JP2006118821A - Flow distributing device - Google Patents

Flow distributing device Download PDF

Info

Publication number
JP2006118821A
JP2006118821A JP2004309393A JP2004309393A JP2006118821A JP 2006118821 A JP2006118821 A JP 2006118821A JP 2004309393 A JP2004309393 A JP 2004309393A JP 2004309393 A JP2004309393 A JP 2004309393A JP 2006118821 A JP2006118821 A JP 2006118821A
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
distributor
heat exchanger
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004309393A
Other languages
Japanese (ja)
Inventor
Masatoshi Takahashi
正敏 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004309393A priority Critical patent/JP2006118821A/en
Publication of JP2006118821A publication Critical patent/JP2006118821A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Branch Pipes, Bends, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the deviation of refrigerant flow rate in a case that refrigerant of two-layer state flows into a refrigerant flow distributing device. <P>SOLUTION: As a pipe to be connected to a distributer 31, an inflow pipe 33 having a substantially circular and spiral shape with a diameter twice or more the pipe diameter is used. According to this, when the refrigerant of two-layer state is passed therein, since the refrigerant of liquid phase with a high density is greatly influenced by centrifugal force, compared with that with a small density, generating a radial flow, its mixing with the gas phase can be promoted in an orifice part 31a provided within the distributor 31. Accordingly, the difference in the refrigerant mass per unit time carried to an outflow pipe can be significantly reduced regardless of the shape of inner wall of the inflow pipe. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は分流装置に関するものである。   The present invention relates to a flow dividing device.

従来、2層状態の冷媒が冷媒分流装置に流入する場合、流入配管の形状や冷媒分流装置の設置状態によって、密度の高い液相の冷媒は密度の小さい状態のものと比べて、遠心力や重力の影響を大きく受けて偏った部分の壁面に沿って流れるために、一部の流出管に単位時間当たりの冷媒質量が大きくなることで熱交換器が熱交換する量が減少する。これを防止するためにディストリビュータ流入管の内壁に突起を設け、壁面をつたって流れる液冷媒を阻害することで、冷媒流量変化に対して熱交換器の冷媒偏流を防止している(例えば、特許文献1参照)。
図6は、特許文献1に記載された従来の冷媒分流装置を示すものである。図6に示すように、冷媒を複数の冷媒経路を有する熱交換器に分配するデストリビュータ31にデストリビュータ31に冷媒を流入させる流入管32が接続され、また、デストリビュータ31には熱交換器冷媒を分配するための流出管32が接続された構成となっている。
特開2000−105026号公報
Conventionally, when a refrigerant in a two-layer state flows into the refrigerant diverter, the liquid-phase refrigerant having a high density is more difficult to obtain due to centrifugal force Since it flows along the wall surface of the biased part greatly influenced by gravity, the amount of heat exchanged by the heat exchanger is reduced by increasing the mass of refrigerant per unit time in some outflow pipes. In order to prevent this, a protrusion is provided on the inner wall of the distributor inflow pipe to inhibit liquid refrigerant flowing through the wall surface, thereby preventing refrigerant drift in the heat exchanger against changes in the refrigerant flow rate (for example, patents). Reference 1).
FIG. 6 shows a conventional refrigerant branching device described in Patent Document 1. In FIG. As shown in FIG. 6, an inflow pipe 32 through which the refrigerant flows into the distributor 31 is connected to a distributor 31 that distributes the refrigerant to a heat exchanger having a plurality of refrigerant paths, and the distributor 31 has a heat exchanger. An outflow pipe 32 for distributing the refrigerant is connected.
JP 2000-105026 A

しかしながら、前記従来の構成では、ディストリビュータに接続された流入管に溝が施されているため、配管1本あたりの加工費が高くなるだけでなく、平均肉厚を平滑管と同じにした場合、凹部の肉厚が小さくなるため、配管の強度や腐食などの耐久性が落ちるという課題を有していた。   However, in the conventional configuration, since the inflow pipe connected to the distributor is grooved, not only the processing cost per pipe is increased, but also when the average wall thickness is the same as the smooth pipe, Since the thickness of the concave portion is reduced, there is a problem that durability such as strength and corrosion of the piping is lowered.

本発明は、前記従来の課題を解決するもので、平滑管と同等の耐久性を持ち、冷媒流量変化に対して冷媒偏流の防止を両立できる分流装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a flow dividing device that has durability equivalent to that of a smooth tube and can simultaneously prevent refrigerant drift against refrigerant flow rate changes.

前記従来の課題を解決するために、本発明の分流装置は、ディストリビュータに接続される配管は螺旋形状をなし、且つ前記螺旋の直径は該配管径の2倍以上としたものである。   In order to solve the above-described conventional problems, in the flow dividing device of the present invention, the pipe connected to the distributor has a spiral shape, and the diameter of the spiral is twice or more the pipe diameter.

これによって、2層状態の冷媒の密度の高い液相の冷媒は密度の小さい状態のものと比べて、遠心力の影響を大きく受けて半径方向の流れが生じるために、ディストリビュータ内にあるオリフィス部でガス相とのミキシングを促進させることができるため、流入管の内壁の形状に関わらず、流出管に流れる単位時間当たりの冷媒質量の差を大幅に減少できる。   As a result, the liquid phase refrigerant having a high density of the two-layer refrigerant is more greatly affected by the centrifugal force than the low density refrigerant, so that a radial flow is generated. Therefore, the mixing with the gas phase can be promoted, so that the difference in refrigerant mass per unit time flowing through the outflow pipe can be greatly reduced regardless of the shape of the inner wall of the inflow pipe.

また、本発明の分流装置はディストリビュータに接続するディストリビュータ流入管を設け、前記ディストリビュータ流入管は他の配管より径を小さくしてあり、且つこの部位は前記ディストリビュータから接続配管の配管径の5倍までの距離以内に設けたもので、この構成をなすことにより、冷媒が縮流されることで壁面を流れる液冷媒が中央部に流れやすくなるために、液とガスがミキシングされてディストリビュータに流入されるために、流入管の内壁の形状に関わらず、流出管に流れる単位時間当たりの冷媒質量の差を大幅に減少できる。   Further, the flow dividing device of the present invention is provided with a distributor inflow pipe connected to the distributor, the distributor inflow pipe is made smaller in diameter than other pipes, and this part is from the distributor up to 5 times the pipe diameter of the connection pipe. This configuration makes it easier for the liquid refrigerant flowing on the wall surface to flow into the central part by contracting the refrigerant, so that the liquid and gas are mixed and flowed into the distributor. Therefore, regardless of the shape of the inner wall of the inflow pipe, the difference in refrigerant mass per unit time flowing through the outflow pipe can be greatly reduced.

また、本発明の分流装置は、ディストリビュータ流入管に縮管を用いたもので、この構
成をなすことにより、冷媒が縮流と拡大流が生じることで配管内での乱れを起こし、壁面を流れる冷媒が中央部に流れやすくなるために、流入管の内壁の形状に関わらず、流出管に流れる単位時間当たりの冷媒質量の差を大幅に減少できる。
Further, the flow dividing device of the present invention uses a contraction pipe for the distributor inflow pipe. By making this configuration, the refrigerant contracts and expands to cause turbulence in the pipe, and flows on the wall surface. Since the refrigerant easily flows to the central portion, the difference in mass of the refrigerant per unit time flowing to the outflow pipe can be greatly reduced regardless of the shape of the inner wall of the inflow pipe.

また、本発明の分流装置は冷媒がディストリビュータに流入する直前の配管に冷媒を加振する共振手段を設けたもので、この構成をなすことにより、冷媒を加振できるため、壁面を流れる液冷媒とガス冷媒のミキシングが高いレベルで可能となるため、流入管の内壁の形状に関わらず、流出管に流れる単位時間当たりの冷媒質量の差を大幅に減少できる。   Further, the flow dividing device of the present invention is provided with a resonance means for exciting the refrigerant in the pipe immediately before the refrigerant flows into the distributor. By making this configuration, the refrigerant can be excited. Therefore, the difference in the mass of the refrigerant per unit time flowing through the outflow pipe can be greatly reduced regardless of the shape of the inner wall of the inflow pipe.

また、本発明の分流装置は前記共振手段の冷媒流通方向に対して垂直方向の断面のアスペクト比が1とならない形状であるため、共振手段で加振された冷媒は特定方向に強く加振された波形を形成できることで、壁面を流れる液冷媒とガス冷媒のミキシングが高いレベルで可能となるだけでなく、接続配管の形状による遠心力や重力の影響を受けにくくなることから、流入管の内壁の形状に関わらず、流出管に流れる単位時間当たりの冷媒質量の差を大幅に減少できるだけでなく、分流装置の設置自由度が上がる。   In addition, since the diversion device of the present invention has a shape in which the aspect ratio of the cross section perpendicular to the refrigerant flow direction of the resonance means does not become 1, the refrigerant vibrated by the resonance means is strongly vibrated in a specific direction. The ability to form a corrugated waveform not only enables high-level mixing of liquid refrigerant and gas refrigerant flowing on the wall surface, but also makes it less susceptible to centrifugal force and gravity due to the shape of the connecting pipe. Regardless of the shape, not only can the difference in refrigerant mass per unit time flowing through the outflow pipe be greatly reduced, but the degree of freedom of installation of the flow dividing device is increased.

また、本発明の分流装置は前記共振手段を前記ディストリビュータから接続配管の配管径の5倍までの距離以内に設けたことで、ミキシングされた液冷媒とガス冷媒の状態を維持できるため、流入管の内壁の形状に関わらず、流出管に流れる単位時間当たりの冷媒質量の差を大幅に減少できる。   Further, the shunting device of the present invention can maintain the state of the mixed liquid refrigerant and gas refrigerant by providing the resonance means within a distance from the distributor up to 5 times the pipe diameter of the connection pipe. Regardless of the shape of the inner wall, the refrigerant mass difference per unit time flowing through the outflow pipe can be greatly reduced.

本発明の冷媒分流装置は、流入管からディストリビュータの壁面を流れる液冷媒を阻害する働きが生じるために複数の冷媒経路を有する熱交換器の入口側に接続される流出管に流れる冷媒流量偏差を大幅に減少できる。   The refrigerant branching device of the present invention has the function of inhibiting the liquid refrigerant flowing from the inflow pipe to the distributor wall surface, so that the flow rate deviation of the refrigerant flowing through the outflow pipe connected to the inlet side of the heat exchanger having a plurality of refrigerant paths is reduced. Can be greatly reduced.

第1の発明はディストリビュータに接続される配管を配管径の2倍以上直径の略円弧で螺旋状にしたとしたもので、これによって、2層状態の冷媒の密度の高い液相の冷媒は密度の小さい状態のものと比べて、遠心力の影響を大きく受けて半径方向の流れが生じるために、同一循環量で同一配管長の場合、冷媒の流路長さが長くなることで冷媒の流速が上がることで流入管で液層とガス層のミキシングが期待できるだけでなく、ディストリビュータ内にあるオリフィス部に流入する際の速度も上がることが期待でき、液層とガス相とのミキシングを促進させることができるため、流入管の内壁の形状に関わらず、流出管に流れる単位時間当たりの冷媒質量の差を大幅に減少できる。   In the first aspect of the present invention, the pipe connected to the distributor is spiraled with a substantially arc having a diameter of at least twice the pipe diameter. Compared to the case of a small state, the flow in the radial direction is greatly influenced by the centrifugal force. Therefore, in the case of the same circulation amount and the same pipe length, the refrigerant flow rate becomes longer by increasing the refrigerant flow path length. As the flow rate rises, not only can the mixing of the liquid and gas layers be expected in the inflow pipe, but also the speed when flowing into the orifice in the distributor can be expected to increase mixing between the liquid layer and the gas phase. Therefore, regardless of the shape of the inner wall of the inflow pipe, the difference in refrigerant mass per unit time flowing through the outflow pipe can be greatly reduced.

第2の発明は、2層状態の冷媒が流れる場合において、ディストリビュータに流入する直前の配管径を他の流入管径より小さくしたデストリビュータ流入管をディストリビュータから接続配管の配管径の5倍までの距離以内に設けたことで、冷媒が縮流されることで壁面を流れる液冷媒が中央部に流れやすくなるために、液とガスがミキシングされてディストリビュータに流入されるために、流入管の内壁の形状に関わらず、流出管に流れる単位時間当たりの冷媒質量の差を大幅に減少できる。   In the second aspect of the present invention, when a two-layer refrigerant flows, a distributor inflow pipe whose pipe diameter immediately before flowing into the distributor is smaller than other inflow pipe diameters is 5 times the pipe diameter of the connecting pipe from the distributor. By providing within the distance, the liquid refrigerant flowing on the wall surface is easily flown to the central part due to the refrigerant being contracted, so that the liquid and gas are mixed and flowed into the distributor. Regardless of the shape, the difference in mass of refrigerant per unit time flowing through the outflow pipe can be greatly reduced.

第3の発明は、2層状態の冷媒が流れる場合において、ディストリビュータに流入する直前の配管を縮管したデストリビュータ縮管をディストリビュータから接続配管の配管径の5倍までの距離以内に設けたことで、冷媒が縮流と拡大流が生じることで配管内での乱れを起こし、壁面を流れる液冷媒が中央部に流れやすくなるために、流入管の内壁の形状に関わらず、流出管に流れる単位時間当たりの冷媒質量の差を大幅に減少できる。   According to a third aspect of the present invention, when a refrigerant in a two-layer state flows, a distributor contraction pipe obtained by reducing the pipe immediately before flowing into the distributor is provided within a distance of 5 times the pipe diameter of the connection pipe from the distributor. Therefore, the refrigerant contracts and expands to cause turbulence in the pipe, so that the liquid refrigerant flowing on the wall easily flows to the center portion, so that it flows to the outflow pipe regardless of the shape of the inner wall of the inflow pipe. The difference in refrigerant mass per unit time can be greatly reduced.

第4の発明は、2層状態の冷媒が流れる場合において、冷媒がディストリビュータに流
入する直前の配管に冷媒を加振する共振手段を設けたことで冷媒を加振できるため、壁面を流れる液冷媒とガス冷媒のミキシングが高いレベルで可能となるため、流入管の内壁の形状に関わらず、流出管に流れる単位時間当たりの冷媒質量の差を大幅に減少できる。
According to the fourth aspect of the present invention, when the refrigerant in the two-layer state flows, the liquid refrigerant flowing on the wall surface can be vibrated by providing the resonance means for exciting the refrigerant in the pipe immediately before the refrigerant flows into the distributor. Therefore, the difference in the mass of the refrigerant per unit time flowing through the outflow pipe can be greatly reduced regardless of the shape of the inner wall of the inflow pipe.

第5の発明は、2層状態の冷媒が流れる場合において、共振手段の冷媒流通方向に対して垂直方向の断面のアスペクト比が1とならない形状であるため、共振手段で加振された冷媒は特定方向に強く加振された波形を形成できることで、壁面を流れる液冷媒とガス冷媒のミキシングが高いレベルで可能となるだけでなく、接続配管の形状による遠心力や重力の影響を受けにくくなることから、流入管の内壁の形状に関わらず、流出管に流れる単位時間当たりの冷媒質量の差を大幅に減少できるだけでなく、分流装置の設置自由度が上がる。   In the fifth aspect of the present invention, when the refrigerant in the two-layer state flows, the aspect ratio of the cross section perpendicular to the refrigerant flow direction of the resonance means does not become 1, so the refrigerant vibrated by the resonance means is The ability to form a waveform that is strongly vibrated in a specific direction enables mixing of liquid refrigerant and gas refrigerant flowing on the wall surface at a high level, and is less susceptible to centrifugal force and gravity due to the shape of the connecting pipe. Therefore, regardless of the shape of the inner wall of the inflow pipe, not only can the difference in refrigerant mass per unit time flowing through the outflow pipe be greatly reduced, but the degree of freedom in installing the flow dividing device is increased.

第6の発明は、2層状態の冷媒が流れる場合において、前記共振手段を前記ディストリビュータから接続配管の配管径の5倍までの距離以内に設けたことで、ミキシングされた液冷媒とガス冷媒の状態を維持できるため、流入管の内壁の形状に関わらず、流出管に流れる単位時間当たりの冷媒質量の差を大幅に減少できる。   In a sixth aspect of the present invention, when the two-layer refrigerant flows, the resonance means is provided within a distance from the distributor to five times the pipe diameter of the connection pipe, so that the mixed liquid refrigerant and gas refrigerant are mixed. Since the state can be maintained, the difference in refrigerant mass per unit time flowing through the outflow pipe can be greatly reduced regardless of the shape of the inner wall of the inflow pipe.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における冷媒分流装置の略断面図を示すものである。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view of a refrigerant flow dividing device according to a first embodiment of the present invention.

図1において、冷媒を複数の冷媒経路を有する熱交換器に分配するデストリビュータ31と、デストリビュータ31の内部には冷媒の流れを縮流させる絞り部を設けたオリフィス部31aと、デストリビュータ31に冷媒を流入させる流入管32と、デストリビュータ31には熱交換器冷媒を分配するための流出管32から構成されている。   In FIG. 1, a distributor 31 that distributes the refrigerant to a heat exchanger having a plurality of refrigerant paths, an orifice portion 31 a provided with a constriction portion for reducing the flow of the refrigerant inside the distributor 31, and the distributor 31. The distributor 31 includes an inflow pipe 32 and the distributor 31 includes an outflow pipe 32 for distributing the heat exchanger refrigerant.

以上のように構成された冷媒分流装置について、以下その動作、作用を説明する。   About the refrigerant | coolant diversion apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、凝縮機で凝縮された2層状態の冷媒は、配管径dの2倍以上直径Dの略円弧で螺旋状形状の流入管32内に際にその形状から密度の高い液相の冷媒は密度の小さい状態のものと比べて、遠心力の影響を大きく受けて半径方向の流れが生じるために、同一循環量で同一配管長の場合、冷媒の流路長さが長くなることで冷媒の流速が上がることで流入管での液層とガス層のミキシングが期待できるだけでなく、ディストリビュータ31内にあるオリフィス部31aに流入する際の速度も上がることが期待でき、オリフィス部での液層とガス相とのミキシングを促進させることができるため、流入管の内壁の形状に関わらず、流出管32に流れる単位時間当たりの冷媒質量の差を大幅に減少できる。   First, the refrigerant in the two-layer state condensed by the condenser is a liquid-phase refrigerant having a high density due to the shape of the substantially circular arc having a diameter D that is twice or more the pipe diameter d and entering the spiral shaped inflow pipe 32. Compared with the low density state, the flow in the radial direction is greatly influenced by the centrifugal force. By increasing the flow velocity, not only can the liquid layer and the gas layer be mixed in the inflow pipe, but also the speed when flowing into the orifice part 31a in the distributor 31 can be expected to increase. Since mixing with the gas phase can be promoted, the difference in refrigerant mass per unit time flowing through the outflow pipe 32 can be greatly reduced regardless of the shape of the inner wall of the inflow pipe.

(実施の形態2)
図2は、本発明の第2の実施の形態における冷媒分流装置を示すものである。
(Embodiment 2)
FIG. 2 shows a refrigerant branching device according to the second embodiment of the present invention.

図2において、ディストリビュータ31に流入する直前の配管の配管径d2を接続する流入配管32の配管径d1より小さくしたデストリビュータ流入管42から構成されたものである。   2, the distributor inflow pipe 42 is configured to be smaller than the pipe diameter d1 of the inflow pipe 32 connecting the pipe diameter d2 of the pipe immediately before flowing into the distributor 31.

以上のように構成された冷媒分流装置について、以下その動作、作用を説明する。   About the refrigerant | coolant diversion apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、凝縮機で凝縮された2層状態の冷媒が分流装置に流入する場合において、ディス
トリビュータ31に流入する直前の配管の配管径d2を接続する流入配管32の配管径d1より小さくしたデストリビュータ流入管42が冷媒を縮流するだけでなく、壁面をつたってきた液冷媒の流れを阻害し、配管中心部に向けることで中央部に流れやすくなるために、液とガスがミキシングされてディストリビュータに流入されるために、流入管の内壁の形状に関わらず、流出管に流れる単位時間当たりの冷媒質量の差を大幅に減少できる。また、デストリビュータ流入管42の設置位置をデストリビュータ流入管42の径の5倍までの距離以内にしたことで、液とガスがミキシングされる効果がある程度維持できる。
First, when the refrigerant in the two-layer state condensed by the condenser flows into the flow dividing device, the distributor inflow is made smaller than the pipe diameter d1 of the inflow pipe 32 connecting the pipe diameter d2 of the pipe just before flowing into the distributor 31. The pipe 42 not only contracts the refrigerant but also hinders the flow of the liquid refrigerant that has passed through the wall surface, and it tends to flow toward the center by directing it toward the center of the pipe, so that the liquid and gas are mixed to the distributor. Since the refrigerant flows in, the refrigerant mass difference per unit time flowing through the outflow pipe can be greatly reduced regardless of the shape of the inner wall of the inflow pipe. Further, since the installation position of the distributor inflow pipe 42 is within a distance up to five times the diameter of the distributor inflow pipe 42, the effect of mixing the liquid and the gas can be maintained to some extent.

(実施の形態3)
図3は、本発明の第3の実施の形態における冷媒分流装置を示すものである。
(Embodiment 3)
FIG. 3 shows a refrigerant branching device according to a third embodiment of the present invention.

図3において、ディストリビュータ31に流入する直前の配管を縮管したデストリビュータ縮管52から構成されたものである。   In FIG. 3, the distributor is configured by a distributor contracted tube 52 in which a pipe immediately before flowing into the distributor 31 is contracted.

以上のように構成された冷媒分流装置について、以下その動作、作用を説明する。   About the refrigerant | coolant diversion apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、凝縮機で凝縮された2層状態の冷媒が分流装置に流入する場合において、ディストリビュータ31に流入する直前の配管を縮管したデストリビュータ縮管52によって、冷媒は縮流と拡大流が生じることで配管内での乱れを起こし、壁面を流れる液冷媒とガス冷媒のミキシングを促進されやすくなるために、流入管の内壁の形状に関わらず、流出管に流れる単位時間当たりの冷媒質量の差を大幅に減少できる。   First, when the refrigerant in the two-layer state condensed by the condenser flows into the flow dividing device, the refrigerant is contracted and expanded by the distributor contracted tube 52 in which the piping immediately before flowing into the distributor 31 is contracted. Therefore, the difference in the mass of refrigerant per unit time flowing to the outflow pipe regardless of the shape of the inner wall of the inflow pipe Can be greatly reduced.

また、ディストリビュータから接続配管の配管径d2の5倍までの距離L以内に設けたことで、液とガスがミキシングされる効果がある程度維持できる。   Further, by providing within a distance L from the distributor up to 5 times the pipe diameter d2 of the connection pipe, the effect of mixing the liquid and gas can be maintained to some extent.

(実施の形態4)
図4は、本発明の第4の実施の形態における冷媒分流装置を示すものである。
(Embodiment 4)
FIG. 4 shows a refrigerant branching device in the fourth embodiment of the present invention.

図4において、ディストリビュータに流入する直前の配管に共振手段61から構成されたものである。   In FIG. 4, the piping just before flowing into the distributor is constituted by the resonance means 61.

以上のように構成された冷媒分流装置について、以下その動作、作用を説明する。   About the refrigerant | coolant diversion apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、凝縮機で凝縮された2層状態の冷媒が分流装置に流入する場合において、冷媒がディストリビュータ31に流入する直前の配管に冷媒を加振する共振手段61を設けたことで冷媒を加振できるため、壁面を流れる液冷媒とガス冷媒のミキシングが高いレベルで可能となるため、流入管の内壁の形状に関わらず、流出管に流れる単位時間当たりの冷媒質量の差を大幅に減少できる。   First, when the two-layer refrigerant condensed in the condenser flows into the flow dividing device, the refrigerant is excited by providing the resonance means 61 for exciting the refrigerant in the pipe immediately before the refrigerant flows into the distributor 31. Therefore, since mixing of the liquid refrigerant and the gas refrigerant flowing on the wall surface is possible at a high level, the difference in mass of refrigerant per unit time flowing in the outflow pipe can be greatly reduced regardless of the shape of the inner wall of the inflow pipe.

(実施の形態5)
図5は、本発明の第5の実施の形態における冷媒分流装置を示すものである。
(Embodiment 5)
FIG. 5 shows a refrigerant branching device according to the fifth embodiment of the present invention.

図5において、ディストリビュータに流入する直前の配管にアスペクト比d3/d4が1とならない形状である共振手段71から構成されたものである。   In FIG. 5, the pipe immediately before flowing into the distributor is constituted by a resonance means 71 having a shape in which the aspect ratio d3 / d4 does not become 1.

以上のように構成された冷媒分流装置について、以下その動作、作用を説明する。   About the refrigerant | coolant diversion apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、凝縮機で凝縮された2層状態の冷媒が分流装置に流入する場合において、冷媒流通方向に対して垂直方向の断面の前記アスペクト比が1とならない形状である共振手段71で加振された冷媒は特定方向に強く加振された波形を形成できることで、壁面を流れる
液冷媒とガス冷媒のミキシングが高いレベルで可能となるだけでなく、接続配管の形状による遠心力や重力の影響を受けにくくなることから、流入管の内壁の形状に関わらず、流出管に流れる単位時間当たりの冷媒質量の差を大幅に減少できるだけでなく、分流装置の設置自由度が上がる。
First, when the two-layer refrigerant condensed by the condenser flows into the flow dividing device, the refrigerant is vibrated by the resonance means 71 having a shape in which the aspect ratio of the cross section perpendicular to the refrigerant flow direction is not 1. Since the refrigerant can form a waveform that is strongly vibrated in a specific direction, mixing of liquid refrigerant and gas refrigerant flowing on the wall surface is not only possible at a high level, but also the influence of centrifugal force and gravity due to the shape of the connecting pipe. Since it becomes hard to receive, not only the shape of the inner wall of the inflow pipe, but also the difference in refrigerant mass per unit time flowing to the outflow pipe can be greatly reduced, and the degree of freedom in installing the flow dividing device is increased.

以上のように、本発明にかかる分流装置は、流入管からディストリビュータの壁面を流れる流体を阻害する働きが生じるために流量偏差を大幅に減少できるので、冷凍サイクルの冷媒のみならず、他の流体、例えば水、水蒸気、ブライン等の分流装置への用途にも適用することができる。   As described above, the flow dividing device according to the present invention has a function of hindering the fluid flowing from the inlet pipe to the wall surface of the distributor, so that the flow rate deviation can be greatly reduced. For example, the present invention can be applied to a diversion device such as water, water vapor, and brine.

本発明の実施の形態1における冷媒分流装置の略断面図1 is a schematic cross-sectional view of a refrigerant distribution device in Embodiment 1 of the present invention. 本発明の実施の形態2における冷媒分流装置の略断面図Schematic cross-sectional view of a refrigerant distribution device in Embodiment 2 of the present invention 本発明の実施の形態3における冷媒分流装置の略断面図Schematic cross-sectional view of a refrigerant distribution device in Embodiment 3 of the present invention 本発明の実施の形態4における冷媒分流装置の略断面図Schematic cross-sectional view of a refrigerant distribution device in Embodiment 4 of the present invention 本発明の実施の形態5における冷媒分流装置の略断面図Schematic cross-sectional view of a refrigerant distribution device in Embodiment 5 of the present invention 従来の冷媒分流装置の略断面図Schematic cross-sectional view of a conventional refrigerant distribution device

符号の説明Explanation of symbols

31 ディストリビュータ
32 流入管
33 流出管
42 ディストリビュータ流入管
52 デストリビュータ縮管
61 共振手段
71 共振手段
31 Distributor 32 Inflow pipe 33 Outflow pipe 42 Distributor inflow pipe 52 Distributor contraction pipe 61 Resonance means 71 Resonance means

Claims (6)

圧縮機と、複数の冷媒経路を有する多パス型の熱交換器と、前記熱交換器入口側に配置されたディストリビュータと、前記熱交換器の熱交換用送風機とを有した冷凍回路ユニットにおいて、ディストリビュータに接続される配管は螺旋形状をなし、且つ前記螺旋の直径は該配管径の2倍以上としたことを特徴とする分流装置。 In a refrigeration circuit unit having a compressor, a multi-pass heat exchanger having a plurality of refrigerant paths, a distributor disposed on the heat exchanger inlet side, and a heat exchange fan of the heat exchanger, A pipe for connecting to a distributor has a spiral shape, and the diameter of the spiral is twice or more the pipe diameter. 圧縮機と、複数の冷媒経路を有する多パス型の熱交換器と、前記熱交換器入口側に配置されたディストリビュータと、前記熱交換器の熱交換用送風機とを有した冷凍回路ユニットにおいて、前記ディストリビュータに接続するディストリビュータ流入管を設け、前記ディストリビュータ流入管は他の配管より径を小さくしてあり、且つこの部位は前記ディストリビュータから接続配管の配管径の5倍までの距離以内に設けたことを特徴とする分流装置。 In a refrigeration circuit unit having a compressor, a multi-pass heat exchanger having a plurality of refrigerant paths, a distributor disposed on the heat exchanger inlet side, and a heat exchange fan of the heat exchanger, Distributor inflow pipe connected to the distributor is provided, the distributor inflow pipe is smaller in diameter than other pipes, and this part is provided within a distance of 5 times the pipe diameter of the connection pipe from the distributor. A diverter characterized by. ディストリビュータ流入管は、縮管を用いた事を特徴とする、請求項2記載の分流装置。 The flow dividing device according to claim 2, wherein the distributor inflow pipe is a contraction pipe. 圧縮機と、複数の冷媒経路を有する多パス型の熱交換器と、前記熱交換器入口側に配置されてディストリビュータと、前記熱交換器の熱交換用送風機とを有した冷凍回路ユニットにおいて、冷媒がディストリビュータに流入する直前の配管に冷媒を加振する共振手段を設けたことを特徴とする分流装置。 In a refrigeration circuit unit having a compressor, a multi-pass heat exchanger having a plurality of refrigerant paths, a distributor disposed on the inlet side of the heat exchanger, and a heat exchange fan of the heat exchanger, A shunting device comprising a resonance means for exciting a refrigerant in a pipe immediately before the refrigerant flows into the distributor. 共振手段の冷媒流通方向に対して垂直方向の断面のアスペクト比が1とならない形状であることを特徴とする、請求項4記載の冷凍サイクルの冷媒分流装置。 5. The refrigerant distribution device for a refrigeration cycle according to claim 4, wherein the aspect ratio of the cross section in the direction perpendicular to the refrigerant flow direction of the resonance means is not 1. 共振手段をディストリビュータから接続配管の配管径の5倍までの距離以内に設けたことを特徴とする、請求項4〜5のいずれかに記載の分流装置。 6. The flow dividing device according to claim 4, wherein the resonance means is provided within a distance from the distributor up to five times the pipe diameter of the connection pipe.
JP2004309393A 2004-10-25 2004-10-25 Flow distributing device Pending JP2006118821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004309393A JP2006118821A (en) 2004-10-25 2004-10-25 Flow distributing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004309393A JP2006118821A (en) 2004-10-25 2004-10-25 Flow distributing device

Publications (1)

Publication Number Publication Date
JP2006118821A true JP2006118821A (en) 2006-05-11

Family

ID=36536867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004309393A Pending JP2006118821A (en) 2004-10-25 2004-10-25 Flow distributing device

Country Status (1)

Country Link
JP (1) JP2006118821A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7185170B1 (en) 2021-09-30 2022-12-07 ダイキン工業株式会社 Flow diverter and air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7185170B1 (en) 2021-09-30 2022-12-07 ダイキン工業株式会社 Flow diverter and air conditioner
WO2023053576A1 (en) * 2021-09-30 2023-04-06 ダイキン工業株式会社 Flow splitting device and air conditioner
JP2023051678A (en) * 2021-09-30 2023-04-11 ダイキン工業株式会社 Flow diverter and air conditioner
CN117957412A (en) * 2021-09-30 2024-04-30 大金工业株式会社 Flow dividing device and air conditioner

Similar Documents

Publication Publication Date Title
Royal et al. Augmentation of horizontal in-tube condensation by means of twisted-tape inserts and internally finned tubes
JP2010190523A (en) Refrigerant distributor
JP2006275452A (en) Expansion valve
JP2006349229A (en) Refrigerant flow divider
JP2007003101A (en) Shell-and-tube type heat exchanger
JP2006336992A (en) Air conditioner
JP2008122010A (en) Refrigerant distributor and air conditioner equipped with refrigerant distributor
JP5295330B2 (en) Plate heat exchanger and refrigeration air conditioner
JP2007032980A (en) Expansion valve
JP2008070026A (en) Heat exchanger
JP2006118821A (en) Flow distributing device
JP2008190787A (en) Spiral tube and heat exchanger using the same
JP2005090926A (en) Double pipe type heat exchanger
JP2010255856A (en) Heat exchanger and heat pump water heater using the same
JP2010223464A (en) Evaporator
JP2015140757A (en) Exhaust heat recovery equipment
JP2005106368A (en) Cooling medium distribution mechanism, and air conditioner
JP2010255857A (en) Heat exchanger and heat pump water heater using the same
JP2005233455A (en) Pipe vibration preventing structure
JP2010243135A (en) Plate type heat exchanger and refrigeration air conditioning device
JP2006317098A (en) Flow divider
JP4690836B2 (en) Piping structure that mixes high and low temperature fluids
JP2008122033A (en) Gas cooler for hot water supply system
RU159647U1 (en) HEAT EXCHANGE ELEMENT
JP6138271B2 (en) Expansion valve and refrigeration cycle apparatus equipped with the same