JP2006118965A - Photodetection circuit, electro-optical device, and electronic equipment - Google Patents

Photodetection circuit, electro-optical device, and electronic equipment Download PDF

Info

Publication number
JP2006118965A
JP2006118965A JP2004306605A JP2004306605A JP2006118965A JP 2006118965 A JP2006118965 A JP 2006118965A JP 2004306605 A JP2004306605 A JP 2004306605A JP 2004306605 A JP2004306605 A JP 2004306605A JP 2006118965 A JP2006118965 A JP 2006118965A
Authority
JP
Japan
Prior art keywords
light
signal
circuit
current
electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004306605A
Other languages
Japanese (ja)
Other versions
JP4599985B2 (en
Inventor
Shinsuke Fujikawa
紳介 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004306605A priority Critical patent/JP4599985B2/en
Publication of JP2006118965A publication Critical patent/JP2006118965A/en
Application granted granted Critical
Publication of JP4599985B2 publication Critical patent/JP4599985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Liquid Crystal (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photodetection circuit capable of detecting accurately environmental light in a simple manufacturing process, and also provide an electro-optical device using it, and electronic equipment. <P>SOLUTION: A photodiode 310A outputs a current I1 corresponding to the environmental light and background light. A shielding film 350 is provided on the surface where the environmental light of a photodiode 310B enters. The photodiode 310B outputs a current I2 corresponding to the background light. A differential current Δi flows in a capacitor 320. Consequently, the potential of a node Q becomes correspondingly the quantity of the environmental light. A switching element 330 for switching on/off in the period of a reset signal RESET is provided in parallel with the capacitor 320. A NAND circuit 340 operates inversion of a logical product between the potential of the node Q and a reference signal REF, and outputs the operation result through inverters 350, 360, 370 as a pulse signal. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、照度を検出可能な正確に環境光を検出可能な光検出回路、これを用いた電気光学装置、および電子機器に関する。   The present invention relates to a photodetection circuit capable of accurately detecting ambient light capable of detecting illuminance, an electro-optical device using the photodetection circuit, and an electronic apparatus.

透過型又は反透過型の液晶装置では、液晶パネルの背面にバックライトが設けられている。バックライトからの光は、液晶パネルによって変調される。液晶パネルには、複数の画素がマトリクス状に形成されており、画素ごとに透過率を調整することによって、画像が表示される。このような液晶装置において、バックライトの消費電力は大きい。そこで、液晶装置の消費電力を削減するために光検出回路を設け、環境光の大きさに応じてバックライトの強度を調整することがある(例えば、特許文献1及び特許文献2)。さらに部品削減などの目的で、光検出回路を液晶装置のガラス基板上に形成することが知られている(特許文献3)。   In a transmissive or anti-transmissive liquid crystal device, a backlight is provided on the back of the liquid crystal panel. Light from the backlight is modulated by the liquid crystal panel. A plurality of pixels are formed in a matrix on the liquid crystal panel, and an image is displayed by adjusting the transmittance for each pixel. In such a liquid crystal device, the power consumption of the backlight is large. Therefore, a photodetection circuit may be provided to reduce power consumption of the liquid crystal device, and the intensity of the backlight may be adjusted in accordance with the magnitude of the ambient light (for example, Patent Document 1 and Patent Document 2). Furthermore, it is known that a light detection circuit is formed on a glass substrate of a liquid crystal device for the purpose of reducing parts (Patent Document 3).

特開平5−265401号公報(請求項1及び図2)JP-A-5-265401 (Claims 1 and 2) 特開平6−11713号公報(請求項1及び図1)JP-A-6-11713 (Claim 1 and FIG. 1) 特開平2000−131137号公報Japanese Unexamined Patent Publication No. 2000-131137

ところで、ガラス基板上に光検出回路を設けると、光検出回路には検出対象の環境光とバックライトから光が入射してしまう。このため、両者を分離する必要がある。簡便にはバックライトの成分から光センサを隔離するために、半導体膜下に適当な遮光性膜を配置することが考えられる。
しかしながら、半導体膜の成膜には凹凸が極めて少ない下地を形成すなど精密な製造工程が必要とされる。このため、半導体膜の下層に遮光膜を配置すると、製造工程が複雑化し歩留まりが低下するなどの懸念がある。
本発明は、このような事情に鑑みてなされたものであり、その目的は、簡易な製造工程で正確に環境光を検出可能な光検出回路、これを用いた電気光学装置、および電子機器を提供することにある。
By the way, when a light detection circuit is provided on a glass substrate, light from the ambient light to be detected and the backlight enters the light detection circuit. For this reason, it is necessary to isolate | separate both. In order to easily isolate the optical sensor from the backlight components, an appropriate light-shielding film may be disposed under the semiconductor film.
However, a precise manufacturing process is required for forming a semiconductor film, such as forming a base with very little unevenness. For this reason, when the light shielding film is disposed under the semiconductor film, there is a concern that the manufacturing process becomes complicated and the yield decreases.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a photodetector circuit capable of accurately detecting ambient light with a simple manufacturing process, an electro-optical device using the same, and an electronic apparatus. It is to provide.

上述した課題を解決するために、本発明に係る光検出回路は、対象光と外乱光とが入射光として入射するものであって、前記入射光の光量に応じた第1電流を出力する主センサと、前記対象光が入射する面に遮光膜が設けられ、前記外乱光の光量に応じた第2電流を出力する副センサとを備え、前記主センサと前記副センサとは接続点を介して直列に接続され、前記接続点から前記第1電流と前記第2電流の差分電流を出力信号として取り出すことを特徴とする。   In order to solve the above-described problems, a light detection circuit according to the present invention is one in which target light and disturbance light are incident as incident light, and outputs a first current corresponding to the amount of incident light. A sensor, a light-shielding film is provided on a surface on which the target light is incident, and a sub-sensor that outputs a second current according to the amount of the disturbance light. The main sensor and the sub-sensor are connected via a connection point. The differential current between the first current and the second current is taken out as an output signal from the connection point.

この発明によれば、副センサに入射する光は背景光のみとなるので、差分電流の大きさは対象光の光量に応じたものとなる。また、遮光膜は、対象光が入射する面に形成すればよいので、光検出回路を簡易に構成することができる。なお、対象光とは、検出の対象となる光の意味であり、例えば、実施形態の環境光が該当する。一方、外乱光とは、検出の対象とならない光の意味であり、例えば、実施形態の背景光が該当する。   According to the present invention, since the light incident on the sub sensor is only the background light, the magnitude of the differential current is in accordance with the amount of the target light. Further, since the light shielding film may be formed on the surface on which the target light is incident, the photodetection circuit can be configured easily. Note that the target light means light to be detected, and corresponds to, for example, the environmental light in the embodiment. On the other hand, disturbance light means light that is not a detection target, and corresponds to, for example, background light in the embodiment.

また、本発明に係る他の光検出回路は、対象光と外乱光とが入射光として入射するものであって、主センサと副センサが接続点を介して直列に接続された複数の単位回路と、前記副センサの前記対象光が入射する面に設けられた遮光膜とを備え、前記主センサは、前記入射光の光量に応じた第1電流を出力し、前副センサは、前記外乱光の光量に応じた第2電流を出力し、前記複数の単位回路の各々に設けられた前記接続点を相互に接続して、前記第1電流の総電流と前記第2電流の総電流の差分電流を出力信号として取り出す、ことを特徴とする。この発明によれば、複数の主センサと複数の副センサを用いるので、より正確に対象光を検出することができる。また、差分電流の大きさを大きくすることができので、ノイズマージンを向上させることができる。   Further, another photodetection circuit according to the present invention is one in which target light and disturbance light are incident as incident light, and a plurality of unit circuits in which a main sensor and a sub sensor are connected in series via a connection point. And a light-shielding film provided on the surface of the sub sensor on which the target light is incident, the main sensor outputs a first current corresponding to the amount of the incident light, and the front sub-sensor outputs the disturbance A second current corresponding to the amount of light is output, the connection points provided in each of the plurality of unit circuits are connected to each other, and the total current of the first current and the total current of the second current are The differential current is taken out as an output signal. According to the present invention, since the plurality of main sensors and the plurality of sub sensors are used, the target light can be detected more accurately. In addition, since the magnitude of the differential current can be increased, the noise margin can be improved.

より好ましい態様としては、前記複数の単位回路を、行方向および列方向の少なくとも一方に沿って配置し、前記主センサと前記副センサとは、前記行方向または前記列方向において、交互に配置することが望ましい。この場合には、主センサと副センサを分散させて配置することができるので、外乱光の照射条件を揃えることができ、また、温度分布の影響、さらには、製造上のバラツキを受け難くすることが可能になる。これにより、対象光の検出精度を大幅に向上させることができる。なお、複数の単体回路をマトリクス状に配置してもよく、この場合、主センサと副センサを千鳥状に配置してもよい。
また、主センサと副センサの具体的な態様としては、前記主センサの光電変換特性と前記副センサの光電変換特性は等しいことが好ましく、さらに、前記主センサおよび前記副センサの各々は、フォトダイオードで構成され、前記フォトダイオードは逆バイアスされる。
As a more preferred aspect, the plurality of unit circuits are arranged along at least one of a row direction and a column direction, and the main sensor and the sub sensor are alternately arranged in the row direction or the column direction. It is desirable. In this case, the main sensor and the sub sensor can be arranged in a distributed manner, so that the ambient light irradiation conditions can be made uniform, and the influence of the temperature distribution and the manufacturing variations are less likely to occur. It becomes possible. Thereby, the detection precision of object light can be improved significantly. A plurality of single circuits may be arranged in a matrix, and in this case, the main sensor and the sub sensor may be arranged in a staggered manner.
Further, as a specific mode of the main sensor and the sub sensor, it is preferable that the photoelectric conversion characteristics of the main sensor and the photoelectric conversion characteristics of the sub sensor are equal, and each of the main sensor and the sub sensor includes a photo It is composed of a diode, and the photodiode is reverse-biased.

また、上述した光検出回路において、一端が前記接続点に接続され、他端が電源に接続された容量素子と、前記容量素子と並列に設けられ、所定周期でオン・オフするスイッチング素子とを備え、前記接続点の電圧信号を出力信号として取り出すことが好ましい。この発明によれば、スイッチング素子によって容量素子の両端は所定周期で短絡されるので、接続点の電圧信号は照度を示す信号となる。一般に、主センサおよび副センサの出力電流は微小であるので、抵抗体を用いて電圧信号を生成するには、大きな抵抗値を有する抵抗体を用いる必要があり、回路面積が増大する。これに対して、容量素子を用いる場合には、微小な電流を充電するのに十分な低容量値の小さい素子で足りる。従って、回路規模を大幅に縮小することができる。また、高抵抗値の抵抗体はアンテナとして作用するのでノイズが混入することがあるが、本発明の光検出回路では容量素子を用いるので、ノイズマージンの大きく正確に照度を検出することができる。   In the above-described photodetector circuit, a capacitive element having one end connected to the connection point and the other end connected to a power supply, and a switching element provided in parallel with the capacitive element and turned on and off at a predetermined cycle are provided. Preferably, the voltage signal at the connection point is taken out as an output signal. According to the present invention, since both ends of the capacitive element are short-circuited at a predetermined cycle by the switching element, the voltage signal at the connection point is a signal indicating illuminance. In general, since the output currents of the main sensor and the sub sensor are very small, it is necessary to use a resistor having a large resistance value in order to generate a voltage signal using the resistor, which increases the circuit area. On the other hand, when a capacitive element is used, an element with a small low capacitance value sufficient for charging a minute current is sufficient. Therefore, the circuit scale can be greatly reduced. In addition, since the high-resistance resistor acts as an antenna, noise may be mixed in. However, since the photodetection circuit of the present invention uses a capacitive element, the illuminance can be accurately detected with a large noise margin.

また、上述した光検出回路は、前記電圧信号を周波数信号に変換する電圧周波数変換回路を備え、前記電圧信号の替わりに前記周波数信号を前記出力信号として取り出すことが好ましい。この場合には、光検出回路から周波数信号を出力するので、ノイズマージンが向上し信号の取り扱いが容易になる。
より具体的には、前記電圧周波数変換回路は、前記電圧信号と前記スイッチング素子のオン・オフの周期より短い周期の基準信号との論理積を演算して2値化信号を出力する論理回路を備え、前記2値化信号を前記周波数信号として出力する、ことが好ましい。この構成によれば、論理回路によって周波数信号たる2値化信号を出力できるので、構成を簡易なものにすることができる。
くわえて、光検出回路は、前記2値化信号を計数して、単位時間当たりの計数結果を示す計数データ信号を出力する計数手段を備え、前記計数データ信号を前記出力信号として出力することが好ましい。この場合には、デジタル信号として出力することが可能となる。
In addition, it is preferable that the above-described light detection circuit includes a voltage frequency conversion circuit that converts the voltage signal into a frequency signal, and takes out the frequency signal as the output signal instead of the voltage signal. In this case, since the frequency signal is output from the photodetection circuit, the noise margin is improved and the signal is easily handled.
More specifically, the voltage frequency conversion circuit includes a logic circuit that calculates a logical product of the voltage signal and a reference signal having a cycle shorter than the ON / OFF cycle of the switching element and outputs a binarized signal. And the binarized signal is output as the frequency signal. According to this configuration, since the binarized signal that is a frequency signal can be output by the logic circuit, the configuration can be simplified.
In addition, the photodetection circuit includes a counting unit that counts the binarized signal and outputs a count data signal indicating a count result per unit time, and outputs the count data signal as the output signal. preferable. In this case, it can be output as a digital signal.

次に、本発明に係る電気光学装置は、上述した光検出回路と、複数のデータ線と、複数の走査線と、各々が前記データ線と前記走査データの交差に対応して設けられ、電気的な作用によって透過率が変化する液晶素子を含む複数の画素回路とを有する電気光学パネルと、前記電気光学パネルの一方の面から他方の面へ向けて光を照射する光源と、前記光源の光量を前記光検出回路の前記出力信号に基づいて調整する調光回路とを、備えることを特徴とする。この発明によれば、光検出回路によって検出された環境照度に応じて光源の光量を調整することができるので、例えば明るい場所では光源の発光輝度を高くする一方、暗い場所では光源の発光輝度を低くすることができる。この結果、見やすい画面を表示でき、かつ、消費電力を削減することが可能となる。   Next, an electro-optical device according to the present invention is provided with the above-described light detection circuit, a plurality of data lines, and a plurality of scanning lines, each corresponding to the intersection of the data lines and the scanning data. An electro-optical panel having a plurality of pixel circuits including a liquid crystal element whose transmittance is changed by a general action, a light source that irradiates light from one surface of the electro-optical panel to the other surface, And a dimming circuit that adjusts the amount of light based on the output signal of the photodetection circuit. According to the present invention, since the light amount of the light source can be adjusted according to the ambient illuminance detected by the light detection circuit, for example, the light emission luminance of the light source is increased in a bright place, while the light emission luminance of the light source is increased in a dark place. Can be lowered. As a result, an easy-to-view screen can be displayed and power consumption can be reduced.

次に、本発明に係る他の電気光学装置は、複数のデータ線と、複数の走査線と、各々が前記データ線と前記走査データの交差に対応して設けられ、電気的な作用によって光学特性が変化する電気光学素子を含む画素回路と、複数の制御信号を生成する制御回路と、前記複数の制御信号に基づいて駆動信号を生成し、当該駆動信号を前記複数のデータ線および前記複数の走査線のうち少なくとも一方に出力する駆動回路と、対象光と外乱光からなる入射光の光量に応じた第1電流を出力する主センサと、前記対象光が入射する面に遮光膜が設けられ前記外乱光の光量に応じた第2電流を出力する共に前記主センサと接続点を介して直列に接続され副センサと、一端が前記接続点に接続され、他端が電源に接続された容量素子と、前記容量素子と並列に設けられ第1信号に基づいてオン・オフするスイッチング素子とを備えた光検出回路を具備し、前記第1信号を前記複数の制御信号の何れかと兼用したことを特徴とする。   Next, another electro-optical device according to the present invention is provided with a plurality of data lines, a plurality of scanning lines, each corresponding to the intersection of the data lines and the scanning data, and optically operated by an electric action. A pixel circuit including an electro-optical element whose characteristics change, a control circuit that generates a plurality of control signals, a drive signal based on the plurality of control signals, and the drive signals that are the plurality of data lines and the plurality of data A driving circuit that outputs to at least one of the scanning lines, a main sensor that outputs a first current corresponding to the amount of incident light including target light and disturbance light, and a light-shielding film on a surface on which the target light is incident And outputs a second current corresponding to the amount of the disturbance light, and is connected in series with the main sensor via a connection point, and has a sub sensor, one end connected to the connection point, and the other end connected to a power source. A capacitive element and the capacitive element; Comprising a photodetector circuit and a switching element for turning on and off based on the first signal provided to the column, characterized in that the first signal was also used as one of the plurality of control signals.

この発明によれば、第1信号(例えば、実施形態のリセット信号RESET)を生成するための特別な構成が不要となるので、構成を簡易なものにすることができ、電気光学装置のコストを削減することができる。さらに、電気光学パネルに、データ線、走査線、画素回路、駆動回路および光検出回路を備える場合には、電気光学パネルの入力端子数を削減して、狭ピッチ化に対応することが可能となる。また、光検出回路は、前記第1信号より周期の短い第2信号(例えば、実施形態の基準信号REF)との論理積を演算して2値化信号を出力する論理回路を更に有し、前記第1信号および前記第2信号を前記複数の制御信号の何れかと兼用してもよい。この場合には、第1信号および第2信号を生成するための特別な構成が不要となるので、構成を簡易なものにすることができ、電気光学装置のコストを削減することができる。
次に、本発明に係る電子機器は、上述した電気光学装置を備えることが好ましい。この電子機器としては、例えばパーソナルコンピュータ、携帯電話機、及び情報携帯端末等が含まれる。
According to the present invention, since a special configuration for generating the first signal (for example, the reset signal RESET of the embodiment) is not necessary, the configuration can be simplified and the cost of the electro-optical device can be reduced. Can be reduced. Furthermore, when the electro-optical panel is provided with data lines, scanning lines, pixel circuits, driving circuits, and light detection circuits, it is possible to reduce the number of input terminals of the electro-optical panel and cope with a narrow pitch. Become. The photodetector circuit further includes a logic circuit that calculates a logical product with a second signal (for example, the reference signal REF of the embodiment) having a shorter cycle than the first signal and outputs a binarized signal, The first signal and the second signal may be combined with any of the plurality of control signals. In this case, since a special configuration for generating the first signal and the second signal is not necessary, the configuration can be simplified, and the cost of the electro-optical device can be reduced.
Next, an electronic apparatus according to the present invention preferably includes the above-described electro-optical device. Examples of the electronic device include a personal computer, a cellular phone, and an information portable terminal.

<1.第1実施形態>
本発明の第1実施形態に係る電気光学装置は、電気光学材料として液晶を用いる。電気光学装置1は、主要部として液晶パネルAA(電気光学パネルの一例)を備える。液晶パネルAAは、スイッチング素子として薄膜トランジスタ(Thin Film Transistor:以下、「TFT」と称する)を形成した素子基板と対向基板とを互いに電極形成面を対向させて、かつ、一定の間隙を保って貼付し、この間隙に液晶が挟持されている。
<1. First Embodiment>
The electro-optical device according to the first embodiment of the present invention uses liquid crystal as an electro-optical material. The electro-optical device 1 includes a liquid crystal panel AA (an example of an electro-optical panel) as a main part. The liquid crystal panel AA is bonded to an element substrate on which a thin film transistor (hereinafter referred to as “TFT”) is formed as a switching element and a counter substrate with the electrode formation surfaces facing each other and maintaining a certain gap. However, liquid crystal is sandwiched between the gaps.

図1は第1実施形態に係る電気光学装置1の全体構成を示すブロック図である。この電気光学装置1は、液晶パネルAA、調光回路500、バックライト600、信号生成回路700、制御回路800、画像処理回路900を備える。この液晶パネルAAは透過型であるが、半透過型であってもよい。信号生成回路700は、リセット信号RESETと基準信号REFを生成する。これらの信号は光センサ回路300で用いられる。液晶パネルAAは、その素子基板上に画像表示領域A、走査線駆動回路100、データ線駆動回路200、光センサ回路300および計数回路400を備える。制御回路800は、X転送開始パルスDXおよびXクロック信号XCKを生成してデータ線駆動回路200に供給すると共に、Y転送開始パルスDYおよびYクロック信号YCKを生成して走査線駆動回路100に供給する。画像表示領域Aには、複数の画素回路P1がマトリクス状に形成されており、画素回路P1ごとに透過率を制御することができる。バックライト600からの光は、画素回路P1を介して射出される。これによって、光変調による階調表示が可能となる。調光回路500は、照度データ400aに応じた輝度でバックライト600が発光するように調整する。なお、照度データ400aは、環境の照度を示すデータである。   FIG. 1 is a block diagram showing the overall configuration of the electro-optical device 1 according to the first embodiment. The electro-optical device 1 includes a liquid crystal panel AA, a light control circuit 500, a backlight 600, a signal generation circuit 700, a control circuit 800, and an image processing circuit 900. The liquid crystal panel AA is a transmissive type, but may be a transflective type. The signal generation circuit 700 generates a reset signal RESET and a reference signal REF. These signals are used in the optical sensor circuit 300. The liquid crystal panel AA includes an image display area A, a scanning line driving circuit 100, a data line driving circuit 200, an optical sensor circuit 300, and a counting circuit 400 on the element substrate. The control circuit 800 generates an X transfer start pulse DX and an X clock signal XCK and supplies them to the data line driving circuit 200, and also generates a Y transfer start pulse DY and a Y clock signal YCK and supplies them to the scanning line driving circuit 100. To do. In the image display area A, a plurality of pixel circuits P1 are formed in a matrix, and the transmittance can be controlled for each pixel circuit P1. Light from the backlight 600 is emitted through the pixel circuit P1. Thereby, gradation display by light modulation becomes possible. The dimming circuit 500 adjusts so that the backlight 600 emits light with the luminance according to the illuminance data 400a. The illuminance data 400a is data indicating the illuminance of the environment.

ところで、表示画像の見え易さは環境の明るさによって左右される。例えば、日中の自然光の下では、バックライト600の発光輝度を高く設定し、明るい画面を表示する必要がある。一方、夜間の暗い環境の下では、バックライト600の発光起動が日中ほど高くなくても鮮明な画像を表示することができる。従って、バックライト600の発光輝度は、環境光の照度に応じて調整することが望ましい。液晶パネルAAに設けられた光センサ回路300および計数回路400は、環境光の照度を計測するために用いられる。   By the way, the visibility of the display image depends on the brightness of the environment. For example, under natural daylight, it is necessary to set the light emission luminance of the backlight 600 high and display a bright screen. On the other hand, in a dark environment at night, a clear image can be displayed even if the light emission activation of the backlight 600 is not as high as during the day. Therefore, it is desirable to adjust the light emission luminance of the backlight 600 according to the illuminance of the ambient light. The optical sensor circuit 300 and the counting circuit 400 provided in the liquid crystal panel AA are used for measuring the illuminance of ambient light.

図2に光センサ回路300の回路図を示す。この図に示すようにフォトダイオード310Aおよび310Bは、高電位側電源VHと低電位側電源VLとの間に直列に接続されている。フォトダイオード310Aおよび310Bは、例えばPINダイオードで構成され、逆バイアスされている。フォトダイオード310Aおよび310Bは半導体領域を形成するプロセス、N型領域を形成するプロセス、P型領域を形成するプロセスがあれば作成できるので、画素回路P1/走査線駆動回路/データ線駆動回路を構成するTFTと同一のプロセスで素子基板上に形成される。フォトダイオード310Aの光電変換特性とフォトダイオード310Bの光電変換特性は素子基板上で近接させ同一素子サイズにて形成すれば概ね等しい。光電変換特性とは入力する光の量と出力電流の大きさの関係を規定するものである。   FIG. 2 shows a circuit diagram of the optical sensor circuit 300. As shown in this figure, the photodiodes 310A and 310B are connected in series between the high potential side power source VH and the low potential side power source VL. The photodiodes 310A and 310B are composed of, for example, PIN diodes and are reverse-biased. The photodiodes 310A and 310B can be created if there is a process for forming a semiconductor region, a process for forming an N-type region, and a process for forming a P-type region, so that the pixel circuit P1 / scanning line driving circuit / data line driving circuit is configured. It is formed on the element substrate by the same process as the TFT to be performed. The photoelectric conversion characteristics of the photodiode 310A and the photoelectric conversion characteristics of the photodiode 310B are substantially equal if they are formed close to each other on the element substrate and have the same element size. The photoelectric conversion characteristics define the relationship between the amount of input light and the magnitude of the output current.

フォトダイオード310Aには、環境光と背景光が入射光として入射する。フォトダイオード310Aは、入射光の光量に応じた第1電流i1を出力する。ここで、環境光は計測の対象である対象光に相当し、背景光は計測の対象とならない外乱光に相当する。フォトダイオード310Aは、環境光と外乱光とを含む入射光の光量に応じた第1電流i1を出力する主センサとして機能する。   Ambient light and background light enter the photodiode 310A as incident light. The photodiode 310A outputs a first current i1 corresponding to the amount of incident light. Here, ambient light corresponds to target light that is a measurement target, and background light corresponds to disturbance light that is not a measurement target. The photodiode 310A functions as a main sensor that outputs a first current i1 corresponding to the amount of incident light including ambient light and disturbance light.

一方、フォトダイオード310Bにおいて、環境光が入射する面には遮光膜350が設けられている。遮光膜350には光を遮る機能がある。従って、フォトダイオード310Bには環境光が入射せず、背景光のみが入射する。フォトダイオード310Bは、背景光の光量に応じた第2電流i2を出力する。即ち、フォトダイオード310Bは、外乱光の光量に応じた第2電流i2を出力する副センサとして機能する。また、遮光膜350としては液晶パネルAの基板上に設けられた膜を利用できる。なぜならば遮光膜350は液晶パネルAの上方から照射される環境光を遮断すればよいからである。よって、遮光膜350には配線金属層、(反射型液晶表示装置では)反射金属層などを使用できる。あるいは、カラーフィルタ側に設けられたブラックマトリクス膜を利用してもよい。   On the other hand, in the photodiode 310B, a light shielding film 350 is provided on the surface on which the ambient light is incident. The light shielding film 350 has a function of shielding light. Accordingly, ambient light is not incident on the photodiode 310B, and only background light is incident. The photodiode 310B outputs a second current i2 corresponding to the amount of background light. That is, the photodiode 310B functions as a sub sensor that outputs the second current i2 according to the amount of disturbance light. Further, as the light shielding film 350, a film provided on the substrate of the liquid crystal panel A can be used. This is because the light shielding film 350 only needs to block the ambient light irradiated from above the liquid crystal panel A. Therefore, a wiring metal layer, a reflection metal layer (in the case of a reflective liquid crystal display device), or the like can be used for the light shielding film 350. Alternatively, a black matrix film provided on the color filter side may be used.

フォトダイオード310Aおよび310Bは、ノードQを介して接続されており、ノードQとグランドGND(低電位側電源)との間にキャパシタ320が設けられている。ノードQからは、第1電流I1と第2電流I2の差分電流Δi(=I1−I2)がキャパシタ320に出力される。ここで、第1電流I1は環境光成分Iaと背景光成分Ibを含み、第2電流I2は背景光成分Ibのみを含む。従って、差分電流Δiは、以下の式(1)で与えられる。
Δi=I1−I2=(Ia+Ib)−Ib=Ia……(1)
The photodiodes 310A and 310B are connected via a node Q, and a capacitor 320 is provided between the node Q and the ground GND (low potential side power supply). From node Q, differential current Δi (= I1−I2) between first current I1 and second current I2 is output to capacitor 320. Here, the first current I1 includes the ambient light component Ia and the background light component Ib, and the second current I2 includes only the background light component Ib. Therefore, the differential current Δi is given by the following equation (1).
Δi = I1−I2 = (Ia + Ib) −Ib = Ia (1)

但し、式(1)が成り立つためには、フォトダイオード310Aおよび310Bに同一光量の背景光が入射し、かつ、フォトダイオード310Aおよび310Bの光電変換特性が等しいことが必要である。フォトダイオード310Aおよび310Bは、同一の製造プロセスで製造されるので、それらの光電変換特性の差は許容される程度のものである。また、フォトダイオード310Aおよび310Bは近接して配置されるので、背景光の光量の差も無視することができる。換言すれば、光量差が許容できる程度にフォトダイオード310Aおよび310Bは近接して配置される。差分電流Δiの大きさは環境光の光量に応じたものとなる。このように本実施形態においては、環境光(対象光)と背景光(外乱光)の光量に応じた電流I1を出力するフォトダイオード310Aと、環境光を遮断する遮光膜350と、背景光(外乱光)の光量に応じた電流I2を出力するフォトダイオード310Bとを備え、差分電流Δiを出力するので、環境光の光量(照度)を正確に検出することができる。しかも、遮光膜350は、液晶パネルAの上方から照射される環境光を遮断すればよいから、半導体膜の上部に設ければよい。このため、製造工程が簡略化され、歩留まりを高めることができる。   However, in order for Formula (1) to hold, it is necessary that the same amount of background light is incident on the photodiodes 310A and 310B, and that the photoelectric conversion characteristics of the photodiodes 310A and 310B are equal. Since the photodiodes 310A and 310B are manufactured by the same manufacturing process, the difference in their photoelectric conversion characteristics is acceptable. Further, since the photodiodes 310A and 310B are arranged close to each other, a difference in the amount of background light can be ignored. In other words, the photodiodes 310A and 310B are arranged close to each other to the extent that the light amount difference is acceptable. The magnitude of the difference current Δi depends on the amount of ambient light. As described above, in the present embodiment, the photodiode 310A that outputs the current I1 corresponding to the amounts of ambient light (target light) and background light (disturbance light), the light shielding film 350 that blocks ambient light, and the background light ( Since the photodiode 310B that outputs the current I2 corresponding to the amount of disturbance light) and the differential current Δi are output, the amount of ambient light (illuminance) can be accurately detected. In addition, the light-shielding film 350 only needs to be provided above the semiconductor film because it only needs to block ambient light irradiated from above the liquid crystal panel A. For this reason, a manufacturing process is simplified and a yield can be improved.

また、ノードQには、スイッチング素子330の一端が接続され、その他端がグランドGNDに接続される。キャパシタ320には差分電流Δiによって電荷が蓄積されノードQの電位が上昇するが、スイッチング素子330がオン状態になると、蓄積された電荷が放電されてノードQの電位がグランドレベルになる。ここで、VH、VL、およびGNDの電位の関係は、VH>GND>VLの関係がある。次に、スイッチング素子330はTFTによって構成され、そのゲートに供給されるリセット信号RESTがアクティブ(ハイレベル)になるとオン状態になり、リセット信号RESTが非アクティブ(ローレベルになるとオフ状態になる。ノードQはNAND回路340の一方の入力端子に接続され、その他方の入力端子には基準信号REFが供給される。基準信号REFの周期はリセット信号RESETの周期より短い。NAND回路340の出力信号は、3個のインバータ350、360、および370を介してパルス信号300aとして出力される。   Further, one end of the switching element 330 is connected to the node Q, and the other end is connected to the ground GND. Charge is accumulated in the capacitor 320 due to the differential current Δi and the potential of the node Q rises. However, when the switching element 330 is turned on, the accumulated charge is discharged and the potential of the node Q becomes the ground level. Here, the relationship between the potentials VH, VL, and GND is VH> GND> VL. Next, the switching element 330 is configured by a TFT, and is turned on when a reset signal REST supplied to the gate thereof is active (high level), and is turned off when the reset signal REST is inactive (low level). The node Q is connected to one input terminal of the NAND circuit 340, and the other input terminal is supplied with the reference signal REF The cycle of the reference signal REF is shorter than the cycle of the reset signal RESET. Is output as a pulse signal 300a through three inverters 350, 360, and 370.

図3に光センサ回路300のタイミングチャートを示す。この例では、低照度においてノードQが出力する差分電流Δiの値をi1、高照度においてノードQが出力する差分電流Δiの値をi2とする。時刻t1から時刻t2までの期間においてリセット信号RESETがアクティブになると、スイッチング素子330がオン状態となり、キャパシタ320の両端が短絡される。この結果、ノードQの電位はグランドレベルとなる。そして、時刻t2に至ると、スイッチング素子330がオフ状態となり、キャパシタ320に対する充電が開始される。このため、時刻t2からノードQの電位が上昇する。この場合、キャパシタ320は定電流で充電されるので、ノードQの電位変化の波形は直線となる。また、電位波形の傾きは、電流値が大きいほど大きくなる。この例では、i1>i2であるので、立ち上がり時間Taは立ち上がり時間Tbより短くなる。   FIG. 3 shows a timing chart of the optical sensor circuit 300. In this example, the value of the differential current Δi output by the node Q at low illuminance is i1, and the value of the differential current Δi output by the node Q at high illuminance is i2. When the reset signal RESET becomes active during the period from time t1 to time t2, the switching element 330 is turned on, and both ends of the capacitor 320 are short-circuited. As a result, the potential of the node Q becomes the ground level. When time t2 is reached, switching element 330 is turned off and charging of capacitor 320 is started. For this reason, the potential of the node Q rises from time t2. In this case, since the capacitor 320 is charged with a constant current, the waveform of the potential change at the node Q is a straight line. The slope of the potential waveform increases as the current value increases. In this example, since i1> i2, the rise time Ta is shorter than the rise time Tb.

NAND回路340はノードQの電位と基準信号REFの論理積を演算する論理回路として機能する。このため、差分電流Δiの値がi1の場合には、時刻taから時刻t3までの期間においてパルス信号300aが出力され、差分電流Δiの値がi2の場合には、時刻tbから時刻t3までの期間においてパルス信号300aが出力される。ここで、時刻t2から時刻t3までの期間に発生するパルス信号300aの個数を比較すると、電流値がi1の場合には8個となり、電流値がi2の場合には3個となる。上述したように電流値i1は環境の照度が高く、電流値i2は環境の照度が低い場合に得られる差分電流Δiの値である。従って、パルス信号300aの周波数は環境の照度の指標となり、照度が高い程、周波数が高くなる。換言すれば、光センサ回路300は、環境の照度を示すパルス信号300aを周波数信号として出力する。図3では簡易的に表現したが、実際にはNAND回路340の動作点にノードQの電位が達した時点でパルス信号300aが出力される。   The NAND circuit 340 functions as a logic circuit that calculates the logical product of the potential of the node Q and the reference signal REF. For this reason, when the value of the differential current Δi is i1, the pulse signal 300a is output in the period from the time ta to the time t3, and when the value of the differential current Δi is i2, the time from the time tb to the time t3 is output. The pulse signal 300a is output during the period. Here, when the number of pulse signals 300a generated in the period from time t2 to time t3 is compared, the number is 8 when the current value is i1, and is 3 when the current value is i2. As described above, the current value i1 is the value of the differential current Δi obtained when the ambient illuminance is high and the current value i2 is low. Therefore, the frequency of the pulse signal 300a is an indicator of the illuminance of the environment, and the higher the illuminance, the higher the frequency. In other words, the optical sensor circuit 300 outputs the pulse signal 300a indicating the illuminance of the environment as a frequency signal. Although simply expressed in FIG. 3, the pulse signal 300 a is actually output when the potential of the node Q reaches the operating point of the NAND circuit 340.

フォトダイオード310Aおよび320Bなどの光電変換素子から出力される電流の値は極めて小さい。電流を電圧に変換するには抵抗体を用いればよいが、微小電流から電圧信号を取り出すには大きな抵抗値を有する抵抗体を形成する必要がある。そのような、抵抗体の占有面積は大きくレイアウトに問題がある。さらに、抵抗体がアンテナとして作用してノイズが混入する可能性があり、正確に照度を検出することが容易でない。本実施形態によれば、キャパシタ320を用いて差分電流Δiを積分して電圧信号に変換するので、小さな占有面積で正確に照度を検出することが可能となる。さらに、基準信号REFを外部から供給して、照度を周波数の形態で検出するので、ノイズマージンが向上し信号の取り扱いが容易になる。このようにして得られたパルス信号300aは図1に示す計数回路400に供給される。   The value of the current output from the photoelectric conversion elements such as the photodiodes 310A and 320B is extremely small. A resistor may be used to convert a current into a voltage, but a resistor having a large resistance value needs to be formed in order to extract a voltage signal from a minute current. Such an area occupied by the resistor is large, which causes a problem in layout. Furthermore, there is a possibility that noise acts due to the resistor acting as an antenna, and it is not easy to accurately detect the illuminance. According to the present embodiment, since the differential current Δi is integrated and converted into a voltage signal using the capacitor 320, the illuminance can be accurately detected with a small occupied area. Further, since the reference signal REF is supplied from the outside and the illuminance is detected in the form of frequency, the noise margin is improved and the handling of the signal becomes easy. The pulse signal 300a obtained in this way is supplied to the counting circuit 400 shown in FIG.

図4に、計数回路400の構成例を示す。計数回路400は、例えば、リセット信号RESETによって計数値がリセットされるカウンタ回路410と、カウンタ回路410の計数結果を示す計数データをリセット信号RESETでラッチするラッチ回路420によって構成される。ラッチ回路420の出力データは照度データ400aとして、調光回路500に出力される。   FIG. 4 shows a configuration example of the counting circuit 400. The counting circuit 400 includes, for example, a counter circuit 410 whose count value is reset by a reset signal RESET, and a latch circuit 420 that latches count data indicating the count result of the counter circuit 410 with the reset signal RESET. The output data of the latch circuit 420 is output to the dimming circuit 500 as illuminance data 400a.

次に、画像表示領域Aについて説明する。画像表示領域Aには、図5に示されるように、m(mは2以上の自然数)本の走査線2が、X方向に沿って平行に配列して形成される一方、n(nは2以上の自然数)本のデータ線3が、Y方向に沿って平行に配列して形成されている。そして、走査線2とデータ線3との交差付近においては、TFT50のゲートが走査線2に接続される一方、TFT50のソースがデータ線3に接続されるとともに、TFT50のドレインが画素電極6に接続される。そして、各画素は、画素電極6と、対向基板に形成される対向電極(後述する)と、これら両電極間に挟持された液晶とによって構成される。この結果、走査線2とデータ線3との各交差に対応して、画素はマトリクス状に配列されることとなる。
また、TFT50のゲートが接続される各走査線2には、走査信号Y1、Y2、…、Ymが、パルス的に線順次で印加される。このため、ある走査線2に走査信号が供給されると、当該走査線に接続されるTFT50がオンするので、データ線3から所定のタイミングで供給されるデータ信号X1、X2、…、Xnは、対応する画素に順番に書き込まれた後、所定の期間保持されることとなる。
Next, the image display area A will be described. In the image display region A, as shown in FIG. 5, m (m is a natural number of 2 or more) scanning lines 2 are formed in parallel along the X direction, while n (n is (Natural number of 2 or more) number of data lines 3 are arranged in parallel along the Y direction. In the vicinity of the intersection of the scanning line 2 and the data line 3, the gate of the TFT 50 is connected to the scanning line 2, while the source of the TFT 50 is connected to the data line 3 and the drain of the TFT 50 is connected to the pixel electrode 6. Connected. Each pixel includes a pixel electrode 6, a counter electrode (described later) formed on the counter substrate, and a liquid crystal sandwiched between the two electrodes. As a result, the pixels are arranged in a matrix corresponding to each intersection of the scanning line 2 and the data line 3.
Further, scanning signals Y1, Y2,..., Ym are applied in a pulse-sequential manner to each scanning line 2 to which the gate of the TFT 50 is connected. Therefore, when a scanning signal is supplied to a certain scanning line 2, the TFT 50 connected to the scanning line is turned on, so that the data signals X1, X2,..., Xn supplied from the data line 3 at a predetermined timing are After being written in order to the corresponding pixels, they are held for a predetermined period.

各画素に印加される電圧レベルに応じて液晶分子の配向や秩序が変化するので、光変調による階調表示が可能となる。例えば、液晶を通過する光量は、ノーマリーホワイトモードであれば、印加電圧が高くなるにつれて制限される一方、ノーマリーブラックモードであれば、印加電圧が高くなるにつれて緩和されるので、電気光学装置1全体では、画像信号に応じたコントラストを持つ光が各画素毎に出射される。このため、所定の表示が可能となる。
また、保持された画像信号がリークするのを防ぐために、蓄積容量51が、画素電極6と対向電極との間に形成される液晶容量と並列に付加される。例えば、画素電極6の電圧は、ソース電圧が印加された時間よりも3桁も長い時間だけ蓄積容量51により保持されるので、保持特性が改善される結果、高コントラスト比が実現される。
Since the orientation and order of liquid crystal molecules change according to the voltage level applied to each pixel, gradation display by light modulation becomes possible. For example, the amount of light passing through the liquid crystal is limited as the applied voltage increases in the normally white mode, whereas the amount of light that passes through the liquid crystal is reduced as the applied voltage increases in the normally black mode. As a whole, light having contrast according to the image signal is emitted for each pixel. For this reason, a predetermined display becomes possible.
In order to prevent the held image signal from leaking, a storage capacitor 51 is added in parallel with a liquid crystal capacitor formed between the pixel electrode 6 and the counter electrode. For example, the voltage of the pixel electrode 6 is held by the storage capacitor 51 for a time that is three orders of magnitude longer than the time when the source voltage is applied, so that the holding characteristics are improved, so that a high contrast ratio is realized.

図6に、走査線駆動回路100とデータ線駆動回路200のタイミングチャートを示す。走査線駆動回路100は、1フレーム(1F)周期のY転送開始パルスDYを、Yクロック信号YCKに従って順次シフトして走査信号Y1、Y2、…Ymを生成する。走査信号Y1〜Ymは各水平走査期間(1H)において順次アクティブとなる。データ線駆動回路200は、水平走査周期のX転送開始パルスDXをXクロック信号XCKに従って転送して、サンプリング信号S1、S2、…Snを内部的に生成する。そして、データ線駆動回路200は、画像信号VIDをサンプリング信号S1、S2、…Snを用いてサンプリングしてデータ信号X1、X2、…Xnを生成する。   FIG. 6 shows a timing chart of the scanning line driving circuit 100 and the data line driving circuit 200. The scanning line driving circuit 100 sequentially shifts the Y transfer start pulse DY of one frame (1F) cycle in accordance with the Y clock signal YCK to generate the scanning signals Y1, Y2,. The scanning signals Y1 to Ym are sequentially activated in each horizontal scanning period (1H). The data line driving circuit 200 transfers the X transfer start pulse DX of the horizontal scanning period in accordance with the X clock signal XCK, and internally generates sampling signals S1, S2,. Then, the data line driving circuit 200 samples the image signal VID using the sampling signals S1, S2,... Sn to generate data signals X1, X2,.

このように本実施形態においては、光検出回路300を用いてバックライト600の発光輝度を調整したので、環境照度に応じて画面の明るさを制御することが可能となり、電気光学装置1の消費電力を削減することができる。また、TFT等の素子を用いて液晶パネルAAに光センサ回路300および計数回路400を形成したので、電気光学装置1を大幅に小型化することができる。さらに、光検出回路300は、差分電流Δiをキャパシタ320で充電して環境の照度に応じた信号を取り出したので、正確に照度を検出することができる。くわえて、光センサ回路300の最終的な出力信号はパルス信号300aとして与えられるので、単位時間当たりのパルス数を計測することによって、簡易に照度データ400aを得ることができる。   As described above, in the present embodiment, since the light emission luminance of the backlight 600 is adjusted using the light detection circuit 300, the brightness of the screen can be controlled in accordance with the environmental illuminance, and the consumption of the electro-optical device 1 can be controlled. Electric power can be reduced. In addition, since the optical sensor circuit 300 and the counting circuit 400 are formed on the liquid crystal panel AA using elements such as TFTs, the electro-optical device 1 can be greatly reduced in size. Furthermore, the photodetection circuit 300 can accurately detect the illuminance because the differential current Δi is charged by the capacitor 320 and the signal corresponding to the illuminance of the environment is extracted. In addition, since the final output signal of the optical sensor circuit 300 is given as the pulse signal 300a, the illuminance data 400a can be easily obtained by measuring the number of pulses per unit time.

<2.第2実施形態>
次に、本発明の第2実施形態に係る電気光学装置1について説明する。第2実施形態の電気光学装置1は、リセット信号RESETの替わりにY転送開始パルスDYを用いる点、および基準信号REFの替わりにYクロック信号YCKを用いる点を除いて、第1実施形態の電気光学装置1と同様に構成されている。
図7に第2実施形態に係る電気光学装置1の構成を示す。この図に示すように本実施形態の電気光学装置1では、信号生成回路700が省略される。これは、リセット信号RESETをY転送開始パルスDYで兼用し、基準信号REFをYクロック信号YCKで兼用したからである。なお、リセット信号RESETの替わりにX転送開始パルスDXを用い、基準信号REFの替わりにXクロック信号XCKを用いてもよい。すなわち、画素回路P1を駆動するための各種信号をリセット信号RESETおよび基準信号REFと兼用してもよい。
<2. Second Embodiment>
Next, an electro-optical device 1 according to a second embodiment of the invention will be described. The electro-optical device 1 according to the second embodiment is the same as that of the first embodiment except that the Y transfer start pulse DY is used instead of the reset signal RESET and the Y clock signal YCK is used instead of the reference signal REF. The configuration is the same as that of the optical device 1.
FIG. 7 shows a configuration of the electro-optical device 1 according to the second embodiment. As shown in this figure, in the electro-optical device 1 of this embodiment, the signal generation circuit 700 is omitted. This is because the reset signal RESET is also used as the Y transfer start pulse DY, and the reference signal REF is also used as the Y clock signal YCK. Note that the X transfer start pulse DX may be used instead of the reset signal RESET, and the X clock signal XCK may be used instead of the reference signal REF. That is, various signals for driving the pixel circuit P1 may be used as the reset signal RESET and the reference signal REF.

但し、Yクロック信号YCKはXクロック信号XCKよりも周波数が低いため、消費電力を低減する観点から、Y転送開始パルスDYおよびYクロック信号YCKをリセット信号RESETおよび基準信号REFの替わりに用いることが好ましい。また、環境照度の変化は、Y転送開始パルスDYの周期である1フレーム周期と比較して十分長いので、Y転送開始パルスDYおよびYクロック信号YCKを用いても、環境照度の変化に追随してバックライト600の発光輝度を調整することが可能となる。   However, since the frequency of the Y clock signal YCK is lower than that of the X clock signal XCK, the Y transfer start pulse DY and the Y clock signal YCK are used in place of the reset signal RESET and the reference signal REF from the viewpoint of reducing power consumption. preferable. In addition, since the change in environmental illuminance is sufficiently longer than one frame period, which is the period of the Y transfer start pulse DY, even if the Y transfer start pulse DY and the Y clock signal YCK are used, the change in environmental illuminance follows. Thus, the light emission luminance of the backlight 600 can be adjusted.

このように本実施形態においては、画素回路P1を駆動するための各種信号をリセット信号RESETおよび基準信号REFと兼用したので、光センサ回路300を動作させるために、特別な信号を生成する必要がなくなる。この結果、信号生成回路600を省略して構成を簡易にすることができる。また、リセット信号RESETおよび基準信号REFを液晶パネルAAに供給するために入力端子を設ける必要がなくなるので、入力端子の狭ピッチ化に対応することができる。
なお、上述した各実施形態において、光センサ回路300は、パルス信号300aを出力したが、ノードQの電位を電圧信号として出力してもよい。この電圧信号の実効値は照度に応じた値となる。従って、調光回路500は電圧信号に基づいてバックライト600の発光輝度を制御すればよい。また、上述した各実施形態において環境の照度を検出する光検出回路に、光センサ回路300のみならず計数回路400を含めて考えてもよいことは勿論である。
As described above, in the present embodiment, since various signals for driving the pixel circuit P1 are also used as the reset signal RESET and the reference signal REF, it is necessary to generate a special signal in order to operate the optical sensor circuit 300. Disappear. As a result, the signal generation circuit 600 can be omitted to simplify the configuration. Further, since it is not necessary to provide an input terminal for supplying the reset signal RESET and the reference signal REF to the liquid crystal panel AA, it is possible to cope with a narrow pitch of the input terminals.
In each embodiment described above, the optical sensor circuit 300 outputs the pulse signal 300a. However, the potential of the node Q may be output as a voltage signal. The effective value of this voltage signal is a value corresponding to the illuminance. Therefore, the light control circuit 500 may control the light emission luminance of the backlight 600 based on the voltage signal. In addition, in each of the above-described embodiments, the photodetection circuit that detects the illuminance of the environment may be considered to include not only the photosensor circuit 300 but also the counting circuit 400.

<3.光センサ回路の変形例>
次に、光センサ回路300の変形例について説明する。以下に述べる光センサ回路301および302は、上述した第1実施形態および第2実施形態の光センサ回路300と置き換えることが可能である。
(1)第1変形例
図8は、第1変形例にかかわる光センサ回路301の回路図である。同図に示す光センサ回路301は、複数のフォトダイオード310Aおよび310Bが用いられる点を除いて、図2に示す光センサ回路300と同様に構成されている。光センサ回路301のセンサ部31は、複数の単位回路Uから構成される。複数の単位回路Uの各々は、フォトダイオード310Aおよびフォトダイオード310Bを備える。フォトダイオード310Aおよびフォトダイオード310Bの接続点であるノードQは相互に接続され、そこから差分電流Δiが取り出される。
<3. Modified Example of Optical Sensor Circuit>
Next, a modified example of the optical sensor circuit 300 will be described. The optical sensor circuits 301 and 302 described below can be replaced with the optical sensor circuit 300 of the first embodiment and the second embodiment described above.
(1) First Modification FIG. 8 is a circuit diagram of an optical sensor circuit 301 according to a first modification. The optical sensor circuit 301 shown in the figure is configured similarly to the optical sensor circuit 300 shown in FIG. 2 except that a plurality of photodiodes 310A and 310B are used. The sensor unit 31 of the optical sensor circuit 301 includes a plurality of unit circuits U. Each of the plurality of unit circuits U includes a photodiode 310A and a photodiode 310B. The node Q, which is a connection point between the photodiode 310A and the photodiode 310B, is connected to each other, and a differential current Δi is extracted therefrom.

この場合、差分電流Δiは、複数のフォトダイオード310Aの各々から出力される第1電流I1の総和と複数のフォトダイオード310Bの各々から出力される第2電流I2の総和の差分として与
えられる。このように複数の単位回路Uを用いることによって、より精度の高い差分電流Δiを生成することができ、環境光の検出精度を向上させることができる。
In this case, the difference current Δi is given as a difference between the sum of the first currents I1 output from each of the plurality of photodiodes 310A and the sum of the second currents I2 output from each of the plurality of photodiodes 310B. By using a plurality of unit circuits U in this way, it is possible to generate a differential current Δi with higher accuracy and improve the detection accuracy of ambient light.

(2)第2変形例
図9は、第2変形例にかかわる光センサ回路302の回路図である。同図に示す光センサ回路302は、センサ部31の替わりにセンサ部32を用いる点を除いて、図8に示す光センサ回路301と同様に構成されている。
図8のセンサ部31では、フォトダイオード310Aとフォトダイオード310Bが各々列方向に並んでいた。このように入射光を検出するフォトダイオード310A(主センサ)と背景光を検出するフォトダイオード310B(副センサ)の各々が独立して隣接するように配置されると、フォトダイオード310Aに入射する背景光とフォトダイオード310Bに入射する背景光の照射状況が相違する可能性がある。また、製造上のバラツキにより光電変換特性に差異が見られることもあり得る。さらには、温度分布の相違によりフォトダイオード310Aの背景光成分Ibとフォトダイオード310Bの背景光成分Ibに差異が見られることもあり得る。
(2) Second Modification FIG. 9 is a circuit diagram of an optical sensor circuit 302 according to the second modification. The optical sensor circuit 302 shown in the figure has the same configuration as the optical sensor circuit 301 shown in FIG. 8 except that the sensor unit 32 is used instead of the sensor unit 31.
In the sensor unit 31 of FIG. 8, the photodiode 310A and the photodiode 310B are arranged in the column direction. As described above, when the photodiode 310A (main sensor) for detecting incident light and the photodiode 310B (sub sensor) for detecting background light are arranged so as to be adjacent to each other independently, the background incident on the photodiode 310A. There is a possibility that the irradiation state of the light and the background light incident on the photodiode 310B is different. In addition, there may be a difference in photoelectric conversion characteristics due to manufacturing variations. Furthermore, there may be a difference between the background light component Ib of the photodiode 310A and the background light component Ib of the photodiode 310B due to a difference in temperature distribution.

そこで、変形例2では、単位回路Uをマトリクス状に配置して、列方向にフォトダイオード310Aとフォトダイオード310Bが交互に配置されるようにした。これにより、フォトダイオード310Aとフォトダイオード310Bが微小領域で分散されて配置されることになり、背景光の照射状況や温度分布を揃えることが可能となる。この結果、より正確に環境光を検出することが可能となる。
なお、図10に示すようにフォトダイオード310Aとフォトダイオード310Bとを千鳥状に配置したセンサ部33を用いてもよい。
Therefore, in the second modification, the unit circuits U are arranged in a matrix, and the photodiodes 310A and the photodiodes 310B are alternately arranged in the column direction. As a result, the photodiodes 310A and the photodiodes 310B are dispersed and arranged in a minute region, and the background light irradiation state and temperature distribution can be made uniform. As a result, ambient light can be detected more accurately.
In addition, as shown in FIG. 10, you may use the sensor part 33 which has arrange | positioned the photodiode 310A and the photodiode 310B in zigzag form.

<4.電子機器>
次に、上述した実施形態および変形例に係る電気光学装置1を適用した電子機器について説明する。図11に、電気光学装置1を適用したモバイル型のパーソナルコンピュータの構成を示す。パーソナルコンピュータ2000は、表示ユニットとしての電気光学装置1と本体部2010を備える。本体部2010には、電源スイッチ2001及びキーボード2002が設けられている。
図12に、電気光学装置1を適用した携帯電話機の構成を示す。携帯電話機3000は、複数の操作ボタン3001及びスクロールボタン3002、並びに表示ユニットとしての電気光学装置1を備える。スクロールボタン3002を操作することによって、電気光学装置1に表示される画面がスクロールされる。
図13に、電気光学装置1を適用した情報携帯端末(PDA:Personal Digital Assistants)の構成を示す。情報携帯端末4000は、複数の操作ボタン4001及び電源スイッチ4002、並びに表示ユニットとしての電気光学装置1を備える。電源スイッチ4002を操作すると、住所録やスケジュール帳といった各種の情報が電気光学装置1に表示される。
なお、電気光学装置1が適用される電子機器としては、図11〜図13に示すものの他、デジタルスチルカメラ、液晶テレビ、ビューファインダ型、モニタ直視型のビデオテープレコーダ、カーナビゲーション装置、ページャ、電子手帳、電卓、ワードプロセッサ、ワークステーション、テレビ電話、POS端末、タッチパネルを備えた機器等などが挙げられる。そして、これらの各種電子機器の表示部として、前述した電気光学装置1が適用可能である。
<4. Electronic equipment>
Next, an electronic apparatus to which the electro-optical device 1 according to the above-described embodiments and modifications is applied will be described. FIG. 11 shows the configuration of a mobile personal computer to which the electro-optical device 1 is applied. The personal computer 2000 includes the electro-optical device 1 as a display unit and a main body 2010. The main body 2010 is provided with a power switch 2001 and a keyboard 2002.
FIG. 12 shows a configuration of a mobile phone to which the electro-optical device 1 is applied. A cellular phone 3000 includes a plurality of operation buttons 3001, scroll buttons 3002, and the electro-optical device 1 as a display unit. By operating the scroll button 3002, the screen displayed on the electro-optical device 1 is scrolled.
FIG. 13 shows a configuration of a portable information terminal (PDA: Personal Digital Assistants) to which the electro-optical device 1 is applied. The information portable terminal 4000 includes a plurality of operation buttons 4001, a power switch 4002, and the electro-optical device 1 as a display unit. When the power switch 4002 is operated, various types of information such as an address book and a schedule book are displayed on the electro-optical device 1.
The electronic apparatus to which the electro-optical device 1 is applied includes, in addition to those shown in FIGS. 11 to 13, a digital still camera, a liquid crystal television, a viewfinder type, a monitor direct-view type video tape recorder, a car navigation device, a pager, Examples include electronic notebooks, calculators, word processors, workstations, videophones, POS terminals, and devices equipped with touch panels. The electro-optical device 1 described above can be applied as a display unit of these various electronic devices.

本発明の第1実施形態に係る電気光学装置1の全体構成を示すブロック図である。1 is a block diagram illustrating an overall configuration of an electro-optical device 1 according to a first embodiment of the present invention. 同装置の光センサ回路300の構成例を示すブロック図である。It is a block diagram which shows the structural example of the optical sensor circuit 300 of the apparatus. 同回路の動作を示すタイミングチャートである。It is a timing chart which shows operation | movement of the circuit. 同装置の計数回路400の構成例を示すブロック図である。It is a block diagram which shows the structural example of the counting circuit 400 of the same apparatus. 同装置の画像表示領域Aの構成例を示す回路図である。It is a circuit diagram which shows the structural example of the image display area A of the same apparatus. 同装置の走査線駆動回路100およびデータ線駆動回路200の動作を示すタイミングチャートである。3 is a timing chart showing operations of a scanning line driving circuit 100 and a data line driving circuit 200 of the same device. 本発明の第2実施形態に係る電気光学装置1の全体構成を示すブロック図である。FIG. 6 is a block diagram illustrating an overall configuration of an electro-optical device 1 according to a second embodiment of the invention. 第1変形例に係る光センサ回路301の構成を示す回路図である。It is a circuit diagram which shows the structure of the optical sensor circuit 301 which concerns on a 1st modification. 第2変形例に係る光センサ回路301の構成を示す回路図である。It is a circuit diagram which shows the structure of the optical sensor circuit 301 which concerns on a 2nd modification. 同回路に用いるセンサ部の他の例を示す回路図である。It is a circuit diagram which shows the other example of the sensor part used for the circuit. 同電気光学装置1を適用した電子機器の一例たるパーソナルコンピュータの構成を示す斜視図である。2 is a perspective view illustrating a configuration of a personal computer as an example of an electronic apparatus to which the electro-optical device 1 is applied. FIG. 同電気光学装置1を適用した電子機器の一例たる携帯電話の構成を示す斜視図である。2 is a perspective view illustrating a configuration of a mobile phone as an example of an electronic apparatus to which the electro-optical device 1 is applied. FIG. 同電気光学装置1を適用した電子機器の一例たる携帯情報端末の構成を示す斜視図である。3 is a perspective view showing a configuration of a portable information terminal as an example of an electronic apparatus to which the electro-optical device 1 is applied. FIG.

符号の説明Explanation of symbols

1…電気光学装置、2…走査線、3…データ線、100…走査線駆動回路、200…データ線駆動回路、300…光センサ回路、310A…フォトダイオード(主センサ)、310B…フォトダイオード(副センサ)、I1…第1電流、I2…第2電流、Δi…差分電流、U…単位回路、320…キャパシタ、330…スイッチング素子、340…NAND回路、P1…画素回路、400…計数回路。   DESCRIPTION OF SYMBOLS 1 ... Electro-optical device, 2 ... Scan line, 3 ... Data line, 100 ... Scan line drive circuit, 200 ... Data line drive circuit, 300 ... Optical sensor circuit, 310A ... Photodiode (main sensor), 310B ... Photodiode ( Sub sensor), I1 ... first current, I2 ... second current, Δi ... differential current, U ... unit circuit, 320 ... capacitor, 330 ... switching element, 340 ... NAND circuit, P1 ... pixel circuit, 400 ... counter circuit.

Claims (12)

対象光と外乱光とが入射光として入射する光検出回路であって、
前記入射光の光量に応じた第1電流を出力する主センサと、
前記対象光が入射する面に遮光膜が設けられ、前記外乱光の光量に応じた第2電流を出力する副センサとを備え、
前記主センサと前記副センサとは接続点を介して直列に接続され、前記接続点から前記第1電流と前記第2電流の差分電流を出力信号として取り出す、
ことを特徴とする光検出回路。
A light detection circuit in which target light and disturbance light are incident as incident light,
A main sensor that outputs a first current according to the amount of the incident light;
A light-shielding film is provided on a surface on which the target light is incident, and a sub-sensor that outputs a second current corresponding to the amount of the disturbance light,
The main sensor and the sub sensor are connected in series via a connection point, and a differential current between the first current and the second current is extracted from the connection point as an output signal.
An optical detection circuit characterized by that.
対象光と外乱光とが入射光として入射する光検出回路であって、
主センサと副センサが接続点を介して直列に接続された複数の単位回路と、
前記副センサの前記対象光が入射する面に設けられた遮光膜とを備え、
前記主センサは、前記入射光の光量に応じた第1電流を出力し、
前副センサは、前記外乱光の光量に応じた第2電流を出力し、
前記複数の単位回路の各々に設けられた前記接続点を相互に接続して、前記第1電流の総電流と前記第2電流の総電流の差分電流を出力信号として取り出す、
ことを特徴とする光検出回路。
A light detection circuit in which target light and disturbance light are incident as incident light,
A plurality of unit circuits in which a main sensor and a sub sensor are connected in series via a connection point;
A light shielding film provided on a surface on which the target light of the sub sensor is incident,
The main sensor outputs a first current corresponding to the amount of incident light,
The front sub sensor outputs a second current corresponding to the amount of the disturbance light,
The connection points provided in each of the plurality of unit circuits are connected to each other, and a differential current between the total current of the first current and the total current of the second current is extracted as an output signal.
An optical detection circuit characterized by that.
前記複数の単位回路は、行方向および列方向の少なくとも一方に沿って配置され、
前記主センサと前記副センサとは、前記行方向または前記列方向において、交互に配置される、
ことを特徴とする請求項2に記載の光検出回路。
The plurality of unit circuits are arranged along at least one of a row direction and a column direction,
The main sensor and the sub sensor are alternately arranged in the row direction or the column direction.
The photodetection circuit according to claim 2.
前記主センサの光電変換特性と前記副センサの光電変換特性は等しいことを特徴とする請求項1乃至3のうちいずれか1項に記載の光検出回路。   4. The photodetection circuit according to claim 1, wherein a photoelectric conversion characteristic of the main sensor is equal to a photoelectric conversion characteristic of the sub sensor. 5. 前記主センサおよび前記副センサの各々は、フォトダイオードで構成され、前記フォトダイオードは逆バイアスされることを特徴とする請求項1乃至4のうちいずれか1項に記載の光検出回路。   5. The photodetection circuit according to claim 1, wherein each of the main sensor and the sub sensor includes a photodiode, and the photodiode is reverse-biased. 6. 一端が前記接続点に接続され、他端が電源に接続された容量素子と、
前記容量素子と並列に設けられ、所定周期でオン・オフするスイッチング素子とを備え、
前記接続点の電圧信号を出力信号として取り出す、
ことを特徴とする請求項1乃至5のうちいずれか1項に記載の光検出回路。
A capacitive element having one end connected to the connection point and the other end connected to a power source;
A switching element provided in parallel with the capacitive element and turned on and off at a predetermined period;
Taking out the voltage signal at the connection point as an output signal,
The photodetection circuit according to claim 1, wherein
前記電圧信号を周波数信号に変換する電圧周波数変換回路を備え、
前記電圧信号の替わりに前記周波数信号を前記出力信号として取り出す、
請求項6に記載の光検出回路。
A voltage frequency conversion circuit for converting the voltage signal into a frequency signal;
Taking out the frequency signal as the output signal instead of the voltage signal;
The photodetection circuit according to claim 6.
前記電圧周波数変換回路は、前記電圧信号と前記スイッチング素子のオン・オフの周期より短い周期の基準信号との論理積を演算して2値化信号を出力する論理回路を備え、
前記2値化信号を前記周波数信号として出力する、
ことを特徴とする請求項7に記載の光検出回路。
The voltage frequency conversion circuit includes a logic circuit that calculates a logical product of the voltage signal and a reference signal having a cycle shorter than the ON / OFF cycle of the switching element and outputs a binary signal.
Outputting the binarized signal as the frequency signal;
The photodetection circuit according to claim 7.
前記2値化信号を計数して、単位時間当たりの計数結果を示す計数データ信号を出力する計数手段を備え、
前記計数データ信号を前記出力信号として取り出すことを特徴とする請求項8に記載の光検出回路。
Counting means for counting the binarized signal and outputting a counting data signal indicating a counting result per unit time;
The photodetection circuit according to claim 8, wherein the count data signal is extracted as the output signal.
請求項1乃至9のうちいずれか1項に記載の光検出回路と、複数のデータ線と、複数の走査線と、各々が前記データ線と前記走査データの交差に対応して設けられ、電気的な作用によって透過率が変化する液晶素子を含む複数の画素回路とを有する電気光学パネルと、
前記電気光学パネルの一方の面から他方の面へ向けて光を照射する光源と、
前記光源の光量を前記光検出回路の前記出力信号に基づいて調整する調光回路とを、
備えることを特徴とする電気光学装置。
10. The photodetection circuit according to claim 1, a plurality of data lines, and a plurality of scanning lines, each provided corresponding to an intersection of the data lines and the scanning data, An electro-optical panel having a plurality of pixel circuits including a liquid crystal element whose transmittance is changed by a typical action;
A light source that emits light from one surface of the electro-optical panel to the other surface;
A light control circuit for adjusting the light quantity of the light source based on the output signal of the light detection circuit;
An electro-optical device comprising:
複数のデータ線と、
複数の走査線と、
各々が前記データ線と前記走査データの交差に対応して設けられ、電気的な作用によって光学特性が変化する電気光学素子を含む画素回路と、
複数の制御信号を生成する制御回路と、
前記複数の制御信号に基づいて駆動信号を生成し、当該駆動信号を前記複数のデータ線および前記複数の走査線のうち少なくとも一方に出力する駆動回路と、
対象光と外乱光からなる入射光の光量に応じた第1電流を出力する主センサと、前記対象光が入射する面に遮光膜が設けられ前記外乱光の光量に応じた第2電流を出力する共に前記主センサと接続点を介して直列に接続され副センサと、一端が前記接続点に接続され、他端が電源に接続された容量素子と、前記容量素子と並列に設けられ第1信号に基づいてオン・オフするスイッチング素子とを備えた光検出回路を具備し、
前記第1信号を前記複数の制御信号の何れかと兼用したことを特徴とする電気光学装置。
Multiple data lines,
A plurality of scan lines;
A pixel circuit including an electro-optical element, each of which is provided corresponding to an intersection of the data line and the scanning data, and whose optical characteristics are changed by an electrical action;
A control circuit for generating a plurality of control signals;
A drive circuit that generates a drive signal based on the plurality of control signals and outputs the drive signal to at least one of the plurality of data lines and the plurality of scanning lines;
A main sensor that outputs a first current corresponding to the amount of incident light composed of target light and disturbance light, and a second current corresponding to the amount of disturbance light provided on a surface on which the target light enters is provided with a light-shielding film. A sub sensor connected in series with the main sensor via a connection point, a capacitive element having one end connected to the connection point and the other end connected to a power source, and a first parallel provided with the capacitive element. Comprising a photodetector circuit comprising a switching element that is turned on and off based on a signal,
An electro-optical device, wherein the first signal is also used as one of the plurality of control signals.
請求項11に記載した電気光学装置を備えた電子機器。   An electronic apparatus comprising the electro-optical device according to claim 11.
JP2004306605A 2004-10-21 2004-10-21 Photodetection circuit, electro-optical device, and electronic apparatus Expired - Fee Related JP4599985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004306605A JP4599985B2 (en) 2004-10-21 2004-10-21 Photodetection circuit, electro-optical device, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004306605A JP4599985B2 (en) 2004-10-21 2004-10-21 Photodetection circuit, electro-optical device, and electronic apparatus

