel and opposite to the paper surface. Have a relationship. That is, three-dimensionally, there is a positional relationship indicating the radiation directions in three directions at an angle of about 55 ° from the substrate surface.

以上、代表して実施例1,2を示したが、回路1、回路2、回路3でピンド層21の磁化の方向がそれぞれ異なる方向であれば、検知部(2,102)と固定抵抗層(3,103)の斜面上の配置は必ずしも実施例1や実施例2の配置でなくても構わない。   As described above, the first and second embodiments are representatively shown. However, if the magnetization direction of the pinned layer 21 is different in each of the circuit 1, the circuit 2, and the circuit 3, the detection unit (2, 102) and the fixed resistance layer The arrangement of (3, 103) on the slope may not necessarily be the arrangement of the first and second embodiments.

<磁気シールド膜構成例>
図10は、本実施例を示す磁気センサの概略平面を模式的に示す図であり、第1の実施例の磁気シールド膜を配した固定抵抗部に関して説明するための説明図である。
本実施例では第1の実施例を例にとるが第2の実施例にも同様に適用できる。また、図11は図10のXI−XI線断面図であり、第1の実施例(図3(b))に磁気シールド膜を配した固定抵抗部の断面図である。
<Example of magnetic shield film configuration>
FIG. 10 is a diagram schematically illustrating a schematic plane of the magnetic sensor according to the present embodiment, and is an explanatory diagram for describing the fixed resistance portion provided with the magnetic shield film according to the first embodiment.
In this embodiment, the first embodiment is taken as an example, but the present invention can be similarly applied to the second embodiment. FIG. 11 is a cross-sectional view taken along the line XI-XI of FIG. 10, and is a cross-sectional view of the fixed resistance portion in which the magnetic shield film is arranged in the first embodiment (FIG. 3B).

本実施例の磁気センサ201は、二つの検知部202A,202Bと二つの固定抵抗部203A,203Bを備えている。なお、検知部202A,202B及び固定抵抗部203A,203BはTMR素子であり、これらの各素子の膜構成は同等である。固定抵抗部203は絶縁性薄膜を介して磁気シールド膜が形成されている。固定抵抗部203はこのように磁気シールド膜を形成し外部磁界に対する感度を持たないようにしている。   The magnetic sensor 201 of this embodiment includes two detection units 202A and 202B and two fixed resistance units 203A and 203B. The detection units 202A and 202B and the fixed resistance units 203A and 203B are TMR elements, and the film configurations of these elements are the same. The fixed resistance portion 203 is formed with a magnetic shield film through an insulating thin film. The fixed resistor 203 is thus formed with a magnetic shield film so as not to be sensitive to an external magnetic field.

次に、図11を参考に固定抵抗部203Aを例に挙げて磁気抵抗効果素子であるTMR素子について説明する。
固定抵抗部203Aは、フリー層221、ピンド層222、絶縁層223、ピンド層側電極224、キャップ層225、配線電極235、下部磁気シールド膜241、上部磁気シールド膜242、各磁気シールド膜(241,242)と各電極(224,235)との絶縁を保つ絶縁性薄膜(228,229)、基板との絶縁を保つ絶縁性薄膜226、及びパッシベーション膜227の各層から構成されている。
Next, a TMR element that is a magnetoresistive element will be described with reference to FIG.
The fixed resistance portion 203A includes a free layer 221, a pinned layer 222, an insulating layer 223, a pinned layer side electrode 224, a cap layer 225, a wiring electrode 235, a lower magnetic shield film 241, an upper magnetic shield film 242, each magnetic shield film (241 , 242) and the electrodes (224, 235), an insulating thin film (228, 229) that keeps insulation between the electrodes, an insulating thin film 226 that keeps insulation from the substrate, and a passivation film 227.

パッシベーション膜227にはピンド層側電極224とキャップ層225それぞれに配線電極235を接合させるためのピンド層側コンタクトホール231とフリー層側コンタクトホール232とが開口しており、それらコンタクトホールを通して電気配線される。
フリー層221は、外部磁界の向きに応じて磁化の方向が変化する層であり、一方、ピンド層222は、外部磁化の向きに関わらず磁化の方向が固定される層である。また、絶縁層223は、フリー層221およびピンド層222に挟持されトンネル層としての役割を果たす。
しかし、フリー層221の表裏を磁気シールド膜(241,242)で覆っているため外部磁界による感度が得られなくなる。
In the passivation film 227, a pinned layer side contact hole 231 and a free layer side contact hole 232 for bonding the wiring electrode 235 to each of the pinned layer side electrode 224 and the cap layer 225 are opened, and electrical wiring is made through these contact holes. Is done.
The free layer 221 is a layer whose magnetization direction changes according to the direction of the external magnetic field, while the pinned layer 222 is a layer whose magnetization direction is fixed regardless of the direction of external magnetization. The insulating layer 223 is sandwiched between the free layer 221 and the pinned layer 222 and serves as a tunnel layer.
However, since the front and back surfaces of the free layer 221 are covered with the magnetic shield films (241, 242), the sensitivity due to the external magnetic field cannot be obtained.

