JPS63133128A - Optical difference sensor - Google Patents

Optical difference sensor

Info

Publication number
JPS63133128A
JPS63133128A JP28237086A JP28237086A JPS63133128A JP S63133128 A JPS63133128 A JP S63133128A JP 28237086 A JP28237086 A JP 28237086A JP 28237086 A JP28237086 A JP 28237086A JP S63133128 A JPS63133128 A JP S63133128A
Authority
JP
Japan
Prior art keywords
optical
difference
diodes
light
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28237086A
Other languages
Japanese (ja)
Inventor
Yuichi Handa
祐一 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP28237086A priority Critical patent/JPS63133128A/en
Publication of JPS63133128A publication Critical patent/JPS63133128A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a difference signal between two picture information in real time with a high precision by providing two photodetectors and joining respective electric output terminals so that photoelectric characteristics of photodetectors are different in polarity. CONSTITUTION:For example, two PN junction diodes 1 and 2 are so connected that they are different in polarity. If optical waves 5 and 6 having light intensities PA and PB are made incident on diodes 1 and 2 respectively, photocurrents iA and iB corresponding to intensities of incident light flow to diodes 1 and 2, and an addition value iA+iB of two currents is obtained in a connection part 3. If an external circuit which sets the potential of the connection part to, for example, V=0 is set, the sum iA+iB of two currents obtained from the connection part 3 is proportional to a difference PB-PA between light intensities of optical waves incident on two diodes 1 and 2. Thus, the difference signal of light intensity between two optical waves is effectively detected.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光差分ゼンサに関し、特に2つの入射光に関す
る信号の差分例えば入射光の光強度の差分をセンサ内で
検出1ノだ後、差分信号として出力する機能を有した画
像処理装置等に好適な光差分センサに関するものである
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an optical differential sensor, and more particularly, after detecting a difference between signals related to two incident lights, for example, a difference in light intensity of the incident lights, within a sensor, the difference is detected. The present invention relates to an optical differential sensor suitable for image processing devices and the like having a function of outputting signals.

(従来の技術) 従来より画像処理装置では画像情報頃が増加するにつれ
て、画像情報をいったん電気的信号に変換した後、信号
処理を行い、これより各種の画像処理を行うことが多く
なってきている。このうち2つの画像間における画像情
報の差分を検出し、これにより2つの画像間の相対的位
置関係、相関等を求めることか多く行なわれている。
(Prior Art) As the amount of image information in image processing devices has increased, it has become increasingly common for image processing devices to first convert image information into electrical signals, then perform signal processing, and then perform various types of image processing. There is. It is often done to detect the difference in image information between two of these images, and thereby to determine the relative positional relationship, correlation, etc. between the two images.

従来は2つの2次元画像A、Bの画像情報差を求める場
合には、まずCCD等の撮像デバイスから人力画像Aを
取り込みA/D変換した後RAM等のフレームメモリA
1に畜える。次に別の人力画像Bを同様にしてフレーム
メモリB1に畜える。そして両フレームメ干りA1、B
1のデータより電気的に逐次差分を求め、これにより2
つの画像A、B間の差分な得ていた。
Conventionally, when determining the difference in image information between two two-dimensional images A and B, the human-powered image A is first taken from an imaging device such as a CCD, A/D converted, and then stored in a frame memory A such as a RAM.
I can raise it to 1. Next, another human image B is stored in the frame memory B1 in the same manner. And both frames A1, B
Sequential differences are calculated electrically from the data of 1, and from this, 2
The difference between two images A and B was obtained.

しかしなからこの方法は人力画像の画素数の増犬に伴い
、膨大なメモリ容量が必要となり又信号処理に多大な時
間を必要どする等の欠点かあった。この他2つの撮像デ
バイスA2.B2を利用して2つの人力画像A、Bを同
時に人力し、読み出し時に2つの撮像デバイスA2.B
2からの信号を同期して読み出し、外部電気回路等を用
いて人力画像A、Bの差分信号を得る方法が行われてい
る。
However, as the number of pixels in human images increases, this method requires a huge amount of memory capacity, and has drawbacks such as requiring a large amount of time for signal processing. Two other imaging devices A2. The two images A and B are simultaneously manually read using the image pickup device A2.B2. B
A method has been used in which the signals from 2 are read out synchronously and a difference signal between the human images A and B is obtained using an external electric circuit or the like.

しかしながらこの方法は2つの撮像デバイスを必要とし
、又2つの撮像デバイスにおける人力画像の位置関係を
精度良く一致させておかねばならなく、人力画像を読み
取る為の光学装置の調整が難しい等の欠点があった。
However, this method requires two imaging devices, and the positional relationship of the human-powered images on the two imaging devices must be matched with high accuracy, and there are drawbacks such as difficulty in adjusting the optical device for reading the human-powered images. there were.

(発明が解決しようとする問題点) 本発明は2つの画像間の画像情報の差分信号をリアルタ
イムで高結度に得ることが出来、しかも簡易な構成で画
像処理か出来る画像処理装置に好適な光差分センサの提
供を目的とする。
(Problems to be Solved by the Invention) The present invention is suitable for an image processing device that can obtain a differential signal of image information between two images with high resolution in real time and can perform image processing with a simple configuration. The purpose is to provide an optical differential sensor.

(問題点を解決するための手段) 本発明に係る光差分センサは2つの光検出素子な有し、
該光検出素子の充電特性の極性が互いに異なるように各
々の電気出力端を結合して構成したことである。
(Means for solving the problem) The optical differential sensor according to the present invention has two photodetecting elements,
The electrical output terminals of the photodetecting elements are connected so that the polarities of the charging characteristics of the photodetecting elements are different from each other.

特に本発明では2つの光検出素子の入力前面に偏向軸方
向が互いに異なる検光子が配置し、若しくは波長選択性
の異なる2つの光学フィルターを配置することにより2
つの入力画像に関する画像情報の差分信号を効率的に得
るようにしている。
In particular, in the present invention, analyzers with different deflection axis directions are arranged in front of the input of the two photodetecting elements, or two optical filters with different wavelength selectivity are arranged.
A difference signal of image information regarding two input images is efficiently obtained.

(実施例) 第1、第2、第3図は各々本発明の光差分センサの動作
原理を説明する為の一実施例の説明図である。このうち
第1図は2つのPN接合型のダイオード1,2を互いに
極性か異なるように接続した状態を示している。2つの
ダイオード1.2に例えば各々光強度pA、pBなる光
波5.6が入射したとするとダイオード1.2には各々
入射光強度に応じた光電流iA、i8が流れ、結線部3
からは2つの電流の加算値iA+ i、  が得られる
。今2つのダイオード1,2に各々逆バイアスとなる様
に電圧±VRを印加し、結線部3の電位がVとなるよう
にすると各ダイオード1,2を流れる電流iと電圧Vと
の関係は入射光強度pA、pBをパラメターとすると第
2図に示すようになる。
(Example) FIGS. 1, 2, and 3 are explanatory diagrams of an example for explaining the operating principle of the optical differential sensor of the present invention. Of these, FIG. 1 shows a state in which two PN junction type diodes 1 and 2 are connected so that their polarities are different from each other. For example, if light waves 5.6 with light intensities pA and pB are incident on the two diodes 1.2, photocurrents iA and i8 corresponding to the respective incident light intensities flow through the diodes 1.2, and the connection portion 3
The sum of the two currents iA+i, is obtained from . Now, if a voltage ±VR is applied to each of the two diodes 1 and 2 so that they are reverse biased, and the potential of the connection part 3 is set to V, the relationship between the current i flowing through each diode 1 and 2 and the voltage V is If the incident light intensities pA and pB are used as parameters, the result will be as shown in FIG.

即ちタイオード2に入射する光波の光強度P8が増加す
ると電流iBは正の方向に増大し、ダイオード1に入射
する光波の光強度PAが増加すると電流jAは負の方向
に減少してくる。
That is, as the light intensity P8 of the light wave incident on the diode 2 increases, the current iB increases in the positive direction, and as the light intensity PA of the light wave incident on the diode 1 increases, the current jA decreases in the negative direction.

金納線部の電位を例えばV=Oとする外部回路を設定す
ると第3図に示す如く結線部3から得られる2つの電流
の和iA+ j3は2つのダイオード1.2に入射する
光波の光強度の差分PB−PAに比例した値となる。
When an external circuit is set to set the potential of the metal wire part to, for example, V=O, the sum of the two currents obtained from the connection part 3, iA+j3, is the light intensity of the light waves incident on the two diodes 1.2 as shown in FIG. The value is proportional to the difference PB-PA.