Publications (2)

Publication Number Publication Date
JP2006118965A true JP2006118965A (en) 2006-05-11
JP4599985B2 JP4599985B2 (en) 2010-12-15

Family

ID=36536987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004306605A Expired - Fee Related JP4599985B2 (en) 2004-10-21 2004-10-21 Photodetection circuit, electro-optical device, and electronic apparatus

Country Status (1)

Country Link
JP (1) JP4599985B2 (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163628A (en) * 2005-12-12 2007-06-28 Epson Imaging Devices Corp Display apparatus
WO2008044749A1 (en) * 2006-10-04 2008-04-17 Sharp Kabushiki Kaisha Photosensor and ambient light sensor
JP2008102525A (en) * 2006-10-20 2008-05-01 Samsung Electronics Co Ltd Method of controlling luminance of backlight assembly, circuit for controlling luminance of backlight assembly and display device having the same
WO2008105093A1 (en) * 2007-02-28 2008-09-04 Hamamatsu Photonics K.K. Toning circuit for liquid crystal back light
JP2008209556A (en) * 2007-02-26 2008-09-11 Epson Imaging Devices Corp Electro-optical device, semiconductor device, display device and electronic equipment having the same
JP2008209557A (en) * 2007-02-26 2008-09-11 Epson Imaging Devices Corp Electrooptical device, display device, and electronic equipment
JP2008209555A (en) * 2007-02-26 2008-09-11 Epson Imaging Devices Corp Electro-optical device, semiconductor device, display device and electronic equipment having the same
JP2008209559A (en) * 2007-02-26 2008-09-11 Epson Imaging Devices Corp Optical sensor, semiconductor device, display device and electronic apparatus provided with the same
JP2008241511A (en) * 2007-03-28 2008-10-09 Epson Imaging Devices Corp Optical detector and electro-optical apparatus
WO2008143216A1 (en) 2007-05-18 2008-11-27 Sharp Kabushiki Kaisha Display device
JP2009098599A (en) * 2007-09-28 2009-05-07 Epson Imaging Devices Corp Display unit
US7531776B2 (en) 2006-09-25 2009-05-12 Epson Imaging Devices Corporation Photodetector, electro-optical device, and electronic apparatus having a differential current detection circuit
JP2009109288A (en) * 2007-10-29 2009-05-21 Toshiba Matsushita Display Technology Co Ltd Photodetector circuit
JP2009128686A (en) * 2007-11-26 2009-06-11 Sony Corp Display apparatus and electronic device
JP2009134066A (en) * 2007-11-30 2009-06-18 Seiko Epson Corp Liquid crystal device and electronic apparatus
JP2009177150A (en) * 2007-12-25 2009-08-06 Seiko Instruments Inc Photo-detection device and image display device
KR100916913B1 (en) 2008-05-13 2009-09-09 삼성모바일디스플레이주식회사 Organic light emitting display device
US7619194B2 (en) 2007-02-26 2009-11-17 Epson Imaging Devices Corporation Electro-optical device, semiconductor device, display device, and electronic apparatus having the display device
WO2010001929A1 (en) * 2008-07-02 2010-01-07 シャープ株式会社 Display device
JP2010008276A (en) * 2008-06-27 2010-01-14 Epson Imaging Devices Corp Photodetector, electro-optical device, and electronic apparatus
WO2010016449A1 (en) * 2008-08-08 2010-02-11 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and electronic device having the same
JP2010044424A (en) * 2009-11-20 2010-02-25 Epson Imaging Devices Corp Electro-optical device, display device and electronic apparatus provided with the display device
JP2010092935A (en) * 2008-10-03 2010-04-22 Sony Corp Sensor element and method of driving sensor element, input device, display device with input function, and communication device
KR100958028B1 (en) * 2008-02-13 2010-05-17 삼성모바일디스플레이주식회사 Photo sensor and flat panel display usinig the same
JP2010133898A (en) * 2008-12-08 2010-06-17 Oki Semiconductor Co Ltd Light quantity measuring device
WO2010100785A1 (en) * 2009-03-02 2010-09-10 シャープ株式会社 Display device
WO2010110249A1 (en) * 2009-03-25 2010-09-30 ローム株式会社 Illuminance sensor, and electronic apparatus and semiconductor device using the illuminance sensor
WO2010147115A1 (en) * 2009-06-16 2010-12-23 シャープ株式会社 Optical sensor and display device
CN101964353A (en) * 2010-08-13 2011-02-02 友达光电股份有限公司 Organic electro-luminescence display unit and manufacturing thereof
JP2011039124A (en) * 2009-08-07 2011-02-24 Tpo Displays Corp Display device and electronic apparatus having the same
JP2011043893A (en) * 2009-08-19 2011-03-03 Sony Corp Sensor, sensor element driving method, display device with input function, and electronic equipment
JP2011081390A (en) * 2010-10-25 2011-04-21 Sony Corp Display device and electronic apparatus
KR101137387B1 (en) 2009-11-05 2012-04-20 삼성모바일디스플레이주식회사 Apparatus of Light sensing device comprising reference voltage setting, and display device
JP2012081839A (en) * 2010-10-08 2012-04-26 Denso Corp Communication system of optical sensor for vehicle
US8174486B2 (en) 2008-08-20 2012-05-08 Samsung Electronics Co., Ltd. Light sensing circuit, liquid crystal display having the same, and method of driving the same using detected external light, internal light, and peripheral light
JP2012227925A (en) * 2011-04-20 2012-11-15 Integrated Digital Technologies Inc Sensing device and sensing method
US8368676B2 (en) 2007-05-18 2013-02-05 Sharp Kabushiki Kaisha Display device with light shield
US8400413B2 (en) 2008-12-25 2013-03-19 Sony Corporation Display apparatus and display method
KR101329170B1 (en) * 2012-04-30 2013-11-14 클레어픽셀 주식회사 Ambient light sensor based on haman visual characteristic
US8624885B2 (en) 2006-07-03 2014-01-07 Japan Display West Inc. Electro-optical device and electronic apparatus
KR101370761B1 (en) * 2012-07-26 2014-03-07 어보브반도체 주식회사 Apparatus for sensing illumination using 2-channel and method thereof
US8674971B2 (en) 2007-05-08 2014-03-18 Japan Display West Inc. Display device and electronic apparatus including display device
KR101401511B1 (en) * 2006-05-30 2014-06-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and electronic device using same
JP2017188522A (en) * 2016-04-04 2017-10-12 株式会社ジャパンディスプレイ Photosensor and display device having photosensor
CN112673240A (en) * 2019-07-31 2021-04-16 京东方科技集团股份有限公司 Photoelectric detection circuit, photoelectric detection device, and electronic device
JP2022534574A (en) * 2019-05-29 2022-08-02 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic sensor components for light measurements with built-in redundancy

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167824A (en) * 1985-01-18 1986-07-29 Nippon Soken Inc Photoelectric converting circuit
JPS63133128A (en) * 1986-11-26 1988-06-04 Canon Inc Optical difference sensor
JPH01305328A (en) * 1988-06-02 1989-12-08 Fuji Electric Co Ltd Detecting circuit for intensity of light
JPH05312645A (en) * 1992-05-15 1993-11-22 Fuji Electric Co Ltd Optical sensor circuit
JPH0755946A (en) * 1993-08-23 1995-03-03 Shimadzu Corp Quantum counting device
JPH0792021A (en) * 1993-09-21 1995-04-07 Kurabo Ind Ltd Optical sensor
JP2000105310A (en) * 1998-07-31 2000-04-11 Canon Inc Color filter, production of color filter, liquid crystal element using this color filter and production of black matrix
JP2000131683A (en) * 1998-10-29 2000-05-12 Hitachi Ltd Color display device
JP2002176192A (en) * 2000-09-12 2002-06-21 Rohm Co Ltd Illuminance sensor chip, illuminance sensor, equipment and method for measuring illuminance
JP2004022518A (en) * 2002-06-20 2004-01-22 Fuji Electric Holdings Co Ltd Color conversion type color display
JP4192880B2 (en) * 2004-10-12 2008-12-10 セイコーエプソン株式会社 Electro-optical device and electronic apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167824A (en) * 1985-01-18 1986-07-29 Nippon Soken Inc Photoelectric converting circuit
JPS63133128A (en) * 1986-11-26 1988-06-04 Canon Inc Optical difference sensor
JPH01305328A (en) * 1988-06-02 1989-12-08 Fuji Electric Co Ltd Detecting circuit for intensity of light
JPH05312645A (en) * 1992-05-15 1993-11-22 Fuji Electric Co Ltd Optical sensor circuit
JPH0755946A (en) * 1993-08-23 1995-03-03 Shimadzu Corp Quantum counting device
JPH0792021A (en) * 1993-09-21 1995-04-07 Kurabo Ind Ltd Optical sensor
JP2000105310A (en) * 1998-07-31 2000-04-11 Canon Inc Color filter, production of color filter, liquid crystal element using this color filter and production of black matrix
JP2000131683A (en) * 1998-10-29 2000-05-12 Hitachi Ltd Color display device
JP2002176192A (en) * 2000-09-12 2002-06-21 Rohm Co Ltd Illuminance sensor chip, illuminance sensor, equipment and method for measuring illuminance
JP2004022518A (en) * 2002-06-20 2004-01-22 Fuji Electric Holdings Co Ltd Color conversion type color display
JP4192880B2 (en) * 2004-10-12 2008-12-10 セイコーエプソン株式会社 Electro-optical device and electronic apparatus