TMR素子としては、基板204上に、例えばFe−Niのような反強磁性体222−1とCo−Fe222−2などの磁性層とで構成されたピンド層222が積層される。そして、このピンド層222の上部に絶縁層223を積層して、さらにその上層にフリー層221を積層する。絶縁層223としては、SiO2などの絶縁材料や、Al2O3, MgOのような非磁性金属酸化物などが用いられる。また、フリー層221としては、例えばCo−FeやFe−Niなどを用いることができる。 As the TMR element, a pinned layer 222 composed of an antiferromagnetic material 222-1 such as Fe—Ni and a magnetic layer such as Co—Fe 222-2 is stacked on a substrate 204, for example. Then, an insulating layer 223 is laminated on the pinned layer 222, and a free layer 221 is further laminated thereon. As the insulating layer 223, an insulating material such as SiO 2 or a nonmagnetic metal oxide such as Al 2 O 3 or MgO is used. As the free layer 221, for example, Co—Fe, Fe—Ni, or the like can be used.

また、磁気抵抗効果素子はTMR素子に限定されず、GMR素子を用いることも可能である。本実施例のように、センサブリッジ回路を構成する検知部と固定抵抗部を同一材料、層構成にし、固定抵抗部のみを絶縁性薄膜を介して磁気シールド膜で覆うようにすることで、検知部と固定抵抗部の温度特性を同一にできるので、環境温度による特性のばらつきを抑制することができる。   In addition, the magnetoresistive effect element is not limited to the TMR element, and a GMR element can also be used. As in this example, the detection part and the fixed resistance part constituting the sensor bridge circuit are made of the same material and layer structure, and only the fixed resistance part is covered with a magnetic shield film through an insulating thin film, thereby detecting Since the temperature characteristics of the part and the fixed resistance part can be made the same, variations in characteristics due to the environmental temperature can be suppressed.

ここで、本実施例の磁気センサ201に用いられる磁気抵抗効果素子の形成方法について説明する。
図12は、本発明に係る磁気センサの製造方法を示すフローチャートの一部であり、図13は本発明に係る磁気センサの製造方法を示すフローチャートの残りである。
なお、本実施例においては、基板上に所望の傾斜面が予め形成されていることとする。
Here, a method for forming a magnetoresistive effect element used in the magnetic sensor 201 of this embodiment will be described.
FIG. 12 is a part of a flowchart showing a method for manufacturing a magnetic sensor according to the present invention, and FIG. 13 is the rest of the flowchart showing a method for manufacturing a magnetic sensor according to the present invention.
In this embodiment, it is assumed that a desired inclined surface is previously formed on the substrate.

まず、傾斜面が形成された基板に対し、絶縁性薄膜(シリコン酸化膜など)を形成する(ステップS101)。
Ni-Fe合金膜、Si−Fe合金膜,Fe−Ni−Mn−Cu合金膜等の磁気シールド膜を形成する(ステップS102)。
成膜された磁気シールド膜にフォトリソ・エッチングを施し、少なくとも検知部が配置される位置近傍の磁気シールド膜を除去する(ステップS103)。
絶縁性薄膜(シリコン酸化膜など)を形成する(ステップS104)。
磁気抵抗効果素子となる所望の層構成を有する各膜を成膜する(ステップS105)。
成膜された各層にフォトリソ・エッチングの工程を二回施し2段のパターン形状を形成する(ステップS106)。
First, an insulating thin film (silicon oxide film or the like) is formed on the substrate on which the inclined surface is formed (step S101).
A magnetic shield film such as a Ni—Fe alloy film, a Si—Fe alloy film, or a Fe—Ni—Mn—Cu alloy film is formed (step S102).
The formed magnetic shield film is subjected to photolithography / etching to remove at least the magnetic shield film in the vicinity of the position where the detector is disposed (step S103).
An insulating thin film (silicon oxide film or the like) is formed (step S104).
Each film having a desired layer structure to be a magnetoresistive element is formed (step S105).
Each of the deposited layers is subjected to a photolithographic etching process twice to form a two-stage pattern shape (step S106).

そしてパターニングされた素子に絶縁性を有する保護層を形成する(ステップS107)。 フォトリソ・エッチングにて保護層へコンタクトホールを形成する(ステップS108)。
コンタクトホールを覆うように基板表面全面に配線・ボンディングパッド用非磁性金属膜を形成する(ステップS109)。
Then, an insulating protective layer is formed on the patterned element (step S107). Contact holes are formed in the protective layer by photolithography / etching (step S108).
A nonmagnetic metal film for wiring and bonding pads is formed on the entire surface of the substrate so as to cover the contact hole (step S109).

各コンタクトホール間を結ぶ配線と入出力端子と結線するためのボンディングパッド用メタルをフォトリソ・エッチング工程にて形成する(ステップS110)。
絶縁性薄膜(シリコン酸化膜など)を形成する(ステップS111)。
基板表面側(磁気抵抗効果素子が形成されている面)の絶縁性薄膜表層にNi−Fe合金膜、Si−Fe合金膜、Fe−Ni−Mn−Cu合金膜等の磁気シールド膜を形成する(ステップS112)。
固定抵抗部3A,3Bを覆うように磁気シールド膜を残し、他の領域をフォトリソ・エッチングにて除去する(ステップS113)。
ボンディングパッド用メタル上の絶縁性薄膜をフォトリソ・エッチングにて除去する(ステップS114)。
A bonding pad metal for connecting between the contact holes and the input / output terminals is formed by a photolithography / etching process (step S110).
An insulating thin film (silicon oxide film or the like) is formed (step S111).
A magnetic shield film such as a Ni-Fe alloy film, a Si-Fe alloy film, or a Fe-Ni-Mn-Cu alloy film is formed on the surface of the insulating thin film on the substrate surface side (surface on which the magnetoresistive effect element is formed). (Step S112).
The magnetic shield film is left so as to cover the fixed resistance portions 3A and 3B, and other regions are removed by photolithography / etching (step S113).
The insulating thin film on the bonding pad metal is removed by photolithography and etching (step S114).

次に、磁場中アニール処理を施しピンド層の方向が確定する(ステップS115)。
このとき、磁場印加方向は、基板表面に対して垂直方向になるようにする。本実施例のような1軸のセンサとして使う場合は傾斜面に対して垂直以外の方向であれば構わない。
ピンド層の磁化方向が確定した後、ステップS115よりも低い温度で再度磁場中アニール処理を施しフリー層の方向が確定する(ステップS116)。
Next, annealing in a magnetic field is performed to determine the direction of the pinned layer (step S115).
At this time, the magnetic field application direction is set to be perpendicular to the substrate surface. When used as a uniaxial sensor as in this embodiment, any direction other than perpendicular to the inclined surface may be used.
After the magnetization direction of the pinned layer is determined, annealing in a magnetic field is performed again at a temperature lower than that in step S115 to determine the direction of the free layer (step S116).

このステップでの磁場印加方向は、基板面に対して平行になるように印加する。このときピンド層の磁化方向は、ステップS115で確定しているのでその方向は変更されない。以上、基板全体を加熱しながら基板表面に対して垂直方向からの磁場をかけることで磁気抵抗効果素子からなる検知部のピンド層の着磁(磁化方向を固定する)を行うので、一度の着磁工程で検知部の着磁ができる。   The magnetic field application direction in this step is applied so as to be parallel to the substrate surface. At this time, since the magnetization direction of the pinned layer is determined in step S115, the direction is not changed. As described above, since the pinned layer of the detection unit composed of the magnetoresistive effect element is magnetized (the magnetization direction is fixed) by applying a magnetic field from the direction perpendicular to the substrate surface while heating the entire substrate, the magnetization is fixed once. Magnetization of the detection part can be performed in the magnetic process.

以上、実施例1〜5の基板(4、104、204、304、404)へ形成する(100)シリコンウエハを使用し、溝(5、105、205、305、405)の形状はシリコンウエハの表面に対して約55°の角度を有する4つの斜面から構成されている。としたが、傾斜角度は水平を除く角度であれば任意の角度で良く、溝以外に突起でも適用可能である。基板の材料も(100)シリコンウエハ以外にも(110)シリコンウエハ、シリコン以外の半導体、ガラス材、セラミック材、非磁性金属などが適用可能である (各実施例中にも記載) 。(100)シリコン基板を使うなら、その結晶方位面54.7°(約55°)が都合がよい。   As described above, the (100) silicon wafer formed on the substrates (4, 104, 204, 304, 404) of Examples 1 to 5 is used, and the shape of the grooves (5, 105, 205, 305, 405) is the same as that of the silicon wafer. It consists of four slopes with an angle of about 55 ° to the surface. However, the inclination angle may be an arbitrary angle as long as it is an angle other than the horizontal, and a projection other than the groove is also applicable. In addition to the (100) silicon wafer, a (110) silicon wafer, a semiconductor other than silicon, a glass material, a ceramic material, a non-magnetic metal, and the like can also be used as the substrate material (also described in each example). If a (100) silicon substrate is used, its crystal orientation plane of 54.7 ° (about 55 °) is convenient.

〔作用効果〕
第1〜第3のセンサブリッジ回路における一対の検知部を傾斜の法線方向が三次元的に交差する傾斜斜面上にそれぞれ配し、同一センサブリッジ回路内の一対の検知部は傾斜斜面の法線方向が同一である斜面上に配しているので、一方向の磁界を付与しながらの磁場中熱処理を1回行うだけで、同一ブリッジ内検知部のピンド層は同一方向に着磁でき、かつ各座標系のピンド層の磁化方向を三次元的に交差する三つの磁化方向に着磁できるため、製造工程の低減ができ、製造歩留まりの向上に繋がる。また、同一基板上へ一体配置できるため小型且つ薄型にできる。小型にできることでセンサの取れ数も増え生産性向上に繋がる。
[Function and effect]
A pair of detectors in the first to third sensor bridge circuits are respectively arranged on an inclined slope whose normal direction of the inclination intersects three-dimensionally, and the pair of detectors in the same sensor bridge circuit is an inclined slope method. Since it is arranged on the slope with the same linear direction, the pinned layer of the detection unit in the same bridge can be magnetized in the same direction only by performing the heat treatment in the magnetic field once while applying the magnetic field in one direction, In addition, since the magnetization directions of the pinned layers in each coordinate system can be magnetized in three magnetization directions that intersect three-dimensionally, the manufacturing process can be reduced, leading to an improvement in manufacturing yield. Further, since it can be integrally disposed on the same substrate, it can be made small and thin. By making it compact, the number of sensors that can be taken increases, leading to improved productivity.

基板が(100)単結晶シリコンウエハからなり、基板表面と約55°の傾斜角度を成す(111)方向の結晶方位面からなる傾斜斜面を有し、第1〜第3のセンサブリッジ回路における一対の検知部を傾斜の法線方向が三次元的に交差する傾斜斜面上にそれぞれ配し、同一センサブリッジ回路内の一対の検知部は傾斜斜面の法線方向が同一である斜面上に配しているので、一方向の磁界を付与しながらの磁場中熱処理を1回行うだけで、同一ブリッジ内検知部のピンド層は同一方向に着磁でき、かつ各座標系のピンド層の磁化方向を三次元的に交差する三つの磁化方向に着磁できるため、製造工程の低減ができ、製造歩留まりの向上に繋がる。   The substrate is made of a (100) single crystal silicon wafer, has an inclined slope formed by a crystal orientation plane in the (111) direction that forms an inclination angle of about 55 ° with the substrate surface, and a pair in the first to third sensor bridge circuits. The detectors are placed on the slopes where the normal direction of the slope intersects three-dimensionally, and the pair of detectors in the same sensor bridge circuit are placed on the slope where the normal directions of the slopes are the same. Therefore, the pinned layer in the same bridge detection unit can be magnetized in the same direction and the magnetization direction of the pinned layer in each coordinate system can be magnetized only by performing heat treatment in a magnetic field while applying a magnetic field in one direction. Since it can be magnetized in three magnetization directions that intersect three-dimensionally, the manufacturing process can be reduced, leading to an improvement in manufacturing yield.

また、同一基板上へ一体配置できるため小型且つ薄型にできる。小型にできることでセンサの取れ数も増え生産性向上に繋がる。さらには検知部を配置する斜面は結晶面で規定されるため各軸間での検知部位置精度が高くなり、3軸間での位置関係が結晶面位置関係で一意的に決まるため、ばらつきの少ない安定した製造ができる。   Further, since it can be integrally disposed on the same substrate, it can be made small and thin. By making it compact, the number of sensors that can be taken increases, leading to improved productivity. Furthermore, since the slope on which the detector is arranged is defined by the crystal plane, the position accuracy of the detector between each axis is high, and the positional relationship between the three axes is uniquely determined by the crystal plane positional relationship, so there is Less stable production is possible.

固定抵抗は電気的な絶縁が取れる絶縁部材を介して磁気シールド部材で覆われているので、磁気抵抗効果素子等の外部磁界に対して感度をもつ素子を提供した場合でも外部磁界に影響されること無く固定抵抗として機能するとともに、検知部と同一膜種から構成される磁気抵抗効果素子なので、素子の温度特性を同一にでき、磁気センサ特性が安定する。   Since the fixed resistor is covered with a magnetic shield member through an insulating member that can be electrically insulated, even if an element having sensitivity to an external magnetic field such as a magnetoresistive effect element is provided, it is affected by the external magnetic field. Since the magnetoresistive element is composed of the same film type as that of the detection unit, the temperature characteristic of the element can be made the same and the magnetic sensor characteristic is stabilized.

磁気抵抗効果素子に高感度であるTMR素子を採用しているので、少ない消費電力で磁気検知が可能となるため地球環境負荷が低減できる。   Since a highly sensitive TMR element is employed as the magnetoresistive effect element, it is possible to detect magnetism with a small amount of power consumption, thereby reducing the global environmental load.

基板全体を加熱しながら基板表面に対して垂直方向からの磁場をかけることで磁気抵抗効果素子からなる検知部のピンド層の着磁(磁化方向を固定する)を行うので、一度の着磁工程で検知部の着磁ができる。   Magnetizing the pinned layer (fixing the magnetization direction) of the sensing element consisting of a magnetoresistive effect element by applying a magnetic field from the direction perpendicular to the substrate surface while heating the entire substrate, so the magnetization process is performed once. Can magnetize the detector.

本発明は、カーナビゲーションや携帯電話機器などGPSを用いた機器に搭載し、GPSからの電波が遮られる場所における現在地確認等の用途として利用することができる。   The present invention is mounted on a device using GPS, such as a car navigation system or a mobile phone device, and can be used for applications such as checking the current location in a place where radio waves from the GPS are blocked.

