JP2007003101A - Shell-and-tube type heat exchanger - Google Patents

Shell-and-tube type heat exchanger Download PDF

Info

Publication number
JP2007003101A
JP2007003101A JP2005184255A JP2005184255A JP2007003101A JP 2007003101 A JP2007003101 A JP 2007003101A JP 2005184255 A JP2005184255 A JP 2005184255A JP 2005184255 A JP2005184255 A JP 2005184255A JP 2007003101 A JP2007003101 A JP 2007003101A
Authority
JP
Japan
Prior art keywords
cooling water
refrigerant
shell
chamber
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005184255A
Other languages
Japanese (ja)
Other versions
JP4646302B2 (en
Inventor
Michiko Endo
道子 遠藤
Kyuhei Ishihane
久平 石羽根
Kensaku Kokuni
研作 小国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005184255A priority Critical patent/JP4646302B2/en
Publication of JP2007003101A publication Critical patent/JP2007003101A/en
Application granted granted Critical
Publication of JP4646302B2 publication Critical patent/JP4646302B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve heat exchange performance in a shell-and-tube type condenser. <P>SOLUTION: The shell-and-tube condenser is provided with a shell 1; a refrigerant flow passage partition wall 14 arranged between a flow passage through which cooling water is carried to a cooling water inlet 4, a front water chamber 6, a refrigerant chamber 21, and a rear water chamber 7, and a flow passage through which the cooling water is carried to the rear water chamber 7, the refrigerant chamber 21, the front water chamber 6, and a cooling water outlet 5; and cooling water pipes 10 and 11 arranged so as to form a plurality of paths in the respective flow passages. The plurality of cooling water pipes 10 and 11 in the respective flow passages are formed to be a plurality of pipe groups, and a partition plate 9 is arranged in a boundary between them. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷凍空調機器の凝縮器に使用されるシェルアンドチューブ式熱交換器に関する。   The present invention relates to a shell and tube heat exchanger used in a condenser of a refrigeration air conditioner.

従来、冷凍空調機器の凝縮器での冷媒凝縮過程において、冷媒液域非共沸混合冷媒の場合、二相域では飽和蒸気線上で最も高温であり飽和液線上で最も低温となる。この温度勾配のために、冷却水と対向流になるような構造にすれば、冷却水と冷媒の温度差が確保でき、熱交換を効率よく行うことができる。そこで、流れが対向流となるようにして熱交換性能を向上するため、凝縮器内に冷媒仕切板を設けることで冷却水がシェルを1往復するときに冷媒も1往復するようにすることが知られ、例えば特許文献1に記載されている。   Conventionally, in the refrigerant condensation process in the condenser of the refrigeration air conditioner, in the case of the refrigerant liquid region non-azeotropic mixed refrigerant, in the two-phase region, the highest temperature is on the saturated vapor line and the lowest temperature on the saturated liquid line. Due to this temperature gradient, if a structure is formed so as to counter flow with the cooling water, a temperature difference between the cooling water and the refrigerant can be secured, and heat exchange can be performed efficiently. Therefore, in order to improve the heat exchange performance by making the flow counter flow, it is possible to provide a refrigerant partition plate in the condenser so that the refrigerant also makes one reciprocation when the cooling water makes one reciprocation through the shell. For example, it is described in Patent Document 1.

特開平11−325787号公報(図1)Japanese Patent Laid-Open No. 11-325787 (FIG. 1)

上記従来技術のシェルアンドチューブ凝縮器では、冷却水配管の表面で凝縮した冷媒液がその下の冷却水配管に落ち、配管表面の液膜となって熱交換を阻害する。つまり、上半分の配管表面で凝縮した冷媒液は下半分の配管に影響を与えないが、上半分あるいは下半分の中で配管が多段になっているため、配管毎の落下液の影響は依然解消されていない。   In the above-described conventional shell and tube condenser, the refrigerant liquid condensed on the surface of the cooling water pipe falls into the cooling water pipe therebelow, and becomes a liquid film on the pipe surface to inhibit heat exchange. In other words, the refrigerant liquid condensed on the surface of the upper half of the pipe does not affect the lower half of the pipe, but since the pipes are multistage in the upper half or the lower half, the influence of the falling liquid for each pipe is still It has not been resolved.

本発明の目的は、特に、非共沸混合冷媒を使用したシェルアンドチューブ凝縮器において、熱交換性能を向上させると共に、冷却水配管の表面で凝縮した冷媒液がその下の冷却水配管に落ち、配管表面の液膜となって熱交換を阻害することを防止することにある。   The object of the present invention is to improve the heat exchange performance, particularly in a shell and tube condenser using a non-azeotropic refrigerant mixture, and the refrigerant liquid condensed on the surface of the cooling water pipe falls to the cooling water pipe below it. It is to prevent the heat exchange from being disturbed by a liquid film on the pipe surface.

上記課題を解決するため、本発明は、 内部が管板で前方水室と冷媒室と後方水室とに区分けされ、冷却水仕切壁で冷却水入口部と冷却水出口部が仕切られ、前記冷媒室の冷却水出口側に冷媒入口部が、冷却水入口側に冷媒出口部が設けられたシェルと、冷却水が前記冷却水入口部、前記前方水室、前記冷媒室、前記後方水室へ至る流路と、前記後方水室、前記冷媒室、前記前方水室、前記冷却水出口部へ至る流路との間に配置された冷媒流路仕切壁と、各前記流路でそれぞれ複数パスとなるように配置された冷却水配管と、を備えたものである。   In order to solve the above-mentioned problem, the present invention is divided into a front water chamber, a refrigerant chamber, and a rear water chamber with a tube plate inside, and a cooling water inlet and a cooling water outlet are partitioned by a cooling water partition wall, A shell having a refrigerant inlet portion on the cooling water outlet side of the refrigerant chamber and a refrigerant outlet portion on the cooling water inlet side, and cooling water in the cooling water inlet portion, the front water chamber, the refrigerant chamber, and the rear water chamber. A plurality of refrigerant flow path partition walls arranged between the flow path leading to the rear flow path, the rear water chamber, the refrigerant chamber, the front water chamber, and the flow path leading to the cooling water outlet. And a cooling water pipe arranged to form a path.

また、上記のものにおいて、それぞれの仕切板及び前記冷媒流路仕切壁が前記シェルの長手方向軸に対して垂直方向から見た場合、左右の一方へ傾斜され、前記複数の配管群は前記仕切板に沿って配置されていることが望ましい。
さらに、上記のものにおいて、前記仕切板は前記冷却水配管の直径に対して2から4倍の間隔で配置されていることが望ましい。
Further, in the above, when each partition plate and the refrigerant flow path partition wall are viewed from a direction perpendicular to the longitudinal axis of the shell, the partition groups are inclined to the left and right, and the plurality of pipe groups It is desirable that they are arranged along the plate.
Furthermore, in the above, it is preferable that the partition plates are arranged at intervals of 2 to 4 times the diameter of the cooling water pipe.

さらに、上記のものにおいて、少なくとも前記冷媒流路仕切壁より上方に配置された仕切板が前記シェルの長手方向軸に対して垂直方向から見た場合、左右の一方へ傾斜されていることが望ましい。
さらに、上記のものにおいて、前記仕切板の端部で、前記シェルの長手方向軸に対して垂直方向から見て中央部に凸部を設けたことが望ましい。
Furthermore, in the above, it is desirable that at least the partition plate disposed above the coolant channel partition wall is inclined to the left or right when viewed from the direction perpendicular to the longitudinal axis of the shell. .
Furthermore, in the above-described configuration, it is preferable that a convex portion is provided at the center portion when viewed from the direction perpendicular to the longitudinal axis of the shell at the end portion of the partition plate.

本発明によれば、それぞれの冷却水の流路において、冷却水配管を複数の配管群とし、その境界に仕切板を配置したので、冷媒流速が大きくなることおよび冷媒凝縮液が下の冷却水配管に落ちることを防止することから冷却水配管表面での熱伝達率が向上できる。   According to the present invention, in each cooling water flow path, the cooling water pipes are made up of a plurality of pipe groups, and the partition plates are arranged at the boundaries between the cooling water pipes. The heat transfer coefficient on the surface of the cooling water pipe can be improved because it is prevented from falling into the pipe.

以下、本発明を実施例により説明する。
一実施例である水冷式シェルアンドチューブ凝縮器について、シェル1の長手方向となるシェル軸方向の断面図を図1、シェル軸に垂直方向の断面図を図2に示す。冷却水は冷却水入口4、前方水室6、冷媒室21の中を通る第1の冷却水配管10、後方水室7、冷媒室21の中を通る第2の冷却水配管11、前方水室6、冷却水出口5の順に流れる。前方水室6内は、冷却水入口4からはいった冷却水と、冷却水出口5から出て行く水が混合しないように冷却水仕切壁8で仕切られ、冷媒室21は、冷媒流路仕切壁14で上流側流路と下流側流路とに仕切られている。
冷媒は、非共沸混合冷媒であり、シェル1の冷媒入口部2から流入し、仕切板9に従って第2の冷却水配管11のまわりを流れながら熱交換し、凝縮していく。その後、冷却水配管境界の冷媒流路仕切壁14の側面を流れ、さらに仕切板9に案内されて第1の冷却水配管10のまわりを流れながら熱交換し、液冷媒として冷媒出口部3から出る。
Hereinafter, the present invention will be described by way of examples.
FIG. 1 shows a cross-sectional view in the shell axis direction, which is the longitudinal direction of the shell 1, and FIG. 2 shows a cross-sectional view in the direction perpendicular to the shell axis for a water-cooled shell and tube condenser as an embodiment. The cooling water includes a cooling water inlet 4, a front water chamber 6, a first cooling water pipe 10 passing through the refrigerant chamber 21, a rear water chamber 7, a second cooling water pipe 11 passing through the refrigerant chamber 21, and front water. It flows in the order of the chamber 6 and the cooling water outlet 5. The front water chamber 6 is partitioned by a cooling water partition wall 8 so that the cooling water entering from the cooling water inlet 4 and the water exiting from the cooling water outlet 5 are not mixed. The wall 14 partitions the upstream flow path and the downstream flow path.
The refrigerant is a non-azeotropic refrigerant mixture, flows in from the refrigerant inlet 2 of the shell 1, exchanges heat while flowing around the second cooling water pipe 11 according to the partition plate 9, and condenses. Thereafter, the refrigerant flows through the side surface of the coolant channel partition wall 14 at the boundary of the cooling water pipe, and is further guided by the partition plate 9 to exchange heat while flowing around the first cooling water pipe 10, and from the refrigerant outlet 3 as a liquid refrigerant. Get out.

温度の高い上流側の冷媒は、温度の高い第2の冷却水配管11と熱交換し、温度の低い下流側の冷媒は、温度の低い第1の冷却水配管10と熱交換する。したがって、冷媒と冷却水の流れが対向する対向流になっており、非共沸混合冷媒の二相域の温度勾配による性能低下を防ぐことができる。
また、仕切板9は多段となり、その間隔は冷却水配管の直径をdとした場合、2dから4dとしている。そのため、冷媒のシェル1入口から出口に向かう流路面積は仕切板9がないものに比べて小さくなり、冷媒流速が早くなり、冷媒と伝熱管との熱伝達がより促進される。その結果、冷却水配管の圧力損失を増やすことなく、熱交換性能を向上させることができる。
The upstream refrigerant having a high temperature exchanges heat with the second cooling water pipe 11 having a high temperature, and the downstream refrigerant having a low temperature exchanges heat with the first cooling water pipe 10 having a low temperature. Accordingly, the refrigerant and the cooling water flow are opposed to each other, and performance degradation due to the temperature gradient in the two-phase region of the non-azeotropic refrigerant mixture can be prevented.
Moreover, the partition plate 9 becomes multistage, and the space | interval is 2d-4d, when the diameter of a cooling water piping is set to d. Therefore, the flow path area from the inlet of the refrigerant shell 1 toward the outlet is smaller than that without the partition plate 9, the refrigerant flow rate is increased, and heat transfer between the refrigerant and the heat transfer tube is further promoted. As a result, the heat exchange performance can be improved without increasing the pressure loss of the cooling water piping.

さらに、非共沸冷媒を使用する場合、シェル1内では低沸点冷媒より高沸点冷媒のほうが凝縮しやすく、高沸点冷媒の凝縮が速く進み、シェル1内に仕切板9が少ない場合、新しくシェル1に流入する冷媒のうちの高沸点冷媒が伝熱管まわりに供給されて高沸点冷媒の凝縮がさらに進んでしまい、シェル内液は高沸点冷媒が多い状態になる。そして、これが冷媒の組成変動となり、熱交換性能が落ちたり、高圧側圧力が高くなったりして圧縮機で消費するエネルギーが増加する。しかし、流路面積が小さくなるように仕切板9を複数配置しているので、冷媒がシェル1入口から出口に向かってそれぞれの仕切板9に沿って小さな流路面積の冷媒流路を流れるため、高沸点冷媒蒸気が少なくなったのちには低沸点冷媒の凝縮も進み、凝縮での冷媒組成変動を抑制することができる。   Further, when a non-azeotropic refrigerant is used, a high-boiling refrigerant is more likely to condense in the shell 1 than a low-boiling refrigerant, and the condensation of the high-boiling refrigerant proceeds faster. Among the refrigerant flowing into the refrigerant 1, the high boiling point refrigerant is supplied around the heat transfer tube, and the condensation of the high boiling point refrigerant further proceeds, so that the liquid in the shell has a high amount of high boiling point refrigerant. And this becomes a composition fluctuation of a refrigerant | coolant, heat exchange performance falls, the high pressure side pressure becomes high, and the energy consumed with a compressor increases. However, since a plurality of partition plates 9 are arranged so as to reduce the channel area, the refrigerant flows through the coolant channels having a small channel area along the respective partition plates 9 from the inlet of the shell 1 toward the outlet. Then, after the high-boiling point refrigerant vapor is reduced, the condensation of the low-boiling point refrigerant proceeds, and the refrigerant composition fluctuation due to the condensation can be suppressed.

さらに、冷却水配管10、11表面の冷媒凝縮液は、仕切板9に落ちるため、下の冷却水配管に冷媒液が落ちて液膜となり冷媒と冷却水配管との熱交換を阻害することを防止できる。   Further, since the refrigerant condensate on the surfaces of the cooling water pipes 10 and 11 falls on the partition plate 9, the refrigerant liquid falls on the lower cooling water pipes to form a liquid film, which inhibits heat exchange between the refrigerant and the cooling water pipes. Can be prevented.

図3は、図2のものに対して、冷媒流路の仕切板9、14を5〜15°傾けたものであり、仕切板上に落下した冷媒凝縮液は、仕切板の傾き方向に流れ、仕切板上の最下部であるシェル壁近傍図3では左端に溜まり、そこから下に落下する。したがって、仕切板の板端全体から落下し、下段の冷却水配管表面の液膜となって熱交換を阻害することを防ぐことができる。図3では仕切板9、14の全てを傾斜させているが、実際には、少なくとも図で上方に配置された仕切板9を傾斜させれば良い。   FIG. 3 is a diagram in which the partition plates 9 and 14 of the refrigerant flow path are inclined 5 to 15 ° with respect to those in FIG. 2, and the refrigerant condensate that has fallen on the partition plate flows in the direction of inclination of the partition plate. In the vicinity of the shell wall which is the lowermost part on the partition plate, it collects at the left end in FIG. Therefore, it can prevent falling from the whole plate edge of a partition plate, becoming a liquid film of the cooling water piping surface of a lower stage, and inhibiting heat exchange. In FIG. 3, all of the partition plates 9 and 14 are inclined, but actually, at least the partition plate 9 disposed above in the drawing may be inclined.

図4、5は、さらに他の実施の形態を示し、冷媒流路仕切板9、14において、管板12に接続されていない一方の板端、シェル1の長手方向軸に対して垂直方向から見て中央部に液体の流下を阻止する凸部13を設けている。これにより、仕切板上に落下した冷媒凝縮液は、仕切板端に凸部13のない、シェル壁近傍、図5では左端あるいは右端から下に落下する。したがって、仕切板の板端全体から落下し、下段の冷却水配管表面に液膜が生じることを防ぐことができる。   4 and 5 show still another embodiment, in the refrigerant flow path partition plates 9 and 14, one plate end not connected to the tube plate 12, from a direction perpendicular to the longitudinal axis of the shell 1. A convex portion 13 that prevents the liquid from flowing down is provided in the center portion. As a result, the refrigerant condensate that has fallen onto the partition plate falls downward from the vicinity of the shell wall without the convex portion 13 at the end of the partition plate, from the left end or the right end in FIG. Therefore, it can prevent falling from the whole board edge of a partition plate, and producing a liquid film on the cooling water piping surface of a lower stage.

本発明の一実施例によるシェル軸方向の断面図。The sectional view of the shell axial direction by one example of the present invention. 本発明の一実施例によるシェル軸に垂直方向の断面図。1 is a cross-sectional view perpendicular to a shell axis according to an embodiment of the present invention. 本発明の他の実施例によるシェル軸方向の断面図。Sectional drawing of the shell axial direction by the other Example of this invention. 本発明のさらに他の実施例によるシェル軸方向の断面図。FIG. 6 is a cross-sectional view in the shell axis direction according to still another embodiment of the present invention. 図4のシェル軸に垂直方向の断面図。FIG. 5 is a cross-sectional view perpendicular to the shell axis of FIG. 4.

符号の説明Explanation of symbols

1…シェル、2…冷媒入口部、3…冷媒出口部、4…冷却水入口部、5…冷却水出口部、6…前方水室、7…後方水室、8…冷却水仕切壁、9…仕切板、10、11…冷却水配管、12…管板、13…凸部、14…冷媒流路仕切壁、21…冷媒室。
DESCRIPTION OF SYMBOLS 1 ... Shell, 2 ... Refrigerant inlet part, 3 ... Refrigerant outlet part, 4 ... Cooling water inlet part, 5 ... Cooling water outlet part, 6 ... Front water room, 7 ... Rear water room, 8 ... Cooling water partition wall, 9 DESCRIPTION OF SYMBOLS ... Partition plate 10, 11 ... Cooling water piping, 12 ... Tube plate, 13 ... Convex part, 14 ... Refrigerant flow path partition wall, 21 ... Refrigerant chamber.

Claims (5)

内部が管板で前方水室と冷媒室と後方水室とに区分けされ、冷却水仕切壁で冷却水入口部と冷却水出口部が仕切られ、前記冷媒室の冷却水出口側に冷媒入口部が、冷却水入口側に冷媒出口部が設けられたシェルと、冷却水が前記冷却水入口部、前記前方水室、前記冷媒室、前記後方水室へ至る流路と、前記後方水室、前記冷媒室、前記前方水室、前記冷却水出口部へ至る流路との間に配置された冷媒流路仕切壁と、各前記流路でそれぞれ複数パスとなるように配置された冷却水配管と、を備えたシェルアンドチューブ凝縮器において、
それぞれの前記流路における前記複数の冷却水配管をさらに複数の配管群とし、その境界に仕切板を配置したことを特徴とするシェルアンドチューブ式熱交換器。
The inside is divided into a front water chamber, a refrigerant chamber, and a rear water chamber by a tube plate, and a cooling water inlet portion and a cooling water outlet portion are partitioned by a cooling water partition wall, and a refrigerant inlet portion is provided on the cooling water outlet side of the refrigerant chamber. Is a shell provided with a refrigerant outlet on the cooling water inlet side, a flow path for cooling water to the cooling water inlet, the front water chamber, the refrigerant chamber, the rear water chamber, the rear water chamber, Refrigerant flow path partition walls disposed between the refrigerant chamber, the front water chamber, and the flow path leading to the cooling water outlet, and cooling water piping disposed so as to have multiple paths in each of the flow paths And in a shell and tube condenser with
A shell-and-tube heat exchanger, wherein the plurality of cooling water pipes in each of the flow paths are further divided into a plurality of pipe groups, and a partition plate is arranged at the boundary.
請求項1に記載のものにおいて、それぞれの仕切板及び前記冷媒流路仕切壁が前記シェルの長手方向軸に対して垂直方向から見た場合、左右の一方へ傾斜され、前記複数の配管群は前記仕切板に沿って配置されていることを特徴とするシェルアンドチューブ式熱交換器。   The thing of Claim 1 WHEREIN: When each partition plate and the said refrigerant | coolant flow path partition wall are seen from the orthogonal | vertical direction with respect to the longitudinal direction axis | shaft of the said shell, it inclines to one of right and left, These several piping groups are A shell-and-tube heat exchanger arranged along the partition plate. 請求項1に記載のものにおいて、前記仕切板は前記冷却水配管の直径に対して2から4倍の間隔で配置されていることを特徴とするシェルアンドチューブ式熱交換器。   2. The shell and tube heat exchanger according to claim 1, wherein the partition plates are arranged at intervals of 2 to 4 times the diameter of the cooling water pipe. 請求項1に記載のものにおいて、少なくとも前記冷媒流路仕切壁より上方に配置された仕切板が前記シェルの長手方向軸に対して垂直方向から見た場合、左右の一方へ傾斜されていることを特徴とするシェルアンドチューブ式熱交換器。   The thing of Claim 1 WHEREIN: When the partition plate arrange | positioned above the said refrigerant | coolant flow path partition wall is seen from the orthogonal | vertical direction with respect to the longitudinal direction axis | shaft of the said shell, it should incline to one of right and left. A shell-and-tube heat exchanger. 請求項1に記載のものにおいて、前記仕切板の端部で、前記シェルの長手方向軸に対して垂直方向から見て中央部に凸部を設けたことを特徴とするシェルアンドチューブ式熱交換器。   The shell-and-tube heat exchange according to claim 1, wherein a projecting portion is provided at a center portion of the partition plate when viewed from a direction perpendicular to a longitudinal axis of the shell. vessel.
JP2005184255A 2005-06-24 2005-06-24 Shell and tube heat exchanger Expired - Fee Related JP4646302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005184255A JP4646302B2 (en) 2005-06-24 2005-06-24 Shell and tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005184255A JP4646302B2 (en) 2005-06-24 2005-06-24 Shell and tube heat exchanger

Publications (2)

Publication Number Publication Date
JP2007003101A true JP2007003101A (en) 2007-01-11
JP4646302B2 JP4646302B2 (en) 2011-03-09

Family

ID=37688901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005184255A Expired - Fee Related JP4646302B2 (en) 2005-06-24 2005-06-24 Shell and tube heat exchanger

Country Status (1)

Country Link
JP (1) JP4646302B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009026370A2 (en) * 2007-08-21 2009-02-26 Wolverine Tube, Inc. Heat exchanger with sloped baffles
CN103185425A (en) * 2013-03-08 2013-07-03 哈尔滨工大金涛科技股份有限公司 Shell-and-tube sewage-refrigerant phase change heat exchanger
KR101290786B1 (en) 2011-06-02 2013-07-30 세협기계(주) Heat exchanger with divided interior of fluid system
CN104165533A (en) * 2014-07-23 2014-11-26 合肥通用机械研究院 Pipe distribution structure suitable for phase change heat exchanger
CN105588374A (en) * 2016-03-03 2016-05-18 苏州市农业机械有限公司 Novel evaporator
JP2017187222A (en) * 2016-04-06 2017-10-12 荏原冷熱システム株式会社 Condenser
CN108844377A (en) * 2018-07-27 2018-11-20 国电龙源节能技术有限公司 A kind of condenser having both heat supply Yu condensation function
FR3097309A1 (en) * 2019-06-17 2020-12-18 Naval Energies Condenser of a working fluid for an ETM plant
WO2022131523A1 (en) * 2020-12-17 2022-06-23 삼성전자주식회사 Heat exchanger and air conditioner having same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102036292B1 (en) * 2017-05-02 2019-11-26 김봉석 Evaporative condensation of refrigeration equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5090250U (en) * 1973-12-18 1975-07-30
JPH05203375A (en) * 1992-01-23 1993-08-10 Kubota Corp Heat exchanger for sewage
JPH08145502A (en) * 1994-11-22 1996-06-07 Daikin Ind Ltd Horizontal shell and tube type condenser
JP2004092928A (en) * 2002-08-29 2004-03-25 Mitsubishi Heavy Ind Ltd Condenser and refrigerating machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5090250U (en) * 1973-12-18 1975-07-30
JPH05203375A (en) * 1992-01-23 1993-08-10 Kubota Corp Heat exchanger for sewage
JPH08145502A (en) * 1994-11-22 1996-06-07 Daikin Ind Ltd Horizontal shell and tube type condenser
JP2004092928A (en) * 2002-08-29 2004-03-25 Mitsubishi Heavy Ind Ltd Condenser and refrigerating machine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009026370A2 (en) * 2007-08-21 2009-02-26 Wolverine Tube, Inc. Heat exchanger with sloped baffles
WO2009026370A3 (en) * 2007-08-21 2009-05-22 Wolverine Tube Inc Heat exchanger with sloped baffles
KR101290786B1 (en) 2011-06-02 2013-07-30 세협기계(주) Heat exchanger with divided interior of fluid system
CN103185425A (en) * 2013-03-08 2013-07-03 哈尔滨工大金涛科技股份有限公司 Shell-and-tube sewage-refrigerant phase change heat exchanger
CN104165533A (en) * 2014-07-23 2014-11-26 合肥通用机械研究院 Pipe distribution structure suitable for phase change heat exchanger
CN105588374A (en) * 2016-03-03 2016-05-18 苏州市农业机械有限公司 Novel evaporator
JP2017187222A (en) * 2016-04-06 2017-10-12 荏原冷熱システム株式会社 Condenser
CN108844377A (en) * 2018-07-27 2018-11-20 国电龙源节能技术有限公司 A kind of condenser having both heat supply Yu condensation function
FR3097309A1 (en) * 2019-06-17 2020-12-18 Naval Energies Condenser of a working fluid for an ETM plant
WO2022131523A1 (en) * 2020-12-17 2022-06-23 삼성전자주식회사 Heat exchanger and air conditioner having same

Also Published As

Publication number Publication date
JP4646302B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP4646302B2 (en) Shell and tube heat exchanger
KR101462176B1 (en) Heat exchanger
US7028762B2 (en) Condenser for refrigerating machine
JP2019507862A (en) Heat exchanger
JP2017519961A (en) Heat exchanger
US9791189B2 (en) Heat exchanger and refrigeration cycle apparatus
US11047605B2 (en) Evaporator and refrigerator
JP2007212091A (en) Shell-and-tube type condenser
WO2017179630A1 (en) Evaporator, and turbo-refrigerating apparatus equipped with same
US10041710B2 (en) Heat exchanger and air conditioner
JP2010164222A (en) Finned heat exchanger
KR20170067351A (en) Heat exchanger
US8505886B2 (en) Multistage pressure condenser
JP2008304095A (en) Heat exchange coil
US9903659B2 (en) Low pressure chiller
JP2010197008A (en) Heat exchanger
KR100479781B1 (en) Evaporator and refrigerator
US20090100854A1 (en) Evaporatively cooled condenser
US20160305695A1 (en) Asymmetric evaporator
JP4497527B2 (en) Refrigeration equipment
JP2008039361A (en) Heat exchanger and air conditioner using the same
JP2014020754A (en) Downward flow liquid film type evaporator
EP3214389B1 (en) High-vacuum serial condenser
JP4391348B2 (en) Heat exchanger
JP2008133994A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080619

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4646302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees