JP4391348B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP4391348B2
JP4391348B2 JP2004210018A JP2004210018A JP4391348B2 JP 4391348 B2 JP4391348 B2 JP 4391348B2 JP 2004210018 A JP2004210018 A JP 2004210018A JP 2004210018 A JP2004210018 A JP 2004210018A JP 4391348 B2 JP4391348 B2 JP 4391348B2
Authority
JP
Japan
Prior art keywords
heat exchanger
header
lower header
refrigerant
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004210018A
Other languages
Japanese (ja)
Other versions
JP2006029700A (en
Inventor
宏和 藤野
治 青柳
春男 中田
昭一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Daikin Industries Ltd
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Daikin Industries Ltd
Priority to JP2004210018A priority Critical patent/JP4391348B2/en
Publication of JP2006029700A publication Critical patent/JP2006029700A/en
Application granted granted Critical
Publication of JP4391348B2 publication Critical patent/JP4391348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、空気調和機用の蒸発器および凝縮器として切り換えて用いられる熱交換器に関する。   The present invention relates to a heat exchanger that is switched and used as an evaporator and a condenser for an air conditioner.

従来、熱交換器としては、上部ヘッダと下部ヘッダとの間に、互いに間隔をあけて略平行に接続された複数の扁平管を備えたものがある(例えば、特開平10−132422号公報(特許文献1)参照)。   Conventionally, as a heat exchanger, there is a heat exchanger provided with a plurality of flat tubes connected to each other between the upper header and the lower header in a substantially parallel manner (for example, JP-A-10-132422). See Patent Document 1)).

このような上部ヘッダと下部ヘッダとの間に複数の扁平管が接続された構成の熱交換器を、下部ヘッダから気液二相冷媒を流入させる蒸発器と、上部ヘッダからガス冷媒を流入させる凝縮器とを切り換えて空気調和機の熱交換器に用いることが考えられる。ところが、この熱交換器では、下部ヘッダから気液二相冷媒を流入させて蒸発器として用いるときに、下部ヘッダ内の圧損分布と上部ヘッダ内の圧損分布に差があるため、各扁平管に流入する冷媒量に偏りが生じ、蒸発器としての性能が低下するという問題がある。
特開平10−132422号公報
A heat exchanger having a configuration in which a plurality of flat tubes are connected between the upper header and the lower header, an evaporator for injecting a gas-liquid two-phase refrigerant from the lower header, and a gas refrigerant from the upper header It is conceivable to use a heat exchanger for an air conditioner by switching the condenser. However, in this heat exchanger, when a gas-liquid two-phase refrigerant is introduced from the lower header and used as an evaporator, there is a difference between the pressure loss distribution in the lower header and the pressure loss distribution in the upper header. There is a problem that the amount of refrigerant flowing in is biased and the performance as an evaporator is lowered.
JP-A-10-132422

そこで、この発明の目的は、空気調和機用の蒸発器および凝縮器として切り換えて用いる熱交換器において、簡単な構成で冷媒偏流を低減でき、性能低下を防止できる熱交換器を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a heat exchanger that can reduce refrigerant drift and prevent performance degradation with a simple configuration in a heat exchanger that is switched and used as an evaporator and a condenser for an air conditioner. is there.

上記目的を達成するため、この発明の熱交換器は、空気調和機用の蒸発器および凝縮器として切り換えて用いられる熱交換器であって、冷媒が流入または流出する上部ポートが一端に設けられ、他端が閉じた上部ヘッダと、上記上部ヘッダの上部ポートに対向する一端が閉じられ、他端に冷媒が流入または流出する下部ポートが設けられた下部ヘッダと、上記上部ヘッダと上記下部ヘッダとの間に、互いに間隔をあけて略平行に接続された複数の扁平管とを備え、上記下部ヘッダ内の少なくとも上記下部ポート寄りに絞り部を設けると共に、上記絞り部が、上記下部ヘッダ内に上記下部ポート側から所定の間隔をあけて配置された複数の絞り部であって、上記複数の絞り部の開口面積を上記下部ポート側から徐々に大きくすることによって、蒸発器として用いるときに、上記下部ヘッダ側から気化して比体積が大きくなった冷媒が流れる上記上部ヘッダ内の圧力損失に対する差が解消されるように、上記複数の絞り部により上記下部ヘッダ内に圧損分布を設けたことを特徴とする。 In order to achieve the above object, the heat exchanger of the present invention is a heat exchanger that is used by switching as an evaporator and a condenser for an air conditioner, and an upper port through which refrigerant flows in or out is provided at one end. An upper header with the other end closed, a lower header with one end facing the upper port of the upper header closed and a lower port through which refrigerant flows in or out at the other end, the upper header and the lower header between, and a plurality of flat tubes that are connected substantially in parallel at intervals from each other, Rutotomoni provided with at least the throttle portion to the lower port closer in the lower header, the narrowing part the lower header A plurality of throttle parts arranged at a predetermined interval from the lower port side in, by gradually increasing the opening area of the plurality of throttle parts from the lower port side, When used as a generator, the plurality of throttle portions reduce the difference in pressure loss in the upper header through which the refrigerant having a larger specific volume that is vaporized from the lower header side flows. Is provided with a pressure loss distribution .

上記構成の熱交換器によれば、上記上部ヘッダと下部ヘッダとの間に複数の扁平管が互いに間隔をあけて略平行に接続された熱交換器において、下部ヘッダ内の少なくとも下部ポート寄りに絞り部を設けることによって、蒸発器として用いるときに、下部ヘッダ側から気化して比体積が大きくなった冷媒が流れる上部ヘッダ内の圧力損失に対する差を解消するように、絞り部により下部ヘッダ内に圧損分布を設けることによって、下部ヘッダから各扁平管に流入する冷媒量に偏りが生じるのを抑制することが可能となる。したがって、空気調和機用の蒸発器および凝縮器として切り換えて用いる熱交換器において、簡単な構成で冷媒偏流を低減でき、性能低下を防止できる。また、上記下部ヘッダ内に下部ポート側から所定の間隔をあけて配置された複数の絞り部の開口面積を下部ポート側から徐々に大きくすることによって、下部ヘッダの圧損分布が下部ポート側から反対側の端に向かって徐々に小さくなるので、冷媒偏流を効果的に低減できる圧損分布を得ることができる。 According to the heat exchanger having the above-described configuration, in the heat exchanger in which a plurality of flat tubes are connected between the upper header and the lower header so as to be substantially parallel to each other with a space therebetween, at least near the lower port in the lower header. By providing the throttle part, when used as an evaporator, the throttle part is used to reduce the difference in pressure loss in the upper header through which the refrigerant that has been vaporized from the lower header side and has a large specific volume flows. By providing the pressure loss distribution on the bottom, it is possible to suppress the occurrence of bias in the amount of refrigerant flowing into the flat tubes from the lower header. Therefore, in a heat exchanger that is switched and used as an evaporator and a condenser for an air conditioner, refrigerant drift can be reduced with a simple configuration, and performance degradation can be prevented. Further, by gradually increasing the opening area of the plurality of throttle portions arranged in the lower header at a predetermined interval from the lower port side from the lower port side, the pressure loss distribution of the lower header is opposite from the lower port side. Since the pressure gradually decreases toward the side end, a pressure loss distribution that can effectively reduce refrigerant drift can be obtained.

また、一実施形態の熱交換器は、上記下部ヘッダ内の少なくとも上記下部ポート寄りに設けられた上記絞り部の開口面積が、上記下部ヘッダ内の流路断面積の略1/2以下であることを特徴とする。   In the heat exchanger according to an embodiment, an opening area of the throttle portion provided at least near the lower port in the lower header is approximately ½ or less of a flow path cross-sectional area in the lower header. It is characterized by that.

上記実施形態の熱交換器によれば、上記下部ヘッダ内の少なくとも下部ポート寄りに設けられた絞り部の開口面積を、下部ヘッダ内の流路断面積の略1/2以下にすることによって、蒸発器として用いるときに、少なくとも下部ポート側に設けられた絞り部により得られる圧損によって、下部ポートから流入する気液二相冷媒の偏流を効果的に抑制できる。ここで、「流路断面積」とは、流路の有効断面積のことである。   According to the heat exchanger of the above embodiment, by setting the opening area of the throttle portion provided at least near the lower port in the lower header to be approximately ½ or less of the flow path cross-sectional area in the lower header, When used as an evaporator, the flow loss of the gas-liquid two-phase refrigerant flowing from the lower port can be effectively suppressed by the pressure loss obtained by at least the throttle portion provided on the lower port side. Here, the “flow channel cross-sectional area” is an effective cross-sectional area of the flow channel.

また、一実施形態の熱交換器は、上記絞り部の開口の中心が上記下部ヘッダの断面の中心よりも上側にあることを特徴とする。   Moreover, the heat exchanger of one embodiment is characterized in that the center of the opening of the throttle portion is above the center of the cross section of the lower header.

上記実施形態の熱交換器によれば、上記絞り部の開口の中心が下部ヘッダの断面の中心よりも上側にすることによって、蒸発器として用いるときの下部ポートから流入する気液二相冷媒の偏流を効果的に抑制しつつ、このときの気液二相冷媒が絞り部を通過するときの圧損と、凝縮器として用いるときの液冷媒が絞り部を通過するときの圧損を調整して、蒸発器として用いるときのみに所望の圧損分布を設け、凝縮器として用いるときに絞り部が下部ヘッダの下部ポートから液冷媒が排出されるときの妨げとなって偏流が生じるのを防止できる。   According to the heat exchanger of the above embodiment, the center of the opening of the throttle portion is above the center of the section of the lower header, whereby the gas-liquid two-phase refrigerant flowing from the lower port when used as an evaporator is used. While effectively suppressing the drift, adjusting the pressure loss when the gas-liquid two-phase refrigerant at this time passes through the throttle portion and the pressure loss when the liquid refrigerant when used as a condenser passes through the throttle portion, Only when used as an evaporator, a desired pressure loss distribution can be provided, and when used as a condenser, it is possible to prevent the throttling portion from obstructing when liquid refrigerant is discharged from the lower port of the lower header, thereby preventing drift.

また、一実施形態の熱交換器は、上記絞り部が、略円形の開口を有する仕切板であることを特徴とする。   Moreover, the heat exchanger of one embodiment is characterized in that the throttle portion is a partition plate having a substantially circular opening.

上記実施形態の熱交換器によれば、略円形の開口を有する仕切板を上記絞り部に用いることによって、簡単な構成で下部ヘッダ内に絞り部を設けることができる。この場合、仕切板の開口の径を調整することにより、圧損を設定することが容易にできる。   According to the heat exchanger of the said embodiment, a throttle part can be provided in a lower header with a simple structure by using the partition plate which has a substantially circular opening for the said throttle part. In this case, the pressure loss can be easily set by adjusting the diameter of the opening of the partition plate.

以上より明らかなように、この発明の熱交換器によれば、簡単な構成で蒸発器および凝縮器のいずれにおいても冷媒の偏流を低減でき、蒸発器と凝縮器として切り換えて用いる空気調和機用に好適な変換効率のよい熱交換器を実現することができる。また、上記下部ヘッダ内に下部ポート側から所定の間隔をあけて配置された複数の絞り部の開口面積を下部ポート側から徐々に大きくすることによって、下部ヘッダの圧損分布が下部ポート側から反対側の端に向かって徐々に小さくなるので、冷媒偏流を効果的に少なくできる圧損分布を得ることができる。 As is clear from the above, according to the heat exchanger of the present invention, the drift of the refrigerant can be reduced in any of the evaporator and the condenser with a simple configuration, and it is used for an air conditioner that is switched between the evaporator and the condenser. Therefore, it is possible to realize a heat exchanger with good conversion efficiency. Further, by gradually increasing the opening area of the plurality of throttle portions arranged in the lower header at a predetermined interval from the lower port side from the lower port side, the pressure loss distribution of the lower header is opposite from the lower port side. Since the pressure gradually decreases toward the side end, a pressure loss distribution that can effectively reduce refrigerant drift can be obtained.

また、一実施形態の熱交換器によれば、上記下部ヘッダ内の少なくとも下部ポート側に設けられた絞り部の開口面積を、下部ヘッダ内の流路断面積の略1/2以下にすることによって、蒸発器として用いるときに、少なくとも下部ポート側に設けられた絞り部により得られる圧損によって気液二相冷媒の偏流を効果的に抑制することができる。   Further, according to the heat exchanger of one embodiment, the opening area of the throttle portion provided at least on the lower port side in the lower header is set to be approximately ½ or less of the flow path cross-sectional area in the lower header. Thus, when used as an evaporator, the drift of the gas-liquid two-phase refrigerant can be effectively suppressed by the pressure loss obtained by at least the throttle portion provided on the lower port side.

また、一実施形態の熱交換器によれば、上記絞り部の開口の中心が下部ヘッダの断面の中心よりも上側にすることによって、蒸発器として用いるときに気液二相冷媒が通過するときの圧損と、凝縮器として用いるときに液冷媒が通過するときの圧損を調整して、絞り部が下部ヘッダの下部ポートから液冷媒を排出するときの妨げとならないようにして、凝縮器として用いるときにも冷媒偏流を防止することができる。   Moreover, according to the heat exchanger of one embodiment, when the gas-liquid two-phase refrigerant passes when used as an evaporator, the center of the opening of the throttle portion is located above the center of the section of the lower header. And the pressure loss when liquid refrigerant passes when used as a condenser so that the throttle portion does not hinder the discharge of liquid refrigerant from the lower port of the lower header, and is used as a condenser Sometimes, refrigerant drift can be prevented.

また、一実施形態の熱交換器によれば、略円形の開口を有する仕切板を上記絞り部に用いることによって、簡単な構成で下部ヘッダ内に絞り部を設けることができる。   Moreover, according to the heat exchanger of one Embodiment, a throttle part can be provided in a lower header with a simple structure by using the partition plate which has a substantially circular opening for the said throttle part.

上記実施形態の熱交換器によれば、蒸発器として用いるときに、上部ヘッダ内の圧損分布に応じて、圧損調整手段により複数の扁平管に冷媒が略均一に流れるように下部ヘッダ内の圧損を調整するので、簡単な構成で蒸発器および凝縮器のいずれにおいても冷媒偏流を低減でき、性能低下を防止できる。   According to the heat exchanger of the above embodiment, when used as an evaporator, the pressure loss in the lower header so that the refrigerant flows substantially uniformly through the plurality of flat tubes by the pressure loss adjusting means according to the pressure loss distribution in the upper header. Therefore, the refrigerant drift can be reduced in any of the evaporator and the condenser with a simple configuration, and the performance can be prevented from being lowered.

以下、この発明の熱交換器を図示の実施の形態により詳細に説明する。   Hereinafter, the heat exchanger of the present invention will be described in detail with reference to the illustrated embodiments.

図1はこの発明の実施の一形態の空気調和機用の蒸発器および凝縮器として切り換えて用いられる熱交換器の斜視図である。この実施の一形態の熱交換器10は、図1に示すように、冷媒が流入または流出する上部ポート11aが一端に設けられ、他端が閉じた円筒形状の上部ヘッダ11と、上記上部ヘッダ11の上部ポート11aに対向する一端が閉じられ、他端に冷媒が流入または流出する下部ポート12aが設けられた円筒形状の下部ヘッダ12と、所定の間隔をあけて略並行に配列された上部ヘッダ11と下部ヘッダ12との間に、互いに間隔をあけて略平行に接続された複数の扁平管13とを備えている。なお、複数の扁平管13の間には、アルミニウム板が積層された放熱フィンが取り付けられ、放熱フィンの結露水は、扁平管13に沿って滴下する。   FIG. 1 is a perspective view of a heat exchanger that is switched and used as an evaporator and a condenser for an air conditioner according to an embodiment of the present invention. As shown in FIG. 1, the heat exchanger 10 of this embodiment includes a cylindrical upper header 11 having an upper port 11a through which refrigerant flows in or out at one end and the other end closed, and the upper header. 11 is closed at one end facing the upper port 11a, and at the other end is a cylindrical lower header 12 provided with a lower port 12a through which refrigerant flows in or out, and an upper portion arranged substantially in parallel at a predetermined interval. Between the header 11 and the lower header 12, there are provided a plurality of flat tubes 13 connected to each other in a substantially parallel manner at intervals. In addition, between the several flat tubes 13, the radiation fin on which the aluminum plate was laminated | stacked is attached, and the dew condensation water of a radiation fin dripped along the flat tube 13. FIG.

上記熱交換器10の下部ヘッダ12内に、圧損調整手段の一例としての4つの絞り部14を所定の間隔をあけて配置している。上記絞り部14は、略円形の開口14aを有する円形の仕切板である(図1の下側に示す)。上記絞り部14の開口14aは、その中心が下部ヘッダ12の断面の中心と略同じ位置になるように設けている。   In the lower header 12 of the heat exchanger 10, four throttle parts 14 as an example of pressure loss adjusting means are arranged at a predetermined interval. The diaphragm 14 is a circular partition plate having a substantially circular opening 14a (shown on the lower side of FIG. 1). The opening 14 a of the narrowed portion 14 is provided so that the center thereof is substantially the same position as the center of the cross section of the lower header 12.

上記下部ヘッダ12内に下部ポート12a側から等間隔に第1,第2,第3,第4の絞り部14を配置している。すなわち、下部ヘッダ12の下部ポート12aと第1の絞り部14との間、第1,第2の絞り部14間、および、第3,第4の絞り部14間に略同一の長さの区画が夫々形成され、第4の絞り部14と下部ヘッダ12の下部ポート12aの反対側の端との間に区画が形成されている。   First, second, third, and fourth throttle portions 14 are arranged in the lower header 12 at equal intervals from the lower port 12a side. That is, between the lower port 12a of the lower header 12 and the first throttle portion 14, between the first and second throttle portions 14, and between the third and fourth throttle portions 14, Each partition is formed, and a partition is formed between the fourth throttle portion 14 and the end of the lower header 12 opposite to the lower port 12a.

上記構成の熱交換器10において、蒸発器として用いる場合、下部ヘッダ12の下部ポート12aから気液二相冷媒が流入する(矢印R1)。そして、下部ヘッダ12で分流された気液二相冷媒は、複数の扁平管13内を上昇しつつ蒸発して、蒸発したガス冷媒が上方に流れて上部ヘッダ11を介して上部ポート11aから出る。   In the heat exchanger 10 having the above configuration, when used as an evaporator, the gas-liquid two-phase refrigerant flows from the lower port 12a of the lower header 12 (arrow R1). The gas-liquid two-phase refrigerant divided by the lower header 12 evaporates while rising in the plurality of flat tubes 13, and the evaporated gas refrigerant flows upward and exits from the upper port 11 a via the upper header 11. .

図2(a)は、蒸発器として用いたときの熱交換器10の下部ヘッダ12の要部の断面を示す模式図であり、図2(a)は下部ヘッダ12内に図1に示す絞り部14が配置された冷媒の状態を示している。図2(a)において、左側にある下部ヘッダ12の下部ポート12a(図1に示す)から流入した気液二相冷媒が絞り部14の開口14aを介して絞り部14の下流の区画に流入する。このとき、気液二相冷媒がガス冷媒と液冷媒に分離され、分離されたガス冷媒は、絞り部14の開口14aを通ると共に、分離された液冷媒は、下部ヘッダ12内の下側に溜まった後、絞り部14の開口14aを乗り越えて右側の区画に流れ込むことになる。こうして、下部ポート12a(図1に示す)から流入した気液二相冷媒は4つの絞り部14を介して下流側の区画に流れた後、それぞれの区画の上側に接続された複数の扁平管13に分流され、各扁平管13内を上昇しつつ蒸発する。そうして、複数の扁平管13内で蒸発した冷媒は、複数の扁平管13を介して上部ヘッダ11で合流した後、上部ヘッダ11の上部ポート11aから流出する。   FIG. 2A is a schematic view showing a cross section of a main part of the lower header 12 of the heat exchanger 10 when used as an evaporator, and FIG. The state of the refrigerant | coolant by which the part 14 is arrange | positioned is shown. In FIG. 2 (a), the gas-liquid two-phase refrigerant flowing from the lower port 12a (shown in FIG. 1) of the lower header 12 on the left side flows into the downstream section of the throttle portion 14 through the opening 14a of the throttle portion 14. To do. At this time, the gas-liquid two-phase refrigerant is separated into a gas refrigerant and a liquid refrigerant, and the separated gas refrigerant passes through the opening 14a of the throttle portion 14, and the separated liquid refrigerant is placed on the lower side in the lower header 12. After accumulating, it passes over the opening 14a of the throttle part 14 and flows into the right compartment. Thus, after the gas-liquid two-phase refrigerant flowing from the lower port 12a (shown in FIG. 1) flows to the downstream compartments via the four throttle portions 14, a plurality of flat tubes connected to the upper side of each compartment 13 and is evaporated while rising in each flat tube 13. Then, the refrigerant evaporated in the plurality of flat tubes 13 merges in the upper header 11 via the plurality of flat tubes 13 and then flows out from the upper port 11 a of the upper header 11.

また、図2(b)は、圧損調整手段の他の例としての絞り部15が下部ヘッダ12内に配置された熱交換器10を蒸発器として用いたときの冷媒の状態を示しており、この絞り部15の開口15aの中心は、下部ヘッダ12の断面の中心よりも高い位置に設けている。この場合、下部ポート12a(図1に示す)から流入した気液二相冷媒から分離した液冷媒は、下部ヘッダ12内の下側に溜まった後、図2(a)に示す絞り部14の開口14aよりも高い位置の絞り部15の開口15aを乗り越えて右側の区画に流れ込む。したがって、図2(b)に示す絞り部15の開口15aは、図2(a)に示す絞り部14の開口14aよりも液冷媒の通過量が制限される。   FIG. 2B shows the state of the refrigerant when the heat exchanger 10 in which the throttle portion 15 as another example of the pressure loss adjusting means is disposed in the lower header 12 is used as an evaporator. The center of the aperture 15 a of the throttle portion 15 is provided at a position higher than the center of the cross section of the lower header 12. In this case, after the liquid refrigerant separated from the gas-liquid two-phase refrigerant flowing in from the lower port 12a (shown in FIG. 1) is accumulated in the lower side of the lower header 12, the liquid refrigerant separated in the throttle part 14 shown in FIG. It passes over the opening 15a of the aperture 15 at a position higher than the opening 14a and flows into the right compartment. Therefore, the amount of liquid refrigerant passing through the opening 15a of the throttle portion 15 shown in FIG. 2B is more limited than that of the opening 14a of the throttle portion 14 shown in FIG.

また、図2(c)は、図2(b)に示す絞り部15が下部ヘッダ12内に配置された熱交換器10を凝縮器として用いたときの冷媒の状態を示しており、この場合は、下部ヘッダ12内に液冷媒が満たされ、絞り部15の開口15aの位置にかかわらず、圧損が一定となる。   FIG. 2C shows the state of the refrigerant when the heat exchanger 10 in which the throttle unit 15 shown in FIG. 2B is arranged in the lower header 12 is used as a condenser. The lower header 12 is filled with liquid refrigerant, and the pressure loss is constant regardless of the position of the opening 15a of the throttle portion 15.

図3(a)は図4に示す比較例の熱交換器20を蒸発器として用いたときの冷媒の状態分布を示し、図3(b)は上記熱交換器20を凝縮器として用いたときの冷媒の状態分布を示している。図4に示す熱交換器20は、比較のために熱交換器10の構成から絞り部14を除去したものであり、絞り部14を除いて図1に示す熱交換器10と同一の構成をしており、21は上部ヘッダ、21aは上部ポート、22aは下部ポート、23は扁平管である。   FIG. 3 (a) shows a refrigerant state distribution when the heat exchanger 20 of the comparative example shown in FIG. 4 is used as an evaporator, and FIG. 3 (b) is when the heat exchanger 20 is used as a condenser. Shows the state distribution of the refrigerant. The heat exchanger 20 shown in FIG. 4 is obtained by removing the throttle portion 14 from the configuration of the heat exchanger 10 for comparison, and has the same configuration as the heat exchanger 10 shown in FIG. 1 except for the throttle portion 14. 21 is an upper header, 21a is an upper port, 22a is a lower port, and 23 is a flat tube.

図3(a)に示すように、熱交換器20を蒸発器として用いるときは、気液二相冷媒が左下側コーナーの下部ポート22a(図4に示す)から流入し(矢印R11)、下部ポート22aとは対角側である右上側コーナーの上部ポート21a(図4に示す)から冷媒が流出する(矢印R12)。この場合、二相域および過熱域の分布は、図3(a)に示すように、複数の扁平管23に分流する冷媒に偏りがあり、左側の大部分の領域が過熱域となっており、下側かつ右側のわずかな領域が二相域となっている。このため、この熱交換器20の蒸発器としての効率が悪い。ここで、「二相域」とは、冷媒が気相と液相が混じり合った気液二相状態となっている領域のことであり、「過熱域」とは、冷媒が過熱蒸気となっている領域のことである。   As shown in FIG. 3 (a), when the heat exchanger 20 is used as an evaporator, the gas-liquid two-phase refrigerant flows from the lower port 22a (shown in FIG. 4) in the lower left corner (arrow R11) The refrigerant flows out from the upper port 21a (shown in FIG. 4) at the upper right corner, which is opposite to the port 22a (arrow R12). In this case, as shown in FIG. 3 (a), the distribution of the two-phase area and the superheat area is biased in the refrigerant that is divided into the plurality of flat tubes 23, and the most area on the left side is the superheat area. The small area on the lower and right side is a two-phase area. For this reason, the efficiency of the heat exchanger 20 as an evaporator is poor. Here, the “two-phase region” is a region in which the refrigerant is in a gas-liquid two-phase state in which the gas phase and the liquid phase are mixed, and the “superheat region” is the refrigerant being superheated steam. It is the area that is.

一方、図3(b)に示すように、熱交換器20を凝縮器として用いたときは、気液二相冷媒が右上側コーナーの上部ポート21a(図4に示す)から流入し、左下側コーナーの下部ポート22a(図4に示す)から冷媒が流出する。この場合、二相域および過熱域の分布は、図3(b)に示すように、上側の大部分が二相域となり、下側の一部領域が過冷却域となっており、冷媒の流れに偏流などの問題はない。ここで、「過冷却域」とは、凝縮された液冷媒が所定圧力下において飽和温度よりもさらに冷却された状態となっている領域のことである。   On the other hand, as shown in FIG. 3 (b), when the heat exchanger 20 is used as a condenser, the gas-liquid two-phase refrigerant flows from the upper port 21a (shown in FIG. 4) in the upper right corner, and the lower left side. The refrigerant flows out from the lower port 22a (shown in FIG. 4) at the corner. In this case, as shown in FIG. 3 (b), the distribution of the two-phase region and the superheat region is mostly the two-phase region and the lower partial region is the supercooling region. There is no problem such as drift in the flow. Here, the “supercooled region” is a region where the condensed liquid refrigerant is further cooled below the saturation temperature under a predetermined pressure.

次に、図3(c),(d)は、本発明の実施の形態の熱交換器10において、絞り部14の開口14aの中心が下部ヘッダ12の断面の中心と略同じ位置に設けられているときの冷媒の状態分布を示している。なお、このときの絞り部14の開口14aの開口面積を下部ヘッダ12の流路断面積の5%としている。   Next, FIGS. 3C and 3D show the heat exchanger 10 according to the embodiment of the present invention in which the center of the opening 14a of the throttle portion 14 is provided at substantially the same position as the center of the cross section of the lower header 12. It shows the state distribution of the refrigerant when At this time, the opening area of the opening 14 a of the throttle portion 14 is set to 5% of the flow path cross-sectional area of the lower header 12.

図3(c)に示すように、熱交換器10を蒸発器として用いるときは、気液二相冷媒が左下側コーナーの下部ポート12a(図1に示す)から流入し、下部ポート12aとは対角側である右上側コーナーの上部ポート11a(図1に示す)から冷媒が流出する。この場合、二相域および過熱域の分布は、図3(c)に示すように、複数の扁平管13に分流する冷媒の偏りが少なくなり、左上側の略三角部分の領域が過熱域となっており、その下側の領域が二相域となっている。このため、この熱交換器10の蒸発器としての効率は、比較例の熱交換器20に比べて大幅に向上している。   As shown in FIG. 3 (c), when the heat exchanger 10 is used as an evaporator, the gas-liquid two-phase refrigerant flows in from the lower port 12a (shown in FIG. 1) in the lower left corner, and the lower port 12a The refrigerant flows out from the upper port 11a (shown in FIG. 1) at the upper right corner, which is the diagonal side. In this case, as shown in FIG. 3 (c), the distribution of the two-phase region and the superheat region is less biased in the refrigerant that is divided into the plurality of flat tubes 13, and the region on the upper left substantially triangular portion is the superheat region. The lower region is a two-phase region. For this reason, the efficiency of the heat exchanger 10 as an evaporator is significantly improved as compared with the heat exchanger 20 of the comparative example.

一方、図3(d)に示すように、熱交換器10を凝縮器として用いたときは、気液二相冷媒が右上側コーナーの上部ポート21a(図4に示す)から流入し、左下側コーナーの下部ポート22a(図4に示す)から冷媒が流出する。この場合、二相域および過熱域の分布は、図3(b)に示すように、上側の大部分が二相域となり、下側の一部領域が過冷却域となっており、冷媒の流れに偏流などの問題はない。ここで、熱交換器10の下部ヘッダ12内に設けられた絞り部14により、過冷却域が階段状になっているが、凝縮器の能力に大きな影響はない。   On the other hand, as shown in FIG. 3 (d), when the heat exchanger 10 is used as a condenser, the gas-liquid two-phase refrigerant flows in from the upper port 21a (shown in FIG. 4) in the upper right corner, and the lower left side. The refrigerant flows out from the lower port 22a (shown in FIG. 4) at the corner. In this case, as shown in FIG. 3 (b), the distribution of the two-phase region and the superheat region is mostly the two-phase region and the lower partial region is the supercooling region. There is no problem such as drift in the flow. Here, although the supercooling region is stepped by the throttle portion 14 provided in the lower header 12 of the heat exchanger 10, there is no significant influence on the capacity of the condenser.

次に、図3(e),(f)は、本発明の実施の形態の熱交換器10において、図2(b)に示す絞り部1を用いたときの冷媒の状態分布を示している。なお、このときの絞り部15の開口15aの開口面積を下部ヘッダ12の流路断面積の5%とし、開口15aを下部ヘッダ12の断面の中心よりも6mm高い位置に設けている。この下部ヘッダ12の流路断面積は、320mm2である。 Next, FIGS. 3E and 3F show the state distribution of the refrigerant when the throttle unit 1 shown in FIG. 2B is used in the heat exchanger 10 according to the embodiment of the present invention. . At this time, the opening area of the opening 15a of the throttle portion 15 is set to 5% of the cross-sectional area of the flow path of the lower header 12, and the opening 15a is provided at a position 6 mm higher than the center of the cross section of the lower header 12. The flow path cross-sectional area of the lower header 12 is 320 mm 2 .

図3(e)に示すように、熱交換器10を蒸発器として用いるときは、気液二相冷媒が左下側コーナーの下部ポート12a(図1に示す)から流入し、下部ポート12aとは対角側である右上側コーナーの上部ポート11a(図1に示す)から冷媒が流出する。この場合、二相域および過熱域の分布は、図3(e)に示すように、複数の扁平管13に分流する冷媒の偏りが少なくなり、左上側の略三角部分の過熱域が図3(c)よりも小さくなっており、その下側の領域が二相域となっている。このため、この熱交換器10の蒸発器としての効率は、比較の熱交換器20に比べて大幅に向上している。   As shown in FIG. 3 (e), when the heat exchanger 10 is used as an evaporator, the gas-liquid two-phase refrigerant flows in from the lower port 12a (shown in FIG. 1) in the lower left corner, and the lower port 12a The refrigerant flows out from the upper port 11a (shown in FIG. 1) in the upper right corner, which is the diagonal side. In this case, as shown in FIG. 3 (e), the distribution of the two-phase region and the superheat region reduces the bias of the refrigerant diverted to the plurality of flat tubes 13, and the superheat region in the substantially triangular portion on the upper left is shown in FIG. It is smaller than (c), and the lower region is a two-phase region. For this reason, the efficiency of the heat exchanger 10 as an evaporator is significantly improved as compared with the comparative heat exchanger 20.

一方、図3(f)に示すように、熱交換器10を凝縮器として用いたときは、気液二相冷媒が右上側コーナーの上部ポート21a(図4に示す)から流入し、左下側コーナーの下部ポート22a(図4に示す)から冷媒が流出する。この場合、二相域および過熱域の分布は、図3(f)に示すように、上側の大部分が二相域となり、下側の一部領域が過冷却域となっており、冷媒の流れに偏流などの問題はない。ここで、熱交換器10の下部ヘッダ12内に設けられた絞り部14により、過冷却域が右側から左側に向かって徐々に細くなる略三角形状になって、図3(d)に示す階段状の過冷却域よりも小さくなり、凝縮器の能力は図3(d)の熱交換器よりも高くなる。   On the other hand, as shown in FIG. 3 (f), when the heat exchanger 10 is used as a condenser, the gas-liquid two-phase refrigerant flows in from the upper port 21a (shown in FIG. 4) in the upper right corner and lower left side. The refrigerant flows out from the lower port 22a (shown in FIG. 4) at the corner. In this case, as shown in FIG. 3 (f), the distribution of the two-phase region and the superheat region is mostly the two-phase region and the lower partial region is the supercooling region. There is no problem such as drift in the flow. Here, due to the constricted portion 14 provided in the lower header 12 of the heat exchanger 10, the subcooling region becomes a substantially triangular shape gradually narrowing from the right side to the left side, and the staircase shown in FIG. The capacity of the condenser is higher than that of the heat exchanger shown in FIG. 3 (d).

このように、上記構成の熱交換器によれば、簡単な構成で蒸発器および凝縮器のいずれにおいても冷媒の偏流を低減でき、蒸発器と凝縮器として切り換えて用いる空気調和機用に好適な変換効率のよい熱交換器を実現することができる。   As described above, according to the heat exchanger having the above-described configuration, it is possible to reduce the drift of refrigerant in both the evaporator and the condenser with a simple configuration, which is suitable for an air conditioner that is used by switching between the evaporator and the condenser. A heat exchanger with good conversion efficiency can be realized.

また、上記下部ヘッダ12の少なくとも下部ポート12a側に設けられた絞り部14の開口面積を、下部ヘッダ12内の流路断面積の略1/2以下にすることによって、蒸発器として用いるときに、少なくとも下部ポート12a側に設けられた絞り部14により得られる圧損によって、気液二相冷媒の偏流を効果的に抑制することができる。   In addition, when the aperture area of the throttle portion 14 provided on at least the lower port 12a side of the lower header 12 is set to be approximately ½ or less of the flow path cross-sectional area in the lower header 12, when used as an evaporator. The pressure loss obtained by at least the throttle portion 14 provided on the lower port 12a side can effectively suppress the drift of the gas-liquid two-phase refrigerant.

また、図2(b)に示すように、絞り部15の開口15aの中心を下部ヘッダ12の断面の中心よりも上側にすることによって、蒸発器として用いるときの気液二相冷媒が絞り部15を通過するときの圧損と、凝縮器として用いるときの液冷媒が絞り部15を通過するときの圧損を調整することが可能となる。これにより、上記絞り部15を下部ヘッダ12の下部ポート12aから液冷媒を排出するときの妨げとならないようにでき、冷媒偏流を防止することができる。   Further, as shown in FIG. 2 (b), by setting the center of the opening 15a of the throttle portion 15 above the center of the cross section of the lower header 12, the gas-liquid two-phase refrigerant when used as an evaporator is reduced. It is possible to adjust the pressure loss when passing through the throttle 15 and the pressure loss when the liquid refrigerant passing through the throttle portion 15 when used as a condenser. Thus, the throttle portion 15 can be prevented from being disturbed when the liquid refrigerant is discharged from the lower port 12a of the lower header 12, and refrigerant drift can be prevented.

また、上記絞り部14に略円形の開口14aを有する仕切板を用いることによって、簡単な構成で下部ヘッダ12内に絞り部14を設けることができ、加工が容易になると共に、コストを低減することができる。   Further, by using a partition plate having a substantially circular opening 14a for the throttle portion 14, the throttle portion 14 can be provided in the lower header 12 with a simple configuration, which facilitates processing and reduces costs. be able to.

上記実施の形態では、複数の扁平管13を介して接続された上部ヘッダ11と下部ヘッダ12を円筒形状としたが、四角柱などの断面多角形の角柱形状としてもよい。この場合、絞り部14は、下部ヘッダ12内の断面形状に応じた形状のものであればよい。また、下部ヘッダ12内の絞り部14は、仕切板に開口を設けたものに限らず、下部ヘッダ内に内嵌された円柱または角柱に貫通穴を設けたものなどであってもよい。   In the above-described embodiment, the upper header 11 and the lower header 12 connected via the plurality of flat tubes 13 have a cylindrical shape, but may have a prismatic shape with a polygonal cross section such as a quadrangular prism. In this case, the narrowed portion 14 may have a shape corresponding to the cross-sectional shape in the lower header 12. Further, the narrowed portion 14 in the lower header 12 is not limited to the one provided with an opening in the partition plate, but may be one provided with a through hole in a cylinder or a prism that is fitted in the lower header.

上記実施の形態では、下部ヘッダ12内に配置された4つの絞り部14の開口14aの大きさを略同じとしたが、各絞り部14の開口面積が下部ポート12a側から徐々に大きくなるようにしてもよい。この場合、下部ヘッダ12内において、下部ポート12a側から反対側の端に向かって徐々に圧力損失が低くなった圧損分布が得られ、冷媒の偏流を効果的に低減できる。   In the above embodiment, the sizes of the openings 14a of the four throttle portions 14 disposed in the lower header 12 are substantially the same, but the aperture areas of the respective throttle portions 14 gradually increase from the lower port 12a side. It may be. In this case, in the lower header 12, a pressure loss distribution in which the pressure loss gradually decreases from the lower port 12a side toward the opposite end can be obtained, and the refrigerant flow can be effectively reduced.

上記実施の形態では、下部ヘッダ12内に4つの絞り部14を等間隔に配置したが、絞り部の数や位置はこれに限らず、下部ヘッダの全長や絞り部の開口面積などに応じて、冷媒の偏流を少なくする所望の圧損分布が得られるように適宜設定してよい。なお、上記下部ヘッダ内の絞り部は、下部ヘッダ内において液冷媒を分配する上で少なくとも下部ポー側に絞り部を設けるのが好ましい。   In the above embodiment, the four throttle portions 14 are arranged at equal intervals in the lower header 12, but the number and position of the throttle portions are not limited to this, depending on the total length of the lower header, the opening area of the throttle portion, and the like. The pressure distribution may be appropriately set so as to obtain a desired pressure loss distribution that reduces refrigerant drift. In addition, it is preferable that the throttle part in the lower header is provided with a throttle part at least on the lower poe side in order to distribute the liquid refrigerant in the lower header.

図1はこの発明の実施の一形態の熱交換器の斜視図である。FIG. 1 is a perspective view of a heat exchanger according to an embodiment of the present invention. 図2(a)は蒸発器として用いたときの熱交換器の要部の断面を示す模式図であり、図2(b)は他の例の絞り部が下部ヘッダ内に配置された熱交換器を蒸発器として用いたときの冷媒の状態を示す模式図であり、図2(c)は図2(b)に示す熱交換器を凝縮器として用いたときの冷媒の状態を示す模式図である。FIG. 2 (a) is a schematic view showing a cross section of the main part of the heat exchanger when used as an evaporator, and FIG. 2 (b) is a heat exchange in which the throttle part of another example is arranged in the lower header. It is a schematic diagram which shows the state of the refrigerant | coolant when using an oven as an evaporator, and FIG.2 (c) is a schematic diagram which shows the state of the refrigerant | coolant when using the heat exchanger shown in FIG.2 (b) as a condenser. It is. 図3(a),(b)は図4に示す比較例の熱交換器の冷媒の状態分布を示す図であり、図3(c),(d)は図1に示す熱交換器の冷媒の状態分布を示す図であり、図3(e),(f)は図2(b)に示す他の例の絞り部を用いた図1に示す熱交換器の冷媒の状態分布を示す図である。3 (a) and 3 (b) are diagrams showing the state distribution of refrigerant in the heat exchanger of the comparative example shown in FIG. 4, and FIGS. 3 (c) and 3 (d) are refrigerants in the heat exchanger shown in FIG. 3 (e) and 3 (f) are diagrams showing refrigerant state distributions of the heat exchanger shown in FIG. 1 using the throttle portion of another example shown in FIG. 2 (b). It is. 図4は比較のための熱交換器の図である。FIG. 4 is a view of a heat exchanger for comparison.

10,20…熱交換器
11,21…上部ヘッダ
11a,21a…上部ポート
12,22…下部ヘッダ
12a,22a…下部ポート
13,23…扁平管
14,15…絞り部
14a,15a…開口
DESCRIPTION OF SYMBOLS 10,20 ... Heat exchanger 11, 21 ... Upper header 11a, 21a ... Upper port 12,22 ... Lower header 12a, 22a ... Lower port 13,23 ... Flat tube 14,15 ... Restriction part 14a, 15a ... Opening

Claims (4)

空気調和機用の蒸発器および凝縮器として切り換えて用いられる熱交換器であって、
冷媒が流入または流出する上部ポート(11a)が一端に設けられ、他端が閉じた上部ヘッダ(11)と、
上記上部ヘッダ(11)の上部ポート(11a)に対向する一端が閉じられ、他端に冷媒が流入または流出する下部ポート(12a)が設けられた下部ヘッダ(12)と、
上記上部ヘッダ(11)と上記下部ヘッダ(12)との間に、互いに間隔をあけて略平行に接続された複数の扁平管(13)とを備え、
上記下部ヘッダ(12)内の少なくとも上記下部ポート(12a)寄りに絞り部(14)を設けると共に、
上記絞り部(14)が、上記下部ヘッダ(12)内に上記下部ポート(12a)側から所定の間隔をあけて配置された複数の絞り部であって、
上記複数の絞り部の開口面積を上記下部ポート(12a)側から徐々に大きくすることによって、蒸発器として用いるときに、上記下部ヘッダ(12)側から気化して比体積が大きくなった冷媒が流れる上記上部ヘッダ(11)内の圧力損失に対する差が解消されるように、上記複数の絞り部により上記下部ヘッダ(12)内に圧損分布を設けたことを特徴とする熱交換器。
A heat exchanger used by switching as an evaporator and a condenser for an air conditioner,
An upper port (11a) through which refrigerant flows in or out is provided at one end, and an upper header (11) with the other end closed;
A lower header (12) in which one end facing the upper port (11a) of the upper header (11) is closed and a lower port (12a) through which refrigerant flows in or out is provided at the other end;
A plurality of flat tubes (13) connected between the upper header (11) and the lower header (12) at a distance from each other in a substantially parallel manner,
Said at least said lower port (12a) closer to the aperture portion of the lower header (12) in (14) is provided Rutotomoni,
The throttle parts (14) are a plurality of throttle parts arranged in the lower header (12) at a predetermined interval from the lower port (12a) side,
By gradually increasing the opening area of the plurality of throttle portions from the lower port (12a) side, when used as an evaporator, the refrigerant that has evaporated from the lower header (12) side and has a large specific volume is obtained. A heat exchanger characterized in that a pressure loss distribution is provided in the lower header (12) by the plurality of throttle portions so that a difference with respect to a pressure loss in the upper header (11) flowing is eliminated .
請求項1に記載の熱交換器において、
上記下部ヘッダ(12)内の少なくとも上記下部ポート(12a)寄りに設けられた上記絞り部(14)の開口面積が、上記下部ヘッダ(12)内の流路断面積の略1/2以下であることを特徴とする熱交換器。
The heat exchanger according to claim 1,
The opening area of the throttle part (14) provided at least near the lower port (12a) in the lower header (12) is approximately ½ or less of the cross-sectional area of the flow path in the lower header (12). A heat exchanger characterized by being.
請求項1または2に記載の熱交換器において、
上記絞り部(14)の開口の中心が上記下部ヘッダ(12)の断面の中心よりも上側にあることを特徴とする熱交換器。
The heat exchanger according to claim 1 or 2,
The heat exchanger characterized in that the center of the opening of the throttle section (14) is above the center of the cross section of the lower header (12).
請求項1乃至3のいずれか1つに記載の熱交換器において、
上記絞り部(14)が、略円形の開口を有する仕切板であることを特徴とする熱交換器。
The heat exchanger according to any one of claims 1 to 3,
The heat exchanger, wherein the throttle part (14) is a partition plate having a substantially circular opening.
JP2004210018A 2004-07-16 2004-07-16 Heat exchanger Active JP4391348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004210018A JP4391348B2 (en) 2004-07-16 2004-07-16 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004210018A JP4391348B2 (en) 2004-07-16 2004-07-16 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2006029700A JP2006029700A (en) 2006-02-02
JP4391348B2 true JP4391348B2 (en) 2009-12-24

Family

ID=35896277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004210018A Active JP4391348B2 (en) 2004-07-16 2004-07-16 Heat exchanger

Country Status (1)

Country Link
JP (1) JP4391348B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019008664A1 (en) * 2017-07-04 2019-01-10 三菱電機株式会社 Refrigeration cycle device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704486B2 (en) * 2011-02-21 2015-04-22 因幡電機産業株式会社 Air conditioner
JP5579134B2 (en) * 2011-07-11 2014-08-27 三菱電機株式会社 Indoor unit
JP2015148395A (en) * 2014-02-07 2015-08-20 株式会社東洋製作所 Cooling device
JP6520563B2 (en) * 2015-08-25 2019-05-29 株式会社デンソー Refrigerant evaporator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2980631B2 (en) * 1990-02-23 1999-11-22 カルソニック株式会社 Stacked heat exchanger
JPH0473778U (en) * 1990-11-06 1992-06-29
JP4106726B2 (en) * 1998-02-24 2008-06-25 株式会社デンソー Refrigerant evaporator
JP2001221535A (en) * 2000-02-08 2001-08-17 Denso Corp Refrigerant evaporator
JP2003287321A (en) * 2002-03-28 2003-10-10 Daikin Ind Ltd Plate type heat exchanger, and refrigerating machine having the same
JP2004177041A (en) * 2002-11-28 2004-06-24 Matsushita Electric Ind Co Ltd Heat exchanger
JP2005300072A (en) * 2004-04-14 2005-10-27 Calsonic Kansei Corp Evaporator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019008664A1 (en) * 2017-07-04 2019-01-10 三菱電機株式会社 Refrigeration cycle device
GB2578023A (en) * 2017-07-04 2020-04-15 Mitsubishi Electric Corp Refrigeration cycle device
JPWO2019008664A1 (en) * 2017-07-04 2020-05-21 三菱電機株式会社 Refrigeration cycle equipment
GB2578023B (en) * 2017-07-04 2021-05-05 Mitsubishi Electric Corp Refrigeration cycle apparatus
US11333401B2 (en) 2017-07-04 2022-05-17 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Also Published As

Publication number Publication date
JP2006029700A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
US9494368B2 (en) Heat exchanger and air conditioner
US10309701B2 (en) Heat exchanger and air conditioner
JP5626254B2 (en) Heat exchanger
US10041710B2 (en) Heat exchanger and air conditioner
US9791189B2 (en) Heat exchanger and refrigeration cycle apparatus
JP2016001099A (en) Stacked heat exchanger
KR102512052B1 (en) Heat exchanger
JP2018162900A (en) Heat exchanger and air conditioner including the same
JP6120978B2 (en) Heat exchanger and air conditioner using the same
US10544990B2 (en) Heat exchanger
JP5975971B2 (en) Heat exchanger and refrigeration cycle apparatus
JP5716496B2 (en) Heat exchanger and air conditioner
JP6906141B2 (en) Heat exchanger shunt
JP4391348B2 (en) Heat exchanger
JP6946105B2 (en) Heat exchanger
US20090100854A1 (en) Evaporatively cooled condenser
KR102011278B1 (en) Condenser
WO2020217271A1 (en) Refrigerant distributor, heat exchanger, and refrigeration cycle device
JP7292513B2 (en) Heat exchanger and air conditioner using the same
WO2017150221A1 (en) Heat exchanger and air conditioner
JP6927353B1 (en) Heat exchanger
JP5999627B2 (en) Heat exchanger
WO2019211893A1 (en) Heat exchanger and refrigeration cycle device
JP2005337688A (en) Refrigeration device
JP4275835B2 (en) Condenser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4391348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250