JPS6241860B2 - - Google Patents

Info

Publication number
JPS6241860B2
JPS6241860B2 JP13151379A JP13151379A JPS6241860B2 JP S6241860 B2 JPS6241860 B2 JP S6241860B2 JP 13151379 A JP13151379 A JP 13151379A JP 13151379 A JP13151379 A JP 13151379A JP S6241860 B2 JPS6241860 B2 JP S6241860B2
Authority
JP
Japan
Prior art keywords
tube
stretching
temperature
weight
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13151379A
Other languages
Japanese (ja)
Other versions
JPS5655235A (en
Inventor
Yutaka Nakamura
Mototaka Oomura
Norio Yoshiga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP13151379A priority Critical patent/JPS5655235A/en
Publication of JPS5655235A publication Critical patent/JPS5655235A/en
Publication of JPS6241860B2 publication Critical patent/JPS6241860B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/003Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はポリエステル樹脂からなる熱収縮チ
ユーブの製造方法に係る。 ポリエステル樹脂からなる熱収縮チユーブ(以
下単に熱収縮チユーブと略称する)は、その優れ
た耐熱性、耐蝕性、機械的性質のため近年、例え
ばコンデンサー外装用等の被覆用途を中心として
需要が逐次拡大してきている。物品を密着被覆す
るためには特にチユーブ径方向の収縮率(100℃
の熱水中、10秒間での収縮率、以下単に収縮率と
略記する)が必要とされ、例えばコンデンサーを
失敗なく被覆するためには通常40%以上が要求さ
れている。 かかるポリエステル収縮チユーブは通常、環状
ダイから押出成形された未延伸チユーブを、チユ
ーブ内に空気等の流体を圧入しその状態で加熱を
行なう加熱ゾーン(延伸ゾーン)で軸方向及び径
方向に同時に延伸するいわゆるチユーブラー延伸
によつて製造されるが、ポリエステル樹脂のよう
な結晶性樹脂から高収縮度のシームレスチユーブ
を安定的に生産することは極めて困難であつた。
また、このようなポリエステル樹脂のチユーブラ
ー延伸においては延伸速度が極めて大きいこと、
延伸温度に加熱するときチユーブの表裏で温度差
が生ずること、環状ダイから押出成形された未延
伸チユーブは厚み精度に劣ることなどの理由によ
り、延伸後の熱収縮チユーブは配向度、結晶化度
が不均一となり局部的な歪が生ずるために湾曲し
たり蛇行状態になり特に自動機械による連続被覆
が困難であるという不都合があつた。 本発明は収縮率、特に径方向における収縮率を
高度に保持しながら、しかも上記のような、湾
曲、波打ち等の外観上の不都合を改善したポリエ
ステル収縮チユープを安定して製造する方法を提
供することを目的とするものであつて、その要旨
とするところは、(A)酸成分が95〜65重量%のテル
フタル酸と5〜35重量%のイソフタル酸とからな
り、かつアルコール成分がエチレングリコールで
あるポリエステル共重合体樹脂10〜80重量%と、
(B)ポリエチレンテレフタレート90〜20重量%との
混合物からなる未延伸チユーブを、延伸開始点の
チユーブ温度を80〜95℃に保ち延伸終了点のチユ
ーブ温度を前記延伸開始点よりも5〜20℃低く保
ちながらチユーブ内に気体を圧入して径方向に
2.5倍以上延伸し、しかる後に70〜85℃に保ちな
がら軸方向に0.5〜15%の弛緩を行ない、かつ同
時に径方向に1〜20%の再延伸を行なうことを特
徴とするポリエステル熱収縮チユーブの製造方法
に存する。 以下、本発明を詳細に説明する。 本発明のチユーブを構成する素材のポリエステ
ルは、酸成分がテレフタル酸95〜65重量%とイソ
フタル酸が5〜35重量%からなり、アルコール成
分がエチレングリコールであるポリエステル共重
合体樹脂(以下A樹脂という)とポリエチレンテ
レフタレート樹脂(以下B樹脂という)との混合
物からなる。 上記A樹脂における2種の酸成分の関係は、テ
レフタル酸が多くなりすぎると物理的強度は大き
くなるが、低温時の収縮率が悪くなり、逆にテレ
フタル酸が少なすぎると物理的強度が低くなるば
かりでなく、延伸性が悪くなり、連続的に安定生
産できないので、上記範囲内にあることが肝要で
ある。また上記B樹脂としては極限粘度0.63〜
0.72溶液ヘーズ35〜75%のものが良好に用いられ
る。 A樹脂とB樹脂とは、前者の10〜80重量%に対
し後者が90〜20重量%の割合で混合される。この
混合割合からはずれると、高収縮度のシームレス
チユーブを安定的に連続生産することができな
い。さらに好ましい混合割合はA樹脂の割合で20
重量%以上、特に好ましくは30重量%以上であつ
て、その範囲では特に高い収縮率が得られる。ま
たA樹脂の割合は約60重量%以下とするのが好ま
しく、それ以上混合しても収縮率はそれほど増大
せず、むしろフイルムのコストが高くなる不利が
ある。両樹脂をブレンダーにより均一に混合した
もの又は更に適当な滑剤、着色剤、その他の添加
物を加えて混合したものを原料樹脂とする。 原料樹脂はホツパードライヤー等で乾燥後、押
出機において、270〜290℃の温度で混練し、環状
ダイスで円筒状に押出し、急冷して原チユープを
得る。 次にこのようにして得られた未延伸チユーブを
該チユーブ内に気体を圧入した状態で加熱して延
伸するが、この際延伸開始点のチユーブ温度が80
℃より低いと所定の径まで安定して延伸すること
ができず、95℃よりも高いと延伸開始点が移動し
易く安定な延伸が行なえないので80〜95℃好まし
くは85〜95℃に保つことが必要である。上記温度
に保つためには湯浴、熱風、赤外線輻射等各種の
加熱手段が使用できるがチユーブを急速に均一に
加熱するためには湯浴加熱が好ましくこれに加熱
水蒸気を併用してもよく、またあらかじめチユー
ブを80℃よりも低温で予熱しておけばさらに急
速、均一加熱がやり易い。なお、延伸開始点から
未延伸チユーブの径の1.5倍に延伸された点まで
は略同温度に保つことが好ましい。 さらに延伸開始点から延伸終了点までは温度を
下げて温度差をつける必要がある。すなわち両点
の温度差が5℃より小さいと延伸終了点の移動が
激しく安定な延伸ができず、また後述の外径規制
リングを用いる場合はその内面とチユーブ表面と
の間で摩擦が生じチユーブの引取りに支障を来た
す。一方、この温度差が20℃より大きいと所定の
外径寸法まで延伸できない。延伸終了点の温度は
上記範囲内で、かつ75℃以上にするのがよい。こ
の温度差をつけるために延伸終了点を所定の温度
に保つ手段としては、外径規制リングを用いその
内部で延伸を終了させこの外径規制リングに水冷
ジヤツケツトを設けておき所定温度の冷却水を通
しておけばよい。この方法は特にコンデンサー外
装用に多用される小口径(外径20mmφ以下)の熱
収縮チユーブの製造の際容易に温度差を保つこと
ができ有用である。 さらにまた、チユーブの径方向延伸倍率が2.5
倍よりも小さいと最終製品の熱収縮チユーブの径
方向収縮率が40%より小さくなつてしまうので
2.5倍以上、好ましくは2.5〜4.0倍が必要とされ
る。また軸方向の延伸倍率は特に限定されない
が、安定な延伸を行なうためには通常2.0〜4.0
倍、好ましくは3.0〜4.0倍が採用し得る。 上記のような延伸操作で得られた二軸延伸チユ
ーブを、内圧をかけた状態で湯浴中に通し、又は
電熱や赤外ヒーターによつて加熱された加熱ゾー
ン(熱処理ゾーン)に通し、70〜85℃の範囲内に
保持する。そして同時に軸方向に0.5%以上15%
以下の弛緩を行ない、且つ径方向には1%以上20
%以下の再延伸を行なう。これらの操作をさきの
延伸処理から引続き行なうには、延伸ゾーンを出
てくるチユーブを冷却した後、ニツプロールに通
し、上記の70〜85℃に保持した熱処理ゾーンに通
した後、更にニツプロールに通す。そして最初の
ニツプロールと後のニツプロールとの回転速度を
相違させることによつて所望度の軸方向の弛緩を
行ない、同時に最初のニツプロールの間隙を調節
することによつて延伸ゾーンの圧縮気体を導入し
てチユーブの内圧を調整してチユーブ径方向の再
延伸割合を所望の範囲内にすればよい。 上記の熱処理において、処理温度が70℃未満に
なると熱処理効果がなく、二軸延伸チユーブの湾
曲や波打ちは改善されない。また熱処理温度が85
℃を越えると、チユーブの軸方向及び径方向の収
縮率の低下が大きくなり、再延伸によつて収縮率
を保つことができず、実用上、不適当になる。従
つて上記70〜85℃の温度範囲に保つことが必須で
あり、好ましいのは75〜80℃である。 上記熱処理において、チユーブの軸方向には
0.5%以上15%以下の弛緩を行なう。好ましい弛
緩の範囲は1〜10%、一層好ましくは1〜5%で
ある。この操作は軸方向に存在する歪を緩和し、
熱処理領域での新たな歪の発生を防ぎ、湾曲、波
打ちを減少させるためであり、15%以下としたの
は、これを越えて弛緩を行なうと、処理温度を85
℃よりも高くしなければならず、このような高温
処理ではチユーブの軸方向と共に径方向の収縮率
も低下することになり、実用性に欠けてくるから
である。特にこの弛緩を1〜5%の範囲で行う
と、低温処理が可能なため収縮率が低下せず、フ
イルム張力が高い状態でフイルムを送ることがで
き、熱処理工程の安定性が高いので好ましい。ま
た湾曲、波打ち等の改良効果も5%近辺でほぼ最
良の状態に到達する。 チユーブの径方向に1%以上20%以下で再延伸
を行なうのは径方向を緊張状態にすることにより
径方向の収縮率の低下を防ぐと共に径の軸方向に
おける振れを防ぐためである。再延伸の程度は処
理温度と内圧とにより決められるが、20%が限界
であり、好ましくは1〜15%の範囲である。この
再延伸を行なわずに、熱処理を行なうと、径の規
制が困難となり、径の振れの原因となるので好ま
しくない。 以上詳述した如く本発明の熱収縮チユーブの製
造方法によれば、チユーブの軸方向及び径方向の
収縮率が実用上満足すべき程度であり、且つ湾曲
とか波打ちとかの外観的不都合の少ない、即ち製
品外観の優れたポリエステル収縮チユーブを得る
ことができる。従つて本発明方法によつて得られ
る熱収縮チユーブは耐薬品性、耐熱性、機械的性
質に優れ、しかも収縮特性、製品外観において優
れており、例えばコンデンサー製造工程の中に本
発明のチユーブを用いて行なう外装工程を組込ん