このように本実施例では2つのダイオードを互いに極性
が異なるように出力端を結合させて光差分センサを構成
することにより2つの光波の光強度の差分信号を効果的
に検出している。
As described above, in this embodiment, a difference signal between the light intensities of two light waves is effectively detected by configuring an optical differential sensor by coupling the output ends of two diodes with different polarities.

第4図(A)は第1図に示す光差分センサの各要素をn
型シリコン基板10面上に形成したときの一実施例の説
明図であり、同図(B)は同図(A)の平面図である。
Figure 4 (A) shows each element of the optical differential sensor shown in Figure 1.
FIG. 2 is an explanatory diagram of an example when formed on the surface of a mold silicon substrate 10, and FIG. 3B is a plan view of FIG.

第4図(A) 、 (B)において12゜13は各々前
述の2つのダイオードに対応している。11は不純物濃
度の小さいなn−エビ層、14は隣接素子を分離するた
めのチャンネルストップとしての機能を有するわ+層で
ある。
In FIGS. 4A and 4B, 12° and 13 correspond to the two diodes mentioned above, respectively. Reference numeral 11 is an n-layer with a low impurity concentration, and reference numeral 14 is an n+ layer having a function as a channel stop for separating adjacent elements.

逆バイアス電圧の大きさによっては隣接素子間の分離が
不十分になる場合があるが、その場合にはチャンネルス
トップ層のn+層に相当する部分をエツチングして素子
間に満を形成すれば十分な素子分離が図れる。
Depending on the magnitude of the reverse bias voltage, the isolation between adjacent elements may become insufficient, but in that case, it is sufficient to form a gap between the elements by etching the portion of the channel stop layer corresponding to the n+ layer. element isolation can be achieved.

第5図は本発明の光差分センサを画像処理装置に適用し
たときの一実施例の光学系の概略図である。
FIG. 5 is a schematic diagram of an optical system of an embodiment in which the optical differential sensor of the present invention is applied to an image processing device.

同図において35.36は各々入力画像、30.33は
偏光子、31.32は結像レンズ、34は偏光ビームス
プリッタ、20は検光子な2次元的に配列した検光子ア
レー、21は光差分センサを2次元的に配列した光差分
デバイス、37は出力画像である。
In the figure, 35 and 36 are input images, 30 and 33 are polarizers, 31 and 32 are imaging lenses, 34 is a polarizing beam splitter, 20 is an analyzer array arranged two-dimensionally, and 21 is an optical 37 is an output image of an optical differential device in which differential sensors are arranged two-dimensionally.

本実施例では2つの人力画像35.36に関する光波を
偏光子30.33によって互いに直交する偏光成分とし
、結像レンズ31.33を介して偏光ビームスプリッタ
で合波している。そして合波後の画像を検光子アレー2
0によって選択分離し、光差分デバイス21で各画素毎
の差分信号を得て、これにより出力画像37を得ている
In this embodiment, the light waves related to the two human-powered images 35, 36 are made into mutually orthogonal polarization components by a polarizer 30, 33, and are combined by a polarizing beam splitter via an imaging lens 31, 33. The combined image is then transferred to the analyzer array 2.
0 is selectively separated, and the optical difference device 21 obtains a difference signal for each pixel, thereby obtaining an output image 37.

第6図は第5図における検光子アレー20と光差分デバ
イス21との関係を示す説明図である。
FIG. 6 is an explanatory diagram showing the relationship between the analyzer array 20 and the optical difference device 21 in FIG. 5.

第6図において2つの2次元的な人力画像信号35.3
6は多重化されており、万いの光波22.23の偏光方
向は直交している。21は前述の光差分センサを2次元
的に配列した光差分デバイス、20は光差分デバイスの
人力何面に配置した検光子アレーである。本実施例では
同極性のセンサ部分には偏向軸が同方向の検光子か配置
され、異極性のセンサ部分には偏光軸が直交する検光子
か各々配置されている。これにより偏光方向か互いに直
交する2つの人力画像35.36を各々77いに極性の
異なる光検出素子で受光することを可能としこれにより
2−′)の人力画像35.36の差分信号を得ている。
In Fig. 6, two two-dimensional human image signals 35.3
6 is multiplexed, and the polarization directions of all the light waves 22 and 23 are orthogonal. Reference numeral 21 denotes an optical differential device in which the aforementioned optical differential sensors are two-dimensionally arranged, and 20 denotes an analyzer array arranged on either side of the optical differential device. In this embodiment, analyzers with polarization axes in the same direction are arranged in sensor parts of the same polarity, and analyzers with polarization axes perpendicular to each other are arranged in sensor parts with different polarity. This makes it possible to receive two manually generated images 35 and 36 whose polarization directions are perpendicular to each other by photodetecting elements with different polarities, thereby obtaining a difference signal between the manually generated images 35 and 36 in 2-'). ing.

尚第5図において光差分デバイス21からの人力画像の
差分信号37の読み出し方法としては例えば各画素に対
応する光検出素子をトランジスタ等で順次スイッチング
して座標に応じたシリアル信号として取り出すようにし
ても良い。
In FIG. 5, the method of reading out the manual image difference signal 37 from the optical difference device 21 is, for example, by sequentially switching the photodetecting elements corresponding to each pixel using a transistor or the like and taking out a serial signal according to the coordinates. Also good.

以上の実施例では2つの極性の異なる光検出素子への人
力方法に関しては直交する偏光の多重を利用して光分離
を行った場合を示したが、この他波重多重、時間多重等
の多重化分離技術等を利用して行っても良い。
In the above embodiments, the manual method of separating light into two photodetecting elements with different polarities using multiplexing of orthogonal polarized light was shown. It may also be carried out using chemical separation technology or the like.

又人力画像がカラー画像のときは光差分デバイスの前方
にカラーモザイクフィルタ等の波長選択性のフィルター
を設置すれば同様に本発明の目的を達成することができ
る。
Further, when the human image is a color image, the object of the present invention can be similarly achieved by installing a wavelength selective filter such as a color mosaic filter in front of the optical difference device.

第7図、第8図は本発明の光差分センサの他の実施例の
動作原理の説明図である。第7図では互いに極性が異な
るように2つのタイオート40.41、即ち2つの光検
出素子40.41が結合されており出力端にはコンデン
サ42が設けられている。結合点の電圧Vに注目すれば
2つの光検出素子40.41に人力された光波の光強度
の差分に比例した電圧Vが生じることになる。
FIGS. 7 and 8 are explanatory diagrams of the operating principle of another embodiment of the optical differential sensor of the present invention. In FIG. 7, two tie-outs 40, 41, ie, two photodetecting elements 40, 41 are coupled so that their polarities are different from each other, and a capacitor 42 is provided at the output end. If we pay attention to the voltage V at the coupling point, a voltage V will be generated that is proportional to the difference in the light intensity of the light waves applied to the two photodetecting elements 40 and 41.

但し電荷蓄積微か人きい場合、即ち人力光強度の差分か
大きい場合には第8図の点線で示すように飽和してくる
。第7図に示すようなエネルギー積分型を利用した光検
出の場合には双方の光検出素子40.41に人力される
光波は互いに異った時間であっても良い。このときの検
出電圧は双方の光検出素子40.41に人力される光強
度差Pntn −PAta(LA、 ’−8は2つの光
信号のパルス幅)に比例した値となる。
However, if the charge accumulation is small, that is, if the difference in the intensity of the light produced by the human power is large, the charge will be saturated as shown by the dotted line in FIG. In the case of photodetection using an energy integral type as shown in FIG. 7, the light waves applied to both photodetecting elements 40 and 41 may have different times. The detection voltage at this time is a value proportional to the light intensity difference Pntn -PAta (LA, '-8 is the pulse width of the two optical signals) manually applied to both photodetecting elements 40 and 41.

尚本実施例においてスイッチ43は差分信号をリセット
する為のものてあり、バイポーラ型、MOS型等のトラ
ンジスタを用いることができる。
In this embodiment, the switch 43 is for resetting the differential signal, and a bipolar type, MOS type, etc. transistor can be used.

第9図は第7図に示す光差分センサを画像処理装置に適
用したときの一実施例の光学系の概略図である。
FIG. 9 is a schematic diagram of an optical system of an embodiment when the optical differential sensor shown in FIG. 7 is applied to an image processing device.

同図において52は人力画像面であり、53a、53b
は2つの人力画像である。51は偏光方向の制御可能な
偏光デバイス、50は集光レンズ、57は検光子アレー
、55は光差分デバイス、56は出力画像面であり56
A、56ftは2つの出力画像である。54はクロック
発生回路であり同期信号によって偏光デバイス51の偏
光方向を交互に90度回転させている。
In the figure, 52 is a human image plane, 53a, 53b
are two human images. 51 is a polarization device whose polarization direction can be controlled, 50 is a condenser lens, 57 is an analyzer array, 55 is a light difference device, and 56 is an output image plane.
A, 56ft are two output images. Reference numeral 54 denotes a clock generation circuit which alternately rotates the polarization direction of the polarization device 51 by 90 degrees in response to a synchronization signal.

偏光デバイスは例えば透明円板」二に偏光板を複数個設
け、円板をステップモータ等で駆動させ円板の各々のス
テップ回転に対応させて偏光板の偏光方向か互いに直交
するようにして構成している。
A polarizing device is constructed by, for example, providing a plurality of polarizing plates on a transparent disk, and driving the disk with a step motor or the like so that the polarization directions of the polarizing plates are orthogonal to each other in response to each step rotation of the disk. are doing.

本実施例では時刻t−toで偏光デバイス51の偏光角
度を0度(相対値)とし、人力画像53b(破線)を検
光で一アレー57を介して光差分デバイス55に人力し
ている。次に時刻1=1o+Δtで偏光デバイス51の
偏光角度を90度(相対値)とし人力画像5:]a(実
線)を同様に光差分デバイス55に人力している。この
とき各々の人力画像53a、53bは偏光方向に従って
分離した状態で光差分デバイス55に人力させ、これに
より2つの入力画像53a、53bの光強度差を電圧差
とじて検出している。このときの出力電圧は例えば出力
画像面56に示すように2つの正と負の電圧コントラス
トの出力画像56八、56Bとして表わすことができる
In this embodiment, at time t-to, the polarization angle of the polarization device 51 is set to 0 degrees (relative value), and a manually-powered image 53b (broken line) is manually transmitted to the optical difference device 55 via an array 57 by light analysis. Next, at time 1=1o+Δt, the polarization angle of the polarization device 51 is set to 90 degrees (relative value), and a human image 5:]a (solid line) is similarly applied to the optical difference device 55. At this time, each of the manually input images 53a and 53b is manually input to the optical difference device 55 while being separated according to the polarization direction, thereby detecting the difference in light intensity between the two input images 53a and 53b as a voltage difference. The output voltage at this time can be represented, for example, as two positive and negative voltage contrast output images 568 and 56B as shown on the output image plane 56.

従ってこれにより時刻t=七〇の時と時刻t=to+Δ
tの時との画像の動き等の経時的変化を検出することが
可能となる。
Therefore, from this, the time t=70 and the time t=to+Δ
It becomes possible to detect changes over time such as the movement of the image from time t.

尚以上の各実施例における光差分センサはPN接合型や
NP接合型構造のものの他にショットキー構造、MO3
構造、フォトトランジスタ構造等の光検出素子を用いて
構成しても良い。
The optical differential sensor in each of the above embodiments has a Schottky structure, an MO3 structure, in addition to a PN junction type or NP junction structure.
It may also be configured using a photodetector element such as a structure or a phototransistor structure.

(発明の効果) 本発明によれば互いに極性の異なる2つの光検出素子を
前述の如く一体化に構成することによりリアルタイムで
しかも高精度に2つの画像情報間の差分信号を得ること
が出来る光差分センサを達成することができる。
(Effects of the Invention) According to the present invention, by integrally configuring two photodetecting elements with different polarities as described above, it is possible to obtain a differential signal between two image information in real time and with high precision. A differential sensor can be achieved.

特に光差分センサを1次元又は2次元的に配置すること
により、2つの画像情報間の強度の差分信号をリアルタ
イム動作で容易に得ることが出来、又光差分センサをエ
ネルギー蓄積型の出力形式として用いれば光エネルギー
の差分装置として応用可能となり、例えば異なる時間の
2つの画像の動き等の検出を行った画像処理装置に適用
することができる。
In particular, by arranging optical differential sensors one-dimensionally or two-dimensionally, it is possible to easily obtain an intensity difference signal between two image information in real time, and the optical differential sensor can also be used as an energy storage type output format. If used, it can be applied as a light energy difference device, and can be applied, for example, to an image processing device that detects the movement of two images at different times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1、第2、第3図は各々本発明の光差分センサの動作
原理の説明図、第4図(A) 、 (B)は本発明の光
差分センサの構成の一実施例の説明図、第5図は本発明
の光差分センサな画像処理装置に適用したときの一実施
例の光学系の概略図、第6図は第5図の一部分の説明図
、第7、第8図は本発明の光差分センサの他の実施例の
動作原理の説明図、第9図は第7図に示す光差分センサ
を画像処理装置に適用したときの一実施例の光学系の概
略図である。図中1.2.40.41は光検出素子、5
.6は光波、20.57は検光子アレー、21.55は
光差分デバイス、35.36.53a、53bは人力画
像、30.33は偏光子、31.32は集光レンズ、3
4は偏光ビームスプリッター、37.56は出力画像面
、42は電荷蓄積用コンデンサー、54はクロック発生
回路、43はリセットスイッチである。 特許出願人  キャノン株式会社 第1図 稟′1図 第+口(A) 第0図 第5図 手続補正書(岐) 昭和62年 2月 18日 2、発明の名称 光差分センサ 3、補正をする者 事件との関係     特許出願人 住所 東京都大田区下丸子3−30−2名称 (ioo
)  キャノン株式会社代表者 賀  来  龍 三 
部 4、代理人 居所 〒158東京都世田谷区奥沢2−17−3ベルハ
イム自由が丘301号(電話718−5614)6、補
正の内容
1, 2, and 3 are explanatory diagrams of the operating principle of the optical differential sensor of the present invention, and Figures 4 (A) and (B) are explanatory diagrams of an embodiment of the configuration of the optical differential sensor of the present invention. , FIG. 5 is a schematic diagram of an optical system of an embodiment when applied to an image processing apparatus such as an optical differential sensor of the present invention, FIG. 6 is an explanatory diagram of a part of FIG. 5, and FIGS. 7 and 8 are An explanatory diagram of the operating principle of another embodiment of the optical differential sensor of the present invention, FIG. 9 is a schematic diagram of an optical system of an embodiment when the optical differential sensor shown in FIG. 7 is applied to an image processing device. . In the figure, 1.2.40.41 is a photodetecting element, 5
.. 6 is a light wave, 20.57 is an analyzer array, 21.55 is an optical difference device, 35.36.53a, 53b is a human image, 30.33 is a polarizer, 31.32 is a condensing lens, 3
4 is a polarizing beam splitter, 37.56 is an output image plane, 42 is a charge storage capacitor, 54 is a clock generation circuit, and 43 is a reset switch. Patent Applicant Canon Co., Ltd. Figure 1, Figure 1, Figure 1, + (A), Figure 0, Figure 5, Procedural Amendment (Form) February 18, 1985 2, Name of the invention Optical differential sensor 3, Amendment Relationship with the case of a person who does
) Canon Co., Ltd. Representative Ryuzo Kaku
Part 4. Agent's residence 301 Jiyugaoka, Belheim, 2-17-3 Okusawa, Setagaya-ku, Tokyo 158 (telephone 718-5614) 6. Contents of amendment

Claims (3)

【特許請求の範囲】[Claims] (1)2つの光検出素子を該光検出素子の光電特性の極
性が互いに異なるように各々の電気出力端を接合して構
成したことを特徴とする光差分センサ。
(1) An optical differential sensor characterized in that two photodetecting elements are constructed by joining their respective electrical output ends so that the polarities of the photoelectric characteristics of the photodetecting elements are different from each other.
(2)前記2つの光検出素子の入力前面にはそれぞれ偏
光軸方向が互いに異っている検光子が配置されているこ
とを特徴とする特許請求の範囲第1項記載の光差分セン
サ。
(2) The optical differential sensor according to claim 1, wherein analyzers having different polarization axes are arranged in front of the inputs of the two photodetecting elements.
(3)前記2つの光検出素子の入力前面にはそれぞれ波
長選択性が互いに異なる光学フィルターが配置されてい
ることを特徴とする特許請求の範囲第1項記載の光差分
センサ。
(3) The optical differential sensor according to claim 1, wherein optical filters having different wavelength selectivities are arranged in front of the inputs of the two photodetecting elements.
JP28237086A 1986-11-26 1986-11-26 Optical difference sensor Pending JPS63133128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28237086A JPS63133128A (en) 1986-11-26 1986-11-26 Optical difference sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28237086A JPS63133128A (en) 1986-11-26 1986-11-26 Optical difference sensor

Publications (1)

Publication Number Publication Date
JPS63133128A true JPS63133128A (en) 1988-06-04

Family

ID=17651519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28237086A Pending JPS63133128A (en) 1986-11-26 1986-11-26 Optical difference sensor

Country Status (1)

Country Link
JP (1) JPS63133128A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03278476A (en) * 1990-03-27 1991-12-10 Matsushita Electric Works Ltd Photosensor
JPH07501659A (en) * 1991-12-05 1995-02-16 ハネウエル・インコーポレーテッド wavelength stabilization
JPH08503496A (en) * 1992-10-21 1996-04-16 アライド−シグナル・インコーポレーテッド Plasma spray masking tape
JPH08335712A (en) * 1995-04-05 1996-12-17 Matsushita Electron Corp Photodetector and its manufacture
JP2006118965A (en) * 2004-10-21 2006-05-11 Seiko Epson Corp Photodetection circuit, electro-optical device, and electronic equipment
JP2007205902A (en) * 2006-02-02 2007-08-16 Epson Imaging Devices Corp Light detecting circuit, electro-optical device, and electronic equipment
JP2008209556A (en) * 2007-02-26 2008-09-11 Epson Imaging Devices Corp Electro-optical device, semiconductor device, display device and electronic equipment having the same
JP2012227925A (en) * 2011-04-20 2012-11-15 Integrated Digital Technologies Inc Sensing device and sensing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03278476A (en) * 1990-03-27 1991-12-10 Matsushita Electric Works Ltd Photosensor
JPH07501659A (en) * 1991-12-05 1995-02-16 ハネウエル・インコーポレーテッド wavelength stabilization
JPH08503496A (en) * 1992-10-21 1996-04-16 アライド−シグナル・インコーポレーテッド Plasma spray masking tape
JPH08335712A (en) * 1995-04-05 1996-12-17 Matsushita Electron Corp Photodetector and its manufacture
JP2006118965A (en) * 2004-10-21 2006-05-11 Seiko Epson Corp Photodetection circuit, electro-optical device, and electronic equipment
JP4599985B2 (en) * 2004-10-21 2010-12-15 セイコーエプソン株式会社 Photodetection circuit, electro-optical device, and electronic apparatus
JP2007205902A (en) * 2006-02-02 2007-08-16 Epson Imaging Devices Corp Light detecting circuit, electro-optical device, and electronic equipment
JP2008209556A (en) * 2007-02-26 2008-09-11 Epson Imaging Devices Corp Electro-optical device, semiconductor device, display device and electronic equipment having the same
JP2012227925A (en) * 2011-04-20 2012-11-15 Integrated Digital Technologies Inc Sensing device and sensing method

Similar Documents

Publication Publication Date Title
Povel Imaging Stokes polarimetry with piezoelastic modulators and charge-coupled-device image sensors
EP3423858B1 (en) 3d imaging system and method
US8288702B2 (en) Response-enhanced monolithic-hybrid pixel
US6107618A (en) Integrated infrared and visible image sensors
US20110109776A1 (en) Imaging device and imaging apparatus
JPS60130274A (en) Solid-state image pickup device
JPS60137059A (en) 3-layer 4-stage structure solid state image sensor
WO2010033127A1 (en) Response-enhanced monolithic-hybrid pixel
JPS5958306A (en) Range finder
US10574872B2 (en) Methods and apparatus for single-chip multispectral object detection
KR100783335B1 (en) Measuring method of incident light and sensor having spectroscopic mechanism employing it
JPS63133128A (en) Optical difference sensor
KR20050069521A (en) Cmos image sensor and method for detecting light color sensitivity thereof
Knipp et al. Vertically integrated amorphous silicon color sensor arrays
JP3949360B2 (en) Color image sensor
JPH0222973A (en) Solid-state image pickup device
US5285234A (en) Phase difference detecting type autofocusing device including an optical system having first and second lenses
JPH03202732A (en) Color sensor
JPS61207935A (en) Solid-state image pickup device
JP2001044400A (en) Semiconductor infrared ray detecting element
US20230049577A1 (en) Single Chip Spectral Polarization Imaging Sensor
JP2713674B2 (en) Method for manufacturing solid-state imaging device
JPS6269671A (en) Image sensor
JPS6018073A (en) Solid-state image pickup device
WO2022113028A1 (en) Methods and systems for infrared sensing