JP2012171328A - Biaxially-oriented polyester film - Google Patents

Biaxially-oriented polyester film Download PDF

Info

Publication number
JP2012171328A
JP2012171328A JP2011038398A JP2011038398A JP2012171328A JP 2012171328 A JP2012171328 A JP 2012171328A JP 2011038398 A JP2011038398 A JP 2011038398A JP 2011038398 A JP2011038398 A JP 2011038398A JP 2012171328 A JP2012171328 A JP 2012171328A
Authority
JP
Japan
Prior art keywords
film
heat
oriented polyester
temperature
polyester film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011038398A
Other languages
Japanese (ja)
Inventor
Tomoko Shimizu
智子 清水
Atsushi Oyamatsu
淳 小山松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2011038398A priority Critical patent/JP2012171328A/en
Publication of JP2012171328A publication Critical patent/JP2012171328A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a biaxially-oriented polyester film which has high heat resistance and further such high shrinkability that poor external appearances such as uneven shrinkage and a wrinkle are not produced in the biaxial directions but a beautiful external appearance is obtained when the biaxially-oriented polyester film is shrunk thermally.SOLUTION: The biaxially-oriented polyester film contains polyethylene naphthalate as a main constituent component and has a thermal shrinkage rate of 8% or more in the longitudinal and lateral directions when heat-treated at 180°C for 30 minutes and a thermal shrinkage rate of 5% or less in the longitudinal and lateral directions when heat-treated at 155°C for 30 minutes.

Description

本発明は二軸配向ポリエステルフィルムに関し、さらに詳しくは一定温度以上で二軸方向に熱収縮性を有する二軸配向ポリエステルフィルムに関する。   The present invention relates to a biaxially oriented polyester film, and more particularly to a biaxially oriented polyester film having heat shrinkability in a biaxial direction at a certain temperature or higher.

従来より、被覆や結束、外装などの包装用途にはポリスチレン系やポリエステル系を主成分とする熱収縮性フィルムを用いたシュリンクチューブが用いられている(特許文献1など)。
前記熱収縮性フィルムは延伸によって主として一方向に熱収縮性が付与されており、例えばラベル用途に使用する際には、図柄などを印刷した後、適当な大きさに裁断し、この裁断フィルムの両側部を重ね合わせてシールすることにより、チューブ状に加工している。
このチューブはさらに裁断することにより、容器に装着可能な筒状ラベル、袋状ラベルなどの開口部を有する形状に加工することができる。これら筒状ラベルや袋状ラベルは、容器に装着した後、ベルトコンベアーなどに乗せて加熱用トンネル(スチームトンネル、熱風トンネル)などを通過させ、熱収縮させることにより容器に密着させている。
Conventionally, shrink tubes using a heat-shrinkable film mainly composed of polystyrene or polyester are used for packaging applications such as covering, binding, and exterior (Patent Document 1, etc.).
The heat-shrinkable film is imparted with heat-shrinkability mainly in one direction by stretching. For example, when used for a label application, after printing a pattern or the like, the film is cut into an appropriate size. It is processed into a tube by overlapping and sealing both sides.
The tube can be further cut into a shape having an opening such as a cylindrical label or a bag-like label that can be attached to the container. These cylindrical labels and bag-like labels are attached to a container, and then placed on a belt conveyor or the like, passed through a heating tunnel (steam tunnel, hot air tunnel), and the like, and are brought into close contact with the container by heat shrinking.

また、モーター絶縁コイルなどの高温にさらされる物体の包装用途として、より耐熱性が高いポリマー素材であるポリエチレンナフタレート(以後、PENと称することがある)を用いた縦横方向ともに熱収縮率の高い熱収縮性フィルムが検討されている(特許文献2など)。
しかしながら、PENフィルムのガラス転移点は約120℃であり、従来のポリエチレンテレフタレート(以後、PETと称することがある)等のガラス転移点が約80℃であるのに対して約40℃ほど高く、耐熱性に優れている反面、より高温で加熱処理をしないとフィルムに収縮性を付与できないという課題を有する。
Also, as a packaging application for objects exposed to high temperatures such as motor insulation coils, heat shrinkage is high in both the vertical and horizontal directions using polyethylene naphthalate (hereinafter sometimes referred to as PEN), which is a polymer material with higher heat resistance. A heat-shrinkable film has been studied (for example, Patent Document 2).
However, the glass transition point of the PEN film is about 120 ° C., which is about 40 ° C. higher than the glass transition point of conventional polyethylene terephthalate (hereinafter sometimes referred to as PET), which is about 80 ° C. Although it is excellent in heat resistance, it has the subject that shrinkage | contraction property cannot be provided to a film, unless it heat-processes at higher temperature.

さらに、熱収縮性フィルムを用いたシュリンクチューブで収縮包装させる工程は、できるだけ短時間で行われる方が生産効率の面から好ましい。そのため、熱収縮性フィルムに対して短時間でかつ均一に収縮することが望まれている。   Furthermore, it is preferable from the viewpoint of production efficiency that the step of shrink-wrapping with a shrink tube using a heat-shrinkable film is performed in as short a time as possible. Therefore, it is desired that the heat-shrinkable film shrinks uniformly in a short time.

一般的に高分子フィルムの収縮開始温度はガラス転移点付近であり、短時間で十分な収縮特性を得ようとした場合、ガラス転移点より60℃程度高い温度で収縮をさせることが求められている。例えば、特許文献2にはポリエチレンナフタレートを用いた熱収縮性フィルムを180℃の高温で収縮させることが開示されており、さらにその実施例には155℃でも熱収縮率の高い熱収縮性フィルムが開示されている。しかしながら、かかる熱収縮特性の熱収縮性フィルムを用いて高温度でシュリンクチューブを収縮させた場合、収縮時に収縮斑やシワなどの外観不良が発生してしまい、美麗な外観を安定して得ることが難しく、歩留まりが低下することがあった。   Generally, the shrinkage start temperature of a polymer film is in the vicinity of the glass transition point, and when trying to obtain sufficient shrinkage characteristics in a short time, it is required to shrink at a temperature about 60 ° C. higher than the glass transition point. Yes. For example, Patent Document 2 discloses that a heat-shrinkable film using polyethylene naphthalate is shrunk at a high temperature of 180 ° C., and in that example, a heat-shrinkable film having a high heat shrinkage rate even at 155 ° C. Is disclosed. However, when shrinking a shrink tube at a high temperature using a heat-shrinkable film with such heat-shrink characteristics, appearance defects such as shrinkage spots and wrinkles will occur during shrinkage, and a beautiful appearance can be stably obtained. Is difficult, and the yield may decrease.

特開平6−339989号公報JP-A-6-339989 特開昭50−133274号公報JP 50-133274 A

本発明は、かかる従来技術の問題点を解消し、耐熱性が高く、さらに二軸方向において熱収縮加工時に収縮斑やシワなどの外観不良のない、美麗な外観が得られる高収縮性二軸配向ポリエステルフィルムを提供することにある。   The present invention eliminates the problems of the prior art, has high heat resistance, and has a high shrinkability biaxial that provides a beautiful appearance with no appearance defects such as shrinkage spots and wrinkles when heat shrinking in the biaxial direction. The object is to provide an oriented polyester film.

本発明者らは、前記課題を解決するために鋭意検討した結果、耐熱性の高いポリエチレンナフタレートを用い、かかる樹脂を用いたときの熱収縮加工温度にあたる180℃辺りの温度では短時間に二軸方向ともに均一に収縮させる一方、熱収縮加工温度に到達するまでは低い熱収縮率でフィルム形状を保持できる熱収縮特性を有するポリエステルフィルムによって、二軸方向ともに熱収縮しながら収縮斑やシワなどの外観不良のない、美麗な外観の熱収縮加工が可能となることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have used polyethylene naphthalate having high heat resistance, and at a temperature around 180 ° C. corresponding to the heat shrinkage processing temperature when such a resin is used, the present inventors have not been able to do so in a short time. While shrinking uniformly in the axial direction, the polyester film has a heat shrinking property that can maintain the film shape with a low heat shrinkage rate until reaching the heat shrinking processing temperature. As a result, it was found that a heat-shrinking process with a beautiful appearance without any appearance defects was possible, and the present invention was completed.

すなわち本発明の目的は、ポリエチレンナフタフタレートを主たる構成成分とするフィルムであって、180℃、30分間熱処理したときの熱収縮率が縦方向および横方向ともに8%以上であって、かつ155℃、30分間熱処理したときの熱収縮率が縦方向および横方向ともに5%以下である二軸配向ポリエステルフィルムによって達成される。   That is, an object of the present invention is a film containing polyethylene naphthalphthalate as a main component, and has a heat shrinkage rate of 8% or more in both the vertical and horizontal directions when heat-treated at 180 ° C. for 30 minutes, and 155 ° C. This is achieved by a biaxially oriented polyester film having a heat shrinkage rate of 5% or less in both the longitudinal and transverse directions when heat-treated for 30 minutes.

また本発明の二軸配向ポリエステルフィルムは、その好ましい態様として、縦方向の破断強度が280MPa以上であって、縦方向の破断強度が横方向の破断強度よりも50MPa以上高いこと、縦方向のヤング率が横方向のヤング率よりも500MPa以上高いこと、該フィルムの融解サブピーク温度(Tsm)が170℃以上210℃以下であること、フィルム厚みが25μm以上200μm以下であること、該フィルムの固有粘度が0.48dl/g以上であること、の少なくともいずれか一つを具備するものを包含するものである。   In addition, the biaxially oriented polyester film of the present invention preferably has a longitudinal breaking strength of 280 MPa or more and a longitudinal breaking strength that is 50 MPa or more higher than the transverse breaking strength. The modulus is 500 MPa or more higher than the Young's modulus in the transverse direction, the melting subpeak temperature (Tsm) of the film is 170 ° C. or more and 210 ° C. or less, the film thickness is 25 μm or more and 200 μm or less, and the intrinsic viscosity of the film Including at least one of the following: 0.48 dl / g or more.

本発明によれば、本発明の二軸配向ポリエステルフィルムは耐熱性が高く、さらに二軸方向に熱収縮加工時に収縮斑やシワなどの外観不良なく熱収縮加工を施すことができることから、耐熱性および外観性が必要とされる包装用、電気絶縁用、成形加工用などに用いられる熱収縮性フィルムを提供することができる。   According to the present invention, the biaxially oriented polyester film of the present invention has high heat resistance and can be subjected to heat shrink processing without appearance defects such as shrinkage spots and wrinkles during heat shrink processing in the biaxial direction. In addition, it is possible to provide a heat-shrinkable film that is used for packaging, electrical insulation, molding processing, and the like that require appearance.

以下、本発明を詳細に説明する。
本発明の二軸配向ポリエステルフィルムは、ポリエチレンナフタレートを主たる構成成分とするフィルムであり、180℃、30分間熱処理したときの熱収縮率が縦方向および横方向ともに8%以上であって、かつ155℃、30分間熱処理したときの熱収縮率が縦方向および横方向ともに5%以下である。
Hereinafter, the present invention will be described in detail.
The biaxially oriented polyester film of the present invention is a film mainly composed of polyethylene naphthalate, and has a thermal shrinkage rate of 8% or more in both the vertical and horizontal directions when heat-treated at 180 ° C. for 30 minutes, and The heat shrinkage rate when heat-treated at 155 ° C. for 30 minutes is 5% or less in both the vertical and horizontal directions.

155℃での熱収縮率が縦方向、横方向ともに小さく、ポリエチレンナフタレートを用いた熱収縮加工温度にあたる180℃での熱収縮率が縦方向、横方向ともに大きいことにより、熱収縮加工温度に到達するまでは低い熱収縮率でフィルム形状を保持し、熱収縮加工温度で短時間に均一に二軸方向ともに収縮させることが可能となり、収縮斑やシワなどの外観不良のない、美麗な外観の熱収縮加工を行うことができる。   The heat shrinkage rate at 155 ° C is small in both the vertical and horizontal directions, and the heat shrinkage rate at 180 ° C, which is the heat shrinkage processing temperature using polyethylene naphthalate, is large in both the vertical and horizontal directions. The film shape is maintained at a low heat shrinkage rate until it reaches, and it can be shrunk uniformly in both biaxial directions in a short time at the heat shrinking processing temperature, and it has a beautiful appearance with no appearance defects such as shrinkage spots and wrinkles. The heat shrink process can be performed.

[二軸配向ポリエステル]
本発明の二軸配向ポリエステルフィルムは、ポリエチレンナフタレートを主たる構成成分とするフィルムであり、ここで「主たる」とは該フィルムの重量を基準として90重量%以上であることが好ましく、より好ましくは95重量%以上である。
本発明におけるポリエチレンナフタレートはエチレングリコールまたはそのエステル形成性誘導体とナフタレンジカルボン酸またはそのエステル形成性誘導体とから合成され、中でもポリエチレン−2,6−ナフタレートが好ましい。
本発明におけるポリエチレンナフタレートは、ポリエチレンナフタレートの全繰り返し単位を基準として、エチレンナフタレンジカルボキシレートを繰り返し単位とする成分が97モル%以上のポリマーを指し、好ましくは99モル%以上である。
[Biaxially oriented polyester]
The biaxially oriented polyester film of the present invention is a film containing polyethylene naphthalate as a main constituent, and here “main” is preferably 90% by weight or more based on the weight of the film, more preferably 95% by weight or more.
The polyethylene naphthalate in the present invention is synthesized from ethylene glycol or an ester-forming derivative thereof and naphthalenedicarboxylic acid or an ester-forming derivative thereof. Among them, polyethylene-2,6-naphthalate is preferable.
The polyethylene naphthalate in the present invention refers to a polymer having 97 mol% or more of a component having ethylene naphthalene dicarboxylate as a repeating unit based on all repeating units of polyethylene naphthalate, and preferably 99 mol% or more.

ポリエチレンナフタレートには、ナフタレンジカルボン酸以外の酸成分として、テレフタル酸成分を少量、例えば0.5〜3.0モル%含有しても良い。かかる成分は、ポリエチレンナフタレートに共重合されたもの、ブレンドによるもののどちらでもよい。
テレフタル酸成分以外の例として、アジピン酸、フタル酸、セバシン酸、ドデカンジカルボン酸、コハク酸、5−ナトリウムスルホイソフタル酸、イソフタル酸、2−カリウムスルホテレフタル酸、2,7−ナフタレンジカルボン酸、1,4−シクロヘキサンジカルボン酸、4,4’−ジフェニルジカルボン酸、フェニルインダンジカルボン酸、ジフェニルエーテルジカルボン酸等を挙げることができる。
Polyethylene naphthalate may contain a small amount, for example, 0.5 to 3.0 mol% of a terephthalic acid component as an acid component other than naphthalenedicarboxylic acid. Such components may be either copolymerized with polyethylene naphthalate or blended.
Examples other than the terephthalic acid component include adipic acid, phthalic acid, sebacic acid, dodecanedicarboxylic acid, succinic acid, 5-sodium sulfoisophthalic acid, isophthalic acid, 2-potassium sulfoterephthalic acid, 2,7-naphthalenedicarboxylic acid, 1 , 4-cyclohexanedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, phenylindanedicarboxylic acid, diphenyletherdicarboxylic acid and the like.

ポリエチレンナフタレートのエステル交換反応、重縮合反応に使用する触媒としては、チタン化合物(Ti化合物)、ゲルマニウム化合物(Ge化合物)などが好ましく挙げられる。
またポリエチレンナフタレートは、例えば安息香酸、メトキシポリアルキレングリコール等の一部官能性化合物によって末端の水酸基および/またはカルボキシル基の一部または全部を封鎖したものであってもよく、あるいはグリセリン、ペンタエリスリトール、トリメリット酸、ピロメリット酸等のような3官能以上の成分を微小量(実質的に線状のポリマーが得られる範囲)を共重合したものであっても良い。
Preferred examples of the catalyst used for the transesterification and polycondensation reactions of polyethylene naphthalate include titanium compounds (Ti compounds) and germanium compounds (Ge compounds).
Polyethylene naphthalate may be one in which part or all of the terminal hydroxyl groups and / or carboxyl groups are blocked with a partially functional compound such as benzoic acid or methoxypolyalkylene glycol, or glycerin or pentaerythritol. Further, a trifunctional or higher functional component such as trimellitic acid or pyromellitic acid may be copolymerized in a minute amount (a range in which a substantially linear polymer is obtained).

本発明におけるポリエチレンナフタレートの固有粘度は0.48dl/g〜0.95dl/gであることが好ましく、さらに0.50dl/g〜0.90dl/gであることが好ましい。フィルム製膜前のポリエチレンナフタレートの固有粘度がかかる範囲にあることにより、後述する固有粘度のフィルムを得ることができる。
ここで固有粘度の測定方法として、試料0.6gをオルソクロロフェノール50ml中に加熱溶解した後、一旦冷却させ、その溶液をオストワルド式粘度管を用いて35℃の温度条件で測定した溶液粘度から算出して測定することができる。
The intrinsic viscosity of the polyethylene naphthalate in the present invention is preferably 0.48 dl / g to 0.95 dl / g, and more preferably 0.50 dl / g to 0.90 dl / g. When the intrinsic viscosity of polyethylene naphthalate before film formation is within such a range, a film having an intrinsic viscosity described later can be obtained.
Here, as a method for measuring the intrinsic viscosity, 0.6 g of a sample was dissolved by heating in 50 ml of orthochlorophenol, then cooled once, and the solution was measured from the solution viscosity measured at 35 ° C. using an Ostwald type viscosity tube. It can be calculated and measured.

本発明の二軸配向ポリエステルフィルムは、フィルム縦方向(以下、フィルム連続製膜方向、長手方向、MD方向と称することがある)および横方向(以下、幅方向、TD方向と称することがある)に二軸延伸して得られた二軸配向ポリエステルフィルムである。二軸配向されていることにより、ヤング率特性などの機械特性が高く、耐熱性の高いフィルムが得られる。   The biaxially oriented polyester film of the present invention has a film longitudinal direction (hereinafter sometimes referred to as a film continuous film-forming direction, a longitudinal direction, and an MD direction) and a lateral direction (hereinafter sometimes referred to as a width direction and a TD direction). Is a biaxially oriented polyester film obtained by biaxial stretching. By being biaxially oriented, a film having high mechanical properties such as Young's modulus and high heat resistance can be obtained.

さらに本発明の二軸配向ポリエステルフィルムには、製膜時のフィルムの巻取り性や、フィルムの搬送性等を良くするため、必要に応じて有機または無機の粒子を滑剤として含有してもよい。かかる粒子として、炭酸カルシウム、酸化カルシウム、酸化アルミニウム、カオリン、酸化珪素、酸化亜鉛、架橋アクリル樹脂粒子、架橋ポリスチレン樹脂粒子、尿素樹脂粒子、メラミン樹脂粒子、架橋シリコーン樹脂粒子が例示される。また、意匠性の観点から、白色や黒色、また他の色に着色してもよい。   Furthermore, the biaxially oriented polyester film of the present invention may contain organic or inorganic particles as a lubricant as necessary in order to improve film winding property during film formation, film transportability, and the like. . Examples of such particles include calcium carbonate, calcium oxide, aluminum oxide, kaolin, silicon oxide, zinc oxide, crosslinked acrylic resin particles, crosslinked polystyrene resin particles, urea resin particles, melamine resin particles, and crosslinked silicone resin particles. Moreover, you may color in white, black, and another color from a designable viewpoint.

[フィルム固有粘度]
本発明の二軸配向ポリエステルフィルムの固有粘度の下限値は0.45dl/g以上であることが好ましく、さらに好ましくはさらに0.48dl/gである。また本発明の二軸配向ポリエステルフィルムの固有粘度の上限値は0.90dl/gであることが好ましく、さらに好ましくは0.85dl/gである。
[Intrinsic viscosity of film]
The lower limit of the intrinsic viscosity of the biaxially oriented polyester film of the present invention is preferably 0.45 dl / g or more, more preferably 0.48 dl / g. The upper limit of the intrinsic viscosity of the biaxially oriented polyester film of the present invention is preferably 0.90 dl / g, more preferably 0.85 dl / g.

二軸配向ポリエステルフィルムの固有粘度が下限値に満たない場合は機械的強度などが低下し、熱収縮加工を施して得られた成形品が実用上十分な強度を保持できないことがある。一方、二軸配向ポリエステルフィルムの固有粘度が上限値を超えて高くなると、溶融押出が困難になり、また重合時間が長くなることがある。かかるフィルムの固有粘度は、ポリマーと同じ測定方法を用いて求められる。   When the intrinsic viscosity of the biaxially oriented polyester film is less than the lower limit, the mechanical strength and the like are lowered, and the molded product obtained by performing the heat shrinking process may not have a practically sufficient strength. On the other hand, when the intrinsic viscosity of the biaxially oriented polyester film exceeds the upper limit, melt extrusion becomes difficult and the polymerization time may be long. The intrinsic viscosity of such a film is determined using the same measurement method as the polymer.

[フィルム厚み]
本発明の二軸配向ポリエステルフィルムの厚みは25μm以上200μm以下であることが好ましく、用途に応じてさらに好ましいフィルム厚みを選択できる。フィルム厚みが下限値未満になると、フィルムの強度が十分でなく剛性が低いため、取り扱い性に乏しくなることがある。またフィルム厚みが上限値を超えるとフィルムの剛性が強く、取扱い時にごわつくなど効率性が低下することがある。
[Film thickness]
The thickness of the biaxially oriented polyester film of the present invention is preferably 25 μm or more and 200 μm or less, and a more preferable film thickness can be selected depending on the application. If the film thickness is less than the lower limit value, the strength of the film is not sufficient and the rigidity is low, so the handleability may be poor. On the other hand, when the film thickness exceeds the upper limit value, the rigidity of the film is strong, and the efficiency may be lowered, such as being stiff during handling.

[熱収縮率]
本発明の二軸配向ポリエステルフィルムは、180℃、30分間熱処理したときの熱収縮率が縦方向および横方向ともに8%以上であって、かつ155℃、30分間熱処理したときの熱収縮率が縦方向および横方向ともに5%以下である。本発明の二軸配向ポリエステルフィルムは、ポリエチレンナフタレートの熱収縮加工温度にあたる180℃では縦方向、横方向ともに大きな熱収縮性を示す一方、ポリエチレンナフタレートのガラス転移点から加工温度に至る155℃では縦方向、横方向ともに熱収縮率が低く、耐熱寸法安定性が高いことを特徴としている。本発明の二軸配向ポリエステルフィルムがかかる熱収縮率特性を有することにより、フィルムに熱収縮加工を施す際に、熱収縮加工温度に到達するまでは低い熱収縮率でフィルム形状を保持し、熱収縮加工温度で短時間に均一に収縮させることが可能となり、収縮斑やシワなどの外観不良のない、美麗な外観の熱収縮加工を行うことができる。
[Heat shrinkage]
The biaxially oriented polyester film of the present invention has a heat shrinkage rate of 8% or more in both the vertical direction and the horizontal direction when heat-treated at 180 ° C. for 30 minutes, and the heat shrinkage rate when heat-treated at 155 ° C. for 30 minutes. It is 5% or less in both the vertical direction and the horizontal direction. The biaxially oriented polyester film of the present invention exhibits large heat shrinkability in both the machine direction and the transverse direction at 180 ° C., which is the heat shrinkage processing temperature of polyethylene naphthalate, while it reaches 155 ° C. from the glass transition point of polyethylene naphthalate to the processing temperature. Is characterized by low heat shrinkage in both the vertical and horizontal directions and high heat-resistant dimensional stability. When the biaxially oriented polyester film of the present invention has such heat shrinkage characteristics, when the film is subjected to heat shrinkage processing, the film shape is maintained at a low heat shrinkage rate until reaching the heat shrinkage processing temperature. It is possible to uniformly shrink in a short time at the shrinking processing temperature, and it is possible to perform a heat shrinking process with a beautiful appearance without appearance defects such as shrinkage spots and wrinkles.

二軸配向ポリエステルフィルムを180℃で30分間熱処理したときの熱収縮率は、縦方向および横方向ともに8%以上であり、さらに好ましくは10%以上である。180℃での縦方向および横方向の熱収縮率が下限値に満たないと熱収縮加工時の収縮が不十分となり、熱収縮加工によって低収縮方向を中心として収縮斑やシワなどが発生したり、両方向とも熱収縮性が不足する場合は目的とする収縮形状に加工できない。
180℃での熱収縮率はかかる範囲内でより大きい方が好ましいが、155℃での熱収縮率特性をも備えるために、上限値は50%以下であることが好ましく、さらには30%以下であることが好ましく、目的とする用途によっては20%以下であってもよい。
The heat shrinkage rate when the biaxially oriented polyester film is heat-treated at 180 ° C. for 30 minutes is 8% or more in the longitudinal direction and the transverse direction, more preferably 10% or more. If the thermal shrinkage rate in the vertical and horizontal directions at 180 ° C is less than the lower limit, the shrinkage during heat shrinkage processing will be insufficient, and shrinkage spots and wrinkles will occur mainly in the low shrinkage direction due to heat shrinkage processing. If the heat shrinkability is insufficient in both directions, it cannot be processed into the desired shrink shape.
The heat shrinkage rate at 180 ° C. is preferably larger within such a range, but the upper limit value is preferably 50% or less, and more preferably 30% or less in order to provide heat shrinkage rate characteristics at 155 ° C. Preferably, it may be 20% or less depending on the intended use.

また、二軸配向ポリエステルフィルムを155℃で30分間熱処理したときの熱収縮率は、縦方向および横方向ともに5%以下であり、さらに好ましくは3%以下である。155℃での縦方向および横方向の熱収縮率が上限値を超えて大きいと、フィルムが熱収縮加工温度に到達するまでの間にフィルム収縮が一部発生し、昇温過程で少しずつ収縮が生じることで収縮斑やシワなどの外観不良が発生する。   Further, the heat shrinkage rate when the biaxially oriented polyester film is heat-treated at 155 ° C. for 30 minutes is 5% or less in both the vertical direction and the horizontal direction, more preferably 3% or less. If the thermal shrinkage in the vertical and horizontal directions at 155 ° C is larger than the upper limit, some film shrinkage will occur before the film reaches the heat shrinking temperature, and it will shrink little by little during the heating process. Occurrence of poor appearance such as shrinkage spots and wrinkles.

155℃および180℃の比較的近い温度において、一方の熱収縮率を小さくし、他方の熱収縮率を大きくするためには、フィルム製膜時の延伸温度および熱固定温度のそれぞれを一定範囲で行うことが必要である。   In order to reduce one thermal shrinkage rate and increase the other thermal shrinkage rate at relatively close temperatures of 155 ° C. and 180 ° C., the stretching temperature and the heat setting temperature during film formation are set within a certain range. It is necessary to do.

このような比較的近い温度で熱収縮特性の大きく異なるフィルムを得る方法は従来知られておらず、例えば特開昭50−133274号公報で用いられている熱固定温度は、ポリエチレンナフタレートのガラス転移点に近い130℃乃至140℃である。この熱固定温度はポリエチレンナフタレートフィルムに対して通常用いられる熱固定温度に較べて非常に低く、フィルムの結晶化度が低いためにフィルムの熱収縮率は大きくなる。しかしながら、その効果は155℃での熱収縮率に対しても180℃での熱収縮率に対しても同様に働くため、どちらの温度とも熱収縮率が大きくなってしまう。
また、ポリエチレンナフタレートフィルムに対して、熱寸法安定性を高めるために通常用いられる熱固定温度は融点に比較的近い温度であり、結晶化度を高めることでフィルムの熱収縮率は小さくなる。しかしながら、その効果は155℃での熱収縮率に対しても180℃での熱収縮率に対しても同様に働くため、どちらの温度とも熱収縮率が小さくなる。
A method for obtaining a film having greatly different heat shrinkage characteristics at such a relatively close temperature has not been known. For example, the heat setting temperature used in JP-A-50-133274 is a glass of polyethylene naphthalate. It is 130 ° C. to 140 ° C. close to the transition point. This heat setting temperature is much lower than the heat setting temperature usually used for polyethylene naphthalate films, and the film has a low degree of crystallinity, so that the heat shrinkage rate of the film increases. However, since the effect works in the same way for the heat shrinkage rate at 155 ° C. and the heat shrinkage rate at 180 ° C., the heat shrinkage rate increases at either temperature.
Further, the heat setting temperature usually used for increasing the thermal dimensional stability of the polyethylene naphthalate film is a temperature relatively close to the melting point, and the heat shrinkage rate of the film is reduced by increasing the crystallinity. However, since the effect works in the same way for the heat shrinkage rate at 155 ° C. and the heat shrinkage rate at 180 ° C., the heat shrinkage rate becomes small at both temperatures.

かかる従来技術に対して、本発明は製膜時の延伸温度を通常よりも低い温度、具体的には110℃〜150℃、好ましくは110℃〜140℃に設定して延伸を行うことでフィルムを十分に配向結晶化させ、さらに熱固定処理を行う温度を185℃〜220℃、好ましくは185℃〜215℃とすることにより、本発明の温度に応じた熱収縮率特性を有する二軸配向ポリエステルフィルムを得ることができる。   In contrast to such a conventional technique, the present invention provides a film by stretching at a temperature lower than usual, specifically 110 ° C. to 150 ° C., preferably 110 ° C. to 140 ° C. Is sufficiently oriented and crystallized, and the temperature at which the heat setting treatment is performed is 185 ° C. to 220 ° C., preferably 185 ° C. to 215 ° C., so that the biaxial orientation having the heat shrinkage characteristic according to the temperature of the present invention is achieved. A polyester film can be obtained.

また、180℃で二軸方向ともに本発明の熱収縮性を得るために、二軸方向ともに一定範囲の延伸倍率で延伸処理を行うことが必要である。具体的な延伸倍率は熱固定温度などにより変動するものの、例えば熱固定温度が185℃の場合は少なくとも縦方向に3.0倍以上、横方向に2.3倍以上の倍率で延伸する方法が挙げられ、熱固定温度が210℃の場合は縦方向に少なくとも3.6倍以上、横方向に2.5倍以上の倍率で延伸する方法が挙げられる。さらに、横延伸を行う前の予熱工程の温度を80℃〜115℃の範囲内でかつ横延伸温度より低くすることにより、縦方向の熱収縮性を減少させることなく横方向に熱収縮性を付与でき、より効率的に縦横方向ともに高い熱収縮性が得られやすい。   Further, in order to obtain the heat shrinkability of the present invention in both biaxial directions at 180 ° C., it is necessary to perform a stretching treatment in a certain range of stretching ratio in both biaxial directions. Although the specific draw ratio varies depending on the heat setting temperature and the like, for example, when the heat setting temperature is 185 ° C., there is a method of drawing at a ratio of at least 3.0 times in the longitudinal direction and 2.3 times or more in the transverse direction. When the heat setting temperature is 210 ° C., there is a method of stretching at a magnification of at least 3.6 times in the longitudinal direction and 2.5 times or more in the transverse direction. Furthermore, by reducing the temperature of the preheating step before the transverse stretching within the range of 80 ° C. to 115 ° C. and lower than the transverse stretching temperature, the heat shrinkability in the transverse direction is reduced without reducing the heat shrinkability in the longitudinal direction. High heat shrinkability can be easily obtained in both the vertical and horizontal directions.

[フィルム破断強度]
本発明における二軸配向ポリエステルフィルムの縦方向の破断強度は280MPa以上であることが好ましく、さらに好ましくは300MPa以上である。
また、本発明における二軸配向ポリエステルフィルムの縦方向の破断強度は横方向の破断強度よりも50MPa以上高いことが好ましく、さらに好ましくは70MPa以上である。
[Film break strength]
The longitudinal breaking strength of the biaxially oriented polyester film in the present invention is preferably 280 MPa or more, more preferably 300 MPa or more.
Further, the breaking strength in the longitudinal direction of the biaxially oriented polyester film in the present invention is preferably 50 MPa or more, more preferably 70 MPa or more than the breaking strength in the transverse direction.

本発明は二軸方向ともに180℃で高収縮性を備えるフィルムであるが、特に逐次二軸延伸法においては縦延伸後に行う横延伸の影響により、横方向の方が熱収縮率が高くなり、縦横方向に収縮差が生じやすい傾向にある。
そのため、縦方向の破断強度が下限値に満たない範囲では縦方向のフィルムの配向結晶化が十分でないために、熱収縮特性が上述の範囲を満たしていても収縮斑やシワ発生に若干の影響を与えることがある。
Although the present invention is a film having high shrinkage at 180 ° C. in both biaxial directions, particularly in the sequential biaxial stretching method, due to the influence of transverse stretching performed after longitudinal stretching, the thermal shrinkage rate is higher in the lateral direction. There is a tendency that a difference in shrinkage tends to occur in the vertical and horizontal directions.
Therefore, in the range where the longitudinal breaking strength is less than the lower limit, the orientational crystallization of the longitudinal film is not sufficient, so even if the heat shrinkage characteristics satisfy the above range, there is a slight effect on shrinkage spots and wrinkle generation. May give.

縦方向の破断強度特性を得る方法として、逐次二軸延伸フィルムの場合は、最初の延伸工程、すなわち縦方向に延伸する際に110℃〜150℃、好ましくは110℃〜140℃の延伸温度で縦方向に十分に大きな延伸倍率で延伸を行うことが好ましい。好ましい縦方向の延伸倍率は熱固定温度に応じて変動するが、例えば熱固定温度が185℃の場合には縦方向に3.5倍以上の延伸倍率で延伸することが好ましい。   As a method for obtaining the breaking strength characteristics in the longitudinal direction, in the case of a sequential biaxially stretched film, the first stretching step, that is, at a stretching temperature of 110 ° C. to 150 ° C., preferably 110 ° C. to 140 ° C., when stretched in the longitudinal direction. It is preferable to perform stretching at a sufficiently large stretching ratio in the longitudinal direction. The preferred stretching ratio in the machine direction varies depending on the heat setting temperature. For example, when the heat setting temperature is 185 ° C., it is preferably stretched at a stretching ratio of 3.5 times or more in the machine direction.

また、縦方向の破断強度が横方向の破断強度よりも高いことにより、縦方向のフィルムの配向を横のそれよりも十分に高くすることでき、熱収縮特性以外に由来する若干の収縮斑やシワ発生を抑制することができる。
本発明における二軸配向ポリエステルフィルムの縦方向の破断強度や横方向の破断強度は、上述の関係が満たされていれば、その範囲内で強度が高い場合は特に限度はない。しかしながら、横方向の破断強度が200MPaを下回ると、パッケージをする際やパッケージされた包装体の輸送時に機械的強度が不足することがあり、破れなどが生じることがあるため、横方向の破断強度は200MPa以上であることが好ましい。
In addition, since the longitudinal breaking strength is higher than the transverse breaking strength, the orientation of the film in the longitudinal direction can be sufficiently higher than that in the transverse direction, and some shrinkage spots derived from other than the heat shrinkage characteristics Wrinkle generation can be suppressed.
The longitudinal direction breaking strength and the transverse direction breaking strength of the biaxially oriented polyester film in the present invention are not particularly limited as long as the above relationship is satisfied and the strength is high within the range. However, when the breaking strength in the lateral direction is less than 200 MPa, the mechanical strength may be insufficient when packaging or transporting the packaged package, and tearing may occur. Is preferably 200 MPa or more.

また縦方向と横方向の破断強度差をかかる範囲にするためには、縦横方向の延伸温度を上述の範囲にし、縦方向の延伸倍率を横方向の延伸倍率よりも大きくすること、例えば185℃の熱固定温度では縦方向の延伸倍率を横方向の延伸倍率より0.3倍以上大きくすることによって得ることができる。   Further, in order to make the difference between the breaking strengths in the longitudinal direction and the transverse direction, the stretching temperature in the longitudinal and transverse directions is set in the above-mentioned range, and the stretching ratio in the longitudinal direction is made larger than the stretching ratio in the transverse direction, for example, 185 ° C. Can be obtained by making the longitudinal draw ratio 0.3 times or more larger than the transverse draw ratio.

[ヤング率]
本発明における二軸配向ポリエステルフィルムの縦方向のヤング率は横方向のヤング率よりも500MPa以上高いことが好ましく、さらに好ましくは700MPa以上である。
縦方向と横方向のヤング率差が下限値より低いと、縦方向のフィルムの配向結晶化が十分でないため、収縮斑やシワ発生に若干の影響を与えることがある。かかるヤング率特性を得るためにはフィルム破断強度と同じ方法を用いればよい。
[Young's modulus]
The Young's modulus in the longitudinal direction of the biaxially oriented polyester film in the present invention is preferably higher than the Young's modulus in the transverse direction by 500 MPa or more, more preferably 700 MPa or more.
If the Young's modulus difference between the vertical direction and the horizontal direction is lower than the lower limit value, the orientational crystallization of the film in the vertical direction is not sufficient, which may slightly affect shrinkage spots and wrinkles. In order to obtain such Young's modulus characteristics, the same method as the film breaking strength may be used.

[融解サブピーク温度]
本発明における二軸配向ポリエステルフィルムの融解サブピーク温度(Tsm)は170℃以上210℃以下であることが好ましく、さらに好ましくは170℃以上205℃以下である。
融解サブピーク温度とは、示差走査熱量計測定による結晶融解前に現れる微小吸熱ピークであり、この融解サブピーク(Tsm)はフィルムの熱固定温度に相当する温度に微小ピークとして観測され、熱固定処理で形成された結晶構造のうち不完全な部分(擬結晶)が融解するために生じるものである。融解サブピーク温度がかかる範囲にあることによって、本発明の155℃および180℃での熱収縮率特性を得ることができる。
[Melting subpeak temperature]
The melting sub-peak temperature (Tsm) of the biaxially oriented polyester film in the present invention is preferably 170 ° C. or higher and 210 ° C. or lower, more preferably 170 ° C. or higher and 205 ° C. or lower.
The melting subpeak temperature is a minute endothermic peak that appears before crystal melting by differential scanning calorimetry, and this melting subpeak (Tsm) is observed as a minute peak at a temperature corresponding to the heat fixing temperature of the film. This is because an incomplete portion (pseudocrystal) of the formed crystal structure is melted. When the melting subpeak temperature is within such a range, the heat shrinkage characteristics at 155 ° C. and 180 ° C. of the present invention can be obtained.

かかる融解サブピークを得るためには、フィルム製膜方法で述べた範囲の熱固定温度で熱固定処理を行えばよい。融解サブピークが下限値未満だと、155℃などの低い温度領域の熱収縮率が高くなり、フィルムが熱収縮加工温度に到達するまでの間にフィルム収縮が一部発生しやすくなる。他方、融解サブピークが上限値を超えると、180℃の温度での熱収縮率が低くなり、熱収縮性を利用した包装を効率良く行うことができない。   In order to obtain such a melting subpeak, a heat setting treatment may be performed at a heat setting temperature in the range described in the film forming method. If the melting sub-peak is less than the lower limit value, the heat shrinkage rate in a low temperature region such as 155 ° C. becomes high, and part of the film shrinkage tends to occur before the film reaches the heat shrinking processing temperature. On the other hand, if the melting subpeak exceeds the upper limit value, the heat shrinkage rate at a temperature of 180 ° C. becomes low, and packaging using heat shrinkability cannot be performed efficiently.

[フィルム製造方法]
本発明の二軸配向ポリエステルフィルムの製造方法として、例えば十分に乾燥させたポリエチレンナフタレート樹脂組成物を樹脂の融点〜(融点+70℃)の範囲の温度で溶融押し出し、キャスティングドラム上で急冷して未延伸フィルムとし、ついで該未延伸フィルムを縦方向および横方向に逐次二軸延伸または同時二軸延伸し、熱固定する方法が挙げられる。
[Film production method]
As a method for producing the biaxially oriented polyester film of the present invention, for example, a sufficiently dried polyethylene naphthalate resin composition is melt-extruded at a temperature in the range of the melting point of the resin to (melting point + 70 ° C.) and rapidly cooled on a casting drum. Examples thereof include a method in which an unstretched film is obtained, and then the unstretched film is successively biaxially or simultaneously biaxially stretched in the machine direction and the transverse direction, and heat-set.

二軸延伸は逐次二軸延伸が好ましく、その際、未延伸フィルムを縦方向に110℃〜150℃で3.0倍〜5.5倍延伸し、次いでステンターにて横方向に110℃〜150℃で2.3〜4.0倍延伸し、その後185℃〜220℃、より好ましくは185℃〜215℃の温度で緊張下又は制限収縮下で熱固定するのが好ましい。また熱固定時間は10〜30秒が好ましい。縦延伸を行うときの加熱媒体はロール温度で設定してもよく、フィルム上方に赤外線などのヒーターを設置して加熱してもよい。   Biaxial stretching is preferably sequential biaxial stretching, in which case an unstretched film is stretched 3.0 to 5.5 times in the longitudinal direction at 110 ° C. to 150 ° C., and then 110 to 150 ° C. in the lateral direction with a stenter. It is preferable that the film is stretched by 2.3 to 4.0 times at 0 ° C., and then heat-set at a temperature of 185 ° C. to 220 ° C., more preferably 185 ° C. to 215 ° C. under tension or limited shrinkage. The heat setting time is preferably 10 to 30 seconds. The heating medium for longitudinal stretching may be set at the roll temperature, or may be heated by installing a heater such as infrared rays above the film.

また、縦延伸工程の後、ステンター内で最初に温度がかかる予熱工程の温度を80℃〜115℃の範囲とする方が横延伸する際に均等に横延伸をすることができるので好ましく、また該予熱工程の温度をかかる範囲内で横方向に延伸する際の温度よりも低くする方が、縦方向の配向を減少させることなく横延伸することが可能となり、縦横方向ともに高い熱収縮性が得やすくなる。   In addition, after the longitudinal stretching step, it is preferable that the temperature of the preheating step in which the temperature is first applied in the stenter is in the range of 80 ° C. to 115 ° C., since the lateral stretching can be performed uniformly, If the temperature of the preheating step is lower than the temperature at which the film is stretched in the transverse direction within such a range, it becomes possible to stretch the film without reducing the orientation in the machine direction, and high heat shrinkability in both the machine and transverse directions. It becomes easy to obtain.

同時二軸延伸の場合も上記逐次二軸延伸の延伸温度、延伸倍率、熱固定温度などを適用することができる。また必要に応じて二軸延伸したフィルムをさらに縦方向および/または横方向に再延伸する、いわゆる3段延伸法、4段延伸法により製造することもできる。その際、それぞれの方向の延伸倍率の合計が上記の範囲となるように調整することが好ましい。   In the case of simultaneous biaxial stretching, the stretching temperature, stretching ratio, heat setting temperature, etc. of the sequential biaxial stretching can be applied. If necessary, the biaxially stretched film can be further produced by a so-called three-stage stretching method or four-stage stretching method in which the film is re-stretched in the machine direction and / or the transverse direction. In that case, it is preferable to adjust so that the sum total of the draw ratio of each direction may become said range.

以下、実施例により本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、各特性値は以下の方法で測定した。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example. Each characteristic value was measured by the following method.

(1)固有粘度
フィルム0.6gをオルソクロロフェノール50ml中に加熱溶解した後、一旦冷却させ、遠心分離機により滑剤等の無機物を取り除き、その溶液をオストワルド式粘度管を用いて35℃の温度条件で測定した溶液粘度から算出した。また、樹脂の固有粘度を測定する場合は、樹脂をサンプリングし、上記の方法で測定して求めた。
(1) Intrinsic viscosity After 0.6 g of film was dissolved in 50 ml of orthochlorophenol by heating, it was once cooled, and inorganic substances such as lubricant were removed by a centrifuge, and the solution was heated to a temperature of 35 ° C. using an Ostwald viscosity tube. It calculated from the solution viscosity measured on condition. When measuring the intrinsic viscosity of the resin, the resin was sampled and measured by the above method.

(2)融解サブピーク温度(Tsm)
セイコ−電子工業(株)製DSC220を用い、昇温速度20℃/分でDSC曲線を描かせ、融解による明瞭な吸熱ピークより低温側の吸熱ピークを融解サブピーク温度とした。また、融解サブピークが結晶融解ピークに近接しピークとして明瞭でない場合には、DSC曲線の2次微分曲線が0となる点をサブピーク温度とした。
(2) Melting sub-peak temperature (Tsm)
A DSC curve was drawn at a rate of temperature increase of 20 ° C./min using a DSC220 manufactured by Seiko Denshi Kogyo Co., Ltd., and an endothermic peak at a lower temperature side than a clear endothermic peak due to melting was defined as a melting subpeak temperature. In addition, when the melting sub-peak was close to the crystal melting peak and was not clear as a peak, the point where the second derivative curve of the DSC curve was 0 was defined as the sub-peak temperature.

(3)フィルム厚み
フィルムサンプルをエレクトリックマイクロメーター(アンリツ製K−402B)にて、10点厚みを測定し、平均値をフィルム厚みとした。
(3) Film thickness Ten-point thickness was measured for the film sample with an electric micrometer (K-402B manufactured by Anritsu), and the average value was defined as the film thickness.

(4)フィルム熱収縮率
二軸配向フィルムの縦方向および横方向がマーキングされ、あらかじめ正確な長さを測定した長さ30cm四方のフィルムを、測定したい温度に設定されたオーブン中に無荷重で入れ、必要な時間だけ静置した後に取り出し、室温に戻してからその寸法変化を読み取る。
熱処理前の長さ(L)と熱処理による寸法変化量(ΔL)より、次式(1)に従って縦方向および横方向の熱収縮率をそれぞれ求めた。各方向の熱収縮率はそれぞれサンプル数n=5で評価を行い、その平均値を用いた。今回、155℃で30分間の条件と、180℃で30分間の2条件について、それぞれ上記の方法で測定を行った。
熱収縮率(%)=(ΔL/L)×100 ・・・(1)
(4) Film heat shrinkage The longitudinal direction and the transverse direction of the biaxially oriented film are marked, and a 30 cm long film whose exact length has been measured in advance is placed in an oven set at the temperature to be measured with no load. Put it in, let it stand for the required time, take it out, return it to room temperature, and read its dimensional change.
From the length (L 0 ) before the heat treatment and the dimensional change (ΔL) due to the heat treatment, the thermal shrinkage rates in the vertical direction and the horizontal direction were obtained according to the following formula (1). The thermal contraction rate in each direction was evaluated with the number of samples n = 5, and the average value was used. This time, the measurement was performed by the above method for two conditions of 155 ° C. for 30 minutes and 180 ° C. for 30 minutes.
Thermal contraction rate (%) = (ΔL / L 0 ) × 100 (1)

(5)フィルム破断強度
フィルム破断強度は、引張試験機(東洋ボールドウィン社製、商品名「テンシロン」)を用いて、温度20℃、湿度50%に調節された室内において測定した。サンプルフィルムを幅10mm、長さ150mmに切り出し、チャック間100mmでサンプルを装着し、JIS−C2318 5.3.3に従って引張速度100mm/minの条件で引張試験を行い、破断時の荷伸曲線の荷重を読み取った。破断強度は破断時の荷重を引張前のサンプル断面積で割って算出(単位;MPa)した。なお、縦方向の破断強度とはフィルムの縦方向を測定方向としたものであり、横方向の破断強度とはフィルムの横方向を測定方向としたものである。各破断強度はそれぞれサンプル数n=10で評価を行い、その平均値を用いた。
(5) Film breaking strength The film breaking strength was measured in a room adjusted to a temperature of 20 ° C. and a humidity of 50% using a tensile tester (trade name “Tensilon” manufactured by Toyo Baldwin). A sample film was cut to a width of 10 mm and a length of 150 mm, a sample was mounted at a chuck distance of 100 mm, a tensile test was performed at a tensile speed of 100 mm / min in accordance with JIS-C2318 5.3.3, and the load elongation curve at break The load was read. The breaking strength was calculated (unit: MPa) by dividing the load at break by the sample cross-sectional area before tension. The longitudinal breaking strength means that the longitudinal direction of the film is the measuring direction, and the transverse breaking strength means that the transverse direction of the film is the measuring direction. Each breaking strength was evaluated with the number of samples n = 10, and the average value was used.

(6)フィルムヤング率
フィルムヤング率は、引張試験機(東洋ボールドウィン社製、商品名「テンシロン」)を用いて、温度20℃、湿度50%に調節された室内において、サンプルフィルムを幅10mm、長さ150mmに切り出し、チャック間100mm、引張速度10mm/min、チャート速度500mm/minで引張り、得られる荷重―伸び曲線の立ち上り部の接線より求めた。なお、縦方向のヤング率とはフィルムの縦方向を測定方向としたものであり、横方向のヤング率とはフィルムの横方向を測定方向としたものである。各ヤング率はそれぞれサンプル数n=10で評価を行い、その平均値を用いた。
(6) Film Young's modulus The film Young's modulus was measured using a tensile tester (trade name “Tensilon” manufactured by Toyo Baldwin Co., Ltd.) in a room adjusted to a temperature of 20 ° C. and a humidity of 50%. It was cut out to a length of 150 mm, pulled at a chuck distance of 100 mm, a tensile speed of 10 mm / min, and a chart speed of 500 mm / min, and obtained from the tangent of the rising portion of the resulting load-elongation curve. Note that the Young's modulus in the longitudinal direction is the direction in which the longitudinal direction of the film is measured, and the Young's modulus in the lateral direction is that in which the lateral direction of the film is the measuring direction. Each Young's modulus was evaluated with the number of samples n = 10, and the average value was used.

(7)シュリンクチューブによる熱収縮加工安定性
フィルムロールを全長に亘って幅273mmにスリットして、再びロール状に巻き回し、温度30±1℃、相対湿度85±2%に制御した環境内に250時間保管した。チューブ成型装置を用い、フィルムの両スリット端のうち片端に、端縁部分には付着しないようにして、1,3−ジオキソランを2±1mm幅で片面塗布し(塗布量:3.0±0.3g/mm)、直ちにフィルムを折り曲げて両スリット端部を重ね合わせて接着し、チューブに加工した(加工速度:80mm/分)。このチューブを平らに潰した状態で巻き取ってチューブロールを作製した。前記、チューブロールを切断し、長さ100mのチューブを10本作成した。10本の100mチューブのうち7本を、間隔16cmで裁断することによって、フルラベル用の熱収縮性ラベルを作製した。
得られた熱収縮性フルラベル全量に対して、以下の熱収縮加工安定性評価を行った。すなわち、容量300mlの密栓可能なガラス瓶に熱収縮性フィルムラベルを装着して、ケーユーシステム社製の熱風トンネル(型式:MS−8452)に、トンネル通過時間10秒、炉内温度180℃の条件で通過させ、前記ガラス瓶の側面全体と栓の一部までを前記熱収縮性フルラベルで被覆した。
熱収縮加工後のフルラベルについて、目視により、シワの発生、収縮斑、収縮不足の有無を判断し、以下の基準で評価を行った。
○: いずれの不具合(シワの発生、収縮斑、収縮不足)も発生していない
△: 目視では判断がばらつく程度の軽微な不具合(シワの発生、収縮斑、収縮不足)である
×: 明確に不具合(シワの発生、収縮斑、収縮不足)が1つ以上見られる
(7) Heat shrink processing stability by shrink tube The film roll is slit to a width of 273 mm over the entire length, wound again in a roll shape, and controlled in a temperature of 30 ± 1 ° C. and a relative humidity of 85 ± 2%. Stored for 250 hours. Using a tube molding device, one side of 1,3-dioxolane was applied with a width of 2 ± 1 mm so as not to adhere to one end of both slit ends of the film (coating amount: 3.0 ± 0). 3 g / mm 2 ), the film was immediately folded and the ends of both slits were superposed and bonded, and processed into a tube (processing speed: 80 mm / min). The tube was wound up in a flattened state to produce a tube roll. The tube roll was cut to prepare 10 tubes having a length of 100 m. A heat-shrinkable label for a full label was produced by cutting 7 out of 10 100 m tubes at an interval of 16 cm.
The following heat-shrinking processing stability evaluation was performed on the total amount of the heat-shrinkable full label obtained. In other words, a heat-shrinkable film label is attached to a glass bottle with a capacity of 300 ml, and the hot air tunnel (model: MS-8442) manufactured by KE SYSTEM Co., Ltd. is used with a tunnel passage time of 10 seconds and a furnace temperature of 180 ° C. The entire side surface of the glass bottle and a part of the stopper were covered with the heat-shrinkable full label.
About the full label after heat shrink processing, the presence or absence of generation | occurrence | production of wrinkles, shrinkage spots, and shrinkage | contraction insufficient was judged visually, and the following references | standards evaluated.
○: None of the defects (wrinkles, contraction spots, insufficient contraction) △: Minor defects (wrinkles, contraction spots, insufficient contraction) to the extent that the visual judgment varies ×: Clearly 1 or more defects (wrinkles, contraction spots, insufficient contraction)

(参考例1) ポリエチレン−2,6−ナフタレート(PEN)の製造
2,6−ナフタレンジカルボン酸ジメチル100部、エチレングリコール60部をエステル交換触媒として酢酸マンガン四水塩0.03部を使用し、滑剤として平均粒径0.5μmの炭酸カルシウム粒子をポリエチレン−2,6−ナフタレンジカルボキシレート樹脂組成物の重量を基準として0.25重量%含有するように添加して、常法に従ってエステル交換反応をさせた後、トリエチルホスホノアセテート0.042部を添加し実質的にエステル交換反応を終了させた。ついで、三酸化アンチモン0.024部を添加し、引き続き高温、高真空下で常法にて重合反応を行い、固有粘度0.60dl/gのポリエチレン−2,6−ナフタレート(PEN)を得た。
(Reference Example 1) Production of polyethylene-2,6-naphthalate (PEN) Using 100 parts of dimethyl 2,6-naphthalenedicarboxylate and 60 parts of ethylene glycol as a transesterification catalyst using 0.03 part of manganese acetate tetrahydrate, As a lubricant, calcium carbonate particles having an average particle diameter of 0.5 μm are added so as to contain 0.25% by weight based on the weight of the polyethylene-2,6-naphthalenedicarboxylate resin composition, and transesterification is performed according to a conventional method. Then, 0.042 part of triethylphosphonoacetate was added to substantially complete the transesterification reaction. Subsequently, 0.024 part of antimony trioxide was added, and then a polymerization reaction was carried out by a conventional method under high temperature and high vacuum to obtain polyethylene-2,6-naphthalate (PEN) having an intrinsic viscosity of 0.60 dl / g. .

(参考例2) ポリエチレンテレフタレート(PET)の製造
エステル交換反応容器にテレフタル酸ジメチルを100重量部、エチレングリコールを60重量部、酢酸マグネシウム四水塩を0.06重量部仕込み、滑剤として平均粒径0.2μmの球状シリカ粒子をポリエチレンテレフタレート樹脂組成物の重量を基準として0.06重量%含有するように添加して、150℃に加熱して溶融し撹拌した。反応容器内温度をゆっくりと235℃まで昇温しながら反応を進め、生成するメタノールを反応容器外へ留出させた。メタノールの留出が終了したらフェニルホスホン酸を添加し、エステル交換反応を終了させた。その後反応物を重縮合装置に移行し、酸化アンチモンを添加した。ついで重合装置内の温度を235℃から290℃まで90分かけて昇温し、同時に装置内の圧力を大気圧から100Paまで90分かけて減圧した。重合装置内容物の撹拌トルクが所定の値に達したら装置内を窒素ガスで大気圧に戻して重合を終了した。重合装置下部のバルブを開いて重合装置内部を窒素ガスで加圧し、重合の完了したポリエチレンテレフタレートをストランド状にしてチップ化した。このようにして固有粘度が0.60dl/gであるポリエチレンテレフタレート(PET)のポリマーを得た。
(Reference Example 2) Production of polyethylene terephthalate (PET) 100 parts by weight of dimethyl terephthalate, 60 parts by weight of ethylene glycol and 0.06 parts by weight of magnesium acetate tetrahydrate were charged into a transesterification reaction vessel, and the average particle size was used as a lubricant. 0.2 μm spherical silica particles were added so as to contain 0.06 wt% based on the weight of the polyethylene terephthalate resin composition, heated to 150 ° C., melted and stirred. The reaction was advanced while the temperature inside the reaction vessel was slowly raised to 235 ° C., and the methanol produced was distilled out of the reaction vessel. When the distillation of methanol was completed, phenylphosphonic acid was added to complete the transesterification reaction. Thereafter, the reaction product was transferred to a polycondensation apparatus, and antimony oxide was added. Subsequently, the temperature in the polymerization apparatus was raised from 235 ° C. to 290 ° C. over 90 minutes, and at the same time, the pressure in the apparatus was reduced from atmospheric pressure to 100 Pa over 90 minutes. When the stirring torque of the contents of the polymerization apparatus reached a predetermined value, the interior of the apparatus was returned to atmospheric pressure with nitrogen gas to complete the polymerization. The valve | bulb of the polymerization apparatus lower part was opened, the inside of the polymerization apparatus was pressurized with nitrogen gas, and the polyethylene terephthalate which superposed | polymerized was made into a strand form, and was chipped. In this way, a polyethylene terephthalate (PET) polymer having an intrinsic viscosity of 0.60 dl / g was obtained.

[実施例1]
参考例1の方法で得たポリエチレン−2,6−ナフタレートポリマーを180℃で5時間乾燥させた後、押出機に供給し、溶融温度300℃で溶融し、ダイスリットより押出した後、表面温度55℃に設定したキャスティングドラム上で冷却固化させて未延伸フィルムを作成した。このようにして得られた未延伸フィルムを130℃に予熱し、低速ローラーと高速ローラーの間で15mm上方より800℃の表面温度の赤外線ヒーター1本にてフィルムを130℃に加熱して縦方向に4.0倍に延伸した。続いてステンターに供給し、90℃の予熱温度の工程を通った後、130℃にて横方向に3.0倍に延伸した。得られた二軸配向フィルムを185℃の温度で30秒間熱固定し、100μm厚みの二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの特性を上記の方法で評価し、その結果を表1に示した。
[Example 1]
After the polyethylene-2,6-naphthalate polymer obtained by the method of Reference Example 1 is dried at 180 ° C. for 5 hours, it is supplied to an extruder, melted at a melting temperature of 300 ° C., and extruded from a die slit. An unstretched film was prepared by cooling and solidifying on a casting drum set at a temperature of 55 ° C. The unstretched film thus obtained is preheated to 130 ° C., and the film is heated to 130 ° C. with a single infrared heater having a surface temperature of 800 ° C. from above 15 mm between the low speed roller and the high speed roller. The film was stretched 4.0 times. Then, after supplying to a stenter and passing through the process of the preheating temperature of 90 degreeC, it extended | stretched 3.0 times in the horizontal direction at 130 degreeC. The obtained biaxially oriented film was heat-fixed at a temperature of 185 ° C. for 30 seconds to obtain a biaxially oriented polyester film having a thickness of 100 μm. The characteristics of the obtained biaxially oriented polyester film were evaluated by the above method, and the results are shown in Table 1.

[実施例2]
実施例1において、延伸倍率を表1に記載した条件に変更し、熱固定温度を190℃に変更した以外は実施例1と同様にし、二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの特性を表1に示す。
[Example 2]
A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the draw ratio in Example 1 was changed to the conditions described in Table 1 and the heat setting temperature was changed to 190 ° C. The characteristics of the obtained biaxially oriented polyester film are shown in Table 1.

[実施例3〜5]
実施例1において、延伸倍率及び熱固定温度、フィルムの厚みを変更した以外は実施例1と同様にし、二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの特性を表1に示す。
[Examples 3 to 5]
In Example 1, a biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the draw ratio, the heat setting temperature, and the film thickness were changed. The characteristics of the obtained biaxially oriented polyester film are shown in Table 1.

[比較例1]
参考例2の方法で得たPETポリマーを、回転式真空乾燥機にて170℃で3時間乾燥した後、押出機に供給し280℃で溶融押出し、ダイよりシート状に成形した。このシートを表面温度20℃の冷却ドラムで冷却固化した未延伸フィルムを100℃にて縦方向に3.4倍延伸し、25℃のロール群で冷却した。続いて、縦延伸したフィルムの両端をクリップで保持しながらテンターに導き130℃に加熱された雰囲気中で長手に垂直な方向(横方向)に3.4倍延伸した。その後テンター内で160℃に加熱された雰囲気中で約20秒間熱固定を行い、室温まで冷やして二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの特性を上記の方法で評価し、その結果を表1に示した。
[Comparative Example 1]
The PET polymer obtained by the method of Reference Example 2 was dried in a rotary vacuum dryer at 170 ° C. for 3 hours, then supplied to the extruder, melt extruded at 280 ° C., and formed into a sheet form from a die. An unstretched film obtained by cooling and solidifying this sheet with a cooling drum having a surface temperature of 20 ° C. was stretched 3.4 times in the longitudinal direction at 100 ° C., and cooled with a roll group at 25 ° C. Subsequently, while holding both ends of the longitudinally stretched film with a clip, the film was stretched 3.4 times in the direction perpendicular to the longitudinal direction (lateral direction) in an atmosphere heated to 130 ° C. while being guided to a tenter. Thereafter, heat setting was performed for about 20 seconds in an atmosphere heated to 160 ° C. in a tenter, and the mixture was cooled to room temperature to obtain a biaxially oriented polyester film. The characteristics of the obtained biaxially oriented polyester film were evaluated by the above method, and the results are shown in Table 1.

[比較例2〜4]
実施例1において、延伸倍率及び熱固定温度、フィルムの厚みを変更した以外は実施例1と同様にし、二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの特性を表1に示す。
[Comparative Examples 2 to 4]
In Example 1, a biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the draw ratio, the heat setting temperature, and the film thickness were changed. The characteristics of the obtained biaxially oriented polyester film are shown in Table 1.

Figure 2012171328
Figure 2012171328

PEN: ポリエチレンナフタレート
PET: ポリエチレンテレフタレート
PEN: Polyethylene naphthalate PET: Polyethylene terephthalate

本発明の二軸配向ポリエステルフィルムは、耐熱性が高く、さらに熱収縮加工時に収縮斑やシワなどの外観不良なく二軸方向に熱収縮加工を施すことができることから、耐熱性および外観性が必要とされる包装用、電気絶縁用、成形加工用などの熱収縮性フィルムを提供することができる。   The biaxially oriented polyester film of the present invention has high heat resistance, and since heat shrink processing can be performed in the biaxial direction without appearance defects such as shrinkage spots and wrinkles during heat shrink processing, heat resistance and appearance are required. It is possible to provide a heat-shrinkable film for packaging, electrical insulation, molding and the like.

Claims (6)

ポリエチレンナフタレートを主たる構成成分とするフィルムであって、180℃、30分間熱処理したときの熱収縮率が縦方向および横方向ともに8%以上であって、かつ155℃、30分間熱処理したときの熱収縮率が縦方向および横方向ともに5%以下であることを特徴とする二軸配向ポリエステルフィルム。   A film comprising polyethylene naphthalate as a main constituent, the heat shrinkage rate when heat-treated for 30 minutes at 180 ° C. is 8% or more in both the vertical and horizontal directions, and when heat-treated for 30 minutes at 155 ° C. A biaxially oriented polyester film having a heat shrinkage ratio of 5% or less in both the longitudinal and transverse directions. 縦方向の破断強度が280MPa以上であって、縦方向の破断強度が横方向の破断強度よりも50MPa以上高い請求項1記載の二軸配向ポリエステルフィルム。   The biaxially oriented polyester film according to claim 1, wherein the breaking strength in the longitudinal direction is 280 MPa or more, and the breaking strength in the longitudinal direction is 50 MPa or more higher than the breaking strength in the transverse direction. 縦方向のヤング率が横方向のヤング率よりも500MPa以上高い請求項1または2に記載の二軸配向ポリエステルフィルム。   The biaxially oriented polyester film according to claim 1 or 2, wherein the Young's modulus in the longitudinal direction is 500 MPa or more higher than the Young's modulus in the transverse direction. 該フィルムの融解サブピーク温度(Tsm)が170℃以上210℃以下である請求項1〜3のいずれかに記載の二軸配向ポリエステルフィルム。   The biaxially oriented polyester film according to any one of claims 1 to 3, wherein a melting subpeak temperature (Tsm) of the film is 170 ° C or higher and 210 ° C or lower. フィルム厚みが25μm以上200μm以下である請求項1〜4のいずれかに記載の二軸配向ポリエステルフィルム。   The biaxially oriented polyester film according to any one of claims 1 to 4, wherein the film thickness is 25 µm or more and 200 µm or less. 該フィルムの固有粘度が0.48dl/g以上である請求項1〜5のいずれかに記載の二軸配向ポリエステルフィルム。   The biaxially oriented polyester film according to any one of claims 1 to 5, wherein the intrinsic viscosity of the film is 0.48 dl / g or more.
JP2011038398A 2011-02-24 2011-02-24 Biaxially-oriented polyester film Withdrawn JP2012171328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011038398A JP2012171328A (en) 2011-02-24 2011-02-24 Biaxially-oriented polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011038398A JP2012171328A (en) 2011-02-24 2011-02-24 Biaxially-oriented polyester film

Publications (1)

Publication Number Publication Date
JP2012171328A true JP2012171328A (en) 2012-09-10

Family

ID=46974649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011038398A Withdrawn JP2012171328A (en) 2011-02-24 2011-02-24 Biaxially-oriented polyester film

Country Status (1)

Country Link
JP (1) JP2012171328A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156879A1 (en) * 2013-03-28 2014-10-02 富士フイルム株式会社 Polarizing plate and image display device
JPWO2020090552A1 (en) * 2018-10-31 2021-02-15 Jfeスチール株式会社 Metal plate coating film and resin coated metal plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156879A1 (en) * 2013-03-28 2014-10-02 富士フイルム株式会社 Polarizing plate and image display device
JP2014209162A (en) * 2013-03-28 2014-11-06 富士フイルム株式会社 Polarizing plate and image display device
CN105103014A (en) * 2013-03-28 2015-11-25 富士胶片株式会社 Polarizing plate and image display device
JPWO2020090552A1 (en) * 2018-10-31 2021-02-15 Jfeスチール株式会社 Metal plate coating film and resin coated metal plate

Similar Documents

Publication Publication Date Title
KR102459356B1 (en) Heat-shrinkable polyester film and packaging material
JP5240387B1 (en) Heat-shrinkable polyester film and package
JP5633808B2 (en) Heat-shrinkable polyester film, method for producing the same, and package
JP5664548B2 (en) Heat-shrinkable polyester film, its package, and method for producing heat-shrinkable polyester film
JP7070727B2 (en) Heat shrinkable polyester film
JP6485054B2 (en) Heat-shrinkable polyester film and package
CA2944367C (en) Heat-shrinkable polyester film and package
JPWO2018198845A1 (en) Polyester resin for heat shrinkable film, heat shrinkable film, heat shrinkable label, and package
JP6927124B2 (en) Heat shrinkable polyester film
JP5408250B2 (en) Heat-shrinkable polyester film, method for producing the same, and package
JP6244915B2 (en) Heat-shrinkable polyester film
JP2019147954A (en) Heat-shrinkable polyester-based film, and package
JPWO2016067658A1 (en) Heat-shrinkable polyester film and package
CN107921698B (en) Heat-shrinkable polyester film and package
JP2015229242A (en) Heat-shrinkable polyester film and package
JP2023155502A (en) Heat-shrinkable polyester-based film roll
JP2001288283A (en) Heat-shrinkable polyester film
JP6988440B2 (en) Heat-shrinkable polyester film with excellent heat-sealing properties
JP2012171328A (en) Biaxially-oriented polyester film
JP6740577B2 (en) Heat-shrinkable polyester film and package
JP4239446B2 (en) Heat-shrinkable polyethylene terephthalate film
JP6888702B2 (en) Heat shrinkable polyester film and packaging
JP6673453B2 (en) Heat-shrinkable polyester film and package
JP2004002828A (en) Heat-shrinkable polyester-based film
WO2020246420A1 (en) Heat-shrinkable polyester film having longitudinal (lengthwise) direction as main shrinkage direction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131115

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20140425