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163628A (en) * 2005-12-12 2007-06-28 Epson Imaging Devices Corp Display apparatus
KR101401511B1 (en) * 2006-05-30 2014-06-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and electronic device using same
US8624885B2 (en) 2006-07-03 2014-01-07 Japan Display West Inc. Electro-optical device and electronic apparatus
US7531776B2 (en) 2006-09-25 2009-05-12 Epson Imaging Devices Corporation Photodetector, electro-optical device, and electronic apparatus having a differential current detection circuit
WO2008044749A1 (en) * 2006-10-04 2008-04-17 Sharp Kabushiki Kaisha Photosensor and ambient light sensor
JP2010506141A (en) * 2006-10-04 2010-02-25 シャープ株式会社 Light sensor and ambient light sensor
US8138463B2 (en) 2006-10-04 2012-03-20 Sharp Kabushiki Kaisha Photosensor and ambient light sensor with constant bias voltage
JP2008102525A (en) * 2006-10-20 2008-05-01 Samsung Electronics Co Ltd Method of controlling luminance of backlight assembly, circuit for controlling luminance of backlight assembly and display device having the same
JP4501947B2 (en) * 2007-02-26 2010-07-14 エプソンイメージングデバイス株式会社 Electro-optical device, display device, and electronic apparatus including the same
KR100978747B1 (en) * 2007-02-26 2010-08-30 소니 주식회사 Electro-optical device, semiconductor device, display device, and electronic apparatus having the display device
JP2008209559A (en) * 2007-02-26 2008-09-11 Epson Imaging Devices Corp Optical sensor, semiconductor device, display device and electronic apparatus provided with the same
CN101256294B (en) * 2007-02-26 2013-01-02 株式会社日本显示器西 Electro-optical device, semiconductor device, display device, and electronic apparatus having the display device
JP2008209555A (en) * 2007-02-26 2008-09-11 Epson Imaging Devices Corp Electro-optical device, semiconductor device, display device and electronic equipment having the same
JP2008209557A (en) * 2007-02-26 2008-09-11 Epson Imaging Devices Corp Electrooptical device, display device, and electronic equipment
JP2008209556A (en) * 2007-02-26 2008-09-11 Epson Imaging Devices Corp Electro-optical device, semiconductor device, display device and electronic equipment having the same
US7619194B2 (en) 2007-02-26 2009-11-17 Epson Imaging Devices Corporation Electro-optical device, semiconductor device, display device, and electronic apparatus having the display device
WO2008105093A1 (en) * 2007-02-28 2008-09-04 Hamamatsu Photonics K.K. Toning circuit for liquid crystal back light
JP2008241511A (en) * 2007-03-28 2008-10-09 Epson Imaging Devices Corp Optical detector and electro-optical apparatus
US8674971B2 (en) 2007-05-08 2014-03-18 Japan Display West Inc. Display device and electronic apparatus including display device
US8368676B2 (en) 2007-05-18 2013-02-05 Sharp Kabushiki Kaisha Display device with light shield
EP2148237A1 (en) * 2007-05-18 2010-01-27 Sharp Kabushiki Kaisha Display device
WO2008143216A1 (en) 2007-05-18 2008-11-27 Sharp Kabushiki Kaisha Display device
US8309901B2 (en) 2007-05-18 2012-11-13 Sharp Kabushiki Kaisha Display device adjusting luminance of display based at least on detections by ambient light sensors
EP2148237A4 (en) * 2007-05-18 2012-04-11 Sharp Kk Display device
JP2009098599A (en) * 2007-09-28 2009-05-07 Epson Imaging Devices Corp Display unit
JP2009109288A (en) * 2007-10-29 2009-05-21 Toshiba Matsushita Display Technology Co Ltd Photodetector circuit
US8564580B2 (en) 2007-11-26 2013-10-22 Japan Display West Inc. Display device and electronic apparatus
JP2009128686A (en) * 2007-11-26 2009-06-11 Sony Corp Display apparatus and electronic device
JP2009134066A (en) * 2007-11-30 2009-06-18 Seiko Epson Corp Liquid crystal device and electronic apparatus
JP2009177150A (en) * 2007-12-25 2009-08-06 Seiko Instruments Inc Photo-detection device and image display device
US8749537B2 (en) 2008-02-13 2014-06-10 Samsung Display Co., Ltd. Photo sensor and flat panel display device using thereof
KR100958028B1 (en) * 2008-02-13 2010-05-17 삼성모바일디스플레이주식회사 Photo sensor and flat panel display usinig the same
US8310420B2 (en) 2008-05-13 2012-11-13 Samsung Display Co., Ltd. Organic light emitting display device
KR100916913B1 (en) 2008-05-13 2009-09-09 삼성모바일디스플레이주식회사 Organic light emitting display device
JP2010008276A (en) * 2008-06-27 2010-01-14 Epson Imaging Devices Corp Photodetector, electro-optical device, and electronic apparatus
WO2010001929A1 (en) * 2008-07-02 2010-01-07 シャープ株式会社 Display device
US20110096049A1 (en) * 2008-07-02 2011-04-28 Sharp Kabushiki Kaisha Display device
US8153954B2 (en) 2008-08-08 2012-04-10 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and electronic device having the same
WO2010016449A1 (en) * 2008-08-08 2010-02-11 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and electronic device having the same
US8174486B2 (en) 2008-08-20 2012-05-08 Samsung Electronics Co., Ltd. Light sensing circuit, liquid crystal display having the same, and method of driving the same using detected external light, internal light, and peripheral light
JP2010092935A (en) * 2008-10-03 2010-04-22 Sony Corp Sensor element and method of driving sensor element, input device, display device with input function, and communication device
JP2010133898A (en) * 2008-12-08 2010-06-17 Oki Semiconductor Co Ltd Light quantity measuring device
US8400413B2 (en) 2008-12-25 2013-03-19 Sony Corporation Display apparatus and display method
WO2010100785A1 (en) * 2009-03-02 2010-09-10 シャープ株式会社 Display device
US8513892B2 (en) 2009-03-25 2013-08-20 Rohm Co., Ltd. Illuminance sensor, and electronic equipment and semiconductor device using the same
WO2010110249A1 (en) * 2009-03-25 2010-09-30 ローム株式会社 Illuminance sensor, and electronic apparatus and semiconductor device using the illuminance sensor
US8759739B2 (en) 2009-06-16 2014-06-24 Sharp Kabushiki Kaisha Optical sensor and display apparatus
WO2010147115A1 (en) * 2009-06-16 2010-12-23 シャープ株式会社 Optical sensor and display device
JP2011039124A (en) * 2009-08-07 2011-02-24 Tpo Displays Corp Display device and electronic apparatus having the same
JP2011043893A (en) * 2009-08-19 2011-03-03 Sony Corp Sensor, sensor element driving method, display device with input function, and electronic equipment
US9001095B2 (en) 2009-11-05 2015-04-07 Samsung Display Co., Ltd. Illumination sensing device having a reference voltage setting apparatus and a display device including the illumination sensing device
KR101137387B1 (en) 2009-11-05 2012-04-20 삼성모바일디스플레이주식회사 Apparatus of Light sensing device comprising reference voltage setting, and display device
JP2010044424A (en) * 2009-11-20 2010-02-25 Epson Imaging Devices Corp Electro-optical device, display device and electronic apparatus provided with the display device
CN101964353A (en) * 2010-08-13 2011-02-02 友达光电股份有限公司 Organic electro-luminescence display unit and manufacturing thereof
JP2012081839A (en) * 2010-10-08 2012-04-26 Denso Corp Communication system of optical sensor for vehicle
JP2011081390A (en) * 2010-10-25 2011-04-21 Sony Corp Display device and electronic apparatus
JP2012227925A (en) * 2011-04-20 2012-11-15 Integrated Digital Technologies Inc Sensing device and sensing method
KR101329170B1 (en) * 2012-04-30 2013-11-14 클레어픽셀 주식회사 Ambient light sensor based on haman visual characteristic
KR101370761B1 (en) * 2012-07-26 2014-03-07 어보브반도체 주식회사 Apparatus for sensing illumination using 2-channel and method thereof
JP2017188522A (en) * 2016-04-04 2017-10-12 株式会社ジャパンディスプレイ Photosensor and display device having photosensor
JP2022534574A (en) * 2019-05-29 2022-08-02 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic sensor components for light measurements with built-in redundancy
CN112673240A (en) * 2019-07-31 2021-04-16 京东方科技集团股份有限公司 Photoelectric detection circuit, photoelectric detection device, and electronic device
US11371881B2 (en) 2019-07-31 2022-06-28 Beijing Boe Optoelectronics Technology Co., Ltd. Photoelectric detection circuit, photoelectric detection device and electronic device

Also Published As

Publication number Publication date
JP4599985B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JP4599985B2 (en) Photodetection circuit, electro-optical device, and electronic apparatus
JP4192880B2 (en) Electro-optical device and electronic apparatus
RU2457550C1 (en) Display device
JP4338140B2 (en) Touch panel integrated display device
TWI462581B (en) A sensing device, a driving method of a sensing element, a display device having an input function and an electronic device, and a radiation imaging device
CN107591127B (en) Pixel circuit, array substrate, organic electroluminescent display panel and display device
JP3496947B2 (en) Optical touch input device
JP2007310628A (en) Image display
CN100423279C (en) Optical sensor circuit, method of processing output signal of the same, and electronic apparatus
KR101535894B1 (en) Light sensing circuit, liquid crystal display comprising the same and drividng method of the same
JP2008076344A (en) Light detector, electro-optic device, and electronic apparatus
US8658957B2 (en) Sensor circuit and display apparatus
JP2009026309A (en) Reading circuit, display panel, and electronic system
US11106295B2 (en) Touch-control pixel-driving circuit and method thereof, a touch-control display apparatus
JP2005345286A (en) Optical sensor, optical sensor output processing method, display device and electronic equipment
JP4868425B2 (en) Display device, electronic apparatus having the same, and optical sensor device
JP2008033238A (en) Electrooptical device and electronic apparatus
JPWO2010038513A1 (en) Display device
JP2002023658A (en) Dimming system
RU2449345C1 (en) Display device
RU2451983C1 (en) Display device
US20130113768A1 (en) Display device and drive method for same
WO2011065554A1 (en) Display device
WO2010058630A1 (en) Liquid crystal display device and electronic device
JP2008032729A (en) Electro-optical device and electronic apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees