JPS6291555A - Heat-shrinkable polyester film - Google Patents

Heat-shrinkable polyester film

Info

Publication number
JPS6291555A
JPS6291555A JP60233959A JP23395985A JPS6291555A JP S6291555 A JPS6291555 A JP S6291555A JP 60233959 A JP60233959 A JP 60233959A JP 23395985 A JP23395985 A JP 23395985A JP S6291555 A JPS6291555 A JP S6291555A
Authority
JP
Japan
Prior art keywords
heat
film
shrinkage
polyester film
shrinkage rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60233959A
Other languages
Japanese (ja)
Other versions
JPH0410854B2 (en
Inventor
Tsutomu Isaka
勤 井坂
Toshihiro Yamashita
敏弘 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP60233959A priority Critical patent/JPS6291555A/en
Priority to DE8686110444T priority patent/DE3667993D1/en
Priority to EP86110444A priority patent/EP0210646B2/en
Publication of JPS6291555A publication Critical patent/JPS6291555A/en
Priority to US07/301,827 priority patent/US4963418A/en
Priority to JP3255726A priority patent/JPH0651353B2/en
Publication of JPH0410854B2 publication Critical patent/JPH0410854B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To make beautiful and tight covering package and tying package possible, by providing a polyester film having such a heat shrinkability that its heat shrinkage factor in a direction of principal shrinkage has at lest a specified value and that the one in a direction perpendicular to the direction of principal shrinkage has the min. value at a specified temp. CONSTITUTION:A heat-shrinkable polyester film has such a heat shrinkability that is heat shrinkage factor at 80 deg.C is 30% or above, that the one at 100 deg.C is 50% or above and that the one in a direction perpendicular to the above direction of principal shrinkage has the min. value in a temp. region of 80+ or -25 deg.C. To obtain these film characteristics, it is desirable to use these film chracteristics, it is desirable to use a mixture of at least two polyesters, wherein the residue of an arom. dicarboxylic acid accounts for 30-90mol% of the mixture, or a copolyester. It is desirable that a difference heat shrinkage factor between the direction of principal shrinkage of the film and the direction perpendicular to said direction is 15% or below and a coefficient of planar orientation is 100-10<-3> or below.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は被覆用或は結束用等の包装材料分野において特
に好適な特性を発揮する熱収縮性ポリエステル系フィル
ム(シートを含む、以下同じ)に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to a heat-shrinkable polyester film (including sheets, hereinafter the same) that exhibits particularly suitable properties in the field of packaging materials such as covering and bundling. It is related to.

[従来の技術] 熱収縮性プラスチックフィルムを素材として形成される
チューブ状体は、例えば容器、瓶(プラスチックボトル
を含む)0缶棒状物(パイプ。
[Prior Art] Tubular bodies made of heat-shrinkable plastic film include, for example, containers, bottles (including plastic bottles), cans, sticks (pipes), etc.

棒、木材、各種棒状体)等(以下容器類と略す)の被覆
用或は結束用として、特に、これ等のキャップ、肩部、
胴部等の一部又は全面を被覆し、標示、保護、結束、商
品価値向上等を目的として用いられる他、箱、瓶、板、
棒、ノート等のような集積包装或はスキンパックのよう
に被包装物に密着させて包装する分野等において広く使
用されており、収縮性及び収縮応力を利用した用途展開
が期待される。
For covering or bundling rods, wood, various rod-shaped bodies), etc. (hereinafter referred to as containers), especially the caps, shoulders, etc.
It is used to cover part or all of the body, etc., for purposes such as marking, protection, binding, and improving product value, as well as for boxes, bottles, boards, etc.
It is widely used in the fields of integrated packaging such as sticks, notebooks, etc., and packaging in close contact with items to be packaged such as skin packs, and is expected to be used in applications that take advantage of its shrinkage properties and shrinkage stress.

従来上記用途にはポリ塩化ビニル、ポリスチレン、ポリ
エチレン、塩酸ゴム等の熱収縮性フィルムを用い、これ
をチューブ状体にしてから前記容器類にかぶせたり、集
積包装して熱収縮させていた。
Conventionally, heat-shrinkable films made of polyvinyl chloride, polystyrene, polyethylene, hydrochloric acid rubber, etc. have been used for the above-mentioned purposes, and the film has been formed into a tube and then covered with the containers or packaged in a bundle and heat-shrinked.

しかしこれらのフィルムは耐熱性が乏しく、ボイル処理
やレトルト処理をすると溶融又は破裂してフィルム状体
を維持することができないという欠点があった。
However, these films have poor heat resistance and have the disadvantage that they melt or burst when subjected to boiling or retort processing, making it impossible to maintain the film-like structure.

更に印刷の必要な用途ではインクの転移不良による印肘
ピンホール(フィルム内の添加剤やポリマーのゲル状物
によるフィッシュアイに基づく微小凹凸)の発生が見ら
れたり、仮にうまく印刷できたとしてもその後にフィル
ムが収縮(常温収II)を起こして印刷ピッチに寸法変
化をきたすという問題もあった。これに対しポリエステ
ル系熱収縮フィルムを用いるチューブは、これまでにも
試行的には作られたことはあるが、希望方向への熱収縮
率を十分に高くすることができなかったり、又上記方向
と直交する方向への熱収縮を小さくすることができない
という問題があり、前記用途への展開は困難であった。
Furthermore, in applications that require printing, pinholes (microscopic irregularities based on fish eyes caused by additives and polymer gels in the film) may occur due to poor ink transfer, and even if printing is successful, There was also a problem in that the film subsequently contracted (normal temperature storage II), resulting in a dimensional change in the printing pitch. On the other hand, tubes using polyester heat-shrinkable films have been made on a trial basis in the past, but they have not been able to achieve a sufficiently high heat-shrinkage rate in the desired direction, or There is a problem in that it is not possible to reduce thermal shrinkage in a direction perpendicular to the direction, and it has been difficult to apply the method to the above-mentioned applications.

[発明が解決しようとする問題点] ポリ塩化ビニル、ポリスチレン、ポリエチレン等の汎用
熱収縮性フィルムを使う上記従来技術には、以下述べる
様な問題点がある。
[Problems to be Solved by the Invention] The above-mentioned conventional techniques using general-purpose heat-shrinkable films made of polyvinyl chloride, polystyrene, polyethylene, etc. have the following problems.

(a)完全に近い一軸収縮性の欠除 一方向に大きい収縮性を有する一方、これと直角方向に
は全く収縮しないことが理想とされる様な用途において
は上記従来フィルムは全く不向きである0例えば横方向
に収縮させてボトル表面に収縮ラベルをつける場合を考
えると、ラベルの縦方向即ちボトルの上下方向に収縮す
ることは、所定の位置にラベルが来すにラベルが縮み上
がることを意味し外観不良を招く、これを防止するには
縦方向の収縮を小さくしなければならないが、この目的
の為に単純にフィルムを横方向にのみ配向させたとする
と、高分子化学物質の性質上の常識から直ちに理解され
る様に引裂は易く、またフィブリン化しやすくなる為強
度も弱くなる。特にボトルが落下する場合は縦方向の強
度が破瓶防止上重要であることを考え合わせると単純な
一方向延伸は良い方法とは言えない、又その他の用途で
も耐衝撃性がないと使用できない場合が多く存在する。
(a) Lack of nearly perfect uniaxial shrinkage The above-mentioned conventional films are completely unsuitable for applications where it is ideal to have large shrinkage in one direction but no shrinkage in the direction perpendicular to this. 0For example, if we consider attaching a shrink label to the surface of a bottle by shrinking it in the horizontal direction, shrinking the label in the vertical direction, that is, in the vertical direction of the bottle, means that the label will shrink up when it comes to a predetermined position. To prevent this, shrinkage in the vertical direction must be reduced, but if the film is simply oriented only in the horizontal direction for this purpose, due to the nature of polymeric chemicals, shrinkage in the vertical direction must be reduced. As can be easily understood from common sense, it is easy to tear, and it also becomes easy to fibrin, which weakens its strength. Simple unidirectional stretching is not a good method, especially considering that strength in the vertical direction is important to prevent bottles from breaking when the bottle is dropped, and it cannot be used for other purposes unless it has impact resistance. There are many cases.

この様なところから、ある特定の温度領域で極めて小さ
い収縮性を有する反面、その直角方向には充分大きい収
縮性を有する様なフィルムの開発が望まれるのである。
From this point of view, it is desired to develop a film that has an extremely small shrinkage in a certain temperature range, but a sufficiently large shrinkage in the direction perpendicular to the temperature range.

(b)耐熱性の不足 前記従来フィルムはいずれも高温のボイル処理やレトル
ト処理に耐えることができず、殺菌処理には不適当なフ
ィルムである。例えばレトルト処理を行なうと、前記従
来フィルムは処理中に破壊、破裂し、全ての機能が失な
われる。従ってボイル処理やレトルト処理に耐え得る熱
収縮性フィルムの提供が望まれている。
(b) Insufficient heat resistance None of the conventional films described above can withstand high-temperature boiling or retort processing, making them unsuitable for sterilization. For example, when retort processing is performed, the conventional film breaks or ruptures during processing and loses all functionality. Therefore, it is desired to provide a heat-shrinkable film that can withstand boiling and retorting.

(C)印刷性の不良 ハーフトーン印刷によるピンホールの発生、広範囲な各
種インクとの接着性等に関し、上記従来フィルムはそれ
ぞれ固有の欠点を有する。例えばポリ塩化ビニルではゲ
ル状物によるインクピンホールが発生し易く、連続的な
チューブ加工では、長尺フィルムの途中にピンホールが
存在することになる。これ全自動ラベリングマシンに供
給した場合ピンホールを残したまま製品化されてしまう
ので、最終的に全品検査を行なわなければならず、その
労力と抜取りによる再加工等により、実稼動率が著しく
低下する。このピンホール欠陥を印刷終了後の段階で検
査して除去しようとすれば、カット後再び連続フィルム
状に戻すことになり接着テープで継ぐ必要が生じる。そ
の為継目が入り、その部分及び前後は継目の影響によっ
て不良品が生じ、工程中に欠陥包装体を取除かなければ
ならない。更に高精度の印刷では、印刷後にフィルムの
収縮による印刷ピッチの減少(経時収縮)を生じ、しか
も流通温度条件下で絶えず変化するという管理の難しさ
に遭遇する。
(C) Poor printability The above-mentioned conventional films each have their own drawbacks with respect to the occurrence of pinholes due to halftone printing, adhesion with a wide variety of inks, and the like. For example, in polyvinyl chloride, ink pinholes are likely to occur due to gel-like substances, and in continuous tube processing, pinholes will exist in the middle of a long film. If this is supplied to a fully automatic labeling machine, the product will be manufactured with pinholes left behind, so all products must be inspected at the end, and the labor and reprocessing required by sampling will significantly reduce the actual operating rate. do. If this pinhole defect were to be inspected and removed after printing, the film would have to be made into a continuous film again after being cut, and it would be necessary to connect it with adhesive tape. As a result, there are seams, and defective products occur due to the effects of the seams in that area and before and after, and defective packages must be removed during the process. Furthermore, in high-precision printing, the printing pitch decreases due to shrinkage of the film after printing (shrinkage over time), and moreover, it is difficult to manage because it constantly changes under the distribution temperature conditions.

従ってポリ塩化ビニル収縮フィルム等では保冷車や低温
倉庫等が必要となる。この様なところから、ピンホール
欠陥のない印刷が可能であり、また印刷後の経時変化が
ない様な熱収縮性フィルムの提供が望まれる。
Therefore, for polyvinyl chloride shrink film, etc., refrigerated trucks, low-temperature warehouses, etc. are required. For this reason, it is desired to provide a heat-shrinkable film that can be printed without pinhole defects and that does not change over time after printing.

(d)クレーズの発生 ポリスチレンはクレーズが生じ易く、耐薬品性が悪い。(d) Craze occurrence Polystyrene is prone to craze and has poor chemical resistance.

従って使用中に薬液による損傷を受は易く印刷面も汚れ
る。従って耐薬品性、耐久性の優れたフィルムが望まれ
ている。
Therefore, during use, it is easily damaged by chemicals and the printed surface becomes dirty. Therefore, a film with excellent chemical resistance and durability is desired.

(e)産業廃棄物の問題 近年プラスチックボトルの使用量は急激に伸長している
。このボトルの回収を考えた場合、特にポリエステルボ
トルの被覆にポリ塩化ビニルやポリスチレン等の異種フ
ィルムが使用されていると回収再利用に付すことができ
ないという問題がある。
(e) Problems with industrial waste In recent years, the amount of plastic bottles used has increased rapidly. When considering the recovery of these bottles, there is a problem that they cannot be recovered and reused, especially if a different type of film such as polyvinyl chloride or polystyrene is used to cover a polyester bottle.

その上ポリ塩化ビニルでは塩素ガスによる腐食の問題も
あり、廃棄物公害を招かない様な熱収縮性フィルムが望
まれる。
Furthermore, polyvinyl chloride has the problem of corrosion due to chlorine gas, so a heat-shrinkable film that does not cause waste pollution is desired.

(f)収縮斑 上記従来フィルムの熱収縮性は均質性に欠けるきらいが
あり、いったん熱をかけて収縮の十分なところと不十分
なところが別々に形成されると、次にもう一度熱を与え
てもそれ以上の再収縮が起こらず、表面の不均一な凹凸
のあるものになる。従って収縮斑を生じない様な熱収縮
性フィルムの提供が望まれている。
(f) Shrinkage spots The heat shrinkability of the above conventional film tends to lack homogeneity, and once heat is applied and areas with sufficient shrinkage and areas with insufficient shrinkage are formed separately, heat is applied again. However, no further re-shrinkage occurs and the surface becomes uneven. Therefore, it is desired to provide a heat-shrinkable film that does not cause shrinkage spots.

本発明はこの様な事情に着目してなされたものであって
、上記(a)〜(f)で述べた様な欠陥を伴なわないポ
リエステル系フィルムの提供を目的とするものである。
The present invention was made in view of these circumstances, and aims to provide a polyester film that is free from the defects described in (a) to (f) above.

[問題点を解決する為の手段] 本発明のポリエステル系フィルムは、80℃における熱
収縮率が30%以上を有し、100’Oにおける熱収縮
率が50%以上であって、且つ前記方向と直角方向にお
ける熱収縮率が80±25℃の温度域で最小値を示す様
なものである。
[Means for solving the problems] The polyester film of the present invention has a heat shrinkage rate of 30% or more at 80°C, a heat shrinkage rate of 50% or more at 100'O, and The thermal shrinkage rate in the direction perpendicular to the curve shows a minimum value in the temperature range of 80±25°C.

[作用] 本発明フィルムの基本的特性の1つである熱収縮率につ
いては、まず80℃において30%以上でなければなら
ない、仮に80℃における熱収縮率が30%未満である
と、該フィルムを異形被包装物の表面に添えて熱収縮さ
せたときに、各部における必要な収縮を達成することが
できず、上記収縮を達成する為には相当な高温まで加熱
しなければならなくなる。しかるに被包装物の耐熱性に
ついての制限もあり、自ずから適用範囲が狭められてし
まう。例えば被包装物自体が熱可塑性プラスチック製品
である場合は熱による変形、溶融。
[Function] The heat shrinkage rate, which is one of the basic characteristics of the film of the present invention, must first be 30% or more at 80°C. If the heat shrinkage rate at 80°C is less than 30%, the film When it is placed on the surface of an irregularly shaped packaged object and subjected to heat shrinkage, it is not possible to achieve the necessary shrinkage in each part, and in order to achieve the above shrinkage, it is necessary to heat the product to a considerably high temperature. However, there are restrictions on the heat resistance of the packaged items, which naturally narrows the range of application. For example, if the packaged item itself is a thermoplastic plastic product, it may deform or melt due to heat.

変質等を招くことになり、この様な場合も想定するなら
ば80℃において40%以上の熱収縮率を示すことが推
奨される。尚上限については90%が妥当である。又1
00℃においては50%以上の熱収縮率を有することが
必要で、50%未満であると極部的な収縮斑を生じる危
険が強い。但し95%を超えることは好ましくない。又
80→100℃の領域における熱収縮挙動を考えた場合
、80’Oにおける熱収縮率が100℃におけるそれ以
上を上回わるときには、80℃近辺でいったん熱収縮し
たものが継続的に加熱されているうちに緩みを生じ、そ
れまで収縮応力によって発揮されていた緊締力を失うこ
とになる。
If such a case is assumed, it is recommended to exhibit a heat shrinkage rate of 40% or more at 80°C. As for the upper limit, 90% is appropriate. Again 1
It is necessary to have a heat shrinkage rate of 50% or more at 00°C, and if it is less than 50%, there is a strong risk that local shrinkage spots will occur. However, it is not preferable that it exceeds 95%. Also, when considering the thermal shrinkage behavior in the range from 80 to 100 degrees Celsius, if the thermal contraction rate at 80'O exceeds that at 100 degrees Celsius, something that has once been heat-shrinked at around 80 degrees Celsius is continuously heated. As time goes on, it becomes loose and loses the tightening force previously exerted by contraction stress.

次に前記収縮方向と直交する方向に対する熱収縮率につ
いては一般に小さいことが望まれるが、特に80±25
℃の温度領域における当該直交方向への熱収縮率は最小
であることが必要であり、これによって一方々向への主
収縮による美麗な被覆外観を得ることに成功したのであ
る。上記温度領域における主収縮方向への集中的収縮が
達成される結果、被包装物に対しては強い密着が得られ
るので、仮りにそれ以上の加熱がなされてより大きな収
縮を生じるような環境になっても上記密着による摩擦に
よってそれ以上の収縮が防がれ、美しく且つ拘束力の強
い被覆が保持されることになる。
Next, the heat shrinkage rate in the direction perpendicular to the shrinkage direction is generally desired to be small, especially 80±25
It is necessary that the thermal shrinkage rate in the perpendicular direction in the temperature range of 0.degree. C. be the minimum, and by doing so, we succeeded in obtaining a beautiful coating appearance due to the main shrinkage in one direction. As a result of achieving intensive shrinkage in the main shrinkage direction in the above temperature range, strong adhesion to the packaged item is obtained, so if it were to be heated further and cause larger shrinkage, Even if this occurs, the friction caused by the close contact prevents further shrinkage, and a beautiful and strong binding force is maintained.

特にこの温度領域で前記主収縮方向への収縮を行なわせ
ることによって被包装物への密着を完了しておき、80
±25℃以上の温度になっても、既に被包装物に密着し
ていることによる摩擦力や拘束力によってそれ以上の収
縮が生じ難くなるので、特に大きな収縮が生じるこの温
度域で他方向への収縮を抑制したということは重要な意
義を有する。次に印刷後の自然流通過程におけるピッチ
変化に関しては、ガラス転移温度が35℃以上のポリエ
ステル系重合体及びその混合物を用いることによって少
なくしている。特に夏季や高温地区での使用ではガラス
転移温度が45℃以上のポリエステル系重合体及びそれ
らの混合物を用いることが好ましい。
In particular, the shrinkage in the main shrinkage direction is performed in this temperature range to complete the adhesion to the packaged object, and the
Even if the temperature exceeds ±25℃, the frictional force and restraining force caused by the close contact with the packaged item will make it difficult for further shrinkage to occur, so in this temperature range where particularly large shrinkage occurs, The fact that the contraction of the protein was suppressed is of important significance. Next, pitch change during the natural flow process after printing is reduced by using a polyester polymer with a glass transition temperature of 35° C. or higher and a mixture thereof. Especially when used in summer or in high temperature areas, it is preferable to use polyester polymers with a glass transition temperature of 45° C. or higher and mixtures thereof.

上記のような特性を得る為の一手段として、芳香族ジカ
ルボン酸残基を30〜90モル%含む様な共重合体或は
その混合物を選択することが推奨される。この様なポリ
エステルの一例としてはテレフタル酸、イソフタル酸、
アジピン酸、オルソフタル酸、″t!バシン酸、ナフタ
レンジカルボン酸等の2塩基酸から選ばれるL種以上と
エチレングリコール、ブタンジオール、ネオペンチルグ
リコール、シクロヘキサンジメタツール等のジオール類
から選ばれる1種以上によって製造されるポリエステル
重合体が例示され、より具体的にはポリエチレンテレフ
タレート、ポリブチレンテレフタレート、ポリシクロヘ
キサンジメチレンテレフタレート、ポリエチレンα、β
−ビス(2−クロル又は2−メトキシフェノキシ)エタ
ン−4゜4′−ジカルボン酸オシレート等が非限定的に
例示される。
As a means to obtain the above properties, it is recommended to select a copolymer or a mixture thereof containing 30 to 90 mol% of aromatic dicarboxylic acid residues. Examples of such polyesters include terephthalic acid, isophthalic acid,
L or more types selected from dibasic acids such as adipic acid, orthophthalic acid, "t! bacic acid, and naphthalene dicarboxylic acid, and one type selected from diols such as ethylene glycol, butanediol, neopentyl glycol, and cyclohexane dimetatool. Examples of polyester polymers produced by the above method include polyethylene terephthalate, polybutylene terephthalate, polycyclohexane dimethylene terephthalate, polyethylene α, β
Non-limiting examples include -bis(2-chloro or 2-methoxyphenoxy)ethane-4°4'-dicarboxylic acid osylate.

これらのポリエステルに透明性を害しない範囲でポリエ
ステル/ポリエーテルのブロック共重合体を混合するこ
ともできる。尚フィルム基材としての好ましい固有粘度
は0.50から1.3 clfL/gであり、この様な
固有粘度値を満足するものである限り、これらの重合体
が70重量%以上を占める範囲において、より低重合度
又は高重合度の重合体を混合してもよい。かかる重合体
を用いて押出法やカレンダー油導任意の方法で得たフィ
ルムは、一方向に2.5倍から7倍、好ましくは3.0
倍から8.0倍に延伸し、該方向と直角方向に1.0倍
から2.0倍以下、好ましくは1.1倍から1.8倍延
伸される。初めに述べた方向への延伸は、高い熱収縮率
を得る為に行なわれるものであり、次に述べた方向への
延伸は、最初の一方向に延伸されたフィルムの耐衝撃性
や引裂抵抗性の悪さを解決するのに極めて有効である。
A polyester/polyether block copolymer can also be mixed with these polyesters to the extent that transparency is not impaired. The preferred intrinsic viscosity of the film base material is from 0.50 to 1.3 clfL/g, and as long as it satisfies this intrinsic viscosity value, these polymers may account for 70% by weight or more. , a polymer having a lower degree of polymerization or a higher degree of polymerization may be mixed. A film obtained using such a polymer by an extrusion method or a calendering oil introduction method has a strength of 2.5 to 7 times in one direction, preferably 3.0 times.
The film is stretched from 1.0 times to 2.0 times, preferably from 1.1 times to 1.8 times in a direction perpendicular to the above direction. Stretching in the first direction is performed to obtain a high heat shrinkage rate, and stretching in the second direction is performed to improve the impact resistance and tear resistance of the film initially stretched in one direction. It is extremely effective in solving sexual problems.

しかしながら2.0倍を超えて延伸すると、主収縮方向
と直角方向の熱収縮も大きくなり過ぎ、仕上がりが波打
ち状となる。この波打ちを抑えるには、熱収縮率を15
%以下、好ましくは8乃至9%以下、更に好ましくは7
%以下と゛することが推奨される。延伸手段についても
特段の制限はなく、ロール延伸、長間隙延伸、テンター
延伸等の方法が適用され、又形状面においてもフラット
状、チューブ状等の如何は問わない。
However, when stretched more than 2.0 times, the thermal shrinkage in the direction perpendicular to the main shrinkage direction becomes too large, resulting in a wavy finish. To suppress this waving, increase the heat shrinkage rate to 15.
% or less, preferably 8 to 9% or less, more preferably 7% or less
% or less is recommended. There is no particular restriction on the stretching means, and methods such as roll stretching, long gap stretching, and tenter stretching are applicable, and the shape does not matter whether it is flat or tubular.

又延伸は遂次2軸延伸、同時2軸延伸、1軸延伸或はこ
れらの組合せ等で行なわれる。又本発明フィルムに対し
ては例えば縦1軸、横1軸、縦横2軸等の延伸を行なう
が、特に2軸延伸では縦横方向の延伸は、どちらか一方
を先に行なう遂次2軸延伸が有効であり、その順序はど
ちらが先でもよい、尚同時2軸延伸法を行なうときはそ
の延伸順序が、縦横同時、縦先行、横先行のどちらでも
よい、又これら延伸におけるヒートセットは目的に応じ
て実施されるが、夏季高温下の寸法変化を防止する為に
は30〜150℃の加熱ゾーンを、約1秒から30秒間
通すことが推奨される。又かかる処理の前後どちらか一
方又は両方で最高70%迄の伸張をかけてもよい。特に
主方向に伸張し、非収縮方向(主収縮方向に対して直角
方向)には緩和させるのが良く、該直角方向への伸張は
行なわない方が良い。
Further, the stretching may be carried out by successive biaxial stretching, simultaneous biaxial stretching, uniaxial stretching, or a combination thereof. Furthermore, the film of the present invention is stretched in one axis in the longitudinal direction, one axis in the transverse direction, two axes in the longitudinal and transverse directions, etc. In particular, in biaxial stretching, stretching in the longitudinal and transverse directions is carried out sequentially in one direction or the other. is effective, and the order of stretching does not matter whichever comes first.When simultaneous biaxial stretching is performed, the stretching order may be simultaneous in the longitudinal and lateral directions, longitudinal first, or lateral first, and the heat setting in these stretchings can be done depending on the purpose. It is recommended to pass through a heating zone of 30 to 150° C. for about 1 second to 30 seconds in order to prevent dimensional changes under high summer temperatures, although this may be carried out accordingly. Further, expansion up to 70% may be applied either before or after such processing. In particular, it is preferable to stretch in the main direction and relax in the non-shrinkage direction (direction perpendicular to the main shrinkage direction), and it is better not to stretch in the perpendicular direction.

本発明の好適特性を発揮させる為には、上記延伸倍率だ
けで歎く、重合体組成物が有する平均ガラス転移温度(
Tg)以上の温度、例えばTg+80″C程度の下で予
熱、延伸することも有効な手段として挙げられる。特に
主方向延伸(主収縮方向)における上記処理温度は該方
向と直角方向の熱収縮率を抑制し、且つ前記の如く80
±25℃の温度範囲に、その最小値を持ってくる上で極
めて重要である。更に延伸後、伸張或は緊張状態に保っ
てフィルムにストレスをかけながら冷却するか或は更に
引続いて冷却することにより、前後収縮特性はより良好
且つ安定したものとなる0本発明フィルムの厚さは特に
限定するものではないが1〜600ルm位の範囲のもの
が実用面では有利である。
In order to exhibit the preferable characteristics of the present invention, it is necessary to use only the above-mentioned stretching ratio, and the average glass transition temperature (
Preheating and stretching at a temperature higher than Tg), for example around Tg + 80''C, is also an effective means.In particular, the above treatment temperature for stretching in the main direction (main shrinkage direction) is determined by the heat shrinkage rate in the direction perpendicular to the direction. and as mentioned above, 80
It is extremely important to bring the minimum value within the temperature range of ±25°C. Further, after stretching, by cooling the film while maintaining it in a stretched or tensioned state and applying stress to the film, or by cooling it further successively, the back and forth shrinkage characteristics become better and more stable.0 The thickness of the film of the present invention Although there are no particular limitations on the height, a range of about 1 to 600 lumens is advantageous from a practical standpoint.

しかしながら、現状の市場ニーズからより好ましい範囲
に絞るとすれば、4〜380gm位までであり、更に前
記の用途例では6〜250ILmの範囲が実用的である
。このようにして得たフィルムの面配向係数は100×
10−3以下のものが好ましい。面配向係数が100×
10−3を超えると、衝撃的外力に対して破壊しやすく
なり、少しの外傷によっても破れ易くなるからである。
However, if the range is narrowed down to a more preferable range based on current market needs, it is about 4 to 380 gm, and in the above application example, a range of 6 to 250 ILm is practical. The plane orientation coefficient of the film thus obtained was 100×
It is preferably 10-3 or less. Planar orientation coefficient is 100×
This is because if it exceeds 10-3, it becomes easy to break due to an impactful external force and becomes easy to tear even by the slightest external trauma.

一方複屈折率は15X10−3〜160×10−3が好
ましく、複屈折率が15X10−3未満では縦方向の熱
収縮率や収縮応力が不足し、又160×10−3を超え
ると引っかき抵抗力や衝撃強度の低下を生じ、フィルム
にはなっても実用状は有用性が低下する。
On the other hand, the birefringence is preferably 15×10-3 to 160×10-3; if the birefringence is less than 15×10-3, the thermal shrinkage rate and shrinkage stress in the longitudinal direction will be insufficient, and if it exceeds 160×10-3, there will be scratch resistance. This results in a decrease in force and impact strength, and even if it is made into a film, its usefulness in practical use decreases.

以下本発明フィルムを用途面から説明する。The film of the present invention will be explained below from the viewpoint of its use.

包装用途特に、食品、飲料、医薬品等の包装においては
、ボイル処理やレトルト処理、更には無菌包装によるシ
ェルライフの延長等が行なわれているが、現存する熱収
縮性フィルムでこれらの処理に十分耐え得るものはない
0本発明のフィルムはボイル処理やレトルト処理による
加熱殺菌に耐え得ることができ、しかも元々のフィルム
外観、更には熱収縮による仕上がりも良好であり、又P
VCよりも高い熱収縮応力を有し、結束性も優れている
Packaging applications Particularly in the packaging of foods, beverages, pharmaceuticals, etc., boiling processing, retort processing, and aseptic packaging are used to extend the shell life, but existing heat-shrinkable films are not sufficient for these processes. The film of the present invention can withstand heat sterilization by boiling treatment and retort treatment, and the original appearance of the film as well as the finish due to heat shrinkage are good.
It has higher heat shrinkage stress than VC and has excellent cohesiveness.

従って重量物や変形成形物に対しても荷くずれしない強
固な被覆乃至結束包装が可能である。又包装上必要とさ
れる50〜70%の熱収縮率レベルにおいて、主収縮方
向に対し直角方向の熱収縮率が最低値を示すというブロ
ードな熱収縮性を有する為、熱収縮初期から収縮包装完
了化のプロセスは前記最小収縮量を示す温度領域(80
±25’O)で熱収縮させることになる。その結果、仕
上がり寸法の誤差が小さくなるという特徴が得られた。
Therefore, it is possible to strongly cover or bind and package heavy items or deformed molded items without causing them to collapse. In addition, at the heat shrinkage rate level of 50 to 70% required for packaging, the heat shrinkage rate in the direction perpendicular to the main shrinkage direction is the lowest value, so it has broad heat shrinkability, so it can be used for shrink wrapping from the initial stage of heat shrinkage. The completion process is carried out in the temperature range (80°C) showing the minimum shrinkage amount.
±25'O). As a result, a feature was obtained in which the error in finished dimensions was reduced.

尚熱収縮性を利用する包装においては、熱収縮完了(被
包装物に密着し、更に縮む能力を有していても、それ以
上は縮めない状態になること)後、引続き加熱するのが
一般的手順になっておす、これは数多い製品のばらつき
に対応し完全な収縮を達成する上で重要な役割りを果た
している。このとき、もしフィルムの収縮能が飽和に達
していると、引続いて行なっている加熱によってフィル
ムが逆に線膨張し、折角きっちり収縮させ  −ておい
たにも拘らず、かえって緩みが生じてくる     ′
という問題がある0本発明ではその様な事態になるのを
防止する意味で、収縮応力を高め、且つ先に記載した如
く、延伸後に更に伸張を行なうことを推奨するのである
。又この点に本発明でいう配向性の意味が存在する。
In packaging that uses heat shrinkability, it is common to continue heating after the heat shrinkage is complete (the state where the package adheres to the packaged item and is unable to shrink any further, even if it has the ability to shrink further). This is a standard procedure that plays an important role in accommodating numerous product variations and achieving perfect shrinkage. At this time, if the shrinkage ability of the film has reached saturation, the film will undergo linear expansion due to the subsequent heating, and even though you have taken the pains to shrink it properly, it will instead become loose. come '
In order to prevent such a situation, the present invention recommends increasing the shrinkage stress and further stretching after stretching as described above. Moreover, in this point, the meaning of orientation as used in the present invention exists.

以下更に具体的に述べる。This will be described in more detail below.

(a)一方向収縮性: 収縮フィルムの役割りの1つは被包装物の破壊や荷くず
れ等を防止する点にあるが、その為には高い耐衝撃性を
有し且つ主方向に大きい収縮率を得ることが必要である
。その点本発明のフィルムは高い収縮率と高い耐衝撃性
を有するので美しい包装が得られ、しかも被包装物の保
護という面で優れた耐久性を示すことがわかった。この
傾向は落袋テストによって証明された。又完全に近い一
方向収縮性によって収縮包装後の仕上がり寸法誤差が極
めて小さくなった。このことは主方向に直角な方向の熱
収縮率が低く、例えばチューブ状にした場合のチューブ
長さ方向の仕上がり寸法誤差が極めて小さく優れたもの
になったことを意味する。
(a) Unidirectional shrinkability: One of the roles of shrinkage film is to prevent the destruction of the packaged items and the collapse of the package, and for this purpose, it must have high impact resistance and be large in the main direction. It is necessary to obtain the shrinkage rate. In this respect, it was found that the film of the present invention has a high shrinkage rate and high impact resistance, so that beautiful packaging can be obtained, and it also exhibits excellent durability in terms of protecting the packaged items. This trend was confirmed by the drop bag test. Furthermore, due to the almost perfect unidirectional shrinkability, the finished dimensional error after shrink wrapping became extremely small. This means that the heat shrinkage rate in the direction perpendicular to the main direction is low and, for example, when formed into a tube, the finished dimensional error in the length direction of the tube is extremely small and excellent.

(b)#熱性: 従来の汎用フィルムはいずれも高温のボイル処理やレト
ルト処理には耐えることができず、殺菌処理は不適当な
フィルムである0例えばレトルト処理を行なうと、前記
従来フィルムは処理中に破壊、破裂し、全ての機能が失
なわれる。これに対し本発明のフィルムは、ボイルやレ
トルト等の加熱処理ができ、熱収縮フィルムとして優れ
た有用性を示す。
(b) #Thermal properties: All conventional general-purpose films cannot withstand high-temperature boiling or retort processing, making them unsuitable for sterilization. For example, when retort processing is performed, the conventional films are It will be destroyed and ruptured, and all functions will be lost. In contrast, the film of the present invention can be subjected to heat treatments such as boiling and retorting, and exhibits excellent usefulness as a heat-shrinkable film.

(c)印刷性: ハーフトーン印刷によるピンホールの発生、広範囲な各
種インクとの接着性等に関し、上記従来フィルムはそれ
ぞれ固有の欠点を有する。例えばポリ塩化ビニルフィル
ムではゲル状物によるインクピンホール数が多く、又連
続的に加工される場合は、長尺フィルムの途中に存在す
るピンホールを検査によって除去しなければならなかっ
た。この品質検査に要する手間によって加工時の実稼動
率は著しく低下する。その上ピンホール部分を除去した
後は継足しする為に粘着テープで止めることになるが、
その部分は厚くなり、巻取長尺品では継目部分の存在そ
のものが問題になるだけでなく、上記厚味部分によって
幾層分かのフィルムまで変形させてしまうという問題が
ある。
(c) Printability: Each of the above conventional films has its own drawbacks in terms of pinhole formation due to halftone printing, adhesion with a wide variety of inks, and the like. For example, polyvinyl chloride film has a large number of ink pinholes due to gel-like substances, and when the film is processed continuously, pinholes existing in the middle of the long film must be removed by inspection. The effort required for this quality inspection significantly reduces the actual operating rate during processing. Moreover, after removing the pinhole part, it will be fixed with adhesive tape to add it.
This portion becomes thicker, and in the case of a long rolled product, not only the existence of the seam portion itself becomes a problem, but also the problem that the thick portion deforms several layers of the film.

更にフィルムが印刷された後の季節的温度変化、特に長
期在庫による経時収縮が通常の場合は問題となり、保冷
車や低温倉庫等を用いた流通を要したが、本発明はこれ
らの制限を緩和することに成功した。
Furthermore, seasonal temperature changes after the film is printed, especially shrinkage over time due to long-term storage, would normally be a problem, requiring distribution using refrigerated trucks or low-temperature warehouses, but the present invention eases these restrictions. succeeded in doing so.

(d)クレーズ: 熱収縮時及び熱収縮後におけるフィルムクレーズは本発
明では発生しない。特にボイル処理やレトルト処理を行
なってもクレーズは発生しない。
(d) Craze: Film craze during and after heat shrinkage does not occur in the present invention. In particular, crazes do not occur even after boiling or retorting.

(e)産業廃棄物の問題 近年、ガラスボトルに加えてプラスチックボトルの使用
が急速に広まっている。この様なボトルの回収を考えた
場合同質物で形成されていることが好ましく、本発明フ
ィルムをポリスチル系ボトルの包装に適用することはこ
の点有利である。
(e) Problems with industrial waste In recent years, the use of plastic bottles in addition to glass bottles has rapidly spread. When considering the recovery of such bottles, it is preferable that they be made of a homogeneous material, and it is advantageous in this respect to apply the film of the present invention to the packaging of polystyrene bottles.

又本発明フィルムは熱収縮時に塩素ガス等の有害なガス
は発生することがない。特に近年は熱収縮性フィルムの
持つ簡便包装性、結束性、固着作用等が注目され、自動
化省資源包装として広い利用が図られているが、有害な
ガスが出ないことはこの面でも大切な要件となる。
Furthermore, the film of the present invention does not generate harmful gases such as chlorine gas during heat shrinkage. Particularly in recent years, heat-shrinkable films have attracted attention for their simple packaging, bundling properties, and adhesion properties, and are being widely used as automated, resource-saving packaging, but the fact that they do not emit harmful gases is also important. It becomes a requirement.

(f)収縮斑: 本発明フィルムは大きな収縮率と高い収縮応力を有し、
2次加熱時でも引続き加熱すれば収−縮傾向を示すので
収縮斑は発生しない。
(f) Shrinkage unevenness: The film of the present invention has a large shrinkage rate and high shrinkage stress,
Even during the secondary heating, if the heating continues, the material will show a tendency to shrink, so no shrinkage spots will occur.

以下実施例を説明するが実施例で用いた測定方法は次の
通りである。
Examples will be described below, and the measurement methods used in the examples are as follows.

1、ヘイズ JIS−K f3714に基づいて測定した。1. Haze Measured based on JIS-K f3714.

2、熱収縮率 サンプル標線間を200mmにとり、フィルムを幅15
mmに切断して、各温度で測定した。
2. The distance between the heat shrinkage sample marks is 200 mm, and the film is 15 mm wide.
It was cut into mm pieces and measured at each temperature.

加熱には80℃及び100”Oの熱風を用い夫々1分間
加熱した。
For heating, hot air at 80°C and 100''O was used for 1 minute each.

3、縦方向熱収縮最低温度 50℃から150℃までの間少しずつ温度を変更し夫々
熱収縮率を測定した。各データをプロットすることによ
り、最低の熱収縮を示す温度を求めた。
3. Longitudinal Heat Shrinkage The temperature was gradually changed from the minimum temperature of 50°C to 150°C, and the heat shrinkage rate was measured for each. By plotting each data, the temperature exhibiting the lowest thermal contraction was determined.

4、複屈折率1面配向係数 Abbeの屈折計を用い縦、横、厚みの各方向に対する
屈折率を測定した。
4. Birefringence index One-plane orientation coefficient The refractive index in each of the vertical, horizontal, and thickness directions was measured using an Abbe refractometer.

5.衝撃強度 振子式インパクトテスター(東洋精機類)を用い、23
℃165%RHでシズニングし24時間測定した。
5. Impact strength using a pendulum impact tester (Toyo Seiki Rui), 23
It was seasoned at 165% RH and measured for 24 hours.

6、破袋耐久性 、 縦180mm、横120mmc7)袋を作り、この袋の
中に水1&omlを入れ密封した。高さを変化させて自
然落下させその破袋状況を調べた。
6. Durability against bag breakage: 180 mm long and 120 mm wide 7) A bag was made, 1 & oml of water was put into the bag, and the bag was sealed. The bag was allowed to fall naturally at different heights and the breakage of the bag was investigated.

40cm以下で破裂するもの: 「脆い」40〜?5c
mで破裂するもの: 「劣る」又は「若干劣る」 75〜80cI11で破裂するもノ:「良好」90cm
以上で破裂するもの: 「優秀」[実施例] 実施例1及び比較例1〜3 ポリエチレン(テレ/イソ)フタレート共重合体(テレ
/イソ比= 78/22)のポリエステル系重合体を固
有粘度0.80di/gとなるように重合し、これに2
酸化珪素を0.04 (重量)%混合して溶融押出し未
延伸フィルムを製造した。
Items that burst at a height of 40 cm or less: “Fragile” 40~? 5c
Items that rupture at m: "poor" or "slightly inferior" items that rupture at 75-80cI11: "good" at 90cm
Items that rupture under the above conditions: "Excellent" [Example] Example 1 and Comparative Examples 1 to 3 Polyester-based polymer of polyethylene (tele/iso) phthalate copolymer (tele/iso ratio = 78/22) with intrinsic viscosity Polymerize to 0.80di/g, and add 2
A melt-extruded unstretched film was prepared by mixing 0.04% (by weight) of silicon oxide.

該フィルムを縦方向に1.2倍延伸し、次いで横方向に
4.2倍延伸し、次いで約20%横方向に伸張下で冷却
させ横方向を主収縮方向として複屈折率が98X10−
3 、面配向係数が31×10−3.80℃及び100
℃における熱収縮率が各々52%、72%である厚さ4
07zmの熱収縮性ポリエステルフィルムを得た0本フ
ィルムは87℃で縦方向熱収縮率が4.1%の最小値を
示した。該フィルムの特性を従来から用いられている代
表的な熱収縮性フィルムと比較した結果を第1表に示す
。尚同表中の比較例1はポリ塩化ビニルフィルム、比較
例2はポリエチレンフィルム、比較例3はポリスチレン
フィルムである。
The film was stretched 1.2 times in the machine direction, then 4.2 times in the transverse direction, and then cooled while being stretched about 20% in the transverse direction to have a birefringence of 98X10- with the transverse direction being the main shrinkage direction.
3, plane orientation coefficient is 31×10-3.80℃ and 100
Thickness 4 whose heat shrinkage rate at °C is 52% and 72%, respectively.
07zm heat-shrinkable polyester film obtained had a minimum longitudinal heat shrinkage rate of 4.1% at 87°C. Table 1 shows the results of comparing the properties of this film with those of typical heat-shrinkable films conventionally used. In the same table, Comparative Example 1 is a polyvinyl chloride film, Comparative Example 2 is a polyethylene film, and Comparative Example 3 is a polystyrene film.

第    1    表 比較例のフィルムは「縦方向最小熱収縮率を与える温度
」を示さず、低温にすればするほど低い熱収縮率を示す
という単純な傾向を有するに止まった。これに対し本発
明のフィルムは縦方向最小熱収縮率(主収縮方向と直角
方向)を示す温度が有効に存在し、被覆用途に利用した
場合は美麗な外観が与えられる。プラスチックボトルの
高さ方向とフィルムの縦方向を合わせて上記各フィルム
をチューブ状に成形し、これをボトルにかぶせ87℃に
合わせて熱収縮させたところ、ボトルの高さ方向の寸法
変化は本発明フィルムが最も小さく均一な仕上がりにな
った。比較例フィルムでは不均整な外観となった。フィ
ルムをレトルト処理したところ比較例は大きな収縮や溶
融現象も一部みられ破袋ないし局部的な破れが認められ
た。
The films of Comparative Examples in Table 1 did not exhibit the "temperature that gave the minimum longitudinal heat shrinkage rate", but simply had a tendency that the lower the temperature, the lower the heat shrinkage rate. On the other hand, the film of the present invention effectively exists at a temperature at which it exhibits the minimum longitudinal heat shrinkage rate (direction perpendicular to the main shrinkage direction), and when used for coating purposes, it provides a beautiful appearance. When each of the above films was formed into a tube shape by aligning the height direction of the plastic bottle with the longitudinal direction of the film, and this was placed over the bottle and heat-shrinked at 87℃, there was no significant dimensional change in the height direction of the bottle. The invented film had the smallest and most uniform finish. The comparative film had an asymmetrical appearance. When the film was subjected to retort treatment, large shrinkage and melting phenomena were observed in some parts of the comparative example, and bag breakage or local tearing was observed.

実施例2及び比較例4.5 テレフタル酸残基が80モル%のポリエチレン(テレ/
イソ)フタレート共重合体と60モル%のポリエチレン
(テレ/イソ)フタレート共重合体を前者が90(重量
)%、後者が10(重量)%の比率で混合し、該混合体
の全重量基準で0.05(重量)%の2酸化珪素を混合
した。
Example 2 and Comparative Example 4.5 Polyethylene containing 80 mol% of terephthalic acid residue (tere/
An iso)phthalate copolymer and a 60 mol% polyethylene (tele/iso)phthalate copolymer are mixed in a ratio of 90% (by weight) of the former and 10% (by weight) of the latter, based on the total weight of the mixture. 0.05% (by weight) of silicon dioxide was mixed therein.

次いで78℃で縦方向に延伸しく条件は第2表に示す)
、引続き横方向に120℃に加熱したのち横方向に延伸
した。延伸終了後更に20%の伸張を保ちながら60℃
まで冷却し更に5%の緩和処理を行なって冷却後巻取っ
た。得られたフィルムは30J1.mの延伸フィルムで
、両面にコロナ放電処理した後にポリウレタン系接着剤
に硬化剤を混合したものを用いて各々のフィルムをチュ
ーブ状にした。
Then it was stretched in the longitudinal direction at 78°C (conditions are shown in Table 2).
Then, after heating to 120° C. in the transverse direction, it was stretched in the transverse direction. After stretching, continue at 60°C while maintaining 20% elongation.
The film was cooled to a temperature of 50%, then subjected to a 5% relaxation treatment, and then wound up after cooling. The obtained film was 30J1. After applying corona discharge treatment to both sides of the stretched film, each film was formed into a tube using a polyurethane adhesive mixed with a curing agent.

第    2    表 比較例4,5は縦延伸倍率が2.5倍、3.5倍にした
フィルムであり、縦方向の収縮率が大きく且つ主方向(
横方向)収縮を十分に得る為の温・度域と、該主方向と
直角の方向(縦方向)に対する熱収縮率が最小値を示す
温度域とが一致せず、且つ後者の熱収縮率は15%を超
え、実施例1と同様の実用テストでは仕上がりが著しく
悪かった。
Comparative Examples 4 and 5 in Table 2 are films with a longitudinal stretching ratio of 2.5 times and 3.5 times, and have a large shrinkage rate in the longitudinal direction and a shrinkage ratio in the main direction (
The temperature/degree range for obtaining sufficient shrinkage (in the transverse direction) does not match the temperature range in which the heat shrinkage rate in the direction perpendicular to the main direction (vertical direction) shows the minimum value, and the latter heat shrinkage rate exceeds 15%, and in the same practical test as in Example 1, the finish was extremely poor.

実施例3 テレフタル酸/イソフタル酸が90/10モル%の酸成
分と、エチレングリコール/シクロヘキサンジメタツー
ルが50750モル%のアルコール成分からなるポリエ
ステル/ポリシクロヘキサンジメチルフタレートからな
る共重合ポリエステルを固有粘度が0.70dJl/g
になるよう重合し、次いで280℃で溶融押出した後、
厚さ178gmの未延伸フィルムを製膜した0次いで縦
方向に85℃で1.3倍延伸し引続き横方向に110°
0で4.5倍延伸し、更に50℃の雰囲気で15%の伸
張を与えて製膜した。できあがったフィルムは厚さ約3
01Lmの延伸フィルムであり、特性は第3表に示す通
りである。
Example 3 A copolymerized polyester consisting of polyester/polycyclohexane dimethyl phthalate consisting of an acid component containing 90/10 mol% of terephthalic acid/isophthalic acid and an alcohol component containing 50,750 mol% of ethylene glycol/cyclohexane dimetatool was prepared with an intrinsic viscosity of 0.70dJl/g
After polymerizing to become
An unstretched film with a thickness of 178 gm was formed, then stretched 1.3 times in the machine direction at 85°C, and then stretched at 110° in the transverse direction.
The film was formed by stretching 4.5 times at 0°C and further stretching 15% in an atmosphere at 50°C. The finished film has a thickness of approximately 3
01Lm stretched film, and the properties are as shown in Table 3.

実施例4 テレフタル酸/イソフタル酸/オルソフタル酸が85/
1015(モル%)である酸成分と、エチレングリコー
ル/ジエチレングリコールが8゜/20(モル%)であ
るグリコール成分からなる共重合ポリエステル重合体を
用い、実施例1と同様に未延伸フィルムを製膜し、未延
伸フィルムを得た。
Example 4 Terephthalic acid/isophthalic acid/orthophthalic acid is 85/
An unstretched film was formed in the same manner as in Example 1 using a copolyester polymer consisting of an acid component of 1015 (mol%) and a glycol component of 8°/20 (mol%) of ethylene glycol/diethylene glycol. An unstretched film was obtained.

次いで縦方向に85℃で1.8倍延伸し、次いで横方向
に150℃で4.0倍延伸した。引続き65℃で横方向
に50%伸張し、同時に縦方向に30%緩和させた後に
冷却した。得られたフィルムは厚さ35 pmで、横方
向に大きい熱収縮率を有し、同時に縦方向には極めて小
さい熱収縮率を有する極めて好都合なフィルムであった
。特性は第3表−に示す。
Next, it was stretched 1.8 times in the machine direction at 85°C, and then stretched 4.0 times in the cross direction at 150°C. Subsequently, it was stretched at 65° C. by 50% in the transverse direction and simultaneously relaxed by 30% in the longitudinal direction, and then cooled. The resulting film had a thickness of 35 pm and was a very favorable film having a high heat shrinkage in the transverse direction and at the same time a very low heat shrinkage in the machine direction. The characteristics are shown in Table 3.

第     3     表 小長さのM)を全円周から宋めた。Table 3 The small length M) was removed from the entire circumference.

[発明の効果] 本発明フィルムは上記の様に構成されているので、特定
方向に対する安定した熱収縮性が発揮され被覆包装や結
束包装においては美麗で且つ強固な包装状態を与えるこ
とができ、また印刷ピッチの安定性、耐熱性の向上、耐
衝撃強度の向上等の諸効果を有し、広範な分野において
優れた利用価値を発揮することができる。
[Effects of the Invention] Since the film of the present invention is configured as described above, it exhibits stable heat shrinkability in a specific direction, and can provide a beautiful and strong packaging state in covering packaging or bundling packaging. It also has various effects such as improved printing pitch stability, improved heat resistance, and improved impact strength, and can exhibit excellent utility value in a wide range of fields.

Claims (5)

【特許請求の範囲】[Claims] (1)80℃における熱収縮率が30%以上、100℃
における熱収縮率が50%以上であって、且つ前記収縮
方向と直角方向における熱収縮率が80±25℃の温度
域で最小値となるものであることを特徴とする熱収縮性
ポリエステル系フィルム。
(1) Heat shrinkage rate at 80℃ is 30% or more, 100℃
A heat-shrinkable polyester film having a heat shrinkage rate of 50% or more, and a heat shrinkage rate in a direction perpendicular to the shrinkage direction that reaches a minimum value in a temperature range of 80±25°C. .
(2)ポリエステル系フィルムが、ガラス転移温度35
℃以上のポリエステル、共重合ポリエステル重合体、該
重合体に少なくとも1種以上の他の重合体を配合した混
合体よりなる群から選択される材料によって製膜された
ものである特許請求の範囲第1項記載の熱収縮性ポリエ
ステル系フィルム。
(2) Polyester film has a glass transition temperature of 35
℃ or higher, a copolyester polymer, and a mixture of the polymer and at least one other polymer. The heat-shrinkable polyester film according to item 1.
(3)面配向係数が100×10^−^3以下である特
許請求の範囲第1又は2項記載の熱収縮性ポリエステル
系フィルム。
(3) The heat-shrinkable polyester film according to claim 1 or 2, which has a planar orientation coefficient of 100×10^-^3 or less.
(4)芳香族ジカルボン酸残基が30〜90モル%を占
めるような2種以上のポリエステル混合物或は共重合ポ
リエステル系フィルムであって、一方向の熱収縮率が3
0%以上であり、これと直角方向の熱収縮率が15%以
下であり、且つ面配向係数が100×10^−^3以下
である特許請求の範囲第1〜3項のいずれかに記載の熱
収縮性ポリエステル系フィルム。
(4) A mixture or copolyester film of two or more polyesters in which aromatic dicarboxylic acid residues account for 30 to 90 mol%, and the heat shrinkage rate in one direction is 3.
0% or more, the heat shrinkage rate in the direction perpendicular to this is 15% or less, and the plane orientation coefficient is 100 x 10^-^3 or less. heat-shrinkable polyester film.
(5)熱収縮応力が80℃において最大値が0.95〜
5kg/mm^2、100℃において最大値が1.0〜
5kg/mm^2である特許請求の範囲第1〜4項のい
ずれかに記載の熱収縮性ポリエステル系フィルム。
(5) Maximum value of heat shrinkage stress at 80℃ is 0.95~
5kg/mm^2, maximum value is 1.0~ at 100℃
The heat-shrinkable polyester film according to any one of claims 1 to 4, which has a heat-shrinkable polyester film of 5 kg/mm^2.
JP60233959A 1985-07-31 1985-10-18 Heat-shrinkable polyester film Granted JPS6291555A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60233959A JPS6291555A (en) 1985-10-18 1985-10-18 Heat-shrinkable polyester film
DE8686110444T DE3667993D1 (en) 1985-07-31 1986-07-29 HEAT-SHRINKABLE POLYESTER FILM AND HOSE AND MANUFACTURING METHOD FOR THE HOSE.
EP86110444A EP0210646B2 (en) 1985-07-31 1986-07-29 Thermo-shrinkable polyester type film and tube and processing method for preparing the tube
US07/301,827 US4963418A (en) 1985-07-31 1989-01-26 Thermo-shrinkable polyester type film and tube and processing method for preparing the tube
JP3255726A JPH0651353B2 (en) 1985-10-18 1991-09-07 Heat-shrinkable polyester tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60233959A JPS6291555A (en) 1985-10-18 1985-10-18 Heat-shrinkable polyester film
JP3255726A JPH0651353B2 (en) 1985-10-18 1991-09-07 Heat-shrinkable polyester tube

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3255726A Division JPH0651353B2 (en) 1985-10-18 1991-09-07 Heat-shrinkable polyester tube

Publications (2)

Publication Number Publication Date
JPS6291555A true JPS6291555A (en) 1987-04-27
JPH0410854B2 JPH0410854B2 (en) 1992-02-26

Family

ID=26531288

Family Applications (2)

Application Number Title Priority Date Filing Date
JP60233959A Granted JPS6291555A (en) 1985-07-31 1985-10-18 Heat-shrinkable polyester film
JP3255726A Expired - Lifetime JPH0651353B2 (en) 1985-10-18 1991-09-07 Heat-shrinkable polyester tube

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP3255726A Expired - Lifetime JPH0651353B2 (en) 1985-10-18 1991-09-07 Heat-shrinkable polyester tube

Country Status (1)

Country Link
JP (2) JPS6291555A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6327535A (en) * 1986-07-18 1988-02-05 Diafoil Co Ltd Shrinkable polyester film
JPS63122519A (en) * 1986-11-12 1988-05-26 Diafoil Co Ltd Polyester shrink film
JPS63139725A (en) * 1986-12-02 1988-06-11 Diafoil Co Ltd Polyester group shrinkable film
JPS63150331A (en) * 1986-12-15 1988-06-23 Diafoil Co Ltd Shrinkable polyester film
JPS63202429A (en) * 1987-02-17 1988-08-22 Diafoil Co Ltd Polyester shrink film excellent in heat-sealing property
JPH01136722A (en) * 1987-11-25 1989-05-30 Toyobo Co Ltd Heat shrinkable polyester film
JPH01160632A (en) * 1987-12-18 1989-06-23 Toyobo Co Ltd Heat-shrinkable polyester film
JPH01258935A (en) * 1988-04-09 1989-10-16 Diafoil Co Ltd Polyester contractive film
JPH05318587A (en) * 1992-05-21 1993-12-03 Toyobo Co Ltd Heat shrinkable polyester series film
JPH05318586A (en) * 1985-10-18 1993-12-03 Toyobo Co Ltd Heat shrinkable polyester series tube
JP2002011790A (en) * 2000-04-27 2002-01-15 Toyobo Co Ltd Heat-shrinkable thermoplastic resin-base film
JP2003041021A (en) * 2001-07-26 2003-02-13 Toyobo Co Ltd Heat-shrinkable polyester film and method for producing polyester
US6958178B2 (en) 2001-08-01 2005-10-25 Toyo Boseki Kabushiki Kaisha Heat-shrinkable polyester film roll
US7749584B2 (en) 2001-07-11 2010-07-06 Toyo Boseki Kabushiki Kaisha Heat-shrinkable polyester films
US7939174B2 (en) 2001-04-26 2011-05-10 Toyo Boseki Kabushiki Kaisha Heat-shrinkable polyester film roll and a process for producing the same
US9637264B2 (en) 2010-01-28 2017-05-02 Avery Dennison Corporation Label applicator belt system

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB825549A (en) * 1955-02-04 1959-12-16 Du Pont Improvements in or relating to linear copolyester films
JPS4958172A (en) * 1972-10-06 1974-06-05
JPS4986459A (en) * 1972-12-22 1974-08-19
JPS5140905A (en) * 1974-10-03 1976-04-06 Nakamichi Kenkyusho KYAPUSUTANSOCHI
JPS5212225A (en) * 1975-07-18 1977-01-29 Kanebo Ltd Apparatus for producing cement products highly reinforced with glass fibres
JPS5650694A (en) * 1979-09-25 1981-05-07 Matsushita Electric Ind Co Ltd Deciding method of control signal
JPS5655235A (en) * 1979-10-12 1981-05-15 Mitsubishi Plastics Ind Ltd Manufacture of polyester heat shrinkable tube
JPS5731975A (en) * 1980-08-01 1982-02-20 Chuo Spring Co Ltd Molding method of heat-resistant gasket
JPS5742726A (en) * 1980-08-29 1982-03-10 Kohjin Co Ltd Polyester film for shrink packaging
JPS57159618A (en) * 1981-03-27 1982-10-01 Gunze Ltd Highly shrinkable polyester film excellent in heat seal
JPS57194950A (en) * 1981-04-28 1982-11-30 Teijin Ltd Polyester vessel and its manufacture
JPS5864958A (en) * 1981-10-09 1983-04-18 大日本インキ化学工業株式会社 Heat-shrinkable film and heat-shrinkable packing method for article using said heat-shrinkable film
JPS5891538U (en) * 1981-12-15 1983-06-21 グンゼ株式会社 Containers
JPS58108112A (en) * 1981-12-23 1983-06-28 Denki Kagaku Kogyo Kk Shrinkable film of styrene resin
JPS5997175A (en) * 1982-11-26 1984-06-04 グンゼ株式会社 Polyester based shrink label with excellent low temperature shrinking property

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291555A (en) * 1985-10-18 1987-04-27 Toyobo Co Ltd Heat-shrinkable polyester film
JPH0410854A (en) * 1990-04-27 1992-01-16 Matsushita Electric Ind Co Ltd Color picture reader

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB825549A (en) * 1955-02-04 1959-12-16 Du Pont Improvements in or relating to linear copolyester films
JPS4958172A (en) * 1972-10-06 1974-06-05
JPS4986459A (en) * 1972-12-22 1974-08-19
JPS5140905A (en) * 1974-10-03 1976-04-06 Nakamichi Kenkyusho KYAPUSUTANSOCHI
JPS5212225A (en) * 1975-07-18 1977-01-29 Kanebo Ltd Apparatus for producing cement products highly reinforced with glass fibres
JPS5650694A (en) * 1979-09-25 1981-05-07 Matsushita Electric Ind Co Ltd Deciding method of control signal
JPS5655235A (en) * 1979-10-12 1981-05-15 Mitsubishi Plastics Ind Ltd Manufacture of polyester heat shrinkable tube
JPS5731975A (en) * 1980-08-01 1982-02-20 Chuo Spring Co Ltd Molding method of heat-resistant gasket
JPS5742726A (en) * 1980-08-29 1982-03-10 Kohjin Co Ltd Polyester film for shrink packaging
JPS57159618A (en) * 1981-03-27 1982-10-01 Gunze Ltd Highly shrinkable polyester film excellent in heat seal
JPS57194950A (en) * 1981-04-28 1982-11-30 Teijin Ltd Polyester vessel and its manufacture
JPS5864958A (en) * 1981-10-09 1983-04-18 大日本インキ化学工業株式会社 Heat-shrinkable film and heat-shrinkable packing method for article using said heat-shrinkable film
JPS5891538U (en) * 1981-12-15 1983-06-21 グンゼ株式会社 Containers
JPS58108112A (en) * 1981-12-23 1983-06-28 Denki Kagaku Kogyo Kk Shrinkable film of styrene resin
JPS5997175A (en) * 1982-11-26 1984-06-04 グンゼ株式会社 Polyester based shrink label with excellent low temperature shrinking property

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651353B2 (en) * 1985-10-18 1994-07-06 東洋紡績株式会社 Heat-shrinkable polyester tube
JPH05318586A (en) * 1985-10-18 1993-12-03 Toyobo Co Ltd Heat shrinkable polyester series tube
JPS6327535A (en) * 1986-07-18 1988-02-05 Diafoil Co Ltd Shrinkable polyester film
JPS63122519A (en) * 1986-11-12 1988-05-26 Diafoil Co Ltd Polyester shrink film
JPS63139725A (en) * 1986-12-02 1988-06-11 Diafoil Co Ltd Polyester group shrinkable film
JPS63150331A (en) * 1986-12-15 1988-06-23 Diafoil Co Ltd Shrinkable polyester film
JPS63202429A (en) * 1987-02-17 1988-08-22 Diafoil Co Ltd Polyester shrink film excellent in heat-sealing property
JPH0479822B2 (en) * 1987-11-25 1992-12-17 Toyo Boseki
JPH01136722A (en) * 1987-11-25 1989-05-30 Toyobo Co Ltd Heat shrinkable polyester film
JPH01160632A (en) * 1987-12-18 1989-06-23 Toyobo Co Ltd Heat-shrinkable polyester film
JPH01258935A (en) * 1988-04-09 1989-10-16 Diafoil Co Ltd Polyester contractive film
JPH05318587A (en) * 1992-05-21 1993-12-03 Toyobo Co Ltd Heat shrinkable polyester series film
JP2002011790A (en) * 2000-04-27 2002-01-15 Toyobo Co Ltd Heat-shrinkable thermoplastic resin-base film
US7939174B2 (en) 2001-04-26 2011-05-10 Toyo Boseki Kabushiki Kaisha Heat-shrinkable polyester film roll and a process for producing the same
US7749584B2 (en) 2001-07-11 2010-07-06 Toyo Boseki Kabushiki Kaisha Heat-shrinkable polyester films
JP2003041021A (en) * 2001-07-26 2003-02-13 Toyobo Co Ltd Heat-shrinkable polyester film and method for producing polyester
US6958178B2 (en) 2001-08-01 2005-10-25 Toyo Boseki Kabushiki Kaisha Heat-shrinkable polyester film roll
US9637264B2 (en) 2010-01-28 2017-05-02 Avery Dennison Corporation Label applicator belt system

Also Published As

Publication number Publication date
JPH0651353B2 (en) 1994-07-06
JPH05318586A (en) 1993-12-03
JPH0410854B2 (en) 1992-02-26

Similar Documents

Publication Publication Date Title
US4963418A (en) Thermo-shrinkable polyester type film and tube and processing method for preparing the tube
EP0271928A2 (en) Thermo-shrinkable polyester film
JPS6291555A (en) Heat-shrinkable polyester film
JPH02155630A (en) Polyester shrink film
JP3509079B2 (en) Cavity-containing heat-shrinkable polyester film
JP2943178B2 (en) Heat-shrinkable polyester film
JPH0533895B2 (en)
JPH1077335A (en) Heat shrinkable polyester film
JP3496728B2 (en) Heat-shrinkable polyester film
JP3006001B2 (en) Heat-shrinkable polyester film
JPH0618902B2 (en) Heat-shrinkable polyester film
JP2517995B2 (en) Heat-shrinkable polyester film
JPH0618903B2 (en) Heat-shrinkable polyester film
JPH01136723A (en) Heat shrinkable polyester film
JPH044229A (en) Thermally shrinkable polyester film
JPH08423B2 (en) Method for producing heat-shrinkable polyester film
JP3396962B2 (en) Heat shrinkable polyester composite film
JPH0533894B2 (en)
KR100356999B1 (en) Heat shrinkable polyester film
JPH0329763A (en) Fluorescent-lamp shrink packaging polyester film
KR100357004B1 (en) Heat Shrinkable Polyester Film
JPH0479822B2 (en)
JP3452021B2 (en) Heat-shrinkable polyester tube and heat-shrinkable polyester tube
JPH01136721A (en) Heat shrinkable polyester film
JP3605695B2 (en) Heat-shrinkable polyester film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees