JP2010190523A - Refrigerant distributor - Google Patents

Refrigerant distributor Download PDF

Info

Publication number
JP2010190523A
JP2010190523A JP2009037060A JP2009037060A JP2010190523A JP 2010190523 A JP2010190523 A JP 2010190523A JP 2009037060 A JP2009037060 A JP 2009037060A JP 2009037060 A JP2009037060 A JP 2009037060A JP 2010190523 A JP2010190523 A JP 2010190523A
Authority
JP
Japan
Prior art keywords
refrigerant
distributor
guide
main body
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009037060A
Other languages
Japanese (ja)
Inventor
Yasutaka Aoki
泰高 青木
Atsushi Shiotani
篤 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009037060A priority Critical patent/JP2010190523A/en
Publication of JP2010190523A publication Critical patent/JP2010190523A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact refrigerant distributor reducing dispersion in distribution of flow to each of branch pipes even when many branch pipes are disposed. <P>SOLUTION: This refrigerant distributor 10 includes an inflow pipe 13 in which a refrigerant flows, a distributor body 11 through which the refrigerant flowing in from the inflow pipe 13 passes, a refrigerant guide 12 disposed in the distributor body 11, and the plurality of branch pipes 14 to which the refrigerant passing through a refrigerant flow channel formed between the refrigerant guide 12 and the distributor body 11 is discharged. A refrigerant flow channel communicated in the circumferential direction, is formed between an inner peripheral face of the distributor body 11 and the refrigerant guide 12. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、冷凍サイクルを構成する熱交換器、特に複数の流路を備えた蒸発器に付設される冷媒分配器に関する。   The present invention relates to a heat exchanger constituting a refrigeration cycle, and more particularly to a refrigerant distributor attached to an evaporator having a plurality of flow paths.

冷凍サイクルを構成する蒸発器が複数の流路を備える場合には、膨張弁を出た気液二相状態の冷媒を各流路に対して分配器を用いて分配する。この際、各流路に対して均等に冷媒が分配されることが理想的である。冷媒の分配が不均等な場合、蒸発器の性能低下を引き起こし、冷凍サイクルの性能も低下してしまうからである。冷媒の均等な分配を実現するために、これまで分配器についていくつかの提案がなされている。   When the evaporator constituting the refrigeration cycle includes a plurality of flow paths, the gas-liquid two-phase refrigerant that has exited the expansion valve is distributed to each flow path using a distributor. At this time, it is ideal that the refrigerant is evenly distributed to each flow path. This is because when the distribution of the refrigerant is uneven, the performance of the evaporator is lowered and the performance of the refrigeration cycle is also lowered. In order to achieve an even distribution of refrigerant, several proposals have been made regarding distributors.

例えば、特許文献1は、図6に示すように、冷媒Xinが流入する入口管102と内部が空洞とされた分配器本体101と冷媒Xoutが流出する複数の分岐管103とからなる冷媒分配器100において、分配器本体101の長さをLmm、内径をDmmとしたとき、2≦L/D≦8となるように設定して、設置角度±10°程度の変化、入口冷媒Xinの乾き度(0.2〜0.4)の変化あるいは冷媒流量(50〜100%)の変化に対して、分配器出口から熱交換器に入る各流路における流量比のずれ(ばらつき)が少なく圧力損失の小さな冷媒分配器100が得られるようにしている。 For example, as shown in FIG. 6, Patent Document 1 discloses a refrigerant distributor including an inlet pipe 102 into which refrigerant Xin flows in, a distributor body 101 having a hollow inside, and a plurality of branch pipes 103 through which refrigerant Xout flows out. 100, when the length of the distributor main body 101 is L mm and the inner diameter is D 2 mm, it is set so that 2 ≦ L / D 2 ≦ 8, and the change of the installation angle about ± 10 °, the inlet refrigerant Xin Deviation (variation) in the flow rate ratio in each flow path entering the heat exchanger from the outlet of the distributor with respect to the change in the dryness (0.2 to 0.4) or the change in the refrigerant flow rate (50 to 100%) A refrigerant distributor 100 with a small pressure loss is obtained.

特開2006−349229号公報JP 2006-349229 A 特開平6−323696号公報JP-A-6-323696

分岐管103は通常分配器本体101の上面に円周上に配置されるが、蒸発器の流路に対応して例えば8本以上と分岐管103の本数が多い場合には、分岐管103の配置スペースを確保するために分配器本体101の内径Dmmを大きくしなければならない。そのために、特許文献1で特定される2≦L/D≦8の条件を具備するためには、分配器本体101の長さLを長くしなければならない。そうすると、例えば室内機の熱交換器入口のように設置空間の狭い場所に分配器100を設置するのが困難となる。2≦L/D≦8の条件を具備しない場合には、分配器本体101の容積が大きくなったことに伴い、分配器本体101内に大規模な渦や二次流れが生じ、分岐管103に到達する前にガスと液との分布が不均一な偏流が起こる。そうすると、各分岐管103に流入する冷媒のガスと液との比率(流量分配)がばらついてしまい蒸発性能を大きく低下させてしまう。
そこで本発明は、分岐管の本数が多い場合でも各分岐管への流量分配のばらつきを低減し、かつコンパクトな冷媒分配器を提供することを目的とする。
The branch pipe 103 is usually arranged on the upper surface of the distributor main body 101 on the circumference. However, when the number of the branch pipes 103 is large, for example, eight or more, corresponding to the flow path of the evaporator, In order to secure an arrangement space, the inner diameter D 2 mm of the distributor main body 101 must be increased. Therefore, in order to satisfy the condition of 2 ≦ L / D 2 ≦ 8 specified in Patent Document 1, the length L of the distributor main body 101 must be increased. If it does so, it will become difficult to install the divider | distributor 100 in a narrow place of installation space like the heat exchanger entrance of an indoor unit, for example. When the condition of 2 ≦ L / D 2 ≦ 8 is not satisfied, as the volume of the distributor main body 101 increases, a large-scale vortex or secondary flow is generated in the distributor main body 101, and the branch pipe Before reaching 103, a non-uniform distribution of gas and liquid occurs. If it does so, the ratio (flow volume distribution) of the gas and liquid of the refrigerant which flows into each branch pipe 103 will vary, and evaporation performance will fall greatly.
In view of the above, an object of the present invention is to provide a compact refrigerant distributor that reduces variations in flow distribution to each branch pipe even when the number of branch pipes is large.

かかる目的のもとなされた本発明の冷媒分配器は、上流側に配置される機器から供給される冷媒が流入する流入管と、流入管から流入した冷媒が通過する分配器本体と、分配器本体内において流入管と同軸上に配置され、冷媒の流れを放射状に拡げる冷媒ガイドと、冷媒ガイドと分配器本体との間に形成される冷媒流路を通過した冷媒を、下流側に配置される機器に向けて排出する複数の分岐管とを備える。
そして本発明は、少なくとも分配器本体における上流側の所定範囲においては、冷媒流路を周方向に連通させることを特徴とする。
The refrigerant distributor of the present invention made for such an object includes an inflow pipe into which a refrigerant supplied from a device arranged on the upstream side flows, a distributor main body through which the refrigerant flowing in from the inflow pipe passes, and a distributor A refrigerant guide that is arranged coaxially with the inflow pipe in the main body and expands the flow of the refrigerant radially, and a refrigerant that has passed through a refrigerant flow path formed between the refrigerant guide and the distributor main body are arranged on the downstream side. And a plurality of branch pipes for discharging toward the device.
The present invention is characterized in that the refrigerant flow path is communicated in the circumferential direction at least in a predetermined range on the upstream side of the distributor main body.

本発明の冷媒分配器によると、冷媒は冷媒ガイドによって放射状に拡げられ、スムーズな流れが形成される。また、冷媒ガイドを設けると、冷媒ガイドを設けない場合に比べて冷媒流路の断面積を小さくできるので、冷媒に渦、二次流れを生じさせる可能性が小さい。したがって、分配器本体内に流入した冷媒は、ガスと液との分布が不均一な偏流が生じにくい。また、ガスと液との分布が不均一な偏流が若干生じたとしても、冷媒ガイドと分配器本体の間の冷媒流路が周方向に連通しているので、当該部分を下流に向けて流れる冷媒は周方向への運動が自由に行なわれ、当該冷媒流路において気液二相流の均一化が促進される。   According to the refrigerant distributor of the present invention, the refrigerant is spread radially by the refrigerant guide, and a smooth flow is formed. In addition, when the refrigerant guide is provided, the cross-sectional area of the refrigerant flow path can be reduced as compared with the case where the refrigerant guide is not provided, so that the possibility of causing a vortex and a secondary flow in the refrigerant is small. Therefore, the refrigerant that has flowed into the distributor main body is less likely to cause a drift in which the distribution of gas and liquid is not uniform. Moreover, even if a slight drift occurs in which the gas and liquid distribution is not uniform, the refrigerant flow path between the refrigerant guide and the distributor main body communicates in the circumferential direction, so that the portion flows downstream. The refrigerant moves freely in the circumferential direction, and the homogenization of the gas-liquid two-phase flow is promoted in the refrigerant flow path.

本発明の冷媒分配器において、分配器本体は、下流側に向けて径が拡大する拡径部を上流側に設け、周方向に連通する冷媒流路は、冷媒ガイドと拡径部との間に形成されることが好ましい。
下流側に向けて径が拡大する拡径部を上流側に設けることにより、流入管に比べて冷媒流路の断面積が急激に大きくなるのを避ける。これにより、冷媒に渦、二次流れが生じるのを抑制できる。
なお、本発明において、下流側に向けて径が拡大する、とは連続的に径が拡大する場合に限らず、断続的に径が拡大する場合をも含む概念である。例えば、部分的に径が等しくなっていても、上流端に比べて下流端の径が大きくなっていてれば、本発明の拡径部に包含される。
In the refrigerant distributor of the present invention, the distributor main body is provided with an enlarged diameter portion whose diameter increases toward the downstream side on the upstream side, and the refrigerant flow path communicating in the circumferential direction is between the refrigerant guide and the enlarged diameter portion. It is preferable to be formed.
By providing an enlarged diameter portion whose diameter increases toward the downstream side on the upstream side, the cross-sectional area of the refrigerant flow path is prevented from abruptly increasing compared to the inflow pipe. Thereby, it can suppress that a vortex and a secondary flow arise in a refrigerant | coolant.
In addition, in this invention, a diameter expands toward a downstream side is a concept including not only the case where a diameter expands continuously but the case where a diameter expands intermittently. For example, even if the diameters are partially equal, if the diameter of the downstream end is larger than that of the upstream end, it is included in the enlarged diameter portion of the present invention.

本発明の冷媒分配器において、冷媒ガイドは、少なくとも分配器本体における上流側の所定範囲、好ましくは拡径部に対応する範囲において、上流側から下流側に向けて断面積が拡大することが好ましい。冷媒をよりスムーズに流すことにより、偏流の発生を抑制する。   In the refrigerant distributor of the present invention, the refrigerant guide preferably has a cross-sectional area that increases from the upstream side to the downstream side in at least a predetermined range on the upstream side of the distributor main body, preferably in a range corresponding to the enlarged diameter portion. . By causing the refrigerant to flow more smoothly, the occurrence of drift is suppressed.

本発明の冷媒分配器において、分配器本体における上流側の所定範囲よりも下流側における冷媒流路の断面積が、上流端に比べて下流端を小さくすることが好ましい。冷媒流路を狭くすることにより、径の小さい分岐管へ冷媒量をスムーズに流入させることができる。   In the refrigerant distributor of the present invention, it is preferable that the downstream end of the cross-sectional area of the refrigerant flow path on the downstream side of the predetermined range on the upstream side of the distributor main body is smaller than the upstream end. By narrowing the refrigerant flow path, the refrigerant amount can smoothly flow into the branch pipe having a small diameter.

本発明の冷媒分配器において、分配器本体における上流側の所定範囲よりも下流側に、各々独立するとともに冷媒の流れる方向に沿う冷媒流路が、分岐管に対応して設けられることが好ましい。分配器本体における上流側の所定範囲、典型的には拡径部に対応する範囲で、冷媒は気液二相が均一化されているので、それよりも下流側では均一化された状態を保ったままで分岐管に流入させることができる。   In the refrigerant distributor of the present invention, it is preferable that the refrigerant flow paths that are independent of each other and that extend along the direction in which the refrigerant flows are provided on the downstream side of the predetermined range on the upstream side of the distributor main body corresponding to the branch pipe. Since the gas-liquid two phases are uniformized in the predetermined range on the upstream side of the distributor body, typically in the range corresponding to the enlarged diameter portion, the refrigerant is kept in a uniform state on the downstream side. It can flow into the branch pipe as it is.

本発明によれば、分岐管の本数が多い場合でも各分岐管への流量分配のばらつきを低減できる。しかもばらつき低減の効果は、分配器本体の長さ、内径寸法に影響されることがないので、コンパクトな冷媒分配器で上記効果が得られる。   According to the present invention, even when the number of branch pipes is large, variation in flow rate distribution to each branch pipe can be reduced. In addition, since the effect of reducing variation is not affected by the length and inner diameter of the distributor body, the above effect can be obtained with a compact refrigerant distributor.

本実施の形態にかかる冷媒分配器を示し、(a)は縦断面図、(b)は上面図、(c)は(a)の1c−1c矢視断面図である。The refrigerant distributor concerning this Embodiment is shown, (a) is a longitudinal cross-sectional view, (b) is a top view, (c) is 1c-1c arrow sectional drawing of (a). 他の実施形態にかかる冷媒分配器の断面図である。It is sectional drawing of the refrigerant distributor concerning other embodiment. 本実施の形態にかかる冷媒分配器に用いる冷媒ガイドを示す斜視図である。It is a perspective view which shows the refrigerant | coolant guide used for the refrigerant | coolant divider | distributor concerning this Embodiment. 本実施の形態にかかる冷媒分配器に用いる他の冷媒ガイドを示す斜視図である。It is a perspective view which shows the other refrigerant | coolant guide used for the refrigerant | coolant divider | distributor concerning this Embodiment. 本実施の形態にかかる冷媒分配器に用いる他の冷媒ガイドを示す斜視図である。It is a perspective view which shows the other refrigerant | coolant guide used for the refrigerant | coolant divider | distributor concerning this Embodiment. 特許文献1に記載される冷媒分配器を示す縦断面図である。It is a longitudinal cross-sectional view which shows the refrigerant distributor described in patent document 1.

以下、添付図面に示す実施の形態に基づいてこの発明を詳細に説明する。
図1に示すように、本実施の形態に係る冷媒分配器10は、冷媒が流入する流入管13と、流入した冷媒が通過する分配器本体11と、分配器本体11の中に配置される冷媒ガイド12と、冷媒が流出する複数の分岐管14とから構成される。
冷媒分配器10は、以下のように動作する冷凍サイクルに適用される。つまり、圧縮機によって高温高圧とされた冷媒が凝縮器で凝縮された後に膨張弁に送られ、この膨張弁により気液二相とされる。この冷媒は、冷媒分配器10により蒸発器に設けられる複数の流路に分配される。蒸発器において蒸発させられた冷媒は蒸発器を出る際に合流されて、圧縮機に流入される。
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.
As shown in FIG. 1, the refrigerant distributor 10 according to the present embodiment is disposed in an inflow pipe 13 into which refrigerant flows, a distributor main body 11 through which the refrigerant flows in, and a distributor main body 11. It is comprised from the refrigerant | coolant guide 12 and the some branch pipe 14 from which a refrigerant | coolant flows out.
The refrigerant distributor 10 is applied to a refrigeration cycle that operates as follows. That is, the high-temperature and high-pressure refrigerant by the compressor is condensed by the condenser and then sent to the expansion valve. The expansion valve makes the gas-liquid two-phase. This refrigerant is distributed to a plurality of flow paths provided in the evaporator by the refrigerant distributor 10. The refrigerant evaporated in the evaporator is merged when leaving the evaporator and flows into the compressor.

流入管13は冷凍サイクルにおいて膨張弁側に接続され、膨張弁により気液二相とされた冷媒が流入管13に流入される。
分岐管14は蒸発器側に接続され、分配器本体11を通過した冷媒を蒸発器に向けて排する。分岐管14は、蒸発器に設けられる複数の流路に対応する数だけ設けられる。この例では、蒸発器の流路の数に対応して、8本の分岐管14を設けている。
流入管13、分岐管14は、耐食性を有するステンレス鋼、アルミニウム合金、銅合金等の金属材料で構成される。以下説明する分配器本体11も同様である。ただし、金属材料で構成することを本発明が限定するものではない。
The inflow pipe 13 is connected to the expansion valve side in the refrigeration cycle, and the refrigerant that has been gas-liquid two-phase by the expansion valve flows into the inflow pipe 13.
The branch pipe 14 is connected to the evaporator side, and discharges the refrigerant that has passed through the distributor main body 11 toward the evaporator. The number of branch pipes 14 corresponding to the plurality of flow paths provided in the evaporator is provided. In this example, eight branch pipes 14 are provided corresponding to the number of flow paths of the evaporator.
The inflow pipe 13 and the branch pipe 14 are made of a metal material such as stainless steel, aluminum alloy, or copper alloy having corrosion resistance. The same applies to the distributor main body 11 described below. However, the present invention is not limited to the metal material.

次に、冷媒分配器10の特徴部分である分配器本体11について説明する。なお、本願発明において、冷媒が流入する側(流入管13が配置される側)を上流、冷媒が排出される側(分岐管14が配置される側)を下流ということにする。
分配器本体11は、流入管13が接続される接続部111と、接続部111と繋がるとともに接続部111から下流に向けて径が拡大する拡径部112と、拡径部112と繋がるとともに拡径部112の下流側の端部と径の等しい円筒状の胴部113と、胴部113の下流側端部を封止する分岐管接続部114とを備えている。
分岐管接続部114には、分配器本体11(胴部113)の内部と分岐管14の内部とが連通するように、上述したように8本の分岐管14が接続されている。図1において、分岐管14の端部が分配器本体11内に突出しているのは作製容易性に基づくものであって、本発明はこれに限定されない。
分配器本体11は、各部を別個に作製して接合してもよいし、一体で作製してもよく、最終的に分配器本体11の形態になれば作製の方法は問わない。
Next, the distributor main body 11 which is a characteristic part of the refrigerant distributor 10 will be described. In the present invention, the side into which the refrigerant flows (the side where the inflow pipe 13 is disposed) is referred to as upstream, and the side from which the refrigerant is discharged (the side where the branch pipe 14 is disposed) is referred to as downstream.
The distributor body 11 is connected to the connecting portion 111 to which the inflow pipe 13 is connected, the enlarged diameter portion 112 that is connected to the connecting portion 111 and has a diameter that increases from the connecting portion 111 toward the downstream, and the enlarged diameter portion 112 and the enlarged diameter portion 112. A cylindrical barrel 113 having the same diameter as the downstream end of the diameter portion 112 and a branch pipe connecting portion 114 for sealing the downstream end of the barrel 113 are provided.
As described above, the eight branch pipes 14 are connected to the branch pipe connecting portion 114 so that the inside of the distributor main body 11 (body portion 113) and the inside of the branch pipe 14 communicate with each other. In FIG. 1, the end of the branch pipe 14 protrudes into the distributor body 11 based on ease of manufacture, and the present invention is not limited to this.
Each part of the distributor body 11 may be separately manufactured and joined, or may be manufactured integrally, and any manufacturing method may be used as long as the distributor body 11 is finally formed.

分配器本体11の内部には、円錐状の冷媒ガイド12が配置されている。
冷媒ガイド12は、その底面が分岐管接続部114の内側の面に固定され、頂部が上流を向いて配置される。頂部は尖っていてもよいし、球状となっていてもよい。
冷媒ガイド12は、その軸線が分配器本体11の軸線と一致するように、分配器本体11の内部に配置される。つまり、冷媒ガイド12は、分配器本体11の内部に対称となる位置に配置されており、その外周には、拡径部112から胴部113にかけて、分配器本体11の内周面との間に周方向に連通する空隙が形成されている。冷媒はこの空隙、つまり冷媒流路を通って分岐管14に流入する。後述するように、冷媒分配器10は、分配器本体11の内周面と冷媒ガイド12との間に周方向に連通する冷媒流路を、少なくとも拡径部112に対応する部分に設けているところに特徴がある。
ここで、拡径部112の勾配は冷媒ガイド12の勾配よりも大きいので、拡径部112における冷媒流路の断面積Aeは、上流から下流に向けて連続的に大きくなる。また、拡径部112の上流側端部を除き、この断面積Aeは、接続部111(流入管13)における冷媒流路の断面積Aiよりも大きい。このように、流入管13から分配器本体11に流入した冷媒12の圧力損失が生じないように配慮している。胴部113は内径が上流から下流に向けて等しいので、胴部113における冷媒流路の断面積Acは、上流から下流に向けて連続的に狭くなる。これによる効果は後述する。
A conical refrigerant guide 12 is disposed inside the distributor body 11.
The bottom surface of the refrigerant guide 12 is fixed to the inner surface of the branch pipe connecting portion 114, and the top portion is arranged facing upstream. The top may be sharp or may be spherical.
The refrigerant guide 12 is arranged inside the distributor main body 11 so that the axis thereof coincides with the axis of the distributor main body 11. That is, the refrigerant guide 12 is disposed in a symmetrical position inside the distributor main body 11, and the outer periphery thereof extends from the enlarged diameter portion 112 to the body portion 113 between the inner peripheral surface of the distributor main body 11. A gap communicating with the circumferential direction is formed. The refrigerant flows into the branch pipe 14 through this gap, that is, the refrigerant flow path. As will be described later, in the refrigerant distributor 10, a refrigerant flow path that communicates in the circumferential direction between the inner peripheral surface of the distributor main body 11 and the refrigerant guide 12 is provided at least in a portion corresponding to the enlarged diameter portion 112. There is a feature.
Here, since the gradient of the enlarged diameter portion 112 is larger than the gradient of the refrigerant guide 12, the sectional area Ae of the refrigerant flow path in the enlarged diameter portion 112 continuously increases from the upstream toward the downstream. Moreover, this cross-sectional area Ae is larger than the cross-sectional area Ai of the refrigerant | coolant flow path in the connection part 111 (inflow pipe | tube 13) except for the upstream edge part of the enlarged diameter part 112. FIG. In this way, consideration is given so that pressure loss of the refrigerant 12 flowing into the distributor main body 11 from the inflow pipe 13 does not occur. Since the inner diameter of the trunk portion 113 is equal from upstream to downstream, the cross-sectional area Ac of the refrigerant flow path in the trunk portion 113 is continuously narrowed from upstream to downstream. The effect of this will be described later.

冷媒ガイド12の軸方向長さ(以下、単に長さ)は、拡径部112の長さと胴部113の長さを合わせた長さに等しく設定されている。したがって、図1の例では、冷媒ガイド12の頂部が拡径部112の上流側端部の水平方向の位置(一点鎖線で示している)と一致する。ただし、本発明はこれに限定されず、冷媒ガイド12の頂部を、前記水平方向の位置よりも上流側に位置させもよいし、下流側に位置させてもよい。   The axial length (hereinafter simply referred to as the length) of the refrigerant guide 12 is set equal to the total length of the enlarged diameter portion 112 and the length of the body portion 113. Therefore, in the example of FIG. 1, the top portion of the refrigerant guide 12 coincides with the horizontal position (indicated by the alternate long and short dash line) of the upstream end portion of the enlarged diameter portion 112. However, this invention is not limited to this, The top part of the refrigerant | coolant guide 12 may be located upstream from the position of the said horizontal direction, and may be located downstream.

分岐管接続部114への冷媒ガイド12の固定は、ボルト等の締結手段、接着剤、その他の公知の手段により行えばよい。また、ここでは冷媒ガイド12と分岐管接続部114を別体で作製することを前提としているが、両者を一体で作製してもよい。   The refrigerant guide 12 may be fixed to the branch pipe connecting portion 114 by a fastening means such as a bolt, an adhesive, or other known means. In addition, here, it is assumed that the refrigerant guide 12 and the branch pipe connecting portion 114 are manufactured separately, but both may be manufactured integrally.

次に、冷媒が流入管13に流入してから分岐管14に至るまでの過程を説明する。
蒸発器で気液二相流とされた冷媒は、流入管13から分配器本体11に流入する。二相流は接続部111を介して、接続部111よりも冷媒流路の断面積が大きい拡径部112に流入する。
この冷媒は、拡径部112内に臨む冷媒ガイド12に沿って放射状に流れが広げられる。放射状のスムーズな流れには偏りが生じにくい。また、冷媒ガイド12を設けることにより、冷媒流路の断面積を小さくできるので、冷媒に渦、二次流れを生じさせる可能性が小さい。したがって、分配器本体11内に流入した冷媒には、ガスと液との分布が不均一な偏流が生じにくい。冷媒は、冷媒ガイド12の外周面及び拡径部112の内周面に案内されながら拡径部112内を円環状となって下流に流れる。ガスと液との分布が不均一な偏流が若干生じたとしても、冷媒ガイド12と拡径部112と分配器本体の間の冷媒流路が周方向に連通しているので、当該部分を下流に向けて流れる冷媒は周方向への運動が自由に行なわれ、当該冷媒流路において気液二相流の均一化が促進される。
Next, the process from when the refrigerant flows into the inflow pipe 13 to the branch pipe 14 will be described.
The refrigerant converted into the gas-liquid two-phase flow by the evaporator flows into the distributor main body 11 from the inflow pipe 13. The two-phase flow flows into the enlarged diameter portion 112 having a larger cross-sectional area of the refrigerant flow path than the connection portion 111 via the connection portion 111.
The flow of the refrigerant is expanded radially along the refrigerant guide 12 facing the enlarged diameter portion 112. The radial smooth flow is less likely to be biased. Further, by providing the refrigerant guide 12, the cross-sectional area of the refrigerant flow path can be reduced, so that the possibility of causing a vortex and a secondary flow in the refrigerant is small. Therefore, the refrigerant that has flowed into the distributor main body 11 is unlikely to generate a drift in which the distribution of gas and liquid is not uniform. The refrigerant flows in the annular shape in the enlarged diameter portion 112 while being guided by the outer circumferential surface of the refrigerant guide 12 and the inner circumferential surface of the enlarged diameter portion 112. Even if there is a slight drift in which the distribution of gas and liquid is not uniform, the refrigerant flow path between the refrigerant guide 12, the enlarged diameter portion 112, and the distributor main body communicates in the circumferential direction. The refrigerant flowing toward the center is freely moved in the circumferential direction, and the homogenization of the gas-liquid two-phase flow is promoted in the refrigerant flow path.

気液二相流が均一化された冷媒は、拡径部112から胴部113へ移行し、胴部113内を分岐管14に向けて進む。胴部113に対応する冷媒流路は、上流から下流に向けて連続的に狭くなるので、気液二相流に偏流を生じさせる渦及び二次流れの発生を抑制する。   The refrigerant in which the gas-liquid two-phase flow is made uniform transitions from the enlarged diameter portion 112 to the trunk portion 113, and proceeds in the trunk portion 113 toward the branch pipe 14. Since the refrigerant flow path corresponding to the body 113 is continuously narrowed from the upstream toward the downstream, the generation of vortices and secondary flows that cause a drift in the gas-liquid two-phase flow is suppressed.

以上のように、胴部113は拡径部112において気液二相流が均一化された状態を保ったままで冷媒を分岐管14に導くので、冷媒分配器10は各分岐管14への流量分配のばらつきを低減できる。
また、本実施形態による各分岐管14への流量分配のばらつき低減の効果は、特許文献1で規定される分配器本体の長さ、内径寸法に影響されることがない。したがって、分岐管14の本数を多くしたとしても分配器本体11の長さを長くする必要がないので、コンパクトな冷媒分配器10を実現できる。
As described above, the trunk portion 113 guides the refrigerant to the branch pipes 14 while maintaining the state in which the gas-liquid two-phase flow is made uniform in the enlarged diameter portion 112, so that the refrigerant distributor 10 has a flow rate to each branch pipe 14. Distribution variation can be reduced.
In addition, the effect of reducing variation in flow rate distribution to each branch pipe 14 according to the present embodiment is not affected by the length and the inner diameter of the distributor body defined in Patent Document 1. Therefore, even if the number of the branch pipes 14 is increased, it is not necessary to increase the length of the distributor main body 11, so that the compact refrigerant distributor 10 can be realized.

本実施形態は、冷媒ガイド12が円錐状をなしている。したがって、胴部113における冷媒流路の断面積が、上流端に比べて下流端が小さくなっている。このように分岐管14に向けて冷媒流路を狭くすることにより、径の小さい分岐管14へ冷媒をスムーズに流入させることができる。   In the present embodiment, the refrigerant guide 12 has a conical shape. Therefore, the cross-sectional area of the refrigerant flow path in the trunk portion 113 is smaller at the downstream end than at the upstream end. By narrowing the refrigerant flow path toward the branch pipe 14 in this way, the refrigerant can smoothly flow into the branch pipe 14 having a small diameter.

分岐管14への流量分配のばらつき低減の効果をさらに向上するために、流入管13内に、メッシュ状部材15及びオリフィス(絞り部)16を設けることが効果的である。また、流入管13内に冷媒による旋回流を作り出すことも有効であり、流入管13を図2(d)に示すようにスワール管とするか、又は流入管13の内面に螺旋状の溝又は突起を形成してもよい。   In order to further improve the effect of reducing variation in flow distribution to the branch pipe 14, it is effective to provide the mesh member 15 and the orifice (throttle part) 16 in the inflow pipe 13. It is also effective to create a swirl flow by the refrigerant in the inflow pipe 13, and the inflow pipe 13 is a swirl pipe as shown in FIG. 2D, or a spiral groove or A protrusion may be formed.

図1に示した実施形態では、冷媒ガイド12を頂部から底面の全体を円錐状としたが、図2(a)に示す冷媒ガイド17のように、頂部を含む先端部17aを円錐状とするが、これよりも下流側の基部17bは軸方向に径の等しい円柱状とすることもできる。この先端部17aは、分配器本体11の拡径部112内に配置される。また、図2(b)に示すように釣鐘状の先端部18aと基部18bとからなる冷媒ガイド18とすることもできる。図1に示した実施形態の冷媒ガイド12の全体を釣鐘状としてもよい。いずれの形態であっても、拡径部112における気液二相の均一化効果を享受できる。
また、冷媒ガイド12は中実体である必要はなく、図2(c)に示される冷媒ガイド19ように、先端部19aから基部19bにかけて中空部を設けることにより冷媒ガイド19の軽量化に寄与する。
In the embodiment shown in FIG. 1, the refrigerant guide 12 has a conical shape from the top to the bottom, but the tip 17a including the top is conical like the refrigerant guide 17 shown in FIG. However, the base portion 17b on the downstream side of this can also be a cylindrical shape having the same diameter in the axial direction. The distal end portion 17 a is disposed in the enlarged diameter portion 112 of the distributor main body 11. Further, as shown in FIG. 2B, a refrigerant guide 18 including a bell-shaped tip 18a and a base 18b may be used. The whole refrigerant guide 12 of the embodiment shown in FIG. 1 may be shaped like a bell. In any form, the gas-liquid two-phase homogenization effect in the enlarged diameter portion 112 can be enjoyed.
Further, the refrigerant guide 12 does not need to be solid, and contributes to weight reduction of the refrigerant guide 19 by providing a hollow portion from the front end portion 19a to the base portion 19b as in the refrigerant guide 19 shown in FIG. .

冷媒分配器10は、気液二相の均一化を図るために、拡径部112と冷媒ガイド12との間に周方向に連通する冷媒流路を設けるが、拡径部112よりも下流側の胴部113における冷媒流路は区分されていてもよい。そこで、本発明では、独立した冷媒流路を冷媒の流れ方向に沿って形成するために、図3に示すように冷媒ガイド12の外周に仕切り壁を設けることができる。
図3(a)に示される冷媒ガイド20は、円錐状の先端部20aと、円柱状の基部20bとからなり、基部20bの外周面軸方向に延びる仕切り壁20cを設ける。仕切り壁20cは、分岐管14の数に対応するように8枚を周方向に等間隔に設けている。隣接する仕切り壁20cの間に軸方向に沿った冷媒経路が形成され、各分岐管14に対応する冷媒経路を介して、冷媒は当該分岐管14に流入する。このような形状を有する冷媒ガイド20は、樹脂を射出成形して作製するのが有利である。
In order to make the gas-liquid two-phase uniform, the refrigerant distributor 10 is provided with a refrigerant flow path that communicates in the circumferential direction between the enlarged diameter portion 112 and the refrigerant guide 12, but downstream of the enlarged diameter portion 112. The refrigerant flow path in the body portion 113 may be divided. Therefore, in the present invention, in order to form independent refrigerant flow paths along the flow direction of the refrigerant, a partition wall can be provided on the outer periphery of the refrigerant guide 12 as shown in FIG.
The refrigerant guide 20 shown in FIG. 3A includes a conical tip 20a and a columnar base 20b, and is provided with a partition wall 20c extending in the axial direction of the outer peripheral surface of the base 20b. Eight partition walls 20 c are provided at equal intervals in the circumferential direction so as to correspond to the number of branch pipes 14. A refrigerant path along the axial direction is formed between adjacent partition walls 20 c, and the refrigerant flows into the branch pipe 14 through the refrigerant path corresponding to each branch pipe 14. The refrigerant guide 20 having such a shape is advantageously manufactured by injection molding a resin.

仕切り壁21cは、基部20bの全長に亘って形成することなく、図3(b)に示すように、基部20bの下流側にのみ設けてもよい。仕切り壁21cを設けていない基部20bと胴部113との間で、気液二相の均一化が期待できる場合もある。
仕切り壁22cは、軸方向の全長に亘って高さを等しくすることに限定されず、図3(c)に示すように両端部を傾斜させることもできる。
さらに、図3(d)に示すように、円錐状の冷媒ガイド23の下流側に仕切り壁23cを設けた形態でも、同様の効果を享受できる。
The partition wall 21c may be provided only on the downstream side of the base 20b as shown in FIG. 3B without being formed over the entire length of the base 20b. In some cases, the gas-liquid two-phase can be made uniform between the base portion 20b not provided with the partition wall 21c and the body portion 113.
The partition wall 22c is not limited to having the same height over the entire length in the axial direction, and both end portions can be inclined as shown in FIG.
Further, as shown in FIG. 3D, the same effect can be obtained even in a form in which the partition wall 23 c is provided on the downstream side of the conical refrigerant guide 23.

なお、特許文献2には独立した冷媒流路を冷媒の流れ方向に沿って形成した冷媒分配器が開示されている。しかし、この冷媒分配器は、冷媒流路が周方向に連通する部分を備えていない。   Patent Document 2 discloses a refrigerant distributor in which independent refrigerant channels are formed along the refrigerant flow direction. However, this refrigerant distributor does not include a portion where the refrigerant flow path communicates in the circumferential direction.

図3に示す冷媒ガイド20は、先端部20aと分配器本体11の拡径部112との間に周方向に連なる空隙が形成されている限り、仕切り壁20c〜23cの頂部(径方向の外周側)が胴部113の内周面に接していてもよいし、仕切り壁20c〜23cの頂部と胴部113の内周面との間に間隙が形成されていてもよい。   The refrigerant guide 20 shown in FIG. 3 has the top portions (outer diameters in the radial direction) of the partition walls 20c to 23c as long as a gap is formed between the front end portion 20a and the enlarged diameter portion 112 of the distributor main body 11 in the circumferential direction. Side) may be in contact with the inner peripheral surface of the trunk portion 113, or a gap may be formed between the top of the partition walls 20 c to 23 c and the inner peripheral surface of the trunk portion 113.

胴部113内に独立した冷媒流路を軸方向に沿って形成するのに、図3に示すように仕切り壁20c〜23cを形成するほか、冷媒ガイド20の外周面に軸方向に延びる溝を形成してもよい。その例を図4に示している。例えば、図4(a)に示すように、先端部20aと基部20bとに亘って、軸方向に連なるU字状の溝24cを形成した冷媒ガイド20とすることができる。また、図4(b)に示すように、幅を広げた溝25cを有するヒトデ状の冷媒ガイド20とすることもできる。   In order to form an independent refrigerant flow path in the body 113 along the axial direction, partition walls 20c to 23c are formed as shown in FIG. 3, and a groove extending in the axial direction is formed on the outer peripheral surface of the refrigerant guide 20. It may be formed. An example is shown in FIG. For example, as shown to Fig.4 (a), it can be set as the refrigerant | coolant guide 20 which formed the U-shaped groove | channel 24c continuous in an axial direction over the front-end | tip part 20a and the base 20b. Moreover, as shown in FIG.4 (b), it can also be set as the starfish-shaped refrigerant guide 20 which has the groove | channel 25c which expanded the width | variety.

図3に示す仕切り壁20c〜23cは、直線状に延びる形態を有しているが、図5(a)に示すように、仕切り壁26cをねじることができる。仕切り壁26cの頂部と胴部113の内周面との間に間隙を設けた冷媒ガイド20は、胴部113を流れる冷媒に旋回流を発生できる。したがって、冷媒の気液二相の均一化をより促進できる。   Although the partition walls 20c to 23c shown in FIG. 3 have a form extending linearly, the partition wall 26c can be twisted as shown in FIG. 5 (a). The refrigerant guide 20 provided with a gap between the top of the partition wall 26 c and the inner peripheral surface of the body portion 113 can generate a swirling flow in the refrigerant flowing through the body portion 113. Therefore, the homogenization of the gas-liquid two phases of the refrigerant can be further promoted.

胴部113を流れる冷媒の気液二相の均一化をより促進する手段として、図5(b)に示す冷媒ガイド20とすることもできる。この冷媒ガイド20は、上流側に設ける仕切り壁27cと、下流側に設ける仕切り壁28cとを、周方向の位相を1/2だけずらして配置している。下流側の隣接する仕切り壁27c間の流路を流れてきた冷媒が、上流側の仕切り壁28cに衝突して分離することにより撹拌されて、気液二相の均一化がより促進される。   As a means for further promoting the homogenization of the gas-liquid two phases of the refrigerant flowing through the body portion 113, a refrigerant guide 20 shown in FIG. In the refrigerant guide 20, a partition wall 27c provided on the upstream side and a partition wall 28c provided on the downstream side are arranged with a phase in the circumferential direction shifted by ½. The refrigerant that has flowed through the flow path between the adjacent partition walls 27c on the downstream side is agitated by colliding with and separating from the upstream partition wall 28c, thereby further promoting the homogenization of the gas-liquid two phases.

これ以外にも、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。   In addition to this, as long as it does not depart from the gist of the present invention, the configuration described in the above embodiment can be selected or changed to another configuration as appropriate.

10…冷媒分配器
11…分配器本体
111…接続部、112…拡径部、113…胴部、114…分岐管接続部
12,17,18,19,20,23…冷媒ガイド
17a,18a,19a,20a…先端部
17b,18b,19b,20b…基部
20c,21c,22c,23c,26c,27c,28c…仕切り壁
24c,25c…流路溝(溝)
13…流入管
14…分岐管
DESCRIPTION OF SYMBOLS 10 ... Refrigerant distributor 11 ... Distributor main body 111 ... Connection part, 112 ... Expanded diameter part, 113 ... Trunk part, 114 ... Branch pipe connection part 12, 17, 18, 19, 20, 23 ... Refrigerant guide 17a, 18a, 19a, 20a ... tip portion 17b, 18b, 19b, 20b ... base portion 20c, 21c, 22c, 23c, 26c, 27c, 28c ... partition wall 24c, 25c ... channel groove (groove)
13 ... Inflow pipe 14 ... Branch pipe

Claims (5)

上流側に配置される機器から供給される冷媒が流入する流入管と、
前記流入管から流入した前記冷媒が通過する分配器本体と、
前記分配器本体内において前記流入管と同軸上に配置され、前記冷媒の流れを放射状に拡げる冷媒ガイドと、
前記冷媒ガイドと前記分配器本体との間に形成される冷媒流路を通過した前記冷媒を、下流側に配置される機器に向けて排出する複数の分岐管と、を備え、
前記冷媒流路は、少なくとも前記分配器本体における上流側の所定範囲は、周方向に連通することを特徴とする冷媒分配器。
An inflow pipe into which a refrigerant supplied from an apparatus disposed on the upstream side flows,
A distributor body through which the refrigerant flowing from the inflow pipe passes;
A refrigerant guide arranged coaxially with the inflow pipe in the distributor body, and radially expanding the flow of the refrigerant;
A plurality of branch pipes for discharging the refrigerant that has passed through the refrigerant flow path formed between the refrigerant guide and the distributor main body toward a device disposed on the downstream side,
The refrigerant distributor is characterized in that at least a predetermined range on the upstream side of the distributor main body communicates in the circumferential direction.
前記分配器本体は、下流側に向けて径が拡大する拡径部を上流側に設け、
周方向に連通する前記冷媒流路は、前記冷媒ガイドと前記拡径部との間に形成される請求項1に記載の冷媒分配器。
The distributor main body is provided with an enlarged diameter portion on the upstream side whose diameter increases toward the downstream side,
The refrigerant distributor according to claim 1, wherein the refrigerant flow path communicating in the circumferential direction is formed between the refrigerant guide and the enlarged diameter portion.
前記冷媒ガイドは、
少なくとも前記分配器本体における上流側の前記所定範囲において、上流側から下流側に向けて断面積が拡大する請求項1又は2に記載の冷媒分配器。
The refrigerant guide is
The refrigerant distributor according to claim 1 or 2, wherein a cross-sectional area increases from the upstream side to the downstream side at least in the predetermined range on the upstream side of the distributor body.
前記分配器本体における上流側の前記所定範囲よりも下流側における前記冷媒流路の断面積が、前記所定範囲における前記冷媒流路の断面積よりも小さい請求項1〜3のいずれかに記載の冷媒分配器。   The cross-sectional area of the said refrigerant flow path in the downstream rather than the said predetermined range of the upstream in the said distributor main body is smaller than the cross-sectional area of the said refrigerant flow path in the said predetermined range. Refrigerant distributor. 前記分配器本体における上流側の前記所定範囲よりも下流側に、各々独立するとともに前記冷媒の流れ方向に沿う冷媒流路が、分岐管に対応して設けられる請求項1〜4のいずれかに記載の冷媒分配器。   5. The refrigerant flow path according to any one of claims 1 to 4, wherein a refrigerant flow path that is independent from each other and downstream of the predetermined range on the upstream side of the distributor main body along the flow direction of the refrigerant is provided corresponding to the branch pipe. The refrigerant distributor as described.
JP2009037060A 2009-02-19 2009-02-19 Refrigerant distributor Pending JP2010190523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009037060A JP2010190523A (en) 2009-02-19 2009-02-19 Refrigerant distributor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009037060A JP2010190523A (en) 2009-02-19 2009-02-19 Refrigerant distributor

Publications (1)

Publication Number Publication Date
JP2010190523A true JP2010190523A (en) 2010-09-02

Family

ID=42816758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009037060A Pending JP2010190523A (en) 2009-02-19 2009-02-19 Refrigerant distributor

Country Status (1)

Country Link
JP (1) JP2010190523A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012098007A (en) * 2010-11-05 2012-05-24 Mitsubishi Electric Corp Refrigerant distributor, heat exchanger, and refrigeration cycle device
JP2012255584A (en) * 2011-06-08 2012-12-27 Mitsubishi Electric Corp Distributor and heat pump device
CN103148648A (en) * 2013-03-21 2013-06-12 乐金电子(天津)电器有限公司 Red copper separator for air conditioner and air conditioner
KR20130096962A (en) * 2012-02-23 2013-09-02 엘지전자 주식회사 Air conditioner
WO2014155518A1 (en) * 2013-03-26 2014-10-02 三菱電機株式会社 Expansion valve and cooling cycle device using same
KR20140146194A (en) * 2012-04-13 2014-12-24 프로세스 디벨롭먼트 센트레 피티와이 리미티드 A flow distrubutor
JP2015045467A (en) * 2013-08-29 2015-03-12 日立アプライアンス株式会社 Refrigeration cycle device, and refrigeration machine using the same
CN104697250A (en) * 2015-03-27 2015-06-10 中国扬子集团滁州扬子空调器有限公司 Flow divider for air conditioning unit
JP5823078B2 (en) * 2013-03-26 2015-11-25 三菱電機株式会社 Expansion valve and refrigeration cycle apparatus using the same
CN105783349A (en) * 2016-03-25 2016-07-20 青岛海尔空调器有限总公司 Refrigerant pipeline distributor
AU2015203029B2 (en) * 2012-04-13 2017-04-13 Process Development Centre Pty Ltd A flow distributor
JP2017194230A (en) * 2016-04-21 2017-10-26 日立ジョンソンコントロールズ空調株式会社 Refrigerant flow diverter connection type expansion valve, freezing cycle device using this expansion valve and air conditioner
JP2021532363A (en) * 2018-07-27 2021-11-25 マイクロ モーション インコーポレイテッド Manifold
WO2023040440A1 (en) * 2021-09-19 2023-03-23 青岛海尔空调器有限总公司 Liquid distributor, one-way valve, heat exchanger, refrigeration circulating system, and air conditioner
WO2023040442A1 (en) * 2021-09-20 2023-03-23 青岛海尔空调器有限总公司 Liquid separator, check valve, heat exchanger, refrigeration cycle system, and air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5170956U (en) * 1974-11-29 1976-06-04
JPS54138049U (en) 1978-03-18 1979-09-25
JPS5811364A (en) 1981-07-10 1983-01-22 株式会社前川製作所 Circulating device for refrigerant
JPS602559B2 (en) * 1980-04-30 1985-01-22 松下冷機株式会社 flow divider
JPS6054066U (en) 1983-09-20 1985-04-16 株式会社東芝 Refrigeration cycle flow divider
JPH0868574A (en) 1994-08-30 1996-03-12 Tensei Eng Kk Distributor for air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5170956U (en) * 1974-11-29 1976-06-04
JPS54138049U (en) 1978-03-18 1979-09-25
JPS602559B2 (en) * 1980-04-30 1985-01-22 松下冷機株式会社 flow divider
JPS5811364A (en) 1981-07-10 1983-01-22 株式会社前川製作所 Circulating device for refrigerant
JPS6054066U (en) 1983-09-20 1985-04-16 株式会社東芝 Refrigeration cycle flow divider
JPH0868574A (en) 1994-08-30 1996-03-12 Tensei Eng Kk Distributor for air conditioner

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012098007A (en) * 2010-11-05 2012-05-24 Mitsubishi Electric Corp Refrigerant distributor, heat exchanger, and refrigeration cycle device
JP2012255584A (en) * 2011-06-08 2012-12-27 Mitsubishi Electric Corp Distributor and heat pump device
KR20130096962A (en) * 2012-02-23 2013-09-02 엘지전자 주식회사 Air conditioner
KR101996056B1 (en) * 2012-02-23 2019-10-01 엘지전자 주식회사 Air conditioner
EP2836291A4 (en) * 2012-04-13 2015-12-16 Process Dev Ct Pty Ltd A flow distributor
KR102269568B1 (en) * 2012-04-13 2021-06-25 프로세스 디벨롭먼트 센트레 피티와이 리미티드 A flow distrubutor
KR20140146194A (en) * 2012-04-13 2014-12-24 프로세스 디벨롭먼트 센트레 피티와이 리미티드 A flow distrubutor
US10465829B2 (en) 2012-04-13 2019-11-05 Process Development Centre Pty Ltd Flow distributor
JP2015517902A (en) * 2012-04-13 2015-06-25 プロセス ディヴェロップメント センター ピーティーワイ リミテッド Flow distributor
AU2015203029B2 (en) * 2012-04-13 2017-04-13 Process Development Centre Pty Ltd A flow distributor
CN103148648A (en) * 2013-03-21 2013-06-12 乐金电子(天津)电器有限公司 Red copper separator for air conditioner and air conditioner
WO2014155816A1 (en) * 2013-03-26 2014-10-02 三菱電機株式会社 Expansion valve and cooling cycle device using same
JP5823078B2 (en) * 2013-03-26 2015-11-25 三菱電機株式会社 Expansion valve and refrigeration cycle apparatus using the same
WO2014155518A1 (en) * 2013-03-26 2014-10-02 三菱電機株式会社 Expansion valve and cooling cycle device using same
JP2015045467A (en) * 2013-08-29 2015-03-12 日立アプライアンス株式会社 Refrigeration cycle device, and refrigeration machine using the same
CN104697250A (en) * 2015-03-27 2015-06-10 中国扬子集团滁州扬子空调器有限公司 Flow divider for air conditioning unit
CN105783349A (en) * 2016-03-25 2016-07-20 青岛海尔空调器有限总公司 Refrigerant pipeline distributor
JP2017194230A (en) * 2016-04-21 2017-10-26 日立ジョンソンコントロールズ空調株式会社 Refrigerant flow diverter connection type expansion valve, freezing cycle device using this expansion valve and air conditioner
JP2021532363A (en) * 2018-07-27 2021-11-25 マイクロ モーション インコーポレイテッド Manifold
US11473954B2 (en) 2018-07-27 2022-10-18 Micro Motion, Inc. Manifold
WO2023040440A1 (en) * 2021-09-19 2023-03-23 青岛海尔空调器有限总公司 Liquid distributor, one-way valve, heat exchanger, refrigeration circulating system, and air conditioner
WO2023040442A1 (en) * 2021-09-20 2023-03-23 青岛海尔空调器有限总公司 Liquid separator, check valve, heat exchanger, refrigeration cycle system, and air conditioner

Similar Documents

Publication Publication Date Title
JP2010190523A (en) Refrigerant distributor
US10914525B2 (en) Side mounted refrigerant distributor in a flooded evaporator and side mounted inlet pipe to the distributor
US20100242535A1 (en) Refrigerant distributor for heat exchanger and heat exchanger
JP2012002475A (en) Refrigerant distributor, and heat pump device using the refrigerant distributor
JP2008032380A (en) Expansion valve of structure integrated with refrigerant flow divider, and refrigeration unit using the same
KR20060126568A (en) Two-phase refrigerant distribution system for multiple pass evaporator coils
JP4571019B2 (en) Refrigerant shunt
US20110139422A1 (en) Fluid distribution device
JP5306279B2 (en) Refrigerant distributor and evaporator
JP2011169496A (en) Refrigerant distributor
JP2008298343A (en) Expansion valve of refrigerant flow divider integral structure and refrigerator using the same
KR200475023Y1 (en) Fluid distributor
EP3314191B1 (en) Two phase distributor evaporator
JP2002130868A (en) Refrigerant distributor and air conditioner employing the same
CN103644688A (en) Convection type refrigerant distribution device and heat exchanger adopting same
EP3070419A1 (en) Heat exchanger distributor swirl vane
CN104006576A (en) Heat exchanger
JP2008309345A (en) Expansion valve having integrated structure with refrigerant flow divider and refrigeration unit using the same
JP2011075115A (en) Distributor and heat pump device
EP4001799B1 (en) Device for distributing a fluid for a heat exchanger, preferably an evaporator
KR200473576Y1 (en) Distribution guider for fluid distributor
JP2013050221A (en) Refrigerant distributor and heat pump apparatus using the same
JP6715958B2 (en) Expansion valve and refrigeration cycle apparatus including the same
JP2012159249A (en) Refrigerant distributor, and refrigerating cycle device including the same
JP2009180444A (en) Coolant distributor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130531

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130607

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130816