で、コンデンサーの一貫生産を行なう場合にも、
外観不良等による不合格品の発生率は格段に減少
し得るものであり、その産業上の意義は極めて大
きい。 以下、本発明の実施例を説明する。 実施例 1 酸成分がテレフタル酸90重量%及びイソフタル
酸10重量%でありアルコール成分がエチレングリ
コールであるA樹脂(極限粘度0.8)と、B樹脂
であるポリエチレンテレフタレート(極限粘度
0.7)とを第1表No.1〜No.5の割合で混合したも
の(本発明)あるいはNo.6、7のように夫々単独
のもの(比較例)を素材樹脂とし、これらをシリ
ンダー温度280〜270℃の押出機で環状ダイ(ダイ
温度270℃)から押出成形して直ちに20℃の水中
で急冷し外径4.0φmm、厚み0.6mmのポリエステル
樹脂製原チユーブを得た。これを78℃の湯浴中で
予熱した後、湯浴中で延伸開始点85℃、延伸終了
点80℃に保ちながら空気を圧入して外径規制リン
グ内で径方向に2.6倍、軸方向に3.8倍に延伸し直
ちに40℃まで冷却した。 次にこのチユーブを78℃において、軸方向に1
%弛緩し、同時に径方向に2%再延伸しながら熱
処理した。得られたチユーブの100℃の沸騰水
中、10秒間における収縮率を第1表に示す。 また、夫々の収縮性ポリエステルチユーブを長
さ21mmに切断し、直径10φmm、長さ14mmのコンデ
ンサーに被せ、180℃の熱風中、10秒間の条件で
加熱してチユーブを収縮させ、コンデンサーに密
着被覆した。夫々のチユーブにつき、100個のコ
ンデンサーを外装し、その合否を肉眼判定した。
その結果を第1表に示す。 なお、延伸性は次のようにして評価した。所定
の径の熱収縮性チユーブが安定的に連続して得ら
れる場合は延伸性良好として〇で示す。径が変動
して一定しない場合は延伸性不良として×で示
す。
This invention relates to a method for manufacturing a heat-shrinkable tube made of polyester resin. Due to its excellent heat resistance, corrosion resistance, and mechanical properties, demand for heat-shrinkable tubes made of polyester resin (hereinafter simply referred to as heat-shrinkable tubes) has gradually increased in recent years, mainly for coating purposes such as the exterior of capacitors. I've been doing it. In order to closely coat the article, the shrinkage rate in the tube radial direction (100℃
(hereinafter simply referred to as the shrinkage rate) is required, and for example, a shrinkage rate of 40% or more is normally required to coat a capacitor without failure. Such polyester shrink tubes are usually produced by simultaneously stretching an unstretched tube extruded from an annular die in the axial and radial directions in a heating zone (stretching zone) in which a fluid such as air is forced into the tube and heated in that state. However, it has been extremely difficult to stably produce seamless tubes with a high degree of shrinkage from crystalline resins such as polyester resins.
In addition, in tubular stretching of such polyester resin, the stretching speed is extremely high;
Due to reasons such as a temperature difference occurring between the front and back sides of the tube when heated to the stretching temperature, and unstretched tubes extruded from an annular die having poor thickness accuracy, heat-shrinkable tubes after stretching have a high degree of orientation and crystallinity. The coating becomes non-uniform and local distortion occurs, resulting in a curved or meandering state, which is particularly difficult to coat continuously using an automatic machine. The present invention provides a method for stably manufacturing a polyester shrink tube that maintains a high degree of shrinkage, particularly in the radial direction, and also improves appearance defects such as curving and waving as described above. The purpose is to: (A) The acid component consists of 95 to 65% by weight of terphthalic acid and 5 to 35% by weight of isophthalic acid, and the alcohol component consists of ethylene glycol. 10-80% by weight of polyester copolymer resin,
(B) An unstretched tube made of a mixture with 90 to 20% by weight of polyethylene terephthalate, the tube temperature at the starting point of stretching is kept at 80 to 95°C, and the tube temperature at the end of stretching is 5 to 20°C higher than the stretching starting point. Pressurize gas into the tube while keeping it low and radially
A polyester heat-shrinkable tube that is stretched 2.5 times or more, then relaxed by 0.5 to 15% in the axial direction while being maintained at 70 to 85°C, and simultaneously re-stretched by 1 to 20% in the radial direction. It consists in the manufacturing method. The present invention will be explained in detail below. The polyester of the material constituting the tube of the present invention is a polyester copolymer resin (hereinafter referred to as A resin ) and polyethylene terephthalate resin (hereinafter referred to as B resin). The relationship between the two types of acid components in the above resin A is that if the amount of terephthalic acid is too large, the physical strength will be high, but the shrinkage rate at low temperatures will be poor, and conversely, if the amount of terephthalic acid is too small, the physical strength will be low. It is important that it is within the above range, since not only will the drawability become poor, but continuous and stable production will not be possible. In addition, the above B resin has an intrinsic viscosity of 0.63~
0.72 solution haze of 35-75% is well used. Resin A and resin B are mixed at a ratio of 10 to 80% by weight of the former and 90 to 20% by weight of the latter. If the mixing ratio deviates from this, it is not possible to stably and continuously produce seamless tubes with a high degree of shrinkage. A more preferable mixing ratio is A resin ratio of 20
The amount of shrinkage is at least 30% by weight, preferably at least 30% by weight, and a particularly high shrinkage rate can be obtained within this range. Further, it is preferable that the proportion of resin A is about 60% by weight or less, and even if it is mixed in more than that, the shrinkage rate will not increase so much, and there is a disadvantage that the cost of the film will increase. The raw material resin is obtained by uniformly mixing both resins using a blender, or by adding appropriate lubricants, colorants, and other additives. The raw resin is dried with a hopper dryer, etc., then kneaded in an extruder at a temperature of 270 to 290°C, extruded into a cylindrical shape with an annular die, and rapidly cooled to obtain a raw cube. Next, the unstretched tube thus obtained is heated and stretched while gas is pressurized into the tube, but at this time, the temperature of the tube at the starting point of stretching is 80
If it is lower than ℃, it will not be possible to stably stretch it to the specified diameter, and if it is higher than 95℃, the stretching start point will tend to move and stable stretching will not be possible, so keep it at 80 to 95℃, preferably 85 to 95℃. It is necessary. In order to maintain the above temperature, various heating means such as a hot water bath, hot air, and infrared radiation can be used, but in order to rapidly and uniformly heat the tube, hot water bath heating is preferable, and heated steam may also be used in combination with this. Also, if you preheat the tube to a temperature lower than 80°C, it will be easier to heat it more quickly and uniformly. Note that it is preferable to maintain approximately the same temperature from the stretching start point to the point at which the tube is stretched to 1.5 times the diameter of the unstretched tube. Furthermore, it is necessary to lower the temperature to create a temperature difference from the stretching start point to the stretching end point. In other words, if the temperature difference between the two points is less than 5°C, the stretching end point will move too much and stable stretching will not be possible.Also, when using an outer diameter regulating ring (described later), friction will occur between the inner surface of the outer diameter regulating ring and the tube surface. This will hinder the collection of the item. On the other hand, if this temperature difference is greater than 20°C, it is impossible to stretch to a predetermined outer diameter. The temperature at the end of stretching is preferably within the above range and at least 75°C. In order to create this temperature difference, the stretching end point can be kept at a predetermined temperature by using an outer diameter regulating ring.The outer diameter regulating ring is equipped with a water-cooling jacket, and cooling water at a predetermined temperature is supplied to the outer diameter regulating ring. You can pass it through. This method is particularly useful for manufacturing small-diameter (outer diameter 20 mm or less) heat-shrinkable tubes that are often used for condenser exteriors because they can easily maintain a temperature difference. Furthermore, the radial stretching ratio of the tube is 2.5.
If it is smaller than 40%, the radial shrinkage rate of the final product will be less than 40%.
2.5 times or more, preferably 2.5 to 4.0 times, is required. Further, the stretching ratio in the axial direction is not particularly limited, but it is usually 2.0 to 4.0 in order to perform stable stretching.
times, preferably 3.0 to 4.0 times. The biaxially stretched tube obtained by the above stretching operation is passed through a hot water bath with internal pressure applied, or through a heating zone (heat treatment zone) heated by an electric or infrared heater, and then heated for 70 minutes. Keep within the range of ~85°C. And at the same time 0.5% or more 15% in the axial direction
Relaxation of 1% or more in the radial direction20
% or less. To continue these operations from the previous drawing process, the tube exiting the drawing zone is cooled, passed through a Nippro roll, passed through the heat treatment zone maintained at 70 to 85°C, and then passed through a Nippro roll. . The desired degree of axial relaxation is then achieved by varying the rotational speeds of the first and subsequent nip rolls, and at the same time the compressed gas in the drawing zone is introduced by adjusting the gap between the first nip rolls. The inner pressure of the tube may be adjusted to keep the re-stretching ratio in the tube radial direction within a desired range. In the above heat treatment, if the treatment temperature is less than 70°C, there will be no heat treatment effect, and the curvature and waviness of the biaxially stretched tube will not be improved. Also, the heat treatment temperature is 85
If the temperature exceeds .degree. C., the shrinkage rate in the axial and radial directions of the tube will decrease significantly, and the shrinkage rate cannot be maintained by re-stretching, making it unsuitable for practical use. Therefore, it is essential to maintain the temperature within the above-mentioned range of 70 to 85°C, preferably 75 to 80°C. In the above heat treatment, the axial direction of the tube is
Relax by 0.5% or more and 15% or less. The preferred relaxation range is 1-10%, more preferably 1-5%. This operation relieves the strain that exists in the axial direction,
This is to prevent new distortion from occurring in the heat-treated area and reduce curvature and waving.The reason for setting it below 15% is that if the relaxation exceeds this, the processing temperature will increase to 85%.
This is because such high-temperature treatment lowers the shrinkage rate in the radial direction as well as in the axial direction of the tube, making it impractical. Particularly, it is preferable to perform this relaxation in a range of 1 to 5% because low temperature treatment is possible so that the shrinkage rate does not decrease, the film can be fed with high film tension, and the stability of the heat treatment process is high. Furthermore, the effects of improving curvature, waving, etc. reach the best condition at around 5%. The reason why the tube is re-stretched in the radial direction by 1% or more and 20% or less is to keep the radial direction under tension so as to prevent a decrease in the shrinkage rate in the radial direction and also to prevent the diameter from wobbling in the axial direction. The degree of re-stretching is determined by the processing temperature and internal pressure, but the limit is 20%, preferably in the range of 1 to 15%. If heat treatment is performed without this re-stretching, it will be difficult to regulate the diameter and cause deviation in the diameter, which is not preferable. As detailed above, according to the method for manufacturing a heat-shrinkable tube of the present invention, the shrinkage rate of the tube in the axial direction and radial direction is at a practically satisfactory level, and there is little appearance disadvantage such as curving or waving. That is, a polyester shrink tube with an excellent product appearance can be obtained. Therefore, the heat-shrinkable tube obtained by the method of the present invention has excellent chemical resistance, heat resistance, and mechanical properties, as well as excellent shrinkage characteristics and product appearance. For example, the tube of the present invention can be used in the capacitor manufacturing process. When implementing integrated production of capacitors by incorporating the exterior packaging process using
The incidence of rejected products due to poor appearance, etc. can be significantly reduced, and this has great industrial significance. Examples of the present invention will be described below. Example 1 Resin A (intrinsic viscosity 0.8) whose acid components are 90% by weight of terephthalic acid and 10% by weight of isophthalic acid and whose alcohol component is ethylene glycol, and resin B which is polyethylene terephthalate (intrinsic viscosity
0.7) in the proportions shown in Table 1 No. 1 to No. 5 (invention) or Nos. 6 and 7, each alone (comparative example), are used as the material resin, and these are mixed at the cylinder temperature. It was extruded from an annular die (die temperature: 270°C) using an extruder at 280 to 270°C, and immediately quenched in water at 20°C to obtain a raw polyester resin tube with an outer diameter of 4.0 mm and a thickness of 0.6 mm. After preheating this in a hot water bath at 78°C, air was injected under pressure while maintaining the stretching start point at 85°C and the stretching end point at 80°C in the hot water bath, and then inside the outer diameter regulating ring, the temperature was increased by 2.6 times in the radial direction, and in the axial direction. The film was stretched 3.8 times and immediately cooled to 40°C. Next, this tube was heated to 78°C, and
% relaxation and heat treatment while simultaneously re-stretching in the radial direction by 2%. Table 1 shows the shrinkage rate of the obtained tube in boiling water at 100°C for 10 seconds. In addition, we cut each shrinkable polyester tube to a length of 21 mm, placed it over a condenser with a diameter of 10φmm and a length of 14 mm, and heated it in hot air at 180°C for 10 seconds to shrink the tube and tightly cover the condenser. did. Each tube was equipped with 100 capacitors, and their pass/fail was judged visually.
The results are shown in Table 1. In addition, stretchability was evaluated as follows. If a heat-shrinkable tube of a predetermined diameter can be stably and continuously obtained, it is indicated as good stretchability and marked with a mark of ◯. If the diameter fluctuates and is not constant, it is indicated as poor stretchability and is marked with an x.

【表】 上記第1表から明らかなように、本発明の熱収
縮性チユーブの径方向における100℃収縮率は45
%以上の高収縮率を示すが、比較例のそれは39%
以下であり、また実際にコンデンサー外装に用い
るとき、合格率は本発明のものの90〜98%に対
し、比較例のそれは60%以下であつた。 実施例 2 実施例1と同様のA樹脂40重量%と同じくB樹
脂60重量%との混合物を実施例1と同様に押出成
形して直径4φmm、肉厚0.6mmの未延伸チユーブ
を得た。これを75℃の湯浴中で予熱後湯浴中で延
伸開始点と延伸終了点とを第2表に示す各温度に
保ちながら空気を圧入して外径規制リング中で径
方向に3.0倍、軸方向に3.5倍延伸後、実施例1と
同一条件で熱処理した。得られたチユーブについ
て、実施例1と同様にして延伸性及び収縮率を測
定した結果を第2表に示す。 表に示すように本発明の実験No.1、2、5、
6、7では径方向の収縮率が40%のチユーブが安
定的に生産できたが、延伸開始点と延伸終了点の
温度差が5℃より小さい実験No.3では、径方向収
縮率が40%より小さく延伸も不安定であつた。ま
た温度差が20℃より大きい実験No.4では、収縮率
は高いがチユーブの径のふれが大きく安定な延伸
ができなかつた。
[Table] As is clear from Table 1 above, the shrinkage rate at 100°C in the radial direction of the heat-shrinkable tube of the present invention is 45
%, but that of the comparative example is 39%.
Moreover, when actually used for the exterior of a capacitor, the pass rate for the present invention was 90 to 98%, while that for the comparative example was 60% or less. Example 2 A mixture of 40% by weight of resin A and 60% by weight of resin B, as in Example 1, was extruded in the same manner as in Example 1 to obtain an unstretched tube with a diameter of 4φmm and a wall thickness of 0.6mm. After preheating this in a hot water bath at 75°C, air was pressurized while maintaining the stretching start point and stretching end point at each temperature shown in Table 2 in the hot water bath, and the outer diameter regulating ring was expanded 3.0 times in the radial direction. After stretching 3.5 times in the axial direction, heat treatment was performed under the same conditions as in Example 1. The stretchability and shrinkage rate of the obtained tube were measured in the same manner as in Example 1, and the results are shown in Table 2. As shown in the table, experiments No. 1, 2, 5 of the present invention,
In experiments No. 6 and 7, tubes with a radial shrinkage rate of 40% could be stably produced, but in Experiment No. 3, where the temperature difference between the stretching start point and the stretching end point was less than 5°C, the radial shrinkage rate was 40%. %, and the stretching was also unstable. In Experiment No. 4, where the temperature difference was greater than 20°C, although the shrinkage rate was high, the tube diameter fluctuated so much that stable stretching was not possible.

【表】 実施例 3 実施例1と同様のA樹脂30重量%と同じくB樹
脂70重量%との混合物を実施例1と同様に押出成
形して外径3.7φmm、内厚0.6mmの未延伸チユーブ
を得た。これを75℃の湯浴で予熱後、湯浴中で延
伸開始点90℃、延伸終了点80℃に保ちながら空気
を圧入して外径規制リング中で径方向に外径比で
2.5倍、軸方向に4倍の延伸を行ない直ちに40℃
に冷却した。 次いで上記延伸ゾーンに接続した熱処理ゾーン
にて、上記第2のニツプロールのニツプ圧を調節
して延伸ゾーンの圧縮空気を供給し(熱処理ゾー
ンの終端部には第3のニツプロールが設けられて
おり、チユーブ内の内圧保持と、チユーブの引取
りを行なう)、下記第3表記載の条件で熱処理を
行なつた。この場合、熱処理ゾーンの内圧は延伸
ゾーンの内圧と同圧であつた。熱処理時間は3秒
であつた。 なお、第1表における湾曲及び波打ちは次のよ
うにして測定した。 湾曲:偏平にした(折りたたまれた)収縮チユー
ブ500mm長さのものを水平台の上に置き、上方
からみて湾曲幅を測定する。 波打ち:偏平にした収縮チユーブ500mm長さのも
のを水平台に置き、側方からみて軸方向の波打
高さを測定する。500mm長さのうちで最大のも
のの波打ち高さを測定値とする。
[Table] Example 3 A mixture of 30% by weight of A resin similar to Example 1 and 70% by weight B resin similar to Example 1 was extruded in the same manner as Example 1 to form an unstretched product with an outer diameter of 3.7φmm and an inner thickness of 0.6mm. Got tube. After preheating this in a 75℃ hot water bath, air was pressurized while maintaining the stretching start point at 90℃ and the stretching end point at 80℃ in the hot water bath, and the outer diameter ratio was adjusted in the radial direction in the outer diameter regulating ring.
Stretch 2.5 times and 4 times in the axial direction and immediately at 40℃.
It was cooled to Next, in a heat treatment zone connected to the stretching zone, compressed air is supplied to the stretching zone by adjusting the nip pressure of the second nip roll (a third nip roll is provided at the end of the heat treatment zone, The heat treatment was carried out under the conditions listed in Table 3 below. In this case, the internal pressure in the heat treatment zone was the same as the internal pressure in the stretching zone. The heat treatment time was 3 seconds. Note that the curvature and waviness in Table 1 were measured as follows. Curvature: Place a flattened (folded) contraction tube 500mm long on a horizontal table and measure the width of the curvature when viewed from above. Waving: Place a flattened shrink tube with a length of 500 mm on a horizontal table and measure the waving height in the axial direction when viewed from the side. The measured value is the height of the largest wave within the 500mm length.

【表】 上記第3表において、実験番号1〜12が本発明
方法に従つた実施例であり、実験番号13〜15が比
較例である。この表から明らかなように、本発明
方法に従う実施例では径方向、軸方向の収縮率は
高度に保持され、しかも製品の湾曲、波打ちは改
善されている。これに対し、熱処理を行なわない
実験番号13、熱処理は行なつたが、その処理温度
が低すぎ、且つ軸方向の弛緩、径方向の再延伸を
行なわない実験番号14では湾曲、波打ちが共に著
しく、また熱処理温度が本発明の範囲を越えて高
すぎる実験番号15では、軸方向、径方向の収縮率
が何れも著しく低下した。 以上説明し、実施例に挙げたところは本発明の
理解を助けるための例示であり、本発明はこれら
の例に制限されるものでなく、発明の要旨内でそ
の他の変更、変形例を採ることができるものであ
る。
[Table] In Table 3 above, experiment numbers 1 to 12 are examples according to the method of the present invention, and experiment numbers 13 to 15 are comparative examples. As is clear from this table, in the examples according to the method of the present invention, the shrinkage rates in the radial and axial directions are maintained at a high level, and the curvature and waviness of the products are improved. On the other hand, in experiment number 13, in which no heat treatment was performed, and in experiment number 14, in which heat treatment was performed but the treatment temperature was too low, and in which axial relaxation and radial re-stretching were not performed, both curvature and waviness were significant. In Experiment No. 15, in which the heat treatment temperature was too high beyond the range of the present invention, both the axial and radial shrinkage rates were significantly reduced. The above explanation and examples are merely illustrative to aid understanding of the present invention, and the present invention is not limited to these examples, and other changes and modifications may be made within the gist of the invention. It is something that can be done.

Claims (1)

【特許請求の範囲】[Claims] 1 (A)酸成分が95〜65重量%のテレフタル酸と5
〜35重量%のイソフタル酸とからなり、かつアル
コール成分がエチレングリコールであるポリエス
テル共重合体樹脂10〜80重量%と、(B)ポリエチレ
ンテレフタレート90〜20重量%との混合物からな
る未延伸チユーブを、延伸開始点のチユーブ温度
を80〜95℃に保ち延伸終了点のチユーブ温度を前
記延伸開始点よりも5〜20℃低く保ちながらチユ
ーブ内に気体を圧入して径方向に2.5倍以上延伸
し、しかる後に70〜85℃に保ちながら軸方向に
0.5〜15%の弛緩を行ない、かつ同時に径方向に
1〜20%の再延伸を行なうことを特徴とするポリ
エステル熱収縮チユーブの製造方法。
1 (A) Terephthalic acid with an acid component of 95 to 65% by weight and 5
An unstretched tube made of a mixture of 10-80% by weight of a polyester copolymer resin consisting of ~35% by weight of isophthalic acid and whose alcohol component is ethylene glycol, and (B) 90-20% by weight of polyethylene terephthalate. , while keeping the tube temperature at the stretching start point at 80 to 95°C and the tube temperature at the stretching end point 5 to 20°C lower than the stretching start point, pressurize gas into the tube and stretch it 2.5 times or more in the radial direction. , and then axially while maintaining the temperature at 70~85℃.
A method for producing a heat-shrinkable polyester tube, characterized by relaxing the tube by 0.5 to 15% and simultaneously re-stretching it in the radial direction by 1 to 20%.
JP13151379A 1979-10-12 1979-10-12 Manufacture of polyester heat shrinkable tube Granted JPS5655235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13151379A JPS5655235A (en) 1979-10-12 1979-10-12 Manufacture of polyester heat shrinkable tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13151379A JPS5655235A (en) 1979-10-12 1979-10-12 Manufacture of polyester heat shrinkable tube

Publications (2)

Publication Number Publication Date
JPS5655235A JPS5655235A (en) 1981-05-15
JPS6241860B2 true JPS6241860B2 (en) 1987-09-04

Family

ID=15059786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13151379A Granted JPS5655235A (en) 1979-10-12 1979-10-12 Manufacture of polyester heat shrinkable tube

Country Status (1)

Country Link
JP (1) JPS5655235A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864958A (en) * 1981-10-09 1983-04-18 大日本インキ化学工業株式会社 Heat-shrinkable film and heat-shrinkable packing method for article using said heat-shrinkable film
JPS60206839A (en) * 1984-03-30 1985-10-18 Okura Ind Co Ltd Heat-shrinkable polyester film
JPS61149348A (en) * 1984-12-24 1986-07-08 大倉工業株式会社 Shrink package having excellent shock resistance
JPH0741668B2 (en) * 1985-03-05 1995-05-10 三井石油化学工業株式会社 Heat shrink film
JPS6228226A (en) * 1985-07-30 1987-02-06 Okura Ind Co Ltd Unidirectionally heat-shrinkable tubular film and manufacture thereof
JPS6291555A (en) * 1985-10-18 1987-04-27 Toyobo Co Ltd Heat-shrinkable polyester film
JPH07102616B2 (en) * 1987-01-07 1995-11-08 三菱樹脂株式会社 Curvature coating method
JP2866727B2 (en) * 1990-09-27 1999-03-08 三菱樹脂株式会社 Heat shrinkable tubing

Also Published As

Publication number Publication date
JPS5655235A (en) 1981-05-15

Similar Documents

Publication Publication Date Title
CA1064210A (en) Process and apparatus for heat setting biaxially oriented tubular polyethylene terephthalate films
US4335069A (en) Flat sheet process for production of polyolefin shrink film
JPH0241405B2 (en)
JPS6241860B2 (en)
EP0026566B1 (en) Process for transversely stretching polyethylene terephthalate film
JPS6241859B2 (en)
JPH0470135B2 (en)
US4034055A (en) Tubular film of polyethylene terephthalate and process for the production thereof
GB2145027A (en) Tubular articles of biaxially oriented polymers
JPS58211422A (en) Manufacture of polyester film
US3234312A (en) Method of orienting thermoplastic pipe
JPH05261809A (en) Manufacture of biaxially oriented polybutylene terephthalate film
JPH03130129A (en) Manufacture of biaxially oriented nylon 6-66 copolymer film
JP2784241B2 (en) Heat shrinkable tubing
KR100971495B1 (en) Heat shrinkable polyester film and preparation method thereof
JPS6220018B2 (en)
KR100188467B1 (en) Biaxially stretching polyamide film
JPH0628903B2 (en) Method for producing biaxially stretched nylon 6 film
US3723583A (en) Orientation of tubular polypropylene film
JPS5843250B2 (en) Polyester
CA1038584A (en) Tubular film of polyethylene terephthalate and process for the production thereof
KR100204305B1 (en) Biaxially stretching polyamide film
JPS5935333B2 (en) Method for manufacturing polyester containers
JPS5867411A (en) Forming method of polyester film
SU552209A1 (en) The method of obtaining ring-shaped products from polymeric materials