JPH03224723A - Heat-shrinkable tube - Google Patents

Heat-shrinkable tube

Info

Publication number
JPH03224723A
JPH03224723A JP9929690A JP9929690A JPH03224723A JP H03224723 A JPH03224723 A JP H03224723A JP 9929690 A JP9929690 A JP 9929690A JP 9929690 A JP9929690 A JP 9929690A JP H03224723 A JPH03224723 A JP H03224723A
Authority
JP
Japan
Prior art keywords
tube
heat
crystallinity
shrinkable
force direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9929690A
Other languages
Japanese (ja)
Other versions
JP2784241B2 (en
Inventor
Kazuo Taniguchi
谷口 一男
Tetsuo Murakami
哲夫 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP9929690A priority Critical patent/JP2784241B2/en
Publication of JPH03224723A publication Critical patent/JPH03224723A/en
Application granted granted Critical
Publication of JP2784241B2 publication Critical patent/JP2784241B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To provide superior transparency and gloss by tubularly orienting a non-oriented tube of thermoplastic polyester resin to manufacture a heat- shrinkable tube and specifying the range of its crystallization. CONSTITUTION:A non-oriented tube manufactured by drying a thermoplastic polyester resin material, and then tubularly extruding the same is tubularly oriented in the longitudinal direction (MD direction) and the radial direction (TD direction). The orientation ratio at that time is 1.01-1.4 times in the MD direction and 1.3-2.2 times in the TD direction. In that case, the crystallization degree of an oriented tube can be made in the range of 4-20% by quenching (for example, 20 deg.C) the non-oriented tube which is melt extruded out of a ring die, and bringing the same into contact with, for example, a metal cylinder cooled down to 15-30 deg.C after orientation.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は熱収縮性を付与した熱可塑性ポリエステルチ
ューブであって、特に電子部品例えばアルミ電解コンデ
ンサ、タンタルコンデンサ等のようなコンデンサの外装
用として好適な熱収縮性ポリエステルチューブに係わる
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to a thermoplastic polyester tube with heat shrinkability, which is particularly suitable for use as an exterior for capacitors such as electronic components such as aluminum electrolytic capacitors and tantalum capacitors. It concerns a suitable heat-shrinkable polyester tube.

(従来の技術及び発明が解決しようとする課題)従来、
コンデンサ等の電子部品の外装用としては、主としてポ
リ塩化ビニルからなる熱収縮性チューブが広く使用され
てきた。しかしながらコンデンサ等の電子部品の軽薄短
小化、表面実装化が大幅に進行している分野では、ポリ
塩化ビニル製のチューブでは耐熱性が不充分である。
(Prior art and problems to be solved by the invention) Conventionally,
Heat-shrinkable tubes mainly made of polyvinyl chloride have been widely used for the exterior of electronic components such as capacitors. However, in the field where electronic components such as capacitors are becoming lighter, thinner, shorter, smaller, and more surface-mounted, polyvinyl chloride tubes do not have sufficient heat resistance.

コンデンサ等の電子部品の外装用熱収縮性チューブには
次のような特性が要求される。
Heat-shrinkable tubes for the exterior of electronic components such as capacitors are required to have the following characteristics.

(イ)熱収縮性チューブでもってコンデンサ等の電子部
品を収縮被嵌するとき、チューブの両開放端部は、角度
を変えて電子部品の端面を覆うように曲がりこむが、こ
の曲がりこんだ部分は被外装物の端面に均一に密着し、
良好な外観を呈しなければならない、即ち収縮チューブ
の内側に曲がりこんでいる最端部が塊状になったり、角
(ツノ)状に上向きに立ち上ったり、或いは、密着せず
内側にカールしたりするなどの外観不良が生ずるが、か
かる不都合が起ってはならない。
(b) When a heat-shrinkable tube is used to shrink and fit an electronic component such as a capacitor, both open ends of the tube are bent at different angles to cover the end face of the electronic component. adheres uniformly to the end surface of the object to be sheathed,
It must have a good appearance, i.e. the innermost end of the shrink tube should not be lumpy, stand up like a horn, or curl inward instead of sticking tightly. However, such inconveniences must not occur.

これらを図面で示すと、第1〜第4図はコンデンサを熱
収縮性チューブで収縮被覆したときの状態を示す説明図
であり、図中、1はコンデンサ、2は収縮被覆したチュ
ーブの縦断面部分である。
To show these in drawings, Figures 1 to 4 are explanatory diagrams showing the state when a capacitor is shrink-covered with a heat-shrinkable tube. It is a part.

第1図は仕上り良好なチューブの例、第2〜4図は仕上
り不良なチューブの例であり、第1図のものでは収縮チ
ューブの内側に曲がりこんだ部分がコンデンサの端面に
均一に密着しているが、第2図のものでは内側に曲がり
こんでいる最先端が角状に上向きに立ち上っている。な
お、最先端が、一部角状に立ち上るだけでなく、端部全
体が立ち上がる場合もある。第3図のものでは曲がりこ
んだ先端が塊状になっており、第4図のものでは曲がり
こんだ部分が密着せずカールしており、従来はこのよう
な不良仕上りが屡々見られた。
Figure 1 shows an example of a well-finished tube, and Figures 2 to 4 show examples of poorly finished tubes. However, in the one shown in Figure 2, the leading edge, which curves inward, rises upward in the shape of a corner. Note that the leading edge may not only partially rise in an angular shape, but also the entire end may rise. In the case of the one shown in Fig. 3, the bent end is lumpy, and in the case of Fig. 4, the bent part does not fit tightly and is curled.In the past, such poor finishing was often observed.

(ロ)電子部品等への被嵌後、収縮チューブを、熱固定
するため熱処理するが、この際、チューブに亀裂を生じ
たり、或いはチューブが再収縮しないこと。
(b) After being fitted into electronic parts, etc., the shrinkable tube is heat-treated to heat-fix it, but at this time, the tube should not crack or shrink again.

(ハ)125°CX 5000時間という条件下に保持
してもチューブの変褪色が少ないこと。
(c) There is little discoloration of the tube even if it is kept under the conditions of 125°C for 5000 hours.

そして耐熱性を改善するため、熱収縮性チューブの素材
として、熱可塑性ポリエステル樹脂を用いることか提案
されている(特開昭49−32972号、特開昭55−
100118号公報)、シかしながら、こういったチュ
ーブにおいても、上記必要特性(イ)、(ロ)及び(ハ
)のうち(ロ)及び(ハ)については一応満足されるが
、(イ)については全く満足できるとはいい離<、これ
ら3つの必要特性を併せもつ熱可塑性ポリエステル熱収
縮性チューブ(以下、これを単に熱収縮性チューブと略
称することがある)の出現が望まれている。
In order to improve heat resistance, it has been proposed to use thermoplastic polyester resin as a material for heat-shrinkable tubes (Japanese Patent Application Laid-open Nos. 49-32972, 1973-
100118 Publication), although such a tube also satisfies (B) and (C) among the above-mentioned necessary characteristics (A), (B), and (C), (I) ), but it is hoped that a thermoplastic polyester heat-shrinkable tube (hereinafter sometimes simply referred to as heat-shrinkable tube) that has all three necessary properties will be produced. There is.

(課題を解決するための手段) 本発明者等は上記の要望に答えるべく鋭意研究の結果、
上記(イ)、(ロ)及び(ハ)の必要特性を備えた本発
明の熱収縮性ポリエステルチューブを提供することに成
功した。
(Means for Solving the Problems) As a result of intensive research in order to meet the above requirements, the present inventors have
We have succeeded in providing the heat-shrinkable polyester tube of the present invention, which has the necessary characteristics (a), (b), and (c) above.

即ち本発明の要旨とするところは、熱可塑性ポリエステ
ル樹脂よりなる未延伸チューブを、チューブラ−延伸し
て熱収縮性を付与したチューブであって、そのチューブ
の結晶化度が4〜20%であることを特徴とする熱収縮
性ポリエステルチューブに存する。
That is, the gist of the present invention is a tube obtained by tubular stretching an unstretched tube made of a thermoplastic polyester resin to impart heat shrinkability, and the crystallinity of the tube is 4 to 20%. A heat-shrinkable polyester tube characterized by:

本発明のチューブを構成する熱可塑性ポリエステル樹脂
としては、酸成分がテレフタル酸、グリコール成分がエ
チレングリコールであるポリエチレンテレフタレートの
ほか、酸成分として優位量のテレフタル酸にイソフタル
酸のようなジカルボン酸を混合してなる共重合体、また
、グリコール成分かエチレングリコールにポリエチレン
グリコールを混合した共重合体、或いは、これらポリエ
ステルのブレンド品などが用いられる。それらの中で好
ましいポリエステル樹脂の1例として(1)酸成分がテ
レフタル酸95〜65重量%及びイソフタルrli5〜
35重量%からなり、アルコール成分かエチレングリコ
ールであるポリエステル共重合体30〜80重量%と(
2)ポリエチレンテレフタレート70〜20重量%との
混和物からなるものが挙げられる。このポリエステルブ
レンド品から製造した熱収縮性チューブは、結晶化度を
4〜12%の範囲としたものが好ましい、また、グリコ
ール成分としてポリエチレングリコールとエチレングリ
コールの混合物を用い、酸性分がテレフタル酸であるポ
リエステルとポリエチレンテレフタレートを混和した素
材を用いて熱収縮性チューブとするときは、結晶化度を
8〜20%の範囲としたものが好ましい。
The thermoplastic polyester resin constituting the tube of the present invention includes polyethylene terephthalate, in which the acid component is terephthalic acid and the glycol component is ethylene glycol, as well as a mixture of a predominant amount of terephthalic acid and a dicarboxylic acid such as isophthalic acid as the acid component. A copolymer formed by mixing polyethylene glycol with a glycol component or ethylene glycol, or a blend of these polyesters can be used. Among them, one example of a preferable polyester resin is (1) the acid component is 95 to 65% by weight of terephthalic acid and 5 to 65% by weight of isophthalic acid.
35% by weight, 30-80% by weight of a polyester copolymer which is an alcohol component or ethylene glycol, and (
2) Those consisting of a mixture with 70 to 20% by weight of polyethylene terephthalate can be mentioned. The heat-shrinkable tube manufactured from this polyester blend product preferably has a degree of crystallinity in the range of 4 to 12%, and also uses a mixture of polyethylene glycol and ethylene glycol as the glycol component, and terephthalic acid as the acidic component. When a heat-shrinkable tube is made from a mixture of polyester and polyethylene terephthalate, the degree of crystallinity is preferably in the range of 8 to 20%.

また、比較的固有粘度[η]の大きい、たとえば[η]
〉1のポリエチレンテレフタレートを主成分とすること
により押出直後の原チューブの寸法安定性が向上し、製
造し易いというメリットがある。
In addition, for example, when [η] has a relatively large intrinsic viscosity [η]
By using polyethylene terephthalate (1) as the main component, the dimensional stability of the raw tube immediately after extrusion is improved and there are advantages in that it is easy to manufacture.

本発明チューブの素材樹脂には、チューブの易滑性を向
上させるための有機滑剤や無機滑剤を添加したり、また
必要に応じて安定剤、着色剤、酸化防止剤等の助剤を配
合することができる。
Organic or inorganic lubricants are added to the resin material of the tube of the present invention to improve the slipperiness of the tube, and auxiliary agents such as stabilizers, colorants, and antioxidants are added as necessary. be able to.

次に本発明のチューブを製造する方法を例示する。Next, a method for manufacturing the tube of the present invention will be illustrated.

上に説明したようなポリエステル樹脂素材を通常の乾燥
器によって乾燥した後、チューブ押出しを行なって未延
伸チューブを得、この未延伸チューブを長さ方向(以下
、MD左方向いう)及び径方向(以下、TD方向という
)にチューブラ−延伸する。この際の延伸倍率は、MD
左方向は1.01〜1.4倍、好ましくは1.05〜1
.25倍とし、TD方向には1.3〜2.2倍、好まし
くは1.4〜2.0倍とする。
After drying the polyester resin material as described above in a normal dryer, tube extrusion is performed to obtain an unstretched tube. Tubular stretching is performed in the TD direction (hereinafter referred to as the TD direction). The stretching ratio at this time is MD
The left direction is 1.01 to 1.4 times, preferably 1.05 to 1
.. 25 times, and 1.3 to 2.2 times in the TD direction, preferably 1.4 to 2.0 times.

延伸温度は、厚さむらが悪化しない限り、低温の方がよ
く、通常、72〜98℃ぐらいの範囲がち選ぶのが好ま
しい。
As long as thickness unevenness is not worsened, a lower temperature is better for the stretching temperature, and it is generally preferable to select a temperature in the range of about 72 to 98°C.

延伸方法としては、通常採られているチューブラ−延伸
でよく、こうして得られた延伸チューブを巻取り製品と
することができる。
The drawing method may be the commonly used tubular drawing, and the drawn tube thus obtained can be made into a wound product.

上記のようにして得られたチューブの厚さは、特に限定
されないが、コンデンサ等の電子部品用の収縮チューブ
としては、通常30〜200all、好ましくは50〜
150μfの厚さからなるものが挙げられる。
The thickness of the tube obtained as described above is not particularly limited, but for shrink tubes for electronic components such as capacitors, it is usually 30 to 200all, preferably 50 to 200all.
One example is one having a thickness of 150 μf.

得られる収縮性チューブの収縮率(98±2℃で測定)
は、MD力方向は5%を越え26%以下、TD力方向は
25%以上となるようにするのがよい MD力方向収縮率が5%以下であると、コンデンサ等に
熱収縮被覆した時に収縮チューブの端面の被り代とコン
デンサ等の端面との間に隙間が生じ易く、一方、26%
よりも大きいと熱収縮により縦方向に大きく収縮して被
覆位置がずれなり、変形したりするおそれがある。また
TD力方向収縮率が25%より小さいと、コンデンサ等
を熱収縮被覆した時の収縮チューブの密着性が低く、ゆ
るみがでるおそれがある、そして好ましくは、MD力方
向収縮率は20%以下、TD力方向収縮率は28%以上
とし、TD力方向収縮率をMD力方向収縮率よりも15
%以上大きくする。
Shrinkage rate of the resulting shrinkable tube (measured at 98±2°C)
It is recommended that the MD force direction should be more than 5% and 26% or less, and the TD force direction should be more than 25%. If the MD force direction shrinkage is 5% or less, it will be difficult to cover capacitors etc. with heat shrink coating. A gap is likely to occur between the end face of the shrink tube and the end face of the capacitor, etc., and on the other hand, 26%
If it is larger than this, there is a risk that it will shrink greatly in the vertical direction due to thermal contraction, causing the covering position to shift and deform. Also, if the TD force direction shrinkage is less than 25%, the adhesion of the shrink tube when heat-shrinking a capacitor etc. is poor and there is a risk of loosening. Preferably, the MD force direction shrinkage is 20% or less. , the TD force direction contraction rate is 28% or more, and the TD force direction contraction rate is 15% higher than the MD force direction contraction rate.
Increase by at least %.

以上のような条件でチューブラ−延伸を行ない、延伸チ
ューブの結晶化度を4〜20%の範囲に入るものとする
ことにより、従来の熱収縮性のポリエステルチューブで
は得ることができなかっな、コンデンサ等の電子部品の
外装仕上り性[上記の熱収縮性チューブについての必要
特性中(イ)の項で挙げた、収縮後のチューブ末端部に
おける不都合のない仕上り]を大幅に改善することが出
来た。
By carrying out tubular drawing under the above conditions and making the crystallinity of the drawn tube fall within the range of 4 to 20%, capacitors that cannot be obtained with conventional heat-shrinkable polyester tubes can be produced. We were able to significantly improve the exterior finish of electronic components such as [a finish that does not cause any inconvenience at the end of the tube after shrinkage, as listed in item (a) of the required characteristics for heat-shrinkable tubes above]. .

その理由は正確にはわからないが、結晶化度の水準や、
同一円周面の結晶化度分布を比較すると、本発明のチュ
ーブは、加熱収縮時の収縮スピードと収縮量のバランス
がとれているので、チューブの同一円周両端部の収縮が
非常に均一に行なわれるためであると考えられる。
The exact reason is not known, but the level of crystallinity,
Comparing the crystallinity distribution on the same circumferential surface, the tube of the present invention has a well-balanced shrinkage speed and amount of shrinkage during heat shrinkage, so the shrinkage at both ends of the same circumference is extremely uniform. It is thought that this is because it is carried out.

延伸チューブの結晶化度を4〜20%とするためには、
環状ダイから溶融押出した未延伸チューブを急冷して(
例えば20℃)結晶化度を低くおさえるとともに、MD
力方向延伸倍率を1.4倍以下と小さくし、かつ延伸後
にたとえば15〜30°Cに冷却された金属筒に接触さ
せる等により急冷し、ここでも結晶の生長をおさえるこ
とが好ましい。
In order to make the crystallinity of the stretched tube 4 to 20%,
The unstretched tube melted and extruded from the annular die is rapidly cooled (
For example, at 20°C), the degree of crystallinity is kept low, and MD
It is preferable to reduce the stretching ratio in the force direction to 1.4 times or less, and to rapidly cool the film after stretching by, for example, contacting it with a metal cylinder cooled to 15 to 30°C, in order to suppress the growth of crystals.

この延伸後の急冷は、収縮率を下げる結晶化を防ぐこと
ができるので、前記MD力方向収縮率が、5%以下とな
らないという点でも効果がある。なお、未延伸チューブ
を急冷したもののMD力方向収縮率を0〜5%の範囲に
しておくことも、延伸チューブの収縮率を5%をこえ、
26%以下にするために効果がある。
This rapid cooling after stretching can prevent crystallization that lowers the shrinkage rate, so it is also effective in preventing the MD force direction shrinkage rate from becoming 5% or less. In addition, it is also possible to keep the MD force direction contraction rate of the unstretched tube in the range of 0 to 5% after cooling the unstretched tube.
It is effective in reducing the amount to 26% or less.

本発明のチューブにおいて結晶化度の水準が20%を越
えると収縮の均一性が阻害される(チューブ端部が熱収
縮被嵌物の端面上で内側にカールしようとする性質が非
常に強くなる)ので好ましくない、−古本発明チューブ
の結晶化度の水準が4%未満であると、未延伸チューブ
を薄くして急冷により結晶化をおさえ、延伸による配向
結晶もおさえる必要があるため、延伸倍率を低くしなけ
ればならず、結果として得られる延伸チューブの収縮率
が低下してしまう。
When the degree of crystallinity exceeds 20% in the tube of the present invention, the uniformity of shrinkage is inhibited (the end of the tube tends to curl inward on the end surface of the heat-shrinkable material). ) Therefore, if the crystallinity level of the old invention tube is less than 4%, it is necessary to thin the unstretched tube and suppress crystallization by rapid cooling, and also to suppress oriented crystals by stretching, so the stretching ratio must be lowered, resulting in a lower shrinkage rate of the drawn tube.

前記例示の製造方法のように延伸倍率を小さくするとい
うことは、同じ径の延伸チューブを得るのに、より薄い
未延伸チューブを使用できるので、押出後急冷し易く結
晶化度を低くおさえるという効果もある。
Decreasing the stretching ratio as in the above-mentioned manufacturing method means that a thinner unstretched tube can be used to obtain a stretched tube of the same diameter, making it easier to rapidly cool the tube after extrusion and keeping the degree of crystallinity low. There is also.

またこのことにより、外面から延伸適温に加熱する際に
内面まで均一に加熱できるので、内面温度不足による延
伸時の粗面化等が生じ雛<、結果として透明性や光沢に
優れた延伸チューブが得られる。
In addition, this makes it possible to uniformly heat the inner surface when heating from the outer surface to the appropriate temperature for stretching, which prevents roughening of the surface during stretching due to insufficient inner temperature, resulting in a stretched tube with excellent transparency and gloss. can get.

また、チューブの同一円周面の結晶化度のバラツキは小
さく(例えば3%以内)するのが好ましいが、本発明に
よれば例えば3%以内(同一円周上の結晶化度の最大値
と最小値の差)といった、従来得られなかった結晶化度
のバラツキが小さい延伸チューブが得られる。その理由
ら、より薄い延伸チューブを使用することにより押出後
の急令が均一に行なわれ、結晶化度のバラツキが生じな
いことによると考えられる。また、延伸配向による結晶
の成長が少ないので、原チューブの結晶化度のバラツキ
か拡大しにくいとも考えられる。
Further, it is preferable that the variation in the degree of crystallinity on the same circumferential surface of the tube is small (for example, within 3%), but according to the present invention, for example, within 3% (the maximum value of the degree of crystallinity on the same circumference) It is possible to obtain a stretched tube with small variation in crystallinity, which was not previously possible. The reason for this is thought to be that by using a thinner stretched tube, the extrusion after extrusion is uniformly carried out, and variations in crystallinity do not occur. It is also thought that since there is little crystal growth due to stretching orientation, it is difficult to increase the variation in crystallinity of the original tube.

(実施例) 以下の実施例、比較例において、各種特性は次のように
して測定された。
(Example) In the following Examples and Comparative Examples, various characteristics were measured as follows.

(1)収縮率=98℃±2 ’Cの熱水に10秒浸漬し
た後、下記の式により算出する。
(1) Shrinkage rate = Calculated using the following formula after immersion in hot water at 98°C±2'C for 10 seconds.

収縮前寸法−収縮後寸法 収縮率(%)= ×100 収縮前寸法 (2)結晶化度:密度勾配管法による。Dimensions before shrinkage - Dimensions after shrinkage Shrinkage rate (%) = ×100 Dimensions before shrinkage (2) Crystallinity: by density gradient tube method.

(3)同一円周面の結晶化度:同一円周面の8〜10箇
所から試料を採り、それぞれ結晶化度を測定する。チュ
ーブの径が著しく大きなものについては採取試料数を増
加し、一方、チューブの径が著しく小さくなければ採取
試料数を低減する。
(3) Crystallinity of the same circumferential surface: Samples are taken from 8 to 10 locations on the same circumferential surface, and the crystallinity of each sample is measured. If the diameter of the tube is extremely large, the number of samples to be collected is increased; on the other hand, if the diameter of the tube is not extremely small, the number of samples to be collected is reduced.

実施例の測定結果を示す表において例えば4〜6%とあ
るのは、同一円周面で採取した試料中、最低結晶化度を
示したものは4%、最高結晶化度を示したものは6%で
あったことを表わしている。
For example, in the table showing the measurement results of Examples, 4 to 6% means that among the samples collected on the same circumferential surface, 4% showed the lowest crystallinity, and 4% showed the highest crystallinity. This means that it was 6%.

(4)引張り強度:JIS  C−2132による。(4) Tensile strength: According to JIS C-2132.

(5)伸び率:JIS  C−2132による。(5) Elongation rate: According to JIS C-2132.

(6)耐熱亀裂性: 適用コンデンサにチューブを被覆した後、8号洋裁針で
コンデンサ胴部に0.94kgfの力で針を突の六の拡
大を見る。第2表中、例えば0/30とあるが、分母は
試験した試料数であり、分子は穴が拡大したものの数で
ある。
(6) Resistance to heat cracking: After covering the capacitor with a tube, use a No. 8 dressmaker's needle to touch the body of the capacitor with a force of 0.94 kgf to see if it is enlarged. In Table 2, for example, it says 0/30, but the denominator is the number of samples tested and the numerator is the number of enlarged holes.

(7)仕上り性: 適用したコンデンサに被覆後、チューブの両末端部にお
いて、塊状のものが生じたり、角(ツノ)状の立上り部
があったり、或いはカールによる巻込みがあるか等の不
都合を肉眼で観察し、X印はこれらの不都合が明確に認
められる場合、O鼻印はこれらの不都合が極めて軽微な
場合、c印はこれらの不都合が全く認められぬ場合を示
す。
(7) Finishing quality: After coating the applied capacitor, there may be problems such as lumps, horn-like rising parts, or curling at both ends of the tube. When observed with the naked eye, an X mark indicates that these disadvantages are clearly recognized, an O nose mark indicates that these disadvantages are extremely slight, and a c mark indicates that these disadvantages are not observed at all.

実施例1〜6 がエチレングリコールであり、固有粘度[η]が0.8
5であるポリエステル共重合体60重量%と[η]が0
.66であるポリエチレンテレフタレート40重量%と
の混合物を乾燥器を用いて乾燥した後、チューブラ−押
出しし、第1表に示す原チューブ厚み(μm)の未延伸
チューブを得た。
Examples 1 to 6 are ethylene glycol, and the intrinsic viscosity [η] is 0.8
60% by weight of a polyester copolymer of 5 and [η] of 0
.. A mixture of No. 66 and 40% by weight of polyethylene terephthalate was dried using a drier and then extruded into a tubular tube to obtain an unstretched tube having the original tube thickness (μm) shown in Table 1.

この未延伸チューブを85°Cの温度下で、第1表中に
示す延伸倍率(倍)でMD力方向びTD力方向チューブ
ラ−延伸し、実施例1〜6の何れにおいても厚さ90μ
tの延伸チューブを得た。それぞれの実施例における延
伸チューブのMD力方向びTD力方向収縮率(%)、同
一円周面の結晶化度を第1表に示す、また、それぞれの
実施例で得られたチューブの引張強度(kg / aA
 )及び伸び率(%)並びに、それぞれのチューブを使
用してコンデンサを被覆し、その結果の仕上り性の評価
及び耐熱亀裂性を第2表に示す。
This unstretched tube was tubular stretched in the MD force direction and TD force direction at a temperature of 85°C at the stretching ratio (times) shown in Table 1, and the thickness was 90μ in any of Examples 1 to 6.
A stretched tube of T was obtained. Table 1 shows the shrinkage percentage (%) in the MD force direction and TD force direction of the stretched tube in each example, and the degree of crystallinity on the same circumferential surface, and the tensile strength of the tube obtained in each example. (kg/aA
) and elongation (%), as well as the evaluation of finish quality and heat cracking resistance obtained by coating a capacitor using each tube, are shown in Table 2.

第 2 表 実施例7〜11 前述の実施例1で用いたのと同じ組成のポリエステル混
和物を、乾燥機を用いて乾燥し、次いでチューブラ−押
出しし、第3表に示す厚さの未延伸チューブを得た。こ
の未延伸チューブを95°Cの温度下、MD力方向1.
1倍、TD穴方向1.5倍の倍率でチューブラ−延伸し
、第3表に示す肉厚の延伸チューブを得た。この延伸チ
ューブを用い、コンデンサの熱収縮被覆を行った。得ら
れた製品の被覆仕上り性を第3表に示す。
Table 2 Examples 7 to 11 A polyester blend having the same composition as used in Example 1 above was dried using a drier, then tubular extruded, and unstretched to the thickness shown in Table 3. Got the tube. This unstretched tube was heated at a temperature of 95°C in the MD force direction 1.
Tubular stretching was performed at a magnification of 1x and 1.5x in the TD hole direction to obtain a stretched tube with the wall thickness shown in Table 3. This stretched tube was used to cover a capacitor with heat shrinkage. Table 3 shows the coating finish of the obtained product.

実施例12〜17 これらの例では、次のポリエステルブレンド品をチュー
ブ素材とした。即ち固有粘度[η]が1.2のポリエチ
レンテレフタレート67重量%、[η]が0,66のポ
リエチレンテレフタレート28重量%及びアルコール成
分としてエチレングリコールとポリエチレングリコール
とを含有し、酸成分がテレフタル酸であって(ポリエチ
レングリコールを10重量%含み、残りは他の成分)、
[η]が0.74のポリエステル共重合体5重量%から
なるブレンド物を素材とした。
Examples 12-17 In these examples, the following polyester blends were used as tube materials. That is, it contains 67% by weight of polyethylene terephthalate with an intrinsic viscosity [η] of 1.2, 28% by weight of polyethylene terephthalate with an [η] of 0.66, ethylene glycol and polyethylene glycol as alcohol components, and terephthalic acid as an acid component. (contains 10% by weight polyethylene glycol, the rest is other ingredients)
A blend consisting of 5% by weight of a polyester copolymer with [η] of 0.74 was used as the material.

このポリエステルを、乾燥器を用いて乾燥した後、チュ
ーブラ−押出しし、第4表に示す原チューブ厚み(μ)
の未延伸チューブを得た。
After drying this polyester using a dryer, it is extruded into a tubular tube, and the raw tube thickness (μ) shown in Table 4 is obtained.
An unstretched tube was obtained.

この未延伸チューブを90’Cの温度下で下記第4表に
示す延伸倍率(倍)でMD力方向びTD力方向チューブ
ラ−延伸し、第4表に示す厚み(μ)の延伸チューブを
得た。それぞれの実施例における延伸チューブのMD力
方向びTD力方向収縮率(%)、同一円周面の結晶化度
を第4表に示す。
This unstretched tube was tubular stretched in the MD force direction and TD force direction at a temperature of 90'C at the stretching ratio (times) shown in Table 4 below to obtain a stretched tube with the thickness (μ) shown in Table 4. Ta. Table 4 shows the shrinkage percentage (%) in the MD force direction and TD force direction of the stretched tube in each example, and the degree of crystallinity on the same circumferential surface.

また、実施例12〜17それぞれで得られたチューブの
引張強度(kg/d)、及び伸び率(%)並びにそれぞ
れのチューブを使用してコンデンサを被覆し、その結果
の仕上り性の評価及び耐熱亀裂性を第5表に示す。
In addition, the tensile strength (kg/d) and elongation rate (%) of the tubes obtained in each of Examples 12 to 17, and the evaluation of the finish and heat resistance of capacitors coated with each tube. The cracking properties are shown in Table 5.

比較例1及び2 上記実施例12で用いたと同じ組成のポリエステルを用
い、未延伸チューブの厚さ、延伸時におけるチューブの
MD力方向びTD力方向延伸倍率及び得られる延伸チュ
ーブの厚さを第4表に示す通りとし、その他は実施例1
2におけると同様にして熱収縮チューブを製造した。得
られた熱収縮チューブのMD力方向びTD力方向収縮率
及び結晶化度を第4表に、引張強度、伸び率、得られた
チューブを使用してコンデンサを被覆したものの仕上り
性及び耐熱亀裂性を第5表に示す。
Comparative Examples 1 and 2 Polyester having the same composition as used in Example 12 was used, and the thickness of the unstretched tube, the stretching ratio in the MD force direction and TD force direction of the tube during stretching, and the thickness of the resulting stretched tube were determined. As shown in Table 4, other details are as in Example 1.
A heat-shrinkable tube was manufactured in the same manner as in 2. Table 4 shows the shrinkage rate and crystallinity in the MD force direction and TD force direction of the obtained heat-shrinkable tube, as well as the tensile strength, elongation rate, finish quality and heat cracking resistance of a capacitor coated with the obtained tube. The properties are shown in Table 5.

第 表 以上説明した本発明の熱収縮性チューブは、更に次のよ
うな特異な物性を示す、熱収縮性チューブを形成してい
るポリエステルフィルムはチューブの内面側と外面側と
の応力の差で屈曲する現象を示すが、高温雰囲気中に放
置すると、その屈曲は顕著なものとなって現れる。本発
明の熱収縮性チューブを形成しているポリエステルフィ
ルムは、100°C±2℃の雰囲気下(例えばエヤーオ
ーブン内)に5分間1くとき屈曲するが、その曲率は0
.2以下という、換言すれば屈曲度の小さいものである
ことがわがっな。
The heat-shrinkable tube of the present invention as explained above in Table 1 further exhibits the following unique physical properties. It exhibits a bending phenomenon, but when left in a high temperature atmosphere, the bending becomes noticeable. The polyester film forming the heat-shrinkable tube of the present invention bends when exposed to an atmosphere of 100°C ± 2°C (for example, in an air oven) for 5 minutes, but its curvature is 0.
.. 2 or less, in other words, the degree of curvature is small.

上記実施例14及び比較例2で得られた熱収縮性チュー
ブを形成しているフィルムにつき、100°C±2°C
のエヤーオーブン内に5分間置いて取り出し、曲率を測
定したところ、それぞれ0.0461及び0.452で
あった。
100°C ± 2°C for the film forming the heat-shrinkable tube obtained in Example 14 and Comparative Example 2 above.
The curvatures were measured after being placed in an air oven for 5 minutes and taken out, and found to be 0.0461 and 0.452, respectively.

なお、この曲率は次のようにして測定される。Note that this curvature is measured as follows.

第5図は、曲率の求め方を示す説明図である。FIG. 5 is an explanatory diagram showing how to obtain the curvature.

図中、11は測定される熱収縮性チューブであり、チュ
ーブの折り目を避けて正方角のサンプル12を切り取る
。このサンプルの大きさは曲率の測定に影響を与えるも
のでないので、適宜選定すればよく、通常、チューブ折
径の50〜90%の長さを一辺とした正方形とする。サ
ンプル12を100℃±0.2の雰囲気下、5分間放置
するとサンプルは屈曲する。その結果、大きく分けると
第5図中、矢印Aの方に進み、うす巻きの形のもの13
になるものと、矢印Bの方に進み、単に弯曲した弧状の
もの14になるものとができる。うす巻きの形のもの1
3については、最も内側の円筒を形成している円の直径
を測定し、これを2Rとする。弧状のもの14について
は、この弧状の適宜の位置を直線C−Cで結び、図に示
すjの値J2+x2 とXの値を測定し、R=       の式によ x つてRの値を得る。
In the figure, 11 is a heat-shrinkable tube to be measured, and a square sample 12 is cut out avoiding the folds of the tube. Since the size of this sample does not affect the measurement of curvature, it may be selected appropriately, and is usually a square with a side having a length of 50 to 90% of the tube fold diameter. When the sample 12 is left in an atmosphere of 100° C.±0.2 for 5 minutes, the sample bends. As a result, the results are roughly divided into those 13 in the direction of arrow A in Figure 5, with a thinly wound shape.
There are two types: one that moves in the direction of arrow B and one that simply becomes a curved arc 14. Thinly rolled one 1
For No. 3, measure the diameter of the circle forming the innermost cylinder and define it as 2R. For the arc-shaped object 14, connect appropriate positions of this arc with a straight line C--C, measure the value of j shown in the figure J2+x2 and the value of X, and obtain the value of R according to the formula R= x.

曲率は1/Rによって求められる。The curvature is determined by 1/R.

上述のように、本発明の熱収縮性チューブは比較例のチ
ューブよりも曲率の値が小さいが、例えばコンデンサを
被覆した場合、端面の仕上りが屈曲による悪影響を受け
ることなく、上記第4表に示されるように、良好な仕上
りとなるのである。
As mentioned above, the heat-shrinkable tube of the present invention has a smaller curvature value than the tube of the comparative example, but when covering a capacitor, for example, the finish of the end face is not adversely affected by bending and the curvature value is as shown in Table 4 above. As shown, the result is a good finish.

以上に説明した本発明の熱収縮性チューブは結晶化度が
4〜20%というように比較的低い、そして一般的にボ
エステルは結晶化度が大きいときは(例えば30%以上
)耐溶剤性が良好であるが、結晶化度が低いときは耐溶
剤性が悪い、熱収縮性チューブでコンデンサを被覆する
とき、被覆した後、溶剤(例えばアセトン)で洗浄を行
なうことがあるが、このような溶剤洗浄が行なわれる場
合、本発明の熱収縮チューブで被覆したものにおいては
、チューブにクラックが入ったり、表面に凹凸が生じて
外観を損なう問題が起る。
The heat-shrinkable tube of the present invention described above has a relatively low crystallinity of 4 to 20%, and generally, when the crystallinity of Boester is high (for example, 30% or more), the solvent resistance is poor. However, when the degree of crystallinity is low, the solvent resistance is poor.When covering a capacitor with a heat-shrinkable tube, cleaning is sometimes performed with a solvent (e.g. acetone) after covering the capacitor. When cleaning with a solvent is carried out, the tube coated with the heat-shrinkable tube of the present invention has problems such as cracks in the tube and unevenness on the surface, which impairs the appearance.

上記のような不都合が起ることを回避するなめには、被
覆目的物(例えばコンデンサ、以下コンデンサを被覆し
た場合で説明する)を本発明の熱収縮チューブで被覆し
た後、このものを100〜400°Cの高温雰囲気中に
10秒〜1時間放置することにより、チューブの結晶化
度を30%以上に上昇させる。
In order to avoid the above-mentioned inconvenience, after covering the object to be coated (for example, a capacitor, hereinafter explained in the case of covering a capacitor) with the heat shrinkable tube of the present invention, By leaving the tube in a high temperature atmosphere of 400° C. for 10 seconds to 1 hour, the crystallinity of the tube is increased to 30% or more.

この処理を実際に行った例を次に説明する。An example of actually performing this process will be described next.

上記実施例14で得られた結晶化度11〜13(平均値
12)の熱収縮性チューブでもってコンデンサを被覆し
、200℃の高温雰囲気で30〜120秒、熱処理する
実験及び300℃の高温雰囲気下で10〜70秒の熱処
理する実験を行ない、その結果のチューブの結晶化度(
平均値)及び耐溶剤性を調べた。測定結果を下記第6表
に示す。
An experiment in which a capacitor was covered with the heat-shrinkable tube with a crystallinity of 11 to 13 (average value 12) obtained in Example 14 above and heat treated in a high temperature atmosphere of 200°C for 30 to 120 seconds, and a high temperature of 300°C. An experiment was conducted in which heat treatment was performed for 10 to 70 seconds in an atmosphere, and the resulting crystallinity of the tube (
average value) and solvent resistance were investigated. The measurement results are shown in Table 6 below.

耐溶剤性は、20〜25°Cのアセトン中に30秒間静
置状態で完全に浸漬し、次いで静かに取り出し、チュー
ブ表面の状態を観察し、その結果を次の基準に従って判
定した。
Solvent resistance was determined by completely immersing the tube in acetone at 20 to 25° C. for 30 seconds, then gently taking it out, observing the condition of the tube surface, and evaluating the results according to the following criteria.

○印は、クラックも表面凹凸も全く起らないことを示す
、Δ印は製品100個の内、クラック又は表面凹凸が一
部分でもある製品があれば不良品として排除し、何の不
都合もない良品の個数が30%以上の場合を示し、X印
は全体クラックが入ったり表面凹凸になっている場合を
示す。
The ○ mark indicates that there are no cracks or surface irregularities, and the Δ mark indicates that out of 100 products, if there is a product with even a portion of the product having cracks or surface irregularities, it will be rejected as a defective product, and it will be considered a non-defective product with no problems. indicates a case where the number is 30% or more, and an X mark indicates a case where the entire surface is cracked or the surface is uneven.

以上のようにして、本発明の熱収縮性チューブで被覆さ
れたものは、そのチューブの結晶化度を上昇させること
により耐溶剤性を向上させることができ、更に、結晶化
度が上ることにより仕上り後の寸法安定性も増進させる
ことができる。
As described above, the tube coated with the heat-shrinkable tube of the present invention can improve solvent resistance by increasing the crystallinity of the tube, and furthermore, by increasing the crystallinity, Dimensional stability after finishing can also be improved.

(発明の効果) 熱可塑性ポリエステル樹脂を素材とする熱収縮性チュー
ブでは、熱収縮被覆を行ったとき、チューブの解放両端
部が当る箇所では、その最先端部が塊状になったり、角
(ツノ)状に上向きに浮き上ったり或いは密着せず内側
にカールしたりする外観不良がしばしば生ずるが、本発
明の熱収縮チューブでは、かかる不都合はなく、極めて
優れた被覆仕上り性を示す。
(Effect of the invention) When a heat-shrinkable tube made of thermoplastic polyester resin is coated with a heat-shrinkable coating, the leading edge of the tube may become lumpy or have corners (horns) at the locations where both open ends of the tube touch. However, the heat-shrinkable tube of the present invention does not have such disadvantages and exhibits an extremely excellent coating finish.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は、熱収縮性チューブでコンデンサを被
覆したときの被覆状態を示す説明図であり、第1図は被
覆仕上りが良好な例、第2.第3及び第4図は仕上りが
不良な例を示す、第5図は、本発明の熱収縮性チューブ
を一定温度に加熱して曲率を測定する方法の説明図であ
る。 図中、1はコンデンサ、2は収縮被覆したチューブの縦
断面部分である。 第 図 第 図 第 図 第 図
1 to 4 are explanatory diagrams showing the covering state when a capacitor is covered with a heat-shrinkable tube. 3 and 4 show examples of poor finishing, and FIG. 5 is an explanatory diagram of the method of heating the heat-shrinkable tube of the present invention to a constant temperature and measuring the curvature. In the figure, 1 is a capacitor, and 2 is a longitudinal section of a shrink-coated tube. Figure Figure Figure Figure

Claims (1)

【特許請求の範囲】[Claims] (1)熱可塑性ポリエステル樹脂よりなる未延伸チュー
ブを、チューブラー延伸して熱収縮性を付与したチュー
ブであって、そのチューブの結晶化度が4〜20%であ
ることを特徴とする熱収縮性ポリエステルチューブ。
(1) A heat-shrinkable tube obtained by tubular stretching an unstretched tube made of thermoplastic polyester resin to impart heat-shrinkability, the tube having a degree of crystallinity of 4 to 20%. polyester tube.
JP9929690A 1989-11-17 1990-04-17 Heat shrinkable tubing Expired - Lifetime JP2784241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9929690A JP2784241B2 (en) 1989-11-17 1990-04-17 Heat shrinkable tubing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29742589 1989-11-17
JP1-297425 1989-11-17
JP9929690A JP2784241B2 (en) 1989-11-17 1990-04-17 Heat shrinkable tubing

Publications (2)

Publication Number Publication Date
JPH03224723A true JPH03224723A (en) 1991-10-03
JP2784241B2 JP2784241B2 (en) 1998-08-06

Family

ID=26440441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9929690A Expired - Lifetime JP2784241B2 (en) 1989-11-17 1990-04-17 Heat shrinkable tubing

Country Status (1)

Country Link
JP (1) JP2784241B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0477944A2 (en) * 1990-09-27 1992-04-01 Mitsubishi Plastics Inc. Heat-shrinkable tube
JP2002264210A (en) * 2001-03-14 2002-09-18 Teijin Chem Ltd Heat shrinkable aromatic polyester tube and product made of inorganic material having surface covered with the tube
JP2002264211A (en) * 2001-03-14 2002-09-18 Teijin Chem Ltd Heat shrinkable polyethylene terephthalate tube and product made of inorganic material having surface covered with the tube
WO2004090026A1 (en) * 2003-04-09 2004-10-21 Mitsubishi Plastics, Inc. Heat-shrinkable polyester tube and capacitor product covered therewith
JP2006117872A (en) * 2004-10-25 2006-05-11 Nan Ya Plast Corp Copolyester and method for producing heat-shrinkable tube using the copolyester
US10898616B1 (en) 2017-07-11 2021-01-26 Teleflex Medical Incorporated Peelable heat-shrink tubing
JP2022087130A (en) * 2018-03-30 2022-06-09 東洋紡株式会社 Heat shrinkable polyester-based film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0477944A2 (en) * 1990-09-27 1992-04-01 Mitsubishi Plastics Inc. Heat-shrinkable tube
JP2002264210A (en) * 2001-03-14 2002-09-18 Teijin Chem Ltd Heat shrinkable aromatic polyester tube and product made of inorganic material having surface covered with the tube
JP2002264211A (en) * 2001-03-14 2002-09-18 Teijin Chem Ltd Heat shrinkable polyethylene terephthalate tube and product made of inorganic material having surface covered with the tube
JP4647120B2 (en) * 2001-03-14 2011-03-09 帝人化成株式会社 Heat-shrinkable polyethylene terephthalate tube and inorganic material products coated with such a tube
WO2004090026A1 (en) * 2003-04-09 2004-10-21 Mitsubishi Plastics, Inc. Heat-shrinkable polyester tube and capacitor product covered therewith
JPWO2004090026A1 (en) * 2003-04-09 2006-07-06 三菱樹脂株式会社 Heat-shrinkable polyester tube and capacitor product coated with this
JP2006117872A (en) * 2004-10-25 2006-05-11 Nan Ya Plast Corp Copolyester and method for producing heat-shrinkable tube using the copolyester
US10898616B1 (en) 2017-07-11 2021-01-26 Teleflex Medical Incorporated Peelable heat-shrink tubing
JP2022087130A (en) * 2018-03-30 2022-06-09 東洋紡株式会社 Heat shrinkable polyester-based film

Also Published As

Publication number Publication date
JP2784241B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
US5368811A (en) Producing heat-shrinkable tube
JPH09239833A (en) Heat-shrinkable polyester film and production thereof
JPH03224723A (en) Heat-shrinkable tube
JP3594541B2 (en) Polyester heat shrinkable tubing for coating electrolytic capacitors
JPS6241859B2 (en)
US4252966A (en) Biaxially drawn polyhexamethylene adipamide film
JP2505474B2 (en) Easy folding polyester film
KR100971495B1 (en) Heat shrinkable polyester film and preparation method thereof
JP2611415B2 (en) Biaxially oriented polyester film for molding, film for molding transfer, and film for molding container
JPS6241860B2 (en)
JP3880365B2 (en) Polyester heat shrinkable tube for capacitor coating
JPH0832498B2 (en) Polyester film for transfer film
JP3683219B2 (en) Method for producing heat-shrinkable polyester tube
KR100964295B1 (en) Heat shrinkable polyester film and preparation method thereof
JP2943183B2 (en) Laminated molding
JPH08244111A (en) Polyester film and production thereof
JPS60206621A (en) Vinylidene fluoride type resin film, manufacture thereof metallized film
KR100213521B1 (en) Heat-shrinkable tube
JPH0367629A (en) Biaxially oriented polyester film for molding
JP3071858B2 (en) Method for producing heat-shrinkable polyester tube and heat-shrinkable polyester tube
JPH04344222A (en) Polyester type shrink film
JPH09148177A (en) Polyester heat-shrinkable tube for sheathing capacitor
JPH0245974B2 (en) NIJIKUENSHINSARETAHORIIIPUSHIRONNKAPUROAMIDOFUIRUMUNOSEIZOHOHO
JP3845531B2 (en) Heat shrinkable seamless tube
JPS5867411A (en) Forming method of polyester film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100522

Year of fee payment: 12

EXPY Cancellation because of completion of term