JPH09148177A - Polyester heat-shrinkable tube for sheathing capacitor - Google Patents

Polyester heat-shrinkable tube for sheathing capacitor

Info

Publication number
JPH09148177A
JPH09148177A JP7307223A JP30722395A JPH09148177A JP H09148177 A JPH09148177 A JP H09148177A JP 7307223 A JP7307223 A JP 7307223A JP 30722395 A JP30722395 A JP 30722395A JP H09148177 A JPH09148177 A JP H09148177A
Authority
JP
Japan
Prior art keywords
capacitor
heat
shrinkable tube
polyethylene terephthalate
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7307223A
Other languages
Japanese (ja)
Inventor
Makoto Ueno
誠 上野
Nobuhisa Kamimura
宣尚 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP7307223A priority Critical patent/JPH09148177A/en
Publication of JPH09148177A publication Critical patent/JPH09148177A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat-shrinkable tube which is excellent in electric insulating properties and capable of coming into close contact with the groove of a capacitor even in a drying heating treatment so as to protect the capacitor after it sheathes the capacitor and shrinks. SOLUTION: A heat-shrinkable tube is formed of polyethylene terephthalate which contains 9 to 15mol% of neopentyl glycol, 50 to 100μm in wall-thickness, and has a shrinkage factor of 40 to 60% in a radial direction and a shrinkage factor of 5 to 15% in a lengthwise direction. By this setup, after the heat- shrinkable tube sheathes a capacitor and shrinks, no empty space is induced in the groove of the capacitor when the tube is subjected to a drying heating treatment at a temperature of 170 deg.C for three minutes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はコンデンサー被覆用
ポリエステル系熱収縮性チューブに関する。更に詳しく
は、コンデンサーの保護や電気絶縁性に優れたポリエス
テル系熱収縮性チューブに関する。
TECHNICAL FIELD The present invention relates to a polyester heat shrinkable tube for coating a capacitor. More specifically, it relates to a polyester heat-shrinkable tube which is excellent in protection of capacitors and electric insulation.

【0002】[0002]

【従来の技術】従来、コンデンサーの保護や電気絶縁の
ために合成樹脂製の熱収縮性チューブで被覆することが
行われており、熱収縮性チューブでコンデンサーを被覆
するには、通常熱収縮性チューブでコンデンサーを被覆
し、加熱収縮させた後水洗し、乾燥や耐熱試験を兼ねて
160℃で3分程度の乾熱処理を施している。また、被
覆膜のテストとしてピンホールテストや落下テスト等が
行われている。コンデンサーの被覆用途にはポリ塩化ビ
ニル樹脂製の熱収縮性チューブが一般に用いられてい
る。しかしながら、ポリ塩化ビニル樹脂は耐熱性や強度
に劣るため、ピンホールテスト後乾熱処理を施すと割れ
が発生し易く、製品歩留まりが悪い。また、落下テスト
での合格率も低い。このため、耐熱性や強度に優れた樹
脂でコンデンサーを被覆することが要求されている。
2. Description of the Related Art Conventionally, a heat-shrinkable tube made of a synthetic resin has been used for protection of a capacitor and electrical insulation. The condenser is covered with a tube, heated and shrunk, washed with water, and subjected to dry heat treatment at 160 ° C. for about 3 minutes for drying and heat resistance test. Further, a pinhole test, a drop test, and the like are performed as a test of the coating film. A heat-shrinkable tube made of polyvinyl chloride resin is generally used for coating the capacitor. However, since polyvinyl chloride resin is inferior in heat resistance and strength, cracking is likely to occur when dry heat treatment is performed after the pinhole test, and the product yield is poor. Also, the pass rate in the drop test is low. Therefore, it is required to coat the capacitor with a resin having excellent heat resistance and strength.

【0003】一方、ポリ塩化ビニル樹脂よりも耐熱性や
強度に優れた熱収縮性チューブとして、蛍光灯等の被覆
に用いられているネオペンチルグリコールを3〜12モ
ル%共重合したポリエチレンテレフタレート系熱収縮性
チューブが知られている(特公昭55−49969号公
報)。しかしながら、かかるポリエステル系熱収縮性チ
ューブでコンデンサーを被覆すると、水洗後の乾熱処理
の段階でコンデンサーの溝部に空間が発生し、この空間
に水が残留して絶縁不良を生じ易い問題を有していた。
このため、この熱収縮性チューブの長さ方向の収縮率を
小さくする等の検討がなされたが、コンデンサーを被覆
するに満足するポリエステル系熱収縮性チューブはまだ
提供されていない。
On the other hand, as a heat-shrinkable tube which is superior in heat resistance and strength to polyvinyl chloride resin, polyethylene terephthalate-based heat obtained by copolymerizing 3 to 12 mol% of neopentyl glycol used for coating fluorescent lamps and the like. A shrinkable tube is known (Japanese Patent Publication No. 55-49969). However, when a capacitor is coated with such a polyester heat-shrinkable tube, there is a problem that a space is generated in the groove of the capacitor during the dry heat treatment after washing with water, and water is likely to remain in this space to cause insulation failure. It was
For this reason, studies have been made to reduce the shrinkage ratio of the heat-shrinkable tube in the lengthwise direction, but a polyester-based heat-shrinkable tube that is satisfactory for coating a capacitor has not yet been provided.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、コン
デンサーを被覆、収縮した後の乾熱処理においてもコン
デンサーの溝部に完全に密着し、コンデンサーの保護や
電気絶縁性に優れたポリエステル系熱収縮性チューブを
提供するにある。
SUMMARY OF THE INVENTION The object of the present invention is to provide a polyester-based heat-shrinkable material which is completely adhered to the groove portion of the capacitor even in the dry heat treatment after covering and shrinking the capacitor, and which is excellent in protection of the capacitor and electric insulation. To provide a sex tube.

【0005】本発明者は上記課題を解決すべく鋭意研究
を重ねた結果、特定の高割合のネオペンチルグリコール
を共重合したポリエチレンテレフタレートからなり、特
定の肉厚で且つ特定の収縮率を有する熱収縮性チューブ
によりコンデンサーを被覆すれば、上記課題を解決し得
ることを見出し、本発明に到達した。
As a result of earnest studies to solve the above-mentioned problems, the present inventor has made a heat treatment with polyethylene terephthalate copolymerized with a specific high proportion of neopentyl glycol and having a specific wall thickness and a specific shrinkage ratio. The inventors have found that the problem can be solved by covering the capacitor with a shrinkable tube, and have reached the present invention.

【0006】[0006]

【課題を解決するための手段】本発明は、グリコール成
分としてネオペンチルグリコールを9〜15モル%含有
するポリエチレンテレフタレートからなり、肉厚が50
〜100μm 、沸水収縮率が直径方向40〜60%、長
さ方向5〜15%の熱収縮性チューブであって、コンデ
ンサーに被覆収縮させた後170℃で3分間乾熱処理し
た際にコンデンサーの溝部に実質的に空間が発生しない
コンデンサー被覆用ポリエステル系熱収縮性チューブに
係るものである。
The present invention comprises polyethylene terephthalate containing 9 to 15 mol% of neopentyl glycol as a glycol component and has a wall thickness of 50.
A heat shrinkable tube having a boiling water shrinkage of 40 to 60% in the diameter direction of 40 to 60% and a length of 5 to 15% in the length direction, and the groove portion of the capacitor when dry heat-treated at 170 ° C. for 3 minutes after coating and shrinking the capacitor. The present invention relates to a polyester-based heat-shrinkable tube for coating a capacitor in which substantially no space is generated.

【0007】本発明でいうネオペンチルグリコールをグ
リコール成分として含有するポリエチレンテレフタレー
トとは、所定量のネオペンチルグリコールを共重合した
ポリエチレンテレフタレート共重合体、又は所定量より
も多いネオペンチルグリコールを共重合したポリエチレ
ンテレフタレート共重合体とポリエチレンテレフタレー
ト樹脂とを混合し、その混合物のグリコール成分として
ネオペンチルグリコールを9〜15モル%含有した混合
物である。ネオペンチルグリコール成分の量は9〜15
モル%であり、得られるポリエチレンテレフタレート共
重合体が非結晶性になる量である。ネオペンチルグリコ
ール成分の量が9モル%未満では、コンデンサーに被覆
収縮した後の乾熱処理の段階でコンデンサーの溝部に空
間が発生するようになり、15モル%を越えると、得ら
れるポリエステル系熱収縮性チューブの強度の低下が大
きくなるので適当でない。
The polyethylene terephthalate containing neopentyl glycol as a glycol component in the present invention is a polyethylene terephthalate copolymer obtained by copolymerizing a predetermined amount of neopentyl glycol, or a copolymerized neopentyl glycol in an amount larger than a predetermined amount. It is a mixture in which a polyethylene terephthalate copolymer and a polyethylene terephthalate resin are mixed, and 9 to 15 mol% of neopentyl glycol is contained as a glycol component of the mixture. The amount of neopentyl glycol component is 9-15
It is a mol% and is an amount in which the obtained polyethylene terephthalate copolymer becomes amorphous. When the amount of neopentyl glycol component is less than 9 mol%, a space is generated in the groove portion of the capacitor during the dry heat treatment after coating and shrinking the capacitor, and when it exceeds 15 mol%, the polyester-based heat shrinkage obtained. This is not suitable because the strength of the flexible tube is greatly reduced.

【0008】ネオペンチルグリコールを共重合したポリ
エチレンテレフタレート共重合体は、通常のポリエチレ
ンテレフタレート樹脂の製造法に準じて容易に製造され
る。即ち、テレフタル酸又はそのエステル形成性誘導体
及びエチレングリコール又はそのエステル形成性誘導体
を反応させてポリエステルを製造する際に、エチレング
リコール成分の9〜15モル%をネオペンチルグリコー
ル又はそのエステル形成性誘導体で置換えればよい。ポ
リエチレンテレフタレート共重合体やポリエチレンテレ
フタレート樹脂の分子量は、固有粘度で表して0.5以
上が良好な機械特性を示すので好ましい。またポリエチ
レンテレフタレート共重合体やポリエチレンテレフタレ
ート樹脂には必要に応じて例えば安定剤、顔料、染料、
粘土類、滑剤、難燃剤等の添加剤を配合して熱収縮性チ
ューブの製造に供することができる。
The polyethylene terephthalate copolymer obtained by copolymerizing neopentyl glycol can be easily produced according to the usual production method of polyethylene terephthalate resin. That is, when a polyester is produced by reacting terephthalic acid or its ester-forming derivative with ethylene glycol or its ester-forming derivative, 9 to 15 mol% of the ethylene glycol component is neopentyl glycol or its ester-forming derivative. Just replace it. The molecular weight of the polyethylene terephthalate copolymer or polyethylene terephthalate resin is preferably 0.5 or more in terms of intrinsic viscosity, because good mechanical properties are exhibited. If necessary, the polyethylene terephthalate copolymer or polyethylene terephthalate resin may contain, for example, stabilizers, pigments, dyes,
Additives such as clays, lubricants, flame retardants and the like can be blended and used for the production of heat-shrinkable tubes.

【0009】ネオペンチルグリコールを共重合したポリ
エチレンテレフタレート、又はかかる共重合体とポリエ
チレンテレフタレート樹脂との混合物から熱収縮性チュ
ーブを製造するには、チューブ方式やインフレーション
方式等の成形法によって溶融押出して管状体を成形した
後、二軸延伸させて製造される。例えば上記共重合体又
は共重合体混合物をエクストルーダーの環状ダイスから
押出して未延伸の管状体を得、この管状体を冷却槽で急
冷した後、共重合体又は共重合体混合物の二次転移点温
度以上流動点以下の温度に加熱しながら空気や窒素等の
圧縮気体を挿入して膨張させて管状体の直径方向に延伸
すると同時に、長さ方向にもディファレンシャルスピー
ドロール等によって延伸することによって熱収縮性チュ
ーブが得られる。この二軸延伸は、管状体の押出成形に
引き続き連続的に実施しても、又は一旦未延伸状態でロ
ールに巻き取った後改めて実施してもよい。
In order to manufacture a heat-shrinkable tube from polyethylene terephthalate copolymerized with neopentyl glycol or a mixture of such a copolymer and polyethylene terephthalate resin, it is melt-extruded into a tubular shape by a molding method such as a tube method or an inflation method. It is manufactured by shaping the body and then biaxially stretching it. For example, the above-mentioned copolymer or copolymer mixture is extruded from a circular die of an extruder to obtain an unstretched tubular body, and the tubular body is rapidly cooled in a cooling tank, and then the second-order transition of the copolymer or the copolymer mixture is carried out. By inserting compressed gas such as air or nitrogen into the tubular body to expand it while heating it to a temperature not lower than the pour point and not lower than the pour point and stretching it in the diameter direction of the tubular body, and at the same time, stretching it in the length direction with a differential speed roll or the like. A heat shrinkable tube is obtained. This biaxial stretching may be carried out continuously after the extrusion molding of the tubular body, or may be carried out once after being wound into a roll in an unstretched state.

【0010】未延伸の管状体を製造するに当っては、二
軸延伸後の熱収縮性チューブの肉厚が50〜100μm
の範囲になるように、二軸延伸倍率を勘案して未延伸の
管状体の肉厚を決定する必要がある。二軸延伸後の熱収
縮性チューブの肉厚が50μm より薄いと、コンデンサ
ー被覆用としての強度に不足するようになり、100μ
m より厚くなると、コンデンサーに被覆する際に収縮斑
が生じ易く、外観不良が発生するようになる。
In producing an unstretched tubular body, the wall thickness of the heat-shrinkable tube after biaxial stretching is 50 to 100 μm.
It is necessary to determine the wall thickness of the unstretched tubular body in consideration of the biaxial stretching ratio so as to be in the range. If the thickness of the heat-shrinkable tube after biaxial stretching is less than 50 μm, the strength for covering the capacitor will be insufficient, and the thickness will be 100 μm.
When the thickness is larger than m, shrinkage unevenness is likely to occur when coating the capacitor, resulting in poor appearance.

【0011】未延伸の管状体を二軸延伸するに当って
は、二軸延伸後の熱収縮性チューブの沸水収縮率が、直
径方向に40〜60%で長さ方向に5〜15%になるよ
うに各方向の延伸倍率を配慮する必要がある。直径方向
と長さ方向の両方が同時に上記範囲を満足しないと、コ
ンデンサーに被覆収縮した後の乾熱処理の段階でコンデ
ンサーの溝部に空間が発生するようになる。直径方向と
長さ方向の両方が同時に上記範囲を満足させるには、直
径方向の延伸倍率を1.7〜2.5倍、長さ方向の延伸
倍率を1〜1.5倍の範囲から適宜選択することによっ
て達成される。
In biaxially stretching an unstretched tubular body, the boiling water shrinkage of the heat-shrinkable tube after biaxial stretching becomes 40 to 60% in the diametrical direction and 5 to 15% in the longitudinal direction. Therefore, it is necessary to consider the draw ratio in each direction. If both the diametrical direction and the longitudinal direction do not satisfy the above range at the same time, a space will be generated in the groove portion of the condenser during the dry heat treatment after the coating contraction of the condenser. In order to satisfy the above ranges in both the diameter direction and the length direction at the same time, the stretching ratio in the diameter direction is appropriately set to 1.7 to 2.5 times and the stretching ratio in the length direction is set to be 1 to 1.5 times. Achieved by choosing.

【0012】以上詳述したように本発明のポリエチレン
テレフタレート系熱収縮性チューブは、ネオペンチルグ
リコールの共重合量を9〜15モル%とし、肉厚を50
〜100μm 、直径方向の沸水収縮率を40〜60%、
長さ方向の沸水収縮率を5〜15%にすることによっ
て、コンデンサー(長さ24mm、外径12.5mmのコン
デンサーであって、下部より2〜5mmの位置に曲面を有
した凹状の溝があり、その溝の最深部は直径11mmで下
部より4mmの位置にある。)に内径13.3mm、厚さ7
5μm 熱収縮性チューブを被覆収縮した時に、その被覆
収縮後の乾熱処理(170℃×3分)の段階でコンデン
サーの溝部に実質的に空間が発生しなくなるのであっ
て、これらの一つを欠いてもコンデンサーの溝部おける
空間の発生を防ぐことは困難である。
As described above in detail, the polyethylene terephthalate heat-shrinkable tube of the present invention has a neopentyl glycol copolymerization amount of 9 to 15 mol% and a wall thickness of 50.
-100 μm, diametrical boiling water shrinkage of 40-60%,
By adjusting the boiling water shrinkage ratio in the length direction to 5 to 15%, a condenser (a condenser having a length of 24 mm and an outer diameter of 12.5 mm, in which a concave groove having a curved surface at a position of 2 to 5 mm from the bottom is formed) The deepest part of the groove is 11 mm in diameter and 4 mm from the bottom.) Inside diameter is 13.3 mm and thickness is 7 mm.
When a 5 μm heat-shrinkable tube is shrunk by coating, at the stage of dry heat treatment (170 ° C. × 3 minutes) after the shrinking by coating, there is substantially no space in the groove of the condenser, and one of these is lacking. However, it is difficult to prevent the formation of a space in the groove of the condenser.

【0013】[0013]

【発明の実施の形態】以下に実施例を示して本発明を更
に説明する。なお、本発明でいう沸水収縮率は98℃の
沸水中に30秒間浸漬して収縮率を測定した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be further described below with reference to Examples. The boiling water shrinkage rate in the present invention was measured by immersing in boiling water at 98 ° C for 30 seconds.

【0014】[実施例1]ネオペンチルグリコールを1
2モル%共重合したポリエチレンテレフタレート共重合
体(固有粘度0.74)を170℃で4時間熱風循環式
乾燥機で乾燥した後、環状ダイスを設けたエクストルー
ダーからシリンダー温度300〜270℃、ダイス温度
260℃で外径7mm、肉厚150μm の管状体を押出
し、水槽で冷却してロールに巻き取った。得られた管状
体の端部より0.7kg/cm2 の圧縮空気を注入し、90
℃の温水で加熱して膨張させると同時にディファレンシ
ャルスピードロールにより長さ方向に張力を加えて長さ
方向の延伸倍率1.05、直径方向の延伸倍率2.0、
延伸速度10 m/分で二軸同時延伸した。得られた熱収
縮性チューブは極めて透明で、内径13.3mm、厚さ7
5μm 、直径方向の収縮率48%、長さ方向の収縮率8
%であった。この熱収縮性チューブを直径12.5mmの
前記コンデンサーに被覆し、120℃で3分間熱処理し
収縮させて、その溝部にチューブが完全に密着したコン
デンサーを得た。このコンデンサーを更に170℃で3
分間乾熱処理したところ、その溝部にチューブが完全に
密着しており、またチューブの端部の長さは乾熱処理前
から1mm収縮しているが、コンデンサーからのずれは見
られなかった。
Example 1 1 neopentyl glycol was used.
The polyethylene terephthalate copolymer copolymerized with 2 mol% (intrinsic viscosity 0.74) was dried at 170 ° C. for 4 hours with a hot air circulation dryer, and then the extruder was provided with an annular die to obtain a cylinder temperature of 300 to 270 ° C. and a die. A tubular body having an outer diameter of 7 mm and a wall thickness of 150 μm was extruded at a temperature of 260 ° C., cooled in a water tank and wound into a roll. Inject compressed air of 0.7 kg / cm 2 from the end of the obtained tubular body,
At the same time as being expanded by heating with warm water of ℃, a longitudinal speed draw ratio of 1.05 and a diametric direction draw ratio of 2.0 by applying tension in the length direction by a differential speed roll.
Biaxial simultaneous stretching was performed at a stretching speed of 10 m / min. The resulting heat-shrinkable tube is extremely transparent and has an inner diameter of 13.3 mm and a thickness of 7
5 μm, diametrical shrinkage 48%, lengthwise shrinkage 8
%Met. The heat-shrinkable tube was coated on the capacitor having a diameter of 12.5 mm and heat-treated at 120 ° C. for 3 minutes to shrink the tube, to obtain a capacitor in which the tube was completely adhered to the groove. Add this condenser at 170 ℃ for 3
After a dry heat treatment for a minute, the tube was completely adhered to the groove portion, and the length of the end portion of the tube was contracted by 1 mm before the dry heat treatment, but no deviation from the condenser was observed.

【0015】[実施例2]ネオペンチルグリコールを1
2モル%共重合したポリエチレンテレフタレート系共重
合体(固有粘度0.74)80重量部とポリエチレンテ
レフタレート樹脂樹脂(固有粘度0.65)20重量部
とをV型ブレンダーによりチップ状態で混合し、以下実
施例1と同様の方法により外径8mm、肉厚180μm の
未延伸管状体を得た。この管状体の端末より0.6kg/
cm2 の圧縮空気注入し、90℃の温水で膨張させて長さ
方向に1.05倍、直径方向に2.0倍、延伸速度10
m/分で延伸した。得られた熱収縮性チューブは極めて
透明で、内径16mm、肉厚90μm 、直径方向の収縮率
48%、長さ方向の収縮率8%であった。この熱収縮性
チューブを直径14.5mmのコンデンサーに被覆し12
0℃3分間熱処理し収縮させて、その溝部にチューブが
完全に密着したコンデンサーを得た。このコンデンサー
を更に170℃で3分間乾熱処理したところ、その溝部
にチューブが完全に密着しており、またチューブの端部
の長さは乾熱処理前から2mm収縮しているが、コンデン
サーからのずれは見られなかった。
Example 2 Neopentyl glycol 1
80 parts by weight of 2 mol% copolymerized polyethylene terephthalate-based copolymer (intrinsic viscosity 0.74) and 20 parts by weight of polyethylene terephthalate resin (intrinsic viscosity 0.65) were mixed in a chip state by a V-type blender. By the same method as in Example 1, an unstretched tubular body having an outer diameter of 8 mm and a wall thickness of 180 μm was obtained. 0.6kg / from the end of this tubular body
Inject compressed air of cm 2 and expand with warm water at 90 ℃, 1.05 times in the length direction, 2.0 times in the diameter direction, stretching speed 10
Stretched at m / min. The heat-shrinkable tube thus obtained was extremely transparent and had an inner diameter of 16 mm, a wall thickness of 90 μm, a diametrical shrinkage of 48%, and a lengthwise shrinkage of 8%. This heat-shrinkable tube was coated on a condenser with a diameter of 14.5 mm.
Heat treatment was performed at 0 ° C. for 3 minutes to cause shrinkage to obtain a capacitor in which the tube was completely adhered to the groove. When this condenser was further dry heat treated at 170 ° C for 3 minutes, the tube was completely adhered to the groove, and the length of the tube end shrank by 2 mm from before the dry heat treatment, but the deviation from the condenser Was not seen.

【0016】[比較例1]ネオペンチルグリコールを1
2モル%共重合したポリエチレンテレフタレート系共重
合体(固有粘度0.74)70重量部とポリエチレンテ
レフタレート樹脂(固有粘度0.65)30重量部とを
V型ブレンダーを用いてチップ状態で混合し、以下実施
例1と同様の方法で外径7mm、肉厚150μm の未延伸
管状体を得た。この管状体の端末より0.7kg/cm2
圧縮空気を注入し、90℃の温水で膨張させて長さ方向
に1.05倍、直径方向に2.0倍、延伸速度10 m/
分で同時二軸延伸して熱収縮性チューブを得た。得れれ
た熱収縮性チューブは内径14mm、肉厚75μm 、直径
方向の収縮率48%、長さ方向の収縮率8%であった。
この熱収縮性チューブを前記の直径12.5mmのコンデ
ンサーに被覆し120℃、3分間熱処理し収縮させて、
その溝部にチューブが完全に密着したコンデンサーを得
た。このコンデンサーを更に170℃で3分間乾熱処理
したところ、その溝部のチューブはほぼ平坦になり、溝
部は空間になっていた。また熱収縮性チューブの端部は
コンデンサーの端部よりずれていた。
[Comparative Example 1] 1 neopentyl glycol was used.
70 parts by weight of a polyethylene terephthalate-based copolymer (intrinsic viscosity 0.74) copolymerized with 2 mol% and 30 parts by weight of a polyethylene terephthalate resin (intrinsic viscosity 0.65) were mixed in a chip state using a V-type blender, In the same manner as in Example 1 below, an unstretched tubular body having an outer diameter of 7 mm and a wall thickness of 150 μm was obtained. Compressed air of 0.7 kg / cm 2 was injected from the end of this tubular body and expanded with warm water at 90 ° C. to obtain 1.05 times in the length direction, 2.0 times in the diameter direction, and a drawing speed of 10 m /
And simultaneously biaxially stretched in minutes to obtain a heat-shrinkable tube. The resulting heat-shrinkable tube had an inner diameter of 14 mm, a wall thickness of 75 μm, a diametrical shrinkage of 48%, and a lengthwise shrinkage of 8%.
The heat-shrinkable tube was coated on the condenser having a diameter of 12.5 mm and heat-treated at 120 ° C. for 3 minutes to shrink,
A condenser in which the tube was completely adhered to the groove was obtained. When this condenser was further subjected to dry heat treatment at 170 ° C. for 3 minutes, the tube in the groove portion became almost flat and the groove portion became a space. The end of the heat-shrinkable tube was displaced from the end of the condenser.

【0017】[0017]

【発明の効果】本発明のポリエステル系熱収縮性チュー
ブは、コンデンサーを被覆、収縮した後の乾熱処理にお
いてもコンデンサーの溝部に完全に密着し、コンデンサ
ーの形状に一致し密着性が良好なので仕上がりが美し
く、コンデンサーの保護や電気絶縁性に優れる等、コン
デンサーの被覆用として極めて適している。
EFFECT OF THE INVENTION The polyester heat shrinkable tube of the present invention is completely adhered to the groove portion of the capacitor even in the dry heat treatment after covering and shrinking the capacitor, and the shape of the capacitor is good and the adhesion is good, so that the finish is finished. It is beautiful and has excellent protection and electrical insulation, and is extremely suitable for coating capacitors.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29K 105:02 B29L 23:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area B29K 105: 02 B29L 23:00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 グリコール成分としてネオペンチルグリ
コールを9〜15モル%含有するポリエチレンテレフタ
レートからなり、肉厚が50〜100μm 、沸水収縮率
が直径方向40〜60%、長さ方向5〜15%の熱収縮
性チューブであって、コンデンサーに被覆収縮させた後
170℃で3分間乾熱処理した際にコンデンサーの溝部
に実質的に空間が発生しないコンデンサー被覆用ポリエ
ステル系熱収縮性チューブ。
1. A polyethylene terephthalate containing 9 to 15 mol% of neopentyl glycol as a glycol component, having a wall thickness of 50 to 100 μm, a boiling water shrinkage ratio of 40 to 60% in the diameter direction, and 5 to 15% in the length direction. A polyester heat-shrinkable tube for covering a capacitor, which is a heat-shrinkable tube and does not substantially generate a space in a groove portion of the capacitor after being dry-heated at 170 ° C. for 3 minutes after being shrunk by covering the capacitor.
JP7307223A 1995-11-27 1995-11-27 Polyester heat-shrinkable tube for sheathing capacitor Pending JPH09148177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7307223A JPH09148177A (en) 1995-11-27 1995-11-27 Polyester heat-shrinkable tube for sheathing capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7307223A JPH09148177A (en) 1995-11-27 1995-11-27 Polyester heat-shrinkable tube for sheathing capacitor

Publications (1)

Publication Number Publication Date
JPH09148177A true JPH09148177A (en) 1997-06-06

Family

ID=17966533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7307223A Pending JPH09148177A (en) 1995-11-27 1995-11-27 Polyester heat-shrinkable tube for sheathing capacitor

Country Status (1)

Country Link
JP (1) JPH09148177A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100500834B1 (en) * 2000-01-20 2005-07-12 주식회사 코오롱 Polyester-based heat-contractible tube for coating eletrolytic condenser
KR100537100B1 (en) * 2000-10-24 2005-12-16 주식회사 코오롱 Polyester-based thermal contraction tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100500834B1 (en) * 2000-01-20 2005-07-12 주식회사 코오롱 Polyester-based heat-contractible tube for coating eletrolytic condenser
KR100537100B1 (en) * 2000-10-24 2005-12-16 주식회사 코오롱 Polyester-based thermal contraction tube

Similar Documents

Publication Publication Date Title
US5368811A (en) Producing heat-shrinkable tube
JPS6212015B2 (en)
JP3594541B2 (en) Polyester heat shrinkable tubing for coating electrolytic capacitors
JP3486692B2 (en) Base film for in-mold transfer
JPH09148177A (en) Polyester heat-shrinkable tube for sheathing capacitor
JPS6241859B2 (en)
JP4802371B2 (en) Method for producing heat-shrinkable polyester film
JP2784241B2 (en) Heat shrinkable tubing
JP2505474B2 (en) Easy folding polyester film
KR100537099B1 (en) Polyester-based thermal contraction tube
JPS6241860B2 (en)
EP1655322B1 (en) Thermoplastic copolyester and method for producing heat-shrinkable tube by using the same
KR100537100B1 (en) Polyester-based thermal contraction tube
KR100392161B1 (en) Polyester-based thermal contraction tube
KR100353490B1 (en) Polyester-based thermal contraction tube
EP0767192B1 (en) Heat-shrinkable tubing, process for production thereof, and use thereof
JP3845531B2 (en) Heat shrinkable seamless tube
JPH0416060B2 (en)
JPH09157402A (en) Heat-shrinkable tube, its production and utilization thereof
KR100814290B1 (en) Polyester-based thermal contraction tube
JP2624402B2 (en) Wire coating material
JP2001504047A (en) Biaxially stretched PET film for SMD film capacitor with improved mechanical and shrinkage properties and method for producing the same
JP2002508782A (en) Biaxially stretched PET film for SMD film capacitor, method for producing the same, and use of the film for SMD film capacitor
JPS5838298B2 (en) Polyester
JPH04255323A (en) Seamless belt excellent in dimensional stability