本実施例の磁気抵抗効果素子がブリッジ回路配線されて配置した磁気センサの構成の一例で、概略平面を模式的に示す図である。It is an example of the structure of the magnetic sensor which arrange | positioned the magnetoresistive effect element of a present Example by bridge circuit wiring, and is a figure which shows a schematic plane typically. 図1のII−II線断面で斜面上に磁気抵抗効果素子を配置した概略断面図である。It is the schematic sectional drawing which has arrange | positioned the magnetoresistive effect element on the slope in the II-II line cross section of FIG. 図1の磁気抵抗効果素子構造であり、(a)はその平面図、(b)は図1のIIIb−IIIb線断面図である。1A is a plan view of the magnetoresistive element structure of FIG. 1, and FIG. 1B is a sectional view taken along line IIIb-IIIb of FIG. ブリッジ結線を示すブロック図である。It is a block diagram which shows a bridge connection. 1軸の磁気センサを3組、組み合わせて配置した3軸磁気センサ構成の一例で、概略平面を模式的に示す図である。FIG. 3 is a diagram schematically illustrating a schematic plane in an example of a three-axis magnetic sensor configuration in which three sets of one-axis magnetic sensors are combined and arranged. 本実施例の磁気抵抗効果素子がブリッジ回路配線されて配置した磁気センサの構成の一例で、概略平面を模式的に示す図である。It is an example of the structure of the magnetic sensor which arrange | positioned the magnetoresistive effect element of a present Example by bridge circuit wiring, and is a figure which shows a schematic plane typically. 図6のVII−VII線断面で斜面上へ磁気抵抗効果素子を配置した概略断面図である。FIG. 7 is a schematic cross-sectional view in which magnetoresistive elements are arranged on a slope in a cross section taken along line VII-VII in FIG. ブリッジ結線を示すブロック図である。It is a block diagram which shows a bridge connection. 1軸の磁気センサを3組、組み合わせて配置した3軸磁気センサ構成の一例で、概略平面を模式的に示す図である。FIG. 3 is a diagram schematically illustrating a schematic plane in an example of a three-axis magnetic sensor configuration in which three sets of one-axis magnetic sensors are combined and arranged. 本実施例を示す磁気センサの概略平面を模式的に示す図であり、第1の実施例の磁気シールド膜を配した固定抵抗部に関して説明するための説明図である。It is a figure which shows typically the schematic plane of the magnetic sensor which shows a present Example, and is explanatory drawing for demonstrating regarding the fixed resistance part which has arrange | positioned the magnetic shielding film of a 1st Example. 図10のXI−XI線断面図であり、第1の実施例(図3(b))に磁気シールド膜を配した固定抵抗部の断面図である。FIG. 11 is a cross-sectional view taken along the line XI-XI in FIG. 10, and is a cross-sectional view of a fixed resistance portion in which a magnetic shield film is arranged in the first embodiment (FIG. 3B). 本発明に係る磁気センサの製造方法を示すフローチャートの一部である。It is a part of flowchart which shows the manufacturing method of the magnetic sensor which concerns on this invention. 本発明に係る磁気センサの製造方法を示すフローチャートの残りである。It is the remainder of the flowchart which shows the manufacturing method of the magnetic sensor which concerns on this invention. 本実施例の磁気抵抗効果素子がブリッジ回路配線されて配置した磁気センサの構成の一例で、概略平面を模式的に示す図である。It is an example of the structure of the magnetic sensor which arrange | positioned the magnetoresistive effect element of a present Example by bridge circuit wiring, and is a figure which shows a schematic plane typically. 図14のXV−XV線断面で斜面上へ磁気抵抗効果素子を配置した概略断面図である。It is the schematic sectional drawing which has arrange | positioned the magnetoresistive effect element on the slope in the XV-XV sectional view of FIG. 本実施例の磁気抵抗効果素子がブリッジ回路配線されて配置した磁気センサの構成の一例で、概略平面を模式的に示す図である。It is an example of the structure of the magnetic sensor which arrange | positioned the magnetoresistive effect element of a present Example by bridge circuit wiring, and is a figure which shows a schematic plane typically. 図16のXVII−XVII線略断面である。It is the XVII-XVII line schematic cross section of FIG.

符号の説明Explanation of symbols

1 磁気センサ
2A、2B 検知部
3A、3B 固定抵抗部
4 基板
5A、5B 溝
6 配線
7A、7B、7C ボンディングパッド
DESCRIPTION OF SYMBOLS 1 Magnetic sensor 2A, 2B Detection part 3A, 3B Fixed resistance part 4 Board | substrate 5A, 5B Groove 6 Wiring 7A, 7B, 7C Bonding pad

Claims (10)

基板上に磁気抵抗効果素子からなる一対の検知部と、一対の固定抵抗とがブリッジ接続された複数のセンサブリッジ回路が形成され、前記検知部の磁化の向きが互いに三次元方向に交差するように形成されている磁気センサにおいて、
前記基板は、傾斜の法線方向が三次元的に交差する複数の傾斜面を有し、各センサブリッジ回路内の一対の検知部は、同一の傾斜面上にそれぞれ配されていることを特徴とする磁気センサ。
A plurality of sensor bridge circuits in which a pair of detection units made of magnetoresistive elements and a pair of fixed resistors are bridge-connected are formed on the substrate, and the magnetization directions of the detection units cross each other in a three-dimensional direction. In the magnetic sensor formed in
The substrate has a plurality of inclined surfaces whose normal directions of inclination intersect three-dimensionally, and the pair of detection units in each sensor bridge circuit are arranged on the same inclined surface, respectively. Magnetic sensor.
基板上に磁気抵抗効果素子からなる一対の検知部と、外部の磁界に影響されること無く一定の抵抗値を示す一対の固定抵抗とがブリッジ接続された第1から第3のセンサブリッジ回路が形成され、これら第1から第3のセンサブリッジ回路における検知部の磁化の向きが互いに三次元方向に交差するように形成されている磁気センサにおいて、
前記基板は傾斜の法線方向が三次元的に交差する複数の傾斜面を有し、第1から第3のセンサブリッジ回路における検知部は傾斜の法線方向が三次元的に交差する傾斜面上にそれぞれ配し、同一センサブリッジ回路内の一対の検知部は傾斜面の法線方向が同一である傾斜面上に配したことを特徴とする磁気センサ。
There are first to third sensor bridge circuits in which a pair of detection units each including a magnetoresistive element on a substrate and a pair of fixed resistors having a constant resistance value without being affected by an external magnetic field are bridge-connected. In the magnetic sensor formed and formed so that the magnetization directions of the detection units in the first to third sensor bridge circuits intersect each other in a three-dimensional direction,
The substrate has a plurality of inclined surfaces in which the normal direction of the inclination intersects three-dimensionally, and the detection unit in the first to third sensor bridge circuits has an inclined surface in which the normal direction of the inclination intersects three-dimensionally. A magnetic sensor characterized in that each of the pair of detection units disposed on the same sensor bridge circuit is disposed on an inclined surface having the same normal direction of the inclined surface.
基板上に磁気抵抗効果素子からなる一対の検知部と、一対の固定抵抗とがブリッジ接続された複数のセンサブリッジ回路が形成され、前記検知部の磁化の向きが互いに三次元方向に交差するように形成されている磁気センサにおいて、
(100)単結晶シリコンウエハからなり、該基板表面と約55°の傾斜角度を成す(111)方向の結晶方位面を傾斜面とし斜面の法線方向が三次元的に交差する傾斜面を有し、各センサブリッジ回路内の一対の検知部は、同一の傾斜面上にそれぞれ配されていることを特徴とする磁気センサ。
A plurality of sensor bridge circuits in which a pair of detection units made of magnetoresistive elements and a pair of fixed resistors are bridge-connected are formed on the substrate, and the magnetization directions of the detection units cross each other in a three-dimensional direction. In the magnetic sensor formed in
It consists of a (100) single crystal silicon wafer and has an inclined surface in which the (111) direction crystal orientation plane that forms an inclination angle of about 55 ° with the substrate surface is an inclined surface and the normal direction of the inclined surface intersects three-dimensionally. And a pair of detection part in each sensor bridge circuit is each distribute | arranged on the same inclined surface, The magnetic sensor characterized by the above-mentioned.
基板上に磁気抵抗効果素子からなる一対の検知部と外部の磁界に影響されること無く一定の抵抗値を示す一対の固定抵抗とがブリッジ接続された第1から第3のセンサブリッジ回路が形成され、これら第1から第3のセンサブリッジ回路における検知部の磁化の向きが互いに三次元方向に交差するように形成されている磁気センサにおいて、
(100)単結晶シリコンウエハからなり、該基板表面と約55°の傾斜角度を成す(111)方向の結晶方位面を傾斜面とし斜面の法線方向が三次元的に交差する傾斜面を有し、第1から第3のセンサブリッジ回路における検知部は傾斜の法線方向が三次元的に交差する傾斜面上にそれぞれ配し、同一センサブリッジ回路内の一対の検知部は傾斜面の法線方向が同一である斜面上に配したことを特徴とする磁気センサ。
First to third sensor bridge circuits are formed in which a pair of detection units made of magnetoresistive elements and a pair of fixed resistors having a constant resistance value without being affected by an external magnetic field are bridge-connected on a substrate. In the magnetic sensor formed so that the magnetization directions of the detection units in the first to third sensor bridge circuits intersect with each other in a three-dimensional direction,
It consists of a (100) single crystal silicon wafer and has an inclined surface in which the (111) direction crystal orientation plane that forms an inclination angle of about 55 ° with the substrate surface is an inclined surface and the normal direction of the inclined surface intersects three-dimensionally. The detection units in the first to third sensor bridge circuits are respectively arranged on the inclined surfaces in which the normal directions of the inclinations intersect three-dimensionally, and the pair of detection units in the same sensor bridge circuit are the methods of the inclined surfaces. A magnetic sensor characterized by being arranged on a slope having the same line direction.
前記固定抵抗は、前記検知部と同一膜種から構成される磁気抵抗効果素子からなり、電気的な絶縁が得られる絶縁部材を介して磁気シールド部材で覆われていることを特徴とする請求項1から4のいずれか1項記載の磁気センサ。   The fixed resistor is composed of a magnetoresistive effect element composed of the same film type as that of the detection unit, and is covered with a magnetic shield member via an insulating member that can obtain electrical insulation. The magnetic sensor according to any one of 1 to 4. 前記固定抵抗は、前記基板に形成した傾斜面上へ配置したことを特徴とする請求項1から5のいずれか1項記載の磁気センサ。   6. The magnetic sensor according to claim 1, wherein the fixed resistor is disposed on an inclined surface formed on the substrate. 前記磁気抵抗効果素子は、トンネル磁気抵抗効果素子であることを特徴とする請求項1から6のいずれか1項記載の磁気センサ。   The magnetic sensor according to claim 1, wherein the magnetoresistive effect element is a tunnel magnetoresistive effect element. 基板を準備する工程と、
前記基板に傾斜の法線方向が三次元的に交差する複数の傾斜面を形成する工程と、
各センサブリッジ回路内の一対の検知部を同一の傾斜面上にそれぞれ配する工程と、
前記基板全体を加熱しながら前記基板表面に対して垂直方向からの磁場をかけることで磁気抵抗効果素子からなる検知部のピンド層の着磁を行う工程とを備えたことを特徴とする磁気センサの製造方法。
Preparing a substrate;
Forming a plurality of inclined surfaces in which the normal direction of the inclination intersects the substrate three-dimensionally;
Arranging a pair of detection units in each sensor bridge circuit on the same inclined surface,
And a step of magnetizing a pinned layer of a detection unit made of a magnetoresistive element by applying a magnetic field from a direction perpendicular to the substrate surface while heating the entire substrate. Manufacturing method.
前記固定抵抗を前記検知部と同一膜種から構成される磁気抵抗効果素子とし、電気的な絶縁が得られる絶縁部材を介して磁気シールド部材で覆う工程を備えたことを特徴とする請求項8記載の磁気センサの製造方法。   9. The method according to claim 8, further comprising: a step of using the fixed resistor as a magnetoresistive effect element made of the same film type as that of the detection unit, and covering with a magnetic shield member through an insulating member capable of obtaining electrical insulation. The manufacturing method of the magnetic sensor of description. 前記磁気抵抗効果素子にトンネル磁気抵抗効果素子を用いることを特徴とする請求項8または9記載の磁気センサの製造方法。   10. The method of manufacturing a magnetic sensor according to claim 8, wherein a tunnel magnetoresistive effect element is used as the magnetoresistive effect element.
JP2008108061A 2007-06-13 2008-04-17 Magnetic sensor and manufacturing method thereof Expired - Fee Related JP5157611B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008108061A JP5157611B2 (en) 2007-06-13 2008-04-17 Magnetic sensor and manufacturing method thereof
DE200860000820 DE602008000820D1 (en) 2007-06-13 2008-06-12 Magnetic sensor and manufacturing method therefor
US12/137,902 US8134361B2 (en) 2007-06-13 2008-06-12 Magnetic sensor including magnetic field detectors and field resistors arranged on inclined surfaces
EP08158117A EP2003462B1 (en) 2007-06-13 2008-06-12 Magnetic sensor and production method thereof
KR20080056029A KR100996712B1 (en) 2007-06-13 2008-06-13 Magnetic sensor and production method thereof
CN2008101254584A CN101325210B (en) 2007-06-13 2008-06-13 Magnetic sensor and production method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007156423 2007-06-13
JP2007156423 2007-06-13
JP2008108061A JP5157611B2 (en) 2007-06-13 2008-04-17 Magnetic sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009020092A true JP2009020092A (en) 2009-01-29
JP5157611B2 JP5157611B2 (en) 2013-03-06

Family

ID=40188644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008108061A Expired - Fee Related JP5157611B2 (en) 2007-06-13 2008-04-17 Magnetic sensor and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP5157611B2 (en)
KR (1) KR100996712B1 (en)
CN (1) CN101325210B (en)
DE (1) DE602008000820D1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047929A (en) * 2009-07-29 2011-03-10 Tdk Corp Magnetic sensor
JP2013518273A (en) * 2010-01-29 2013-05-20 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク Integrated magnetometer and its manufacturing process
JP2013205417A (en) * 2012-03-27 2013-10-07 Robert Bosch Gmbh Sensor, method for manufacturing of sensor and method for installation of sensor
US9176204B2 (en) 2014-03-07 2015-11-03 Mitsubishi Electric Corporation TMR magnetic sensor including a conductive material and a passivation film and manufacturing method therefor
JP2015532429A (en) * 2012-10-12 2015-11-09 メムシック, インコーポレイテッドMemsic, Inc. Monolithic 3-axis magnetic field sensor
WO2016075763A1 (en) * 2014-11-12 2016-05-19 株式会社日立製作所 Magnetic sensor
WO2017094888A1 (en) 2015-12-03 2017-06-08 アルプス電気株式会社 Magnetic detection device
JP2019075587A (en) * 2013-03-25 2019-05-16 ローム株式会社 Semiconductor device
JP2021156733A (en) * 2020-03-27 2021-10-07 Tdk株式会社 Magnetic sensor and method for manufacturing the same
JP2022071641A (en) * 2020-10-28 2022-05-16 Tdk株式会社 Magnetic sensor and method for manufacturing the same
WO2023162927A1 (en) * 2022-02-28 2023-08-31 ソニーセミコンダクタソリューションズ株式会社 Storage device, electronic apparatus, and method for producing storage device
JP7488840B2 (en) 2021-09-22 2024-05-22 Tdk株式会社 Magnetic Field Detection Device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1403421B1 (en) 2010-12-23 2013-10-17 St Microelectronics Srl INTEGRATED MAGNETORESISTIVE SENSOR, IN PARTICULAR TRIASSIAL MAGNETORESISTIVE SENSOR AND ITS MANUFACTURING PROCEDURE
CN102298126B (en) * 2011-01-17 2013-03-13 江苏多维科技有限公司 Independent packaged bridge-type magnetic-field sensor
CN102226835A (en) 2011-04-06 2011-10-26 江苏多维科技有限公司 Single-chip double-axis magnetic field sensor and preparation method thereof
CN202305777U (en) * 2011-04-06 2012-07-04 江苏多维科技有限公司 Monolithic biaxial bridge-type magnetic field sensor
CN102385043B (en) * 2011-08-30 2013-08-21 江苏多维科技有限公司 Magnetic tunnel junction (MTJ) triaxial magnetic field sensor and packaging method thereof
CN102651343B (en) * 2012-03-16 2014-12-24 京东方科技集团股份有限公司 Manufacturing method of array substrate, array substrate and display device
CN102830374A (en) * 2012-09-05 2012-12-19 复旦大学 Three-dimensional tunnelling magnetic field sensor using angle of 45 degrees and manufacturing method thereof
CN102830372A (en) * 2012-09-05 2012-12-19 复旦大学 Three-dimensional anisotropic magnetic field sensor employing 45-degree oblique angle and manufacturing method thereof
CN103839320A (en) * 2012-11-23 2014-06-04 北京嘉岳同乐极电子有限公司 Magnetic sensor used for financial counterfeit detection machine and manufacturing method thereof
CN103630854B (en) * 2013-10-24 2016-01-13 黑龙江大学 Space three-dimensional magnetic field detection sensor
US10067201B2 (en) * 2016-04-14 2018-09-04 Texas Instruments Incorporated Wiring layout to reduce magnetic field
EP3761044A4 (en) * 2018-03-01 2022-03-16 Yokogawa Electric Corporation Electric current measuring device, electric current measuring method, and computer-readable non-transitory recording medium
CN111965571B (en) * 2020-07-29 2022-11-11 珠海多创科技有限公司 Preparation method of GMR magnetic field sensor
CN113030803A (en) * 2021-03-01 2021-06-25 歌尔微电子股份有限公司 Magnetic sensor, method for manufacturing magnetic sensor, and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345498A (en) * 2000-06-02 2001-12-14 Yamaha Corp Magnetic sensor and manufacturing method thereof
JP2002333468A (en) * 2001-03-07 2002-11-22 Yamaha Corp Magnetometric sensor, and manufacturing method therefor
JP2004012156A (en) * 2002-06-04 2004-01-15 Wacoh Corp Three-dimensional magnetic sensor and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10145300C1 (en) * 2001-09-14 2002-10-17 Bosch Gmbh Robert Sensor element for angle or rotation sensor, uses 2 pairs of magneto-resistive in 2 angled planes connected in Wheatstone bridge circuit
JP4085859B2 (en) 2002-03-27 2008-05-14 ヤマハ株式会社 Magnetic sensor and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345498A (en) * 2000-06-02 2001-12-14 Yamaha Corp Magnetic sensor and manufacturing method thereof
JP2002333468A (en) * 2001-03-07 2002-11-22 Yamaha Corp Magnetometric sensor, and manufacturing method therefor
JP2004012156A (en) * 2002-06-04 2004-01-15 Wacoh Corp Three-dimensional magnetic sensor and method for manufacturing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8451003B2 (en) 2009-07-29 2013-05-28 Tdk Corporation Magnetic sensor having magneto-resistive elements on a substrate
JP2011047929A (en) * 2009-07-29 2011-03-10 Tdk Corp Magnetic sensor
JP2013518273A (en) * 2010-01-29 2013-05-20 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク Integrated magnetometer and its manufacturing process
JP2013205417A (en) * 2012-03-27 2013-10-07 Robert Bosch Gmbh Sensor, method for manufacturing of sensor and method for installation of sensor
JP2015532429A (en) * 2012-10-12 2015-11-09 メムシック, インコーポレイテッドMemsic, Inc. Monolithic 3-axis magnetic field sensor
JP2019075587A (en) * 2013-03-25 2019-05-16 ローム株式会社 Semiconductor device
US9176204B2 (en) 2014-03-07 2015-11-03 Mitsubishi Electric Corporation TMR magnetic sensor including a conductive material and a passivation film and manufacturing method therefor
WO2016075763A1 (en) * 2014-11-12 2016-05-19 株式会社日立製作所 Magnetic sensor
WO2017094888A1 (en) 2015-12-03 2017-06-08 アルプス電気株式会社 Magnetic detection device
US10466315B2 (en) 2015-12-03 2019-11-05 Alps Alpine Co., Ltd. Magnetic detection device including a bridge circuit and magnetoresistive elements provided on inclined surfaces of substrate recesses
US10908233B2 (en) 2015-12-03 2021-02-02 Alps Electric Co., Ltd. Magnetic detection device and method for manufacturing the same
JP2021156733A (en) * 2020-03-27 2021-10-07 Tdk株式会社 Magnetic sensor and method for manufacturing the same
JP2022071641A (en) * 2020-10-28 2022-05-16 Tdk株式会社 Magnetic sensor and method for manufacturing the same
JP7347397B2 (en) 2020-10-28 2023-09-20 Tdk株式会社 Magnetic sensor and its manufacturing method
JP7488840B2 (en) 2021-09-22 2024-05-22 Tdk株式会社 Magnetic Field Detection Device
WO2023162927A1 (en) * 2022-02-28 2023-08-31 ソニーセミコンダクタソリューションズ株式会社 Storage device, electronic apparatus, and method for producing storage device

Also Published As

Publication number Publication date
JP5157611B2 (en) 2013-03-06
CN101325210B (en) 2010-11-24
KR100996712B1 (en) 2010-11-25
DE602008000820D1 (en) 2010-04-29
KR20080109683A (en) 2008-12-17
CN101325210A (en) 2008-12-17

Similar Documents

Publication Publication Date Title
JP5157611B2 (en) Magnetic sensor and manufacturing method thereof
EP2003462B1 (en) Magnetic sensor and production method thereof
US10276789B2 (en) Methods of manufacturing a magnetic field sensor
JP5152495B2 (en) Magnetic sensor and portable information terminal device
EP2267470B1 (en) Integrated three-dimensional magnetic sensing device and fabrication method
US10353020B2 (en) Manufacturing method for integrated multilayer magnetoresistive sensor
US9182458B2 (en) Magnetoresistive sensing device
EP2053415B1 (en) Integrated 3-axis field sensor and fabrication methods
JP2016502098A (en) Magnetic sensing device and magnetic induction method thereof
JP2006003116A (en) Magnetic sensor
KR20150102052A (en) Magnetic Sensing Apparatus, Magnetic Induction Method and Preparation Technique Therefor
JP2007240530A (en) Motion sensor
JP4689516B2 (en) Magnetic detector
EP3462201B1 (en) Magnetic field sensor with coil structure and method of fabrication
KR100649781B1 (en) 3-axis Magnetic Sensor Using Magnetoimpedance Sensor and All-Orientation Magnetic Sensor Using the Same
JP2023046268A (en) sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R151 Written notification of patent or utility model registration

Ref document number: 5157611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees