JP2006117872A - Copolyester and method for producing heat-shrinkable tube using the copolyester - Google Patents

Copolyester and method for producing heat-shrinkable tube using the copolyester Download PDF

Info

Publication number
JP2006117872A
JP2006117872A JP2004309507A JP2004309507A JP2006117872A JP 2006117872 A JP2006117872 A JP 2006117872A JP 2004309507 A JP2004309507 A JP 2004309507A JP 2004309507 A JP2004309507 A JP 2004309507A JP 2006117872 A JP2006117872 A JP 2006117872A
Authority
JP
Japan
Prior art keywords
heat
shrinkable tube
copolyester
tube
diol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004309507A
Other languages
Japanese (ja)
Other versions
JP4260719B2 (en
Inventor
Nichishun Kan
日春 簡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nan Ya Plastics Corp
Original Assignee
Nan Ya Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nan Ya Plastics Corp filed Critical Nan Ya Plastics Corp
Priority to JP2004309507A priority Critical patent/JP4260719B2/en
Publication of JP2006117872A publication Critical patent/JP2006117872A/en
Application granted granted Critical
Publication of JP4260719B2 publication Critical patent/JP4260719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide one kind of copolyester, and to provide a method for producing a heat-shrinkable tube using the copolyester. <P>SOLUTION: This thermoplastic copolyester is formed by increasing an intrinsic viscosity thereof to a range of 0.85-1.05 dl/g through solid polymerization, and therefore applicable to production of the heat-shrinkable tube. The method for producing the heat-shrinkable tube comprises using the thermoplastic copolyester, molding the copolyester into a tubular material through melt extrusion, and subjecting the tubular material to blowing, diameter expansion, and drawing, so as to form the material into the polyester heat-shrinkable tube, wherein the heat-shrinkable tube has a heat shrinkage percentage in a machine direction (MD) of not more than 15% and a heat shrinkage percentage in a transverse direction (TD) of not less than 40%. Further, the heat-shrinkable tube is useful for and applicable to a coating for various kinds of conductors and an external insulating film for the various kinds of the conductors. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は改質を経た熱可塑性コポリエステルに関し、特にそのコポリエステルを使用した熱収縮チューブの製造方法であって、製造した熱収縮チューブは熱処理後、適当な熱収縮率と良好な耐熱性、耐化学性及び耐熱劣化性を具え、高温過熱後も被覆対象物に密着を保持することができ、膨張緩みやしわなどの現象がなく、電子部品の絶縁被膜の用途にすることができる熱可塑性コポリエステルに関する。   The present invention relates to a modified thermoplastic copolyester, in particular, a method for producing a heat shrinkable tube using the copolyester, and the produced heat shrinkable tube has an appropriate heat shrinkage rate and good heat resistance after heat treatment, Thermoplastic that has chemical resistance and heat deterioration resistance, can maintain close contact with the object to be coated even after overheating at high temperature, has no phenomenon such as expansion and loosening and wrinkles, and can be used for insulation coating of electronic parts Concerning copolyester.

一般的な電気絶縁熱収縮チューブは、長い間PVCを材質として使用してきたが、PVC使用禁止の趨勢に伴い、ヨーロッパと日本などの国ではすでに電気設備中の材料にはPVC不使用を要求するようになった。   Typical electrically insulated heat-shrinkable tubes have used PVC as a material for a long time, but with the trend of prohibiting the use of PVC, countries such as Europe and Japan already require the use of PVC for materials in electrical facilities. It became so.

このため、公知技術(特許文献1)では、一種のポリエステルとそのポリエステルを使用してキャパシタの被覆に用いる熱収縮チューブを製造する方法を示している。ここに示すポリエステルは、20〜70重量パーセントのポリエチレンテレフタレート(PET)と30〜80重量パーセントのコポリエステルを混合して成り、且つ該コポリエステルはジオール成分に対して65〜95重量パーセントの高純度テレフタル酸(PTA)と5〜35重量パーセントのイソフタル酸(IPA)及びエチレングリコール(EG)を反応させて成る。同時に、ここに示すポリエステルは、溶融押出法で未延伸管を製造し、即座にこれを冷却してから、再度72〜98℃に加熱し、縦軸(MD)延伸倍率1.01〜1.4倍、横軸(TD)延伸倍率1.3〜2.2倍に同時に二軸延伸を行った後、延伸した熱収縮チューブを冷却して巻き取る。該特許技術で製造した熱収縮チューブは結晶度が20%を超えず、この熱収縮チューブを98±2℃の熱湯中に10秒間置くと、縦方向の収縮率は5〜26%の間であり、径方向の収縮率は少なくとも25%である。更に、この熱収縮チューブを熱収縮させてキャパシタに被覆すると、該熱収縮チューブの外観は完全で欠陥がない。
米国特許第5,368,811号明細書
For this reason, a known technique (Patent Document 1) shows a method of manufacturing a heat-shrinkable tube used for coating a capacitor using a kind of polyester and the polyester. The polyester shown here is a blend of 20 to 70 weight percent polyethylene terephthalate (PET) and 30 to 80 weight percent copolyester, and the copolyester has a high purity of 65 to 95 weight percent based on the diol component. It is obtained by reacting terephthalic acid (PTA) with 5-35 weight percent isophthalic acid (IPA) and ethylene glycol (EG). At the same time, the polyester shown here produces an unstretched tube by melt extrusion, immediately cools it, and then heats it again to 72-98 ° C., and the longitudinal axis (MD) stretch ratio is 1.01-1. Biaxial stretching is simultaneously performed at 4 times and a transverse axis (TD) stretching ratio of 1.3 to 2.2 times, and then the stretched heat-shrinkable tube is cooled and wound. The heat-shrinkable tube manufactured by the patented technology has no crystallinity exceeding 20%, and when this heat-shrinkable tube is placed in hot water at 98 ± 2 ° C. for 10 seconds, the shrinkage rate in the vertical direction is between 5 and 26%. Yes, the radial shrinkage is at least 25%. Further, when the heat shrinkable tube is heat shrunk and coated on the capacitor, the appearance of the heat shrinkable tube is complete and free from defects.
US Pat. No. 5,368,811

公知技術(特許文献2)では、ポリエステル熱収縮チューブの印刷性を改善した製造方法を提示している。ここに示すポリエステルは、ポリエチレンテレフタレートを含むポリエステルを20〜99.5重量パーセントと、ポリエチレングリコールを含むコポリエステルを0.5〜50重量パーセント混合してなり、ポリエチレングリコールの含有量はコポリエステルの0.1〜4重量パーセントとする。同時に、該特許技術では製造した熱収縮チューブを100〜800W.min/m2でコロナ放電処理を行い、これによりポリエステル熱収縮チューブの印刷性を改善する効果を達成している。
米国特許第5,403,454号明細書
In the known technique (Patent Document 2), a manufacturing method in which the printability of the polyester heat-shrinkable tube is improved is presented. The polyester shown here is a mixture of 20 to 99.5 weight percent of a polyester containing polyethylene terephthalate and 0.5 to 50 weight percent of a copolyester containing polyethylene glycol, and the content of polyethylene glycol is 0% of the copolyester. .1 to 4 weight percent. At the same time, according to the patented technology, the manufactured heat-shrinkable tube is 100-800 W. Corona discharge treatment is performed at min / m 2 , thereby achieving the effect of improving the printability of the polyester heat-shrinkable tube.
US Pat. No. 5,403,454

公知技術(特許文献3)では、ポリエチレンスルフフィドを材質として使用し、溶融押出法で未延伸管を製造し、85〜108℃の温度で縦軸(MD)延伸倍率1.05〜4.5倍、横軸(TD)延伸倍率1.3〜4.5倍に二軸延伸し、こうして製造した熱収縮チューブを100℃の熱湯中に30秒間置くと、径方向の収縮率は25〜80%の間である。また、この熱収縮チューブにキャパシタを挿入し、180℃で20秒加熱して熱収縮チューブが熱によって収縮し緊密にキャパシタを被覆するようにし、更にこのキャパシタを160℃のオーブンに入れ3分後に取り出しても、該熱収縮チューブにはしわ、膨張、剥離或いは変形などの欠陥は現れない。
米国特許第5,718,953号明細書
In the known technique (Patent Document 3), polyethylene sulfoxide is used as a material, an unstretched tube is produced by a melt extrusion method, and the longitudinal axis (MD) stretch ratio is 1.05 to 4.4 at a temperature of 85 to 108 ° C. When the heat shrinkable tube thus produced is biaxially stretched 5 times and the transverse axis (TD) draw ratio is 1.3 to 4.5 times and placed in hot water at 100 ° C. for 30 seconds, the shrinkage ratio in the radial direction is 25 to 25%. Between 80%. In addition, the capacitor is inserted into this heat shrinkable tube and heated at 180 ° C. for 20 seconds so that the heat shrinkable tube shrinks due to heat and tightly covers the capacitor, and this capacitor is placed in an oven at 160 ° C. and after 3 minutes. Even when taken out, the heat shrinkable tube does not show defects such as wrinkles, expansion, peeling or deformation.
US Pat. No. 5,718,953

公知技術(特許文献4)では、一種のポリエステルとそのポリエステルで製造したキャパシタ被覆用の熱収縮チューブを提示している。ここに提示する一種のポリエステルは80〜99重量パーセントの共重合ポリエステルと1〜20重量パーセントのポリブチレンテレフタレートを混合して成り、該共重合型ポリエステルは1〜15モルパーセントのポリエチレンナフタレート(PEN)と85〜90モルパーセントのポリエチレンテレフタレート(PET)を含有し、その固有粘度は0.65〜1.0dl/gとする。同時に、ここに示すポリエステルは、溶融押出法で未延伸管を製造し、これを即座に冷却し、続いてガラス転移温度を超えるまで再加熱して縦軸(MD)延伸倍率1〜1.5倍、横軸(TD)延伸倍率1.7〜2.5倍で同時に二軸延伸を行った後、延伸した熱収縮チューブを冷却して巻き取る。こうして製造した熱収縮チューブを98℃の熱湯中に30秒間置くと、その縦方向収縮率は5〜15%の間で、径方向収縮率は40〜60%の間である。また、この熱収縮チューブにキャパシタを挿入し、260〜280℃で8秒間加熱して熱収縮させてキャパシタを緊密に被覆した後、このキャパシタを170±5℃のオーブンに入れて3分間経た後に更に100±2℃の熱湯に10分間入れて取り出しても、該熱収縮チューブはしわ、膨張、剥離や変形などの欠陥がない。
米国特許第6,528,133号明細書
In the known technique (Patent Document 4), a kind of polyester and a heat-shrinkable tube for covering a capacitor made of the polyester are presented. One type of polyester presented here is a blend of 80-99 weight percent copolymerized polyester and 1-20 weight percent polybutylene terephthalate, the copolymerized polyester comprising 1-15 mole percent polyethylene naphthalate (PEN). ) And 85 to 90 mole percent of polyethylene terephthalate (PET), and its intrinsic viscosity is 0.65 to 1.0 dl / g. At the same time, the polyester shown here produces an unstretched tube by melt extrusion, which is immediately cooled and subsequently reheated to exceed the glass transition temperature to a longitudinal axis (MD) draw ratio of 1 to 1.5. The biaxial stretching is simultaneously performed at a double and horizontal axis (TD) draw ratio of 1.7 to 2.5 times, and then the stretched heat-shrinkable tube is cooled and wound. When the heat-shrinkable tube thus produced is placed in hot water at 98 ° C. for 30 seconds, its longitudinal shrinkage is between 5 and 15%, and its radial shrinkage is between 40 and 60%. Further, after inserting the capacitor into this heat shrinkable tube and heating it at 260 to 280 ° C. for 8 seconds to heat shrink and tightly coat the capacitor, this capacitor was put in an oven at 170 ± 5 ° C. and passed for 3 minutes. Furthermore, even if it puts in 100 +/- 2 degreeC hot water for 10 minutes, this heat-shrinkable tube does not have defects, such as a wrinkle, expansion | swelling, peeling, and a deformation | transformation.
US Pat. No. 6,528,133

以上の公知技術ですでにポリエステル材質で熱収縮チューブを製造できることを示しているが、米国特許第5,368,811号明細書と米国特許第5,403,454号明細書は、二種の異なる形態のポリエステルの混合組成物を使用しており、特許中には熱収縮チューブでキャパシタ被覆を完成した後の耐熱劣化特性には言及していない。また米国特許第6,528,133号明細書でも二種の異なる形態のポリエステルの混合組成物を使用しており、更に該特許での耐熱性測定の条件は170±5℃のオーブンに3分間放置と100±2℃の熱湯に10分間放置である。またもう一つの米国特許第5,718,953号明細書ではポリエチレンスルフィドを使用して熱収縮チューブを製造しており、良好な耐熱劣化特性を具えているが、価格が高い。
このほか、電子製品の機能の要求が高くなるに従って、部品規格の要求もより厳しくなっており、キャパシタの耐熱性と耐熱劣化性などといった要求も、更に高くなってきている。
Although the above-mentioned known techniques have already shown that a heat-shrinkable tube can be manufactured from a polyester material, US Pat. No. 5,368,811 and US Pat. No. 5,403,454 disclose two types of A mixed composition of different forms of polyester is used, and the patent does not mention the heat degradation characteristics after completing the capacitor coating with a heat shrink tube. Also, US Pat. No. 6,528,133 uses a mixed composition of two different forms of polyester, and the conditions for measuring heat resistance in the patent are as follows: 170 ± 5 ° C. in an oven for 3 minutes. Leave it in a hot water of 100 ± 2 ° C. for 10 minutes. In another US Pat. No. 5,718,953, heat-shrinkable tubes are manufactured using polyethylene sulfide, which has good heat-resistant deterioration characteristics, but is expensive.
In addition, as the demands for the functions of electronic products increase, the requirements for component standards have become stricter, and the requirements such as heat resistance and heat deterioration resistance of capacitors have further increased.

本発明は、改質を経た熱可塑性コポリエステルとその組成及び特性を示すことを主要目的とする。重縮合の合成反応段階で改質を完了することによって、本発明のポリエステル樹脂材をランダムコポリエステルにできるようにし、ポリエステル熱収縮チューブの製造に使用するときに、公知技術で熱収縮チューブを製造する際には異なる形態のポリエステルの混合組成物を使用しなければならなかった不便を省略できるとともに、異なる形態のポリエステル間の相容性差の問題も避けることができ、これにより入手が容易でコストが低廉、且つ加工が容易であるという長所を具えるようになる。   The main object of the present invention is to show a modified thermoplastic copolyester and its composition and properties. By completing the modification in the synthesis reaction stage of polycondensation, the polyester resin material of the present invention can be made into a random copolyester, and when it is used for the production of polyester heat-shrinkable tubes, heat-shrinkable tubes are produced by known techniques. This eliminates the inconvenience of having to use a mixture of different forms of polyester, and avoids compatibility problems between different forms of polyester, which makes it easy to obtain and cost However, it has the advantages of being inexpensive and easy to process.

本発明のもう一つの主要な目的は、本発明の熱可塑性コポリエステルを採用してコポリエステル熱収縮チューブを製造することである。加熱収縮の方法で対象物表面に被覆でき、加熱収縮して対象物を被覆すると、対象物上に緊密に密着するとともに外観上完全で欠陥の無い優れた効果があり、被覆対象物自身の形状を表すことができ、且つ被覆対象物の保護と絶縁の効果を達成できるようにする。特に、この熱収縮チューブと完全に被覆された対象物をともに180±2℃のオーブンに入れて30分間加熱し、また105±2℃のオーブンに入れて180分間加熱しても、完全に緊密な被覆を維持でき、しわ、突起、緩み、剥離、破裂及び捲れなどの変形が生じないようにする。
更に、本発明の熱可塑性コポリエステルを使用して製造した熱収縮チューブで対象物を被覆した後、厳しい耐熱劣化測定を経ても、その熱収縮チューブが緊密に被覆対象物表面に密着した状態を維持でき、しわ、突起、緩み、剥離、破裂及び捲れなどの変形が生じないようにする。
Another main object of the present invention is to produce a copolyester heat shrinkable tube employing the thermoplastic copolyester of the present invention. The surface of the object can be coated by the method of heat shrinkage, and when the object is coated by heat shrinkage, it has an excellent effect that it adheres tightly on the object and has a perfect appearance and no defects, and the shape of the coated object itself And the effect of protection and insulation of the coated object can be achieved. In particular, the heat-shrinkable tube and the completely coated object are both placed in an oven at 180 ± 2 ° C. and heated for 30 minutes, and even if heated in an oven at 105 ± 2 ° C. for 180 minutes, they are completely tight. A uniform coating and prevent deformations such as wrinkles, protrusions, loosening, peeling, rupturing and wrinkling.
Furthermore, after the object is coated with a heat shrinkable tube manufactured using the thermoplastic copolyester of the present invention, the heat shrinkable tube is in close contact with the surface of the object to be coated even after severe heat deterioration measurement. It can be maintained so that deformations such as wrinkles, protrusions, loosening, peeling, rupture and twisting do not occur.

本発明は、本発明の熱可塑性コポリエステル合成時に、溶融重縮合反応の段階で特定の粒子サイズの無機粒子を添加してもよく、これにより製造される熱収縮チューブを巻き取り後でも容易に解けるようにでき、高速熱収縮コーティング作業に応用できるようにすることを副次目的とする。   In the present invention, when synthesizing the thermoplastic copolyester of the present invention, inorganic particles having a specific particle size may be added at the stage of the melt polycondensation reaction. Its secondary purpose is to make it undissolvable and applicable to high-speed heat shrink coating operations.

本発明は、本発明のコポリエステルを使用して熱収縮チューブを製造する方法で、本発明のポリエステル熱収縮チューブが被覆対象物を保護し、被覆対象物の絶縁効果を達成することをもう一つの副次目的とする。よって本発明のポリエステル熱収縮チューブの用途は、電子部品上に応用でき、電子部品を被覆するとともに、電子部品が絶縁効果を具えるようにする熱収縮チューブであり、例えばアルミ材質のキャパシタの絶縁被覆熱収縮チューブなどとすることができる。   The present invention provides a method for producing a heat-shrinkable tube using the copolyester of the present invention. The polyester heat-shrinkable tube of the present invention protects the object to be coated and achieves the insulating effect of the object to be coated. With two secondary objectives. Therefore, the use of the polyester heat-shrinkable tube of the present invention is a heat-shrinkable tube that can be applied to an electronic component, covers the electronic component, and makes the electronic component have an insulating effect, for example, insulation of an aluminum capacitor. It can be a coated heat shrinkable tube or the like.

本発明に示すコポリエステルの合成は、従来のポリエステル合成の方法を使用できる。例えばPTA製造工程やDMT製造工程などである。PTA製造工程を選択した場合、ジカルボン酸とジオールを原料として直接エステル化反応を行うことになるため、いかなる触媒も必要としない。エステル化過程で生じるエチレングリコールと水の混合気体は蒸留塔で分離後、エチレングリコールを回流させてエステル化槽に注入し、エステル化反応が完了する前に重合触媒を注入する。触媒はアンチモン触媒、ゲルマニウム触媒、チタン触媒、或いはその混合形態から選んでよく、エステル化が終了し重合反応に入る前に、リン元素を含む安定剤、例えば燐酸などを注入する。また、無機粒子、例えば二酸化チタン、硫酸バリウム、炭酸カルシウム、二酸化ケイ素などもこの段階で注入する。そして真空環境下で重合反応を行い、コポリエステルの粘度が0.6dl/g以上に達したら、取り出して切片エステル粒にする。   A conventional polyester synthesis method can be used for the synthesis of the copolyester shown in the present invention. For example, a PTA manufacturing process or a DMT manufacturing process. When the PTA production process is selected, no ester is required because the esterification reaction is directly performed using dicarboxylic acid and diol as raw materials. A mixed gas of ethylene glycol and water generated in the esterification process is separated by a distillation tower, and then ethylene glycol is circulated and injected into an esterification tank, and a polymerization catalyst is injected before the esterification reaction is completed. The catalyst may be selected from an antimony catalyst, a germanium catalyst, a titanium catalyst, or a mixed form thereof, and a stabilizer containing phosphorus element such as phosphoric acid is injected before the esterification is completed and the polymerization reaction is started. Also, inorganic particles such as titanium dioxide, barium sulfate, calcium carbonate, silicon dioxide, etc. are injected at this stage. Then, a polymerization reaction is performed in a vacuum environment. When the viscosity of the copolyester reaches 0.6 dl / g or more, it is taken out and made into sliced ester grains.

DMT製造工程を選択した場合、ジカルボン酸のエステル形式を原料としてジオールとエステル交換反応を行う。反応開始前にエステル交換触媒、例えば酢酸マンガンなどを注入する。エステル交換反応の過程で生じるメタノールは、蒸留塔で分離後はエステル交換槽には再び注入しない。98%のメタノール理論発生量が除去され収集されたとき、リン元素を含む安定剤を注入し、エステル交換触媒の活性を失わせる。その後、アンチモン触媒、ゲルマニウム触媒、チタン触媒或いはその混合形態の重合触媒から選んで注入し、続いて真空環境下で重合反応を行う。コポリエステルの粘度が0.6dl/g以上に達したら取り出し、急速冷却して切片エステル粒にする。   When the DMT production process is selected, a transesterification reaction is performed with a diol using an ester form of dicarboxylic acid as a raw material. A transesterification catalyst such as manganese acetate is injected before starting the reaction. Methanol generated during the transesterification reaction is not injected again into the transesterification tank after separation in the distillation column. When 98% of the theoretical methanol yield is removed and collected, a stabilizer containing elemental phosphorus is injected to lose the activity of the transesterification catalyst. Thereafter, the catalyst is selected and injected from an antimony catalyst, a germanium catalyst, a titanium catalyst, or a mixed catalyst thereof, and then a polymerization reaction is performed in a vacuum environment. When the viscosity of the copolyester reaches 0.6 dl / g or more, the copolyester is taken out and cooled rapidly to make a sliced ester grain.

PTA製造工程でもDMT製造工程でも、合成したエステル粒は更に固態重合反応を行わなければならない。これにより固有粘度を0.85〜1.05dl/gの範囲内にまで上昇させて、本発明に示すコポリエステルにする。   In both the PTA production process and the DMT production process, the synthesized ester particles must be further subjected to a solid state polymerization reaction. As a result, the intrinsic viscosity is increased to a range of 0.85 to 1.05 dl / g to obtain the copolyester shown in the present invention.

PTA製造工程で本発明に示すコポリエステルを合成する場合、ジカルボン酸の主要成分は高純度テレフタル酸とし、ジカルボン酸成分の5から15モルパーセントに当たるイソフタル酸を含むこととし、このほか、ジカルボン酸成分中に他の副成分、例えば2,6‐ナフタレンカルボン酸或いはそのエステル型を含んでもよいが、この成分は本発明に絶対必要というわけではなく、且つその含有量はコポリエステルの8モルパーセントを超えない。
更に、本発明に示すコポリエステルは、含有するイソフタル酸含有量がジカルボン酸成分の5モルパーセントより低いとき、これにより製造した熱収縮チューブは、180℃のオーブンに30分入れた後、熱収縮チューブの表面が膨れて緩み突起となる変形現象を生じ、含有するイソフタル酸含有量がジカルボン酸成分の18モルパーセントより高いとき、コポリエステルが非晶状態(Amorphous state)になり、固態重合を行ってコポリエステルの固有粘度を上昇させることができなくなる。
When synthesizing the copolyester shown in the present invention in the PTA production process, the main component of the dicarboxylic acid is high-purity terephthalic acid, and it contains isophthalic acid equivalent to 5 to 15 mole percent of the dicarboxylic acid component. It may contain other subcomponents such as 2,6-naphthalenecarboxylic acid or its ester form, but this component is not absolutely necessary for the present invention and its content comprises 8 mole percent of the copolyester. Do not exceed.
Further, when the copolyester shown in the present invention contains an isophthalic acid content lower than 5 mole percent of the dicarboxylic acid component, the heat-shrinkable tube produced thereby is placed in an oven at 180 ° C. for 30 minutes, and then heat-shrinkable. When the surface of the tube swells and loosens to form a deformation phenomenon, and the content of isophthalic acid is higher than 18 mole percent of the dicarboxylic acid component, the copolyester becomes amorphous and undergoes solid state polymerization. Thus, the intrinsic viscosity of the copolyester cannot be increased.

本発明に示すコポリエステルを組成するジオール成分は、主にエチレングリコールとする。ジオール成分中にはまた少なくとも一種の他のジオール成分を含んでもよく、ジエチレングリコール、シクロヘキサンジメタノール、プロピレングリコール、2,2‐ジメチル‐1,3‐プロパンジオール(NPG)(ネオペンチルグリコール)、2‐ブチル‐2‐エチル‐1,3‐プロパンジオール(BEPG)及びブチレングリコールから成るグループの中から一種を選ぶことができるが、これらのジオール副成分は必須成分ではなく、ジオール副成分の添加を選択した場合、その含有量は全ジオール成分に対して10モルパーセントを超えない。10モルパーセントを超えると、コポリエステルが非晶状態(Amorphous state)になり、固態重合を行ってコポリエステルの固有粘度を上昇させることができなくなる。   The diol component composing the copolyester shown in the present invention is mainly ethylene glycol. The diol component may also contain at least one other diol component such as diethylene glycol, cyclohexanedimethanol, propylene glycol, 2,2-dimethyl-1,3-propanediol (NPG) (neopentyl glycol), 2- You can choose one from the group consisting of butyl-2-ethyl-1,3-propanediol (BEPG) and butylene glycol, but these diol subcomponents are not essential components and you choose to add diol subcomponents The content does not exceed 10 mole percent with respect to the total diol component. If it exceeds 10 mole percent, the copolyester becomes amorphous, and the intrinsic viscosity of the copolyester cannot be increased by solid-state polymerization.

本発明のコポリエステルを合成するとき、好適な製造方法として、溶融縮重合終了の前に無機粒子を添加し、より好適な製造方法としては、縮重合開始の前に予め無機粒子を注入しておく。本発明が使用する無機粒子は、二酸化チタン、硫酸バリウム、炭酸カルシウム及び二酸化ケイ素或いはその混合物からなるグループのうち一種或いは一種以上の中から選ぶことができる。好適な製造方法として、二酸化チタン或いは硫酸バリウムを添加する。更に、無機粒子の添加量は、コポリエステル重量に対して0.005〜0.5重量パーセントとし、無機粒子の粒子寸法は1マイクロメートル(μm)より小さくなければならず、0.1〜0.5マイクロメートルの間であることが好ましい。本発明のコポリエステルを合成するときに、溶融縮重合段階で上述の無機粒子を添加する目的は、本発明で製造する熱収縮チューブを巻き取った後、再び解く際により容易に解けるようにするためであり、高速収縮コーティング作業に応用できるという長所がある。   When synthesizing the copolyester of the present invention, as a preferred production method, inorganic particles are added before the end of the melt condensation polymerization, and as a more preferred production method, inorganic particles are injected in advance before the start of the condensation polymerization. deep. The inorganic particles used in the present invention can be selected from one or more of the group consisting of titanium dioxide, barium sulfate, calcium carbonate, silicon dioxide or mixtures thereof. As a preferred production method, titanium dioxide or barium sulfate is added. Furthermore, the addition amount of the inorganic particles should be 0.005 to 0.5 weight percent with respect to the weight of the copolyester, and the particle size of the inorganic particles should be smaller than 1 micrometer (μm), 0.1 to 0 Preferably it is between 5 micrometers. When synthesizing the copolyester of the present invention, the purpose of adding the above-mentioned inorganic particles in the melt-condensation polymerization stage is to make it easier to unwind after winding the heat-shrinkable tube manufactured in the present invention. Therefore, there is an advantage that it can be applied to a high-speed shrink coating operation.

本発明のコポリエステルは、加工上の実際の必要に応じて更に他の添加剤を添加してもよい。例えば難燃剤、着色料、抗酸化剤、潤滑剤、紫外線吸収剤、静電気防止剤などである。   The copolyester of the present invention may further contain other additives according to actual processing needs. For example, flame retardants, colorants, antioxidants, lubricants, ultraviolet absorbers, antistatic agents and the like.

溶融重合して成る本発明のコポリエステルの前駆物は、更に固態重合反応を行い固有粘度を0.85〜1.05デシリットル/グラムの範囲内に上昇させる。固有粘度が0.85デシリットル/グラムより低いと、溶融押出で熱収縮チューブを製造するときに厚みが均等にならず、固有粘度が1.05デシリットル/グラムより高いと、例えば150マイクロメートル以下といった薄手の熱収縮チューブが製造できなくなる。   The precursor of the copolyester of the present invention obtained by melt polymerization further undergoes a solid state polymerization reaction to increase the intrinsic viscosity within the range of 0.85 to 1.05 deciliter / gram. When the intrinsic viscosity is lower than 0.85 deciliter / gram, the thickness is not uniform when manufacturing the heat-shrinkable tube by melt extrusion, and when the intrinsic viscosity is higher than 1.05 deciliter / gram, for example, 150 micrometers or less. Thin heat-shrinkable tubes cannot be manufactured.

本発明のコポリエステルは、示差走査熱量分析装置(DSC)で熱的性質を分析する。コポリエステルは完全溶融後に急速冷却させ、再度毎分20℃の温度上昇速度でそのガラス転移温度(Tg)、昇温時結晶化温度(Tch)及び融点(Tm)を測定する。ガラス転移温度は65〜75℃の間が好ましく、結晶化温度は170℃より高いこと、或いは結晶温度がほとんど無いことが好ましい。結晶化熱は15ジュール/グラムより低いか無結晶であることが好ましく、融点は210〜250℃の間が好ましく、融解熱は15ジュール/グラムより少ないことが好ましい。   The copolyester of the present invention is analyzed for thermal properties with a differential scanning calorimeter (DSC). The copolyester is rapidly cooled after complete melting, and again measured for its glass transition temperature (Tg), crystallization temperature (Tch) and melting point (Tm) at a temperature increase rate of 20 ° C./min. The glass transition temperature is preferably between 65 and 75 ° C, and the crystallization temperature is preferably higher than 170 ° C or almost no crystallization temperature. The heat of crystallization is preferably less than 15 joules / gram or non-crystalline, the melting point is preferably between 210-250 ° C., and the heat of fusion is preferably less than 15 joules / gram.

以下に本発明に示すコポリエステルで熱収縮チューブを製作する方法やプロセスを説明する。
150〜170℃の除湿空気中で、本発明に示すコポリエステルを4〜6時間乾燥し、乾燥が完了したコポリエステルを押出機で溶融させ続け、溶解温度は融点(Tm)より高く設定し、溶解した樹脂体を押出して環状ノズルの口金を経た後、即座に冷風或いは冷水で冷却することによって、円柱形状の未延伸管に成型し、フィードローラでこの未延伸管を搬送して熱湯或いは赤外線ランプで加熱し、ガラス転移温度以上まで加熱し、圧縮空気を内部へ通して未延伸管をブロー拡径して予め定めた直径のチューブに成型し、更に別の冷却挟持ローラでブロー延伸後のチューブを引き出し、巻き取って熱収縮チューブとする。この熱収縮チューブはブロー延伸によって径方向(TD、Transverse Direction)に延伸され、前後二段のローラの速度差のために縦方向(MD、Machine Direction)に延伸される。該チューブは二軸方向に延伸された後即座に冷却されるため、該チューブは冷却されるとともに径方向(TD)と縦方向(MD)に収縮する。これによって対象物を被覆する目的を達成する。本発明の熱収縮チューブは、厚さ20〜200マイクロメートル、管径円周長は4〜300mmを好適な実施例とする。
Hereinafter, a method and a process for producing a heat shrinkable tube from the copolyester shown in the present invention will be described.
In the dehumidified air at 150 to 170 ° C., the copolyester shown in the present invention is dried for 4 to 6 hours, the dried copolyester is continuously melted in an extruder, and the melting temperature is set higher than the melting point (Tm), After the molten resin body is extruded and passed through the nozzle of the annular nozzle, it is immediately cooled with cold air or cold water to be molded into a cylindrical unstretched tube, and this unstretched tube is conveyed by a feed roller to hot water or infrared Heat with a lamp, heat up to the glass transition temperature or higher, pass compressed air into the inside and blow-expand the unstretched tube to form a tube with a predetermined diameter, and further blow-stretch with another cooling pinching roller Pull out the tube and wind it up to make a heat shrinkable tube. This heat-shrinkable tube is stretched in the radial direction (TD, Transverse Direction) by blow stretching, and stretched in the longitudinal direction (MD, Machine Direction) due to the speed difference between the two front and rear rollers. Since the tube is cooled immediately after being stretched in the biaxial direction, the tube is cooled and contracts in the radial direction (TD) and the longitudinal direction (MD). This achieves the purpose of coating the object. The heat-shrinkable tube of the present invention has a thickness of 20 to 200 micrometers and a pipe diameter circumference of 4 to 300 mm as a preferred embodiment.

本発明に示すコポリエステルで製造する熱収縮チューブは、その縦方向(MD)延伸倍率は延伸後収縮管の牽引速度と未延伸管の搬送速度の比に等しい。径方向(TD)延伸倍率はブロー拡径後のチューブ直径と未延伸管の直径の比に等しい。
本発明に示すコポリエステルで熱収縮チューブを製造するとき、延伸拡径の温度は85℃〜105℃の間が好ましく、縦方向(MD)延伸の倍率は1.0〜3.0倍の間が好ましく、径方向(TD)の延伸倍率は1.3〜4.5倍が好ましい。
The heat shrinkable tube made of the copolyester shown in the present invention has a machine direction (MD) stretch ratio equal to the ratio of the pulling speed of the contracted tube after stretching and the conveying speed of the unstretched tube. The radial (TD) draw ratio is equal to the ratio of the tube diameter after blow expansion to the diameter of the unstretched tube.
When producing a heat-shrinkable tube with the copolyester shown in the present invention, the temperature of stretching diameter is preferably between 85 ° C. and 105 ° C., and the ratio of machine direction (MD) stretching is between 1.0 and 3.0 times. The stretching ratio in the radial direction (TD) is preferably 1.3 to 4.5 times.

本発明で製造した熱収縮チューブは、100℃の熱湯に30秒間入れた後取り出すと、その縦方向(MD)熱収縮率は5%〜15%であることが好ましい。縦方向熱収縮率が5%より低いと、熱収縮チューブの縁と被覆対象物とが緊密に被覆されず、縦方向熱収縮率が15%より高いと、熱収縮チューブで被覆するときに変形移動する。径方向(TD)熱収縮率は35%より高いことが好ましく、径方向(TD)熱収縮率が35%より低いと、熱収縮チューブの被覆緊密度が不足する恐れがある。   When the heat-shrinkable tube produced in the present invention is taken out of hot water at 100 ° C. for 30 seconds and then taken out, its longitudinal direction (MD) heat shrinkage rate is preferably 5% to 15%. If the longitudinal heat shrinkage rate is lower than 5%, the edges of the heat shrinkable tube and the object to be coated are not tightly coated. If the longitudinal heat shrinkage rate is higher than 15%, the heat shrinkage tube is deformed when covered. Moving. The radial direction (TD) heat shrinkage rate is preferably higher than 35%. If the radial direction (TD) heat shrinkage rate is lower than 35%, the coating tightness of the heat shrinkable tube may be insufficient.

本発明で製造した熱収縮チューブは、被覆対象物に被覆した後、200℃を越えコポリエステルの融点温度より低い温度まで加熱して、チューブを収縮させて対象物被覆を完了する。   After the heat-shrinkable tube manufactured in the present invention is coated on the object to be coated, it is heated to a temperature exceeding 200 ° C. and lower than the melting point of the copolyester to shrink the tube, thereby completing the object coating.

本発明の熱収縮チューブは対象物被覆を完了した後、180℃のオーブンに入れて30分間加熱した後、及び105℃のオーブンに入れて3時間加熱した後、それぞれ結果は該熱収縮チューブは変わらず対象物表面に緊密に密着しており、しわ、突起、緩み、剥離、破裂、捲れなどの変形現象は発生しない。   After the heat-shrinkable tube of the present invention was completely coated, it was placed in an oven at 180 ° C. for 30 minutes and after being heated in an oven at 105 ° C. for 3 hours. It remains in close contact with the surface of the object, and deformation phenomena such as wrinkles, protrusions, loosening, peeling, bursting, and twisting do not occur.

本発明に示すコポリエステルで製造した熱収縮チューブは、印刷後、アセトンで洗浄すると、洗浄後の印刷字体の崩れを防止できる。   When the heat-shrinkable tube manufactured with the copolyester shown in the present invention is washed with acetone after printing, the printed font after washing can be prevented from collapsing.

以下に実施例と比較例を挙げ、本発明の技術内容を更に明らかにする。本発明の権利範囲は実施例の範囲に制限されない。
実施例1
10.27重量分のビス‐2‐ヒドロキシエチルテレフタレート単体(BHET)を取り、0.432重量分のイソフタル酸(IPA)と3.243重量分のエチレングリコール(EG)を反応槽内に入れ、原料温度が190℃以上に達するとエステル化反応が開始し、反応圧力は1.0〜1.5kg/cm2で、180分間反応させてエステル化率を95%以上にし、0.035重量分の二酸化チタン、安定剤リン酸、触媒酢酸アンチモンをそれぞれ加え、真空にし始める。物質温度を250〜280℃の間で1torrの真空環境下にし、粘度0.60デシリットル/グラム以上まで反応させ、物質排出を行い冷却して円柱状の非晶状態原粒にする。続いてこの原粒を固態重合反応装置内に入れ、エステル粒の温度を190〜220℃の間にして、窒素通気或いは真空の環境下でエステル粒の粘度を0.95デシリットル/グラムまで上昇させる。
形成したエステル粒を150℃除湿空気で4時間乾燥し、押出機で250〜270℃で溶融押出し、環状ノズルの口金を経て中空柱状の未延伸原管を形成し、この原管を即座に冷却水槽を通過させて冷却し、その後回転速度を100rpmに設定したフィードローラ(Feed Roller)を用いて原管が加熱器を通過するようにし、原管の温度が90〜100℃に達する範囲内で加圧空気を内部に通し、原管をブロー拡径して原管の直径1.3倍以上のチューブに延伸し、該拡径後のチューブを回転速度105rpmの牽引ローラ(Nip Roller)で引き出し、このようにして熱収縮チューブに形成する。
続いて、製造した熱収縮チューブに一連の測定を行う。ブロー安定性の測定、180℃のオーブンに入れ30分間加熱後の外観被覆の完全性の測定、105℃のオーブンに入れ3時間加熱後の外観被覆完全性の測定、巻取った熱収縮チューブの巻き出し容易度の測定、及び耐アセトン洗浄印字完全性の測定を含み、その結果の詳細は(表1)に示す。
Examples and comparative examples are given below to further clarify the technical contents of the present invention. The scope of rights of the present invention is not limited to the scope of the examples.
Example 1
10.27 weight parts of bis-2-hydroxyethyl terephthalate (BHET) is taken, 0.432 weight parts of isophthalic acid (IPA) and 3.243 weight parts of ethylene glycol (EG) are placed in the reaction vessel, When the raw material temperature reaches 190 ° C. or higher, the esterification reaction starts, the reaction pressure is 1.0 to 1.5 kg / cm 2 , the reaction is performed for 180 minutes to achieve an esterification rate of 95% or higher, and 0.035 wt. Titanium dioxide, stabilizer phosphoric acid, and catalytic antimony acetate are added, and vacuum is started. The material temperature is set to 250 to 280 ° C. in a vacuum environment of 1 torr, the reaction is performed to a viscosity of 0.60 deciliter / gram or more, the material is discharged and cooled to form cylindrical amorphous raw particles. Subsequently, this raw granule is put into a solid state polymerization reactor, the temperature of the ester granule is set to 190 to 220 ° C., and the viscosity of the ester granule is increased to 0.95 deciliter / gram in a nitrogen atmosphere or a vacuum environment. .
The formed ester grains are dried with dehumidified air at 150 ° C. for 4 hours, melt extruded at 250 to 270 ° C. with an extruder, and formed into a hollow columnar unstretched raw pipe through a ring nozzle, and this raw pipe is immediately cooled. The feed pipe (Feed Roller) with the rotation speed set to 100 rpm is allowed to pass through the water tank and then the feed pipe is passed through the heater so that the temperature of the feed pipe reaches 90-100 ° C. Pressurized air is passed inside, the diameter of the original pipe is blown and expanded to a tube that is 1.3 times the diameter of the original pipe, and the expanded tube is pulled out by a pulling roller (Nip Roller) with a rotation speed of 105 rpm. In this way, the heat shrinkable tube is formed.
Subsequently, a series of measurements are performed on the manufactured heat shrinkable tube. Measurement of blow stability, measurement of appearance coating integrity after heating in an oven at 180 ° C. for 30 minutes, measurement of appearance coating integrity after heating in an oven at 105 ° C. for 3 hours, measurement of wound heat-shrinkable tube Including the measurement of unwinding ease and the measurement of acetone-cleaning print integrity, the details of the results are shown in (Table 1).

実施例2
実施例1の方法に従い、但し9.73重量分のビス‐2‐ヒドロキシエチルテレフタレート単体(BHET)と0.864重量分のイソフタル酸(IPA)を取って反応器内に入れて反応させ、溶融重合完了後、固態重合を行って粘度を0.97デシリットル/グラムまで上昇させる。続いて、製造した熱収縮チューブに各項の測定を行い、結果を(表1)に示す。
Example 2
According to the method of Example 1, except that 9.73 parts by weight of bis-2-hydroxyethyl terephthalate (BHET) and 0.864 parts by weight of isophthalic acid (IPA) were placed in the reactor, reacted, and melted. After polymerization is complete, solid state polymerization is performed to increase the viscosity to 0.97 deciliter / gram. Subsequently, each item was measured on the manufactured heat-shrinkable tube, and the results are shown in (Table 1).

実施例3
実施例1の方法に従い、但し9.186重量分のビス‐2‐ヒドロキシエチルテレフタレート単体(BHET)と1.296重量分のイソフタル酸(IPA)を取って反応器内に入れて反応させ、溶融重合完了後、固態重合を行って粘度を1.05デシリットル/グラムまで上昇させる。本実施例のポリエステルは固態重合を行うときに、実施例1より緩慢な温度上昇加熱条件が必要で、そうでなければ塊が発生する。続いて、製造した熱収縮チューブに各項の測定を行い、結果を(表1)に示す。
Example 3
According to the method of Example 1, except that 9.186 parts by weight of bis-2-hydroxyethyl terephthalate alone (BHET) and 1.296 parts by weight of isophthalic acid (IPA) were placed in the reactor, reacted, and melted. After polymerization is complete, solid state polymerization is performed to increase the viscosity to 1.05 deciliter / gram. When the polyester of this example is subjected to solid-state polymerization, the heating conditions for the temperature increase slower than those of Example 1 are necessary, otherwise a lump is generated. Subsequently, each item was measured on the manufactured heat-shrinkable tube, and the results are shown in (Table 1).

実施例4
実施例1の方法に従い、但し10.81重量分のビス‐2‐ヒドロキシエチルテレフタレート単体(BHET)のみを反応器内に入れて反応させる。IPAは加えず、2.91重量分のエチレングリコール(EG)と0.552重量分の2‐ブチル‐2‐エチル‐1,3‐プロパンジオール(2−Butyl‐2‐Ethyl‐1,3‐Propanediol、略称BEPG)を加えて溶融重合完了後、固態重合を行って粘度を0.95デシリットル/グラムまで上昇させる。続いて、製造した熱収縮チューブに各項の測定を行い、結果を(表1)に示す。
Example 4
According to the method of Example 1, except that only 10.81 parts by weight of bis-2-hydroxyethyl terephthalate (BHET) is placed in the reactor and reacted. No IPA was added, 2.91 parts by weight of ethylene glycol (EG) and 0.552 parts by weight of 2-butyl-2-ethyl-1,3-propanediol (2-Butyl-2-Ethyl-1,3- Propanediol (abbreviation BEPG) is added and after completion of melt polymerization, solid state polymerization is performed to increase the viscosity to 0.95 deciliter / gram. Subsequently, each item was measured on the manufactured heat-shrinkable tube, and the results are shown in (Table 1).

実施例5
実施例1の方法に従い、但し10.81重量分のビス‐2‐ヒドロキシエチルテレフタレート単体(BHET)のみを反応器内に入れて反応させ(IPAは加えないで)、2.91重量分のエチレングリコール(EG)と0.750重量分のシクロヘキサンジメタノール(Cyclohexane Dimethanol、略称CHDM)を加えて溶融重合を完了後、固態重合を行って粘度を0.95デシリットル/グラムまで上昇させる。続いて、製造した熱収縮チューブに各項の測定を行い、結果を(表1)に示す。
Example 5
According to the method of Example 1, except that 10.81 wt.% Of bis-2-hydroxyethyl terephthalate alone (BHET) was placed in the reactor to react (without adding IPA), 2.91 wt. Glycol (EG) and 0.750 weight part of cyclohexane dimethanol (abbreviated as CHDM) are added to complete the melt polymerization, followed by solid state polymerization to increase the viscosity to 0.95 deciliter / gram. Subsequently, each item was measured on the manufactured heat-shrinkable tube, and the results are shown in (Table 1).

実施例6
実施例2の方法に従い、但し二酸化チタン(TiO2)は加えない。溶融重合完了後、固態重合を行って粘度を0.95デシリットル/グラムまで上昇させる。続いて、製造した熱収縮チューブに各項の測定を行い、結果を(表1)に示す。
Example 6
Follow the procedure of Example 2, but do not add titanium dioxide (TiO 2 ). After completion of melt polymerization, solid state polymerization is performed to increase the viscosity to 0.95 deciliter / gram. Subsequently, each item was measured on the manufactured heat-shrinkable tube, and the results are shown in (Table 1).

実施例7
実施例1の方法に従い、但し9.94重量分のビス‐2‐ヒドロキシエチルテレフタレート単体(BHET)と0.692重量分のイソフタル酸(IPA)を取って反応器内に入れて反応させ、溶融重合完了後、固態重合を行って粘度を0.85デシリットル/グラムまで上昇させる。続いて、製造した熱収縮チューブに各項の測定を行い、結果を(表1)に示す。
Example 7
According to the method of Example 1, except that 9.94 weight parts of bis-2-hydroxyethyl terephthalate (BHET) and 0.692 weight parts of isophthalic acid (IPA) were placed in the reactor, reacted, and melted. After polymerization is complete, solid state polymerization is performed to increase the viscosity to 0.85 deciliter / gram. Subsequently, each item was measured on the manufactured heat-shrinkable tube, and the results are shown in (Table 1).

比較例1
実施例1の方法に従い、但し10.81重量分のビス‐2‐ヒドロキシエチルテレフタレート単体(BHET)のみを取り、IPAは加えず、3.243重量分のエチレングリコール(EG)を加えて反応器内に入れて反応させ、溶融重合完了後、固態重合を行って粘度を0.95デシリットル/グラムまで上昇させる。続いて、製造した熱収縮チューブに各項の測定を行い、結果を(表1)に示す。
Comparative Example 1
According to the method of Example 1, except that 10.81 wt.% Of bis-2-hydroxyethyl terephthalate alone (BHET) is taken, IPA is not added, and 3.243 wt. Of ethylene glycol (EG) is added to the reactor. It is allowed to react inside and after completion of melt polymerization, solid state polymerization is performed to increase the viscosity to 0.95 deciliter / gram. Subsequently, each item was measured on the manufactured heat-shrinkable tube, and the results are shown in (Table 1).

比較例2
実施例1の方法に従い、但し10.537重量分のビス‐2‐ヒドロキシエチルテレフタレート単体(BHET)と0.216重量分のイソフタル酸(IPA)及び3.243重量分のエチレングリコール(EG)を反応器内に入れて反応させ、溶融重合完了後、固態重合を行って粘度を0.95デシリットル/グラムまで上昇させる。続いて、製造した熱収縮チューブに各項の測定を行い、結果を(表1)に示す。
Comparative Example 2
According to the method of Example 1, except that 10.537 parts by weight of bis-2-hydroxyethyl terephthalate alone (BHET), 0.216 parts by weight of isophthalic acid (IPA) and 3.243 parts by weight of ethylene glycol (EG). The reaction is conducted in a reactor, and after completion of melt polymerization, solid state polymerization is performed to increase the viscosity to 0.95 deciliter / gram. Subsequently, each item was measured on the manufactured heat-shrinkable tube, and the results are shown in (Table 1).

比較例3
実施例1の方法に従い、但し8.970重量分のビス‐2‐ヒドロキシエチルテレフタレート単体(BHET)と1.470重量分のイソフタル酸(IPA)及び3.243重量分のエチレングリコール(EG)を反応器内に入れて反応させ、溶融重合を行って行って粘度を0.75デシリットル/グラムまで上昇させる。こうして得られるポリエステルは固態重合時に著しく塊が発生するため、固態重合を経ないコポリエステルで熱収縮チューブに形成する。エステル粒溶融加工前の乾燥温度は70℃に設定する。続いて、製造した熱収縮チューブに各項の測定を行い、結果を(表1)に示す。
Comparative Example 3
According to the method of Example 1, except that 8.970 parts by weight of bis-2-hydroxyethyl terephthalate (BHET), 1.470 parts by weight of isophthalic acid (IPA) and 3.243 parts by weight of ethylene glycol (EG). The reaction is conducted in a reactor and melt polymerization is performed to increase the viscosity to 0.75 deciliter / gram. Since the polyester obtained in this way is remarkably agglomerated during solid state polymerization, it is formed into a heat-shrinkable tube using a copolyester that does not undergo solid state polymerization. The drying temperature before the ester grain melt processing is set to 70 ° C. Subsequently, each item was measured on the manufactured heat-shrinkable tube, and the results are shown in (Table 1).

比較例4
実施例5の方法に従い、但し10.81重量分のビス‐2‐ヒドロキシエチルテレフタレート単体(BHET)を反応器内に入れて反応させ、IPAは加えず、2.260重量分のエチレングリコール(EG)と2.250重量分のシクロヘキサンジメタノール(Cyclohexane dimethanol、略称CHDM)を反応器内に加えて反応させ、溶融重合して粘度を0.80デシリットル/グラムまで上昇させる。こうして得られるポリエステルは固態重合時に著しく塊が発生するため、固態重合を経ないコポリエステルで熱収縮チューブに形成する。エステル粒溶融加工前の乾燥温度は70℃に設定する。続いて、製造した熱収縮チューブに各項の測定を行い、結果を(表1)に示す。
Comparative Example 4
According to the method of Example 5, except that 10.81 parts by weight of bis-2-hydroxyethyl terephthalate (BHET) was placed in the reactor to react, and IPA was not added, but 2.260 parts by weight of ethylene glycol (EG ) And 2.250 parts by weight of cyclohexane dimethanol (abbreviated as CHDM) are reacted in the reactor and melt polymerized to increase the viscosity to 0.80 deciliter / gram. Since the polyester obtained in this way is remarkably agglomerated during solid state polymerization, it is formed into a heat-shrinkable tube using a copolyester that does not undergo solid state polymerization. The drying temperature before the ester grain melt processing is set to 70 ° C. Subsequently, each item was measured on the manufactured heat-shrinkable tube, and the results are shown in (Table 1).

結果
(表1)に示す結果によると、実施例1から実施例7のコポリエステルは、固態重合で固有粘度を0.85〜1.05デシリットル/グラムの範囲内に上昇させてあり、製造した熱収縮チューブはブロー安定性の面、180℃のオーブンに入れて30分間加熱後の外観被覆完全性の面、105℃のオーブンに入れて3時間加熱後の外観被覆完全性の面、巻取った熱収縮チューブの巻き出し容易度の面、及び耐アセトン洗浄印字完全性の面の全てにおいて、たいへん優れた成績となった。

Figure 2006117872
(表1)の個別物質含有量は、全てコポリエステルに対する含有量である。
表中の符号は、◎良好、△普通、×不良。 Results According to the results shown in Table 1, the copolyesters of Examples 1 to 7 were produced by increasing the intrinsic viscosity in the range of 0.85 to 1.05 deciliter / gram by solid state polymerization. The heat-shrinkable tube has a blow-stable surface, an appearance coating integrity surface after heating in an oven at 180 ° C for 30 minutes, an appearance coating integrity surface after heating in an oven at 105 ° C for 3 hours, and winding. The results were excellent in all aspects of the ease of unwinding of the heat-shrinkable tube and the acetone-cleaning printing completeness.

Figure 2006117872
The individual substance contents in Table 1 are all contents relative to the copolyester.
The symbols in the table are ◎ Good, △ Normal, × Poor.

Claims (9)

ジカルボン酸或いはそのエステル類とジオールとを反応させて得られるコポリエステルであって、そのうちでジオールの成分をエチレングリコール(EG)とし、ジカルボン酸の主要成分を高純度テレフタル酸(PTA)或いはそのエステル類とし、且つジカルボン酸成分の5から15モルパーセントに当たるイソフタル酸(IPA)或いはそのエステル類を含むと共に、更に該コポリエステルは固態重合反応を経て固有粘度を0.85〜1.05デシリットル/グラムに上昇させて成ることを特徴とする熱収縮チューブ用コポリエステル。   A copolyester obtained by reacting a dicarboxylic acid or ester thereof with a diol, in which the diol component is ethylene glycol (EG) and the main component of the dicarboxylic acid is high-purity terephthalic acid (PTA) or an ester thereof And containing 5 to 15 mole percent of isophthalic acid (IPA) or an ester thereof, and the copolyester has an intrinsic viscosity of 0.85 to 1.05 deciliter / gram via solid state polymerization reaction. A heat-shrinkable tube copolyester characterized by being raised to 使用するジオールの成分は、主要成分エチレングリコール(EG)とジエチレングリコール、シクロヘキサンジメタノール、プロピレングリコール、2,2‐ジメチル‐1,3‐プロパンジオール(NPG)(ネオペンチルグリコール)、2‐ブチル‐2‐エチル‐1,3‐プロパンジオール(BEPG)及びブチレングリコールの中から成るジオール副成分グループのうち少なくとも一種を含み、且つジオール副成分の含有量は全ジオール成分の10モルパーセントより高くないようにして成ることを特徴とする請求項1記載の熱収縮チューブ用コポリエステル。   The components of the diol used are the main components ethylene glycol (EG) and diethylene glycol, cyclohexanedimethanol, propylene glycol, 2,2-dimethyl-1,3-propanediol (NPG) (neopentyl glycol), 2-butyl-2 -Containing at least one diol subcomponent group consisting of -ethyl-1,3-propanediol (BEPG) and butylene glycol, and the diol subcomponent content should not be higher than 10 mole percent of the total diol components The heat-shrinkable tube copolyester according to claim 1. コポリエステル合成の溶融反応段階で、二酸化チタン、硫酸バリウム、炭酸カルシウム及び二酸化ケイ素により成る無機粒子グループのうちの少なくとも一種を添加し、無機粒子の含有量はコポリエステル重量に対して0.005〜0.5重量パーセントであり、且つ無機粒子の粒子寸法は1マイクロメートル(μm)より小さいようにして成ることを特徴とする請求項1及び請求項2記載の熱収縮チューブ用コポリエステル。   At least one of inorganic particle groups consisting of titanium dioxide, barium sulfate, calcium carbonate and silicon dioxide is added in the melt reaction stage of the copolyester synthesis, and the content of the inorganic particles is 0.005 to the copolyester weight. The heat-shrinkable tube copolyester according to claim 1 or 2, wherein the inorganic particle has a particle size of less than 1 micrometer (µm). 無機粒子の粒子寸法は0.1〜0.5マイクロメートル(μm)の間であるようにして成ることを特徴とする請求項3記載の熱収縮チューブ用コポリエステル。   The heat-shrinkable tube copolyester according to claim 3, wherein the inorganic particles have a particle size of 0.1 to 0.5 micrometers (µm). 固有粘度0.85〜1.05デシリットル/グラムのコポリエステルを原料に選定し、溶融押出を経て未延伸管を形成し、未延伸管が更にガラス転移温度以上まで加熱された後、縦方向延伸及び径方向にガス圧膨張拡径し、縦方向延伸倍率1.0から3.0倍、径方向延伸倍率1.3から4.5倍の熱収縮チューブを構成し、該熱収縮チューブを沸騰水に入れたときの縦方向収縮率が5%〜15%、径方向の収縮率が35%を超えるようにして成ることを特徴とする熱収縮チューブの製造方法。   A copolyester having an intrinsic viscosity of 0.85 to 1.05 deciliter / gram is selected as a raw material, an unstretched tube is formed through melt extrusion, and the unstretched tube is further heated to the glass transition temperature or higher, and then stretched in the machine direction. And gas expansion and expansion in the radial direction to form a heat shrinkable tube having a longitudinal draw ratio of 1.0 to 3.0 times and a radial draw ratio of 1.3 to 4.5 times. A method for producing a heat-shrinkable tube, characterized in that the shrinkage ratio in the longitudinal direction when placed in water is 5% to 15% and the shrinkage ratio in the radial direction exceeds 35%. 上記選定するコポリエステル原料に、二酸化チタン、硫酸バリウム、炭酸カルシウム及び二酸化ケイ素により成る無機粒子グループのうちの少なくとも一種を添加し、無機粒子の含有量はコポリエステル重量の0.005〜0.5重量パーセントとし、且つ無機粒子の粒子寸法は1マイクロメートル(μm)より小さいようにして成ることを特徴とする請求項5記載の熱収縮チューブの製造方法。   To the copolyester raw material to be selected, at least one of inorganic particle groups consisting of titanium dioxide, barium sulfate, calcium carbonate and silicon dioxide is added, and the content of inorganic particles is 0.005 to 0.5 of the weight of the copolyester. 6. The method for producing a heat-shrinkable tube according to claim 5, wherein the weight percentage is such that the particle size of the inorganic particles is smaller than 1 micrometer (μm). 製造した熱収縮チューブは、対象物を熱収縮被覆した後、180℃で30分間加熱することにより、該熱収縮チューブは完全に対象物の被覆を維持でき、しわ、突起、緩み、剥離、破裂及び捲れなどの変形現象が無いことを特徴とする請求項5及び請求項6記載の熱収縮チューブの製造方法。   The manufactured heat-shrinkable tube is heat-shrink-coated on the object, and then heated at 180 ° C. for 30 minutes, so that the heat-shrinkable tube can completely maintain the object-covered, wrinkles, protrusions, loosening, peeling, bursting 7. The method for producing a heat-shrinkable tube according to claim 5 or 6, wherein there is no deformation phenomenon such as twisting. 製造した熱収縮チューブは、対象物を熱収縮被覆した後、105℃で180分間加熱することにより、該熱収縮チューブは完全に対象物の被覆を維持でき、しわ、突起、緩み、剥離、破裂及び捲れなどの変形現象が無いことを特徴とする請求項5及び請求項6記載の熱収縮チューブの製造方法。   The manufactured heat-shrinkable tube is heat-shrinkage coated on the object, and then heated at 105 ° C. for 180 minutes, so that the heat-shrinkable tube can completely maintain the object coating, and wrinkles, protrusions, loosening, peeling, bursting 7. The method for producing a heat-shrinkable tube according to claim 5 or 6, wherein there is no deformation phenomenon such as twisting. 製造した熱収縮チューブは、熱可塑性コポリエステル合成時に、溶融重縮合反応の段階で特定の粒子サイズの無機粒子を添加することにより、巻き取り後、解く際には容易に解ける効果を具えるようにして成ることを特徴とする請求項6記載の熱収縮チューブの製造方法。   The manufactured heat-shrinkable tube can be easily unwound after unwinding by adding inorganic particles of a specific particle size during the melt polycondensation reaction during the synthesis of thermoplastic copolyester. The method for producing a heat-shrinkable tube according to claim 6, wherein
JP2004309507A 2004-10-25 2004-10-25 Copolyester and heat shrinkable tube manufacturing method using the copolyester Active JP4260719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004309507A JP4260719B2 (en) 2004-10-25 2004-10-25 Copolyester and heat shrinkable tube manufacturing method using the copolyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004309507A JP4260719B2 (en) 2004-10-25 2004-10-25 Copolyester and heat shrinkable tube manufacturing method using the copolyester

Publications (2)

Publication Number Publication Date
JP2006117872A true JP2006117872A (en) 2006-05-11
JP4260719B2 JP4260719B2 (en) 2009-04-30

Family

ID=36536050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004309507A Active JP4260719B2 (en) 2004-10-25 2004-10-25 Copolyester and heat shrinkable tube manufacturing method using the copolyester

Country Status (1)

Country Link
JP (1) JP4260719B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231423A (en) * 2007-03-22 2008-10-02 Nan Ya Plast Corp Thermoplastic polyester mixture and manufacturing process for heat-shrinkable tube using the same
JP2015081351A (en) * 2013-10-23 2015-04-27 南亜塑膠工業股▲ふん▼有限公司 Phosphorus-containing thermoplastic polyester and phosphorus-containing heat-shrinkable tube produced from the same
US20150147499A1 (en) * 2013-11-25 2015-05-28 Tyco Electronics Corporation Heat shrinkable tube and system including heat-recovered heat shrinkable tubing

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03224723A (en) * 1989-11-17 1991-10-03 Mitsubishi Plastics Ind Ltd Heat-shrinkable tube
JPH05104631A (en) * 1991-10-17 1993-04-27 Mitsubishi Plastics Ind Ltd Heat-shrinkable polyester tube and production thereof
JPH081863A (en) * 1994-06-24 1996-01-09 Toray Ind Inc Polymer-coated metal laminate
JPH08127640A (en) * 1994-10-28 1996-05-21 Mitsui Petrochem Ind Ltd Production of molded article of polyester and molded article of polyester
JPH11106526A (en) * 1997-09-30 1999-04-20 Unitika Ltd Metal plate-laminating polyester film and preparation thereof
JP2001261801A (en) * 2000-03-15 2001-09-26 Nan Ya Plast Corp Copolyester er applicable to extrusion
JP2002020471A (en) * 2000-07-05 2002-01-23 Mitsubishi Chemicals Corp Copolyester resin
JP2002020470A (en) * 2000-07-05 2002-01-23 Mitsubishi Chemicals Corp Copolyester resin
JP2004059735A (en) * 2002-07-29 2004-02-26 Toyobo Co Ltd Polyester, polyester composition comprising the same and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03224723A (en) * 1989-11-17 1991-10-03 Mitsubishi Plastics Ind Ltd Heat-shrinkable tube
JPH05104631A (en) * 1991-10-17 1993-04-27 Mitsubishi Plastics Ind Ltd Heat-shrinkable polyester tube and production thereof
JPH081863A (en) * 1994-06-24 1996-01-09 Toray Ind Inc Polymer-coated metal laminate
JPH08127640A (en) * 1994-10-28 1996-05-21 Mitsui Petrochem Ind Ltd Production of molded article of polyester and molded article of polyester
JPH11106526A (en) * 1997-09-30 1999-04-20 Unitika Ltd Metal plate-laminating polyester film and preparation thereof
JP2001261801A (en) * 2000-03-15 2001-09-26 Nan Ya Plast Corp Copolyester er applicable to extrusion
JP2002020471A (en) * 2000-07-05 2002-01-23 Mitsubishi Chemicals Corp Copolyester resin
JP2002020470A (en) * 2000-07-05 2002-01-23 Mitsubishi Chemicals Corp Copolyester resin
JP2004059735A (en) * 2002-07-29 2004-02-26 Toyobo Co Ltd Polyester, polyester composition comprising the same and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231423A (en) * 2007-03-22 2008-10-02 Nan Ya Plast Corp Thermoplastic polyester mixture and manufacturing process for heat-shrinkable tube using the same
JP2015081351A (en) * 2013-10-23 2015-04-27 南亜塑膠工業股▲ふん▼有限公司 Phosphorus-containing thermoplastic polyester and phosphorus-containing heat-shrinkable tube produced from the same
KR101796269B1 (en) * 2013-10-23 2017-11-10 난야 플라스틱스 코오퍼레이션 Phosphorus-containing thermoplastic polyester and phosphorus-containing heat-shrinkable tube made therefrom
US20150147499A1 (en) * 2013-11-25 2015-05-28 Tyco Electronics Corporation Heat shrinkable tube and system including heat-recovered heat shrinkable tubing

Also Published As

Publication number Publication date
JP4260719B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
KR102459356B1 (en) Heat-shrinkable polyester film and packaging material
AU2002318640B2 (en) Heat-shrinkable polyester films and process for production thereof
US7001651B2 (en) Heat-shrinkable polyester film
KR102463003B1 (en) Heat-shrinkable polyester film and packaging material
TWI555773B (en) A phosphorus-containing thermoplastic polyester and a phosphorus-containing heat-shrinkable sleeve
CN101945929A (en) Thermo-shrinkable polyester film
CN111936563A (en) Heat-shrinkable polyester film
JP2008231423A (en) Thermoplastic polyester mixture and manufacturing process for heat-shrinkable tube using the same
CN1266189C (en) Copolymerized ester and method for making heat-shrinkable double-pipe using same
KR102500307B1 (en) Heat-shrinkable polyester-based film, and package
JP4260719B2 (en) Copolyester and heat shrinkable tube manufacturing method using the copolyester
JP2001288283A (en) Heat-shrinkable polyester film
EP1655322B1 (en) Thermoplastic copolyester and method for producing heat-shrinkable tube by using the same
KR100626835B1 (en) Thermoplastic co-polyester for production of heat-shrinkable tube and method for producing heat-shrinkable tube by using the same
JP2012171328A (en) Biaxially-oriented polyester film
JP3879445B2 (en) Heat-shrinkable polyethylene terephthalate film
TWI273967B (en) Thermoplastic copolyester and heat-shrinkable tube made with the copolyester
JP2003041018A (en) Heat-shrinkable polyester film
CN113905958A (en) Heat-shrinkable polyester film having main shrinkage direction in longitudinal (lengthwise) direction
JP2003041029A (en) Heat-shrinkable polyester film
JP2011094159A (en) Heat-shrinkable polyester film and method for manufacturing the same
JP2003055485A (en) Heat-shrinkable polyester film
JP2009160775A (en) Heat-shrinkable polyester film
JP2003012832A (en) Heat-shrinkable polyester-based film
JP2003020346A (en) Thermally shrinkable polyester film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070119

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4260719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250