JP2006114648A - 光学装置 - Google Patents

光学装置 Download PDF

Info

Publication number
JP2006114648A
JP2006114648A JP2004299720A JP2004299720A JP2006114648A JP 2006114648 A JP2006114648 A JP 2006114648A JP 2004299720 A JP2004299720 A JP 2004299720A JP 2004299720 A JP2004299720 A JP 2004299720A JP 2006114648 A JP2006114648 A JP 2006114648A
Authority
JP
Japan
Prior art keywords
vacuum chamber
air
outside
optical
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004299720A
Other languages
English (en)
Inventor
Tei Goto
禎 後藤
Nobuhito Saji
伸仁 佐治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2004299720A priority Critical patent/JP2006114648A/ja
Publication of JP2006114648A publication Critical patent/JP2006114648A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

【課題】 光学手段を大気雰囲気状態に保ちながら光学手段を空冷することが可能な光学装置を提供する。
【解決手段】 真空中に設けられる対象(CA)を光学的に検査する光学装置であって、内部を真空に保つ真空チャンバ(4)と、光学手段(1〜3)と、光学手段(1〜3)を包囲し当該光学手段(1〜3)からの光を透過させる窓を備え、光学手段(1〜3)周囲の空間と真空チャンバ(4)外の空間とを連通させる包囲部材(11、21、31)と、を備え、包囲部材(11、21、31)には、真空チャンバ(4)外の空気を光学手段(1〜3)に導入する空気導入路(50)と光学手段(1〜3)内の空気を真空チャンバ(4)外に排出する空気排出路(52)が形成されている。
【選択図】 図3

Description

本発明は、半導体製造等に用いられる光学的な位置の検出装置に係り、特に、真空チャンバ内で使用するために適する光学装置の構造に関する。
半導体装置の製造過程では、マスクを利用してシリコンウェハ上にチップのパターンを露光あるいはイオン注入等の処理を施すに際して、マスクのチップ領域を正しい位置に配置させるために、位置を検出するための検出装置が用いられている。例えば、特開昭62−98621号公報には、マスクのチップ領域に対して斜めに射出された光を撮影し位置を検出する微小間隙設定装置の一例が開示されている(特許文献1)。
このような検出装置は、露光前に、照明装置から光をマスク上のアライメントマークに射出し、その光を対応する撮像装置で撮影して、マークの位置ずれからマスクのウェハに対するX/Y軸方向への二次元的な位置ずれや、マスク面とウェハ面との間隙(Z方向)を検出していた。
このような斜方検出法によれば、露光のための露光光の光軸上に位置合わせのための手段を配置しなくて済むため、露光中に位置検出手段を待避する必要が無くなり、露光中でもアライメントが可能となり、スループットを向上させることができるという特長があった。現在大量生産により安価に入手可能なハロゲンランプ等の光源やCCD等の撮像素子は大気雰囲気で使用されるものであるが、真空チャンバ内に配置して使用することが可能に設計されたものもある。
特開昭62−98621号公報
しかしながら、真空チャンバ内に配置可能な光源や撮像素子等の光学手段を用いた場合、これら光学手段を真空チャンバ内に配置すると、光源などが発熱源となって機器に悪影響を及ぼす恐れがある。そこで、光源などの発熱源を真空チャンバ外に配置し、光源からの光をライトガイドを介して真空チャンバ内に導入する構成を採用することも可能であるが、光源などをチャンバ外に配置したのでは、効率が悪くなるとともに、より大きな光源が必要となり、スペースの確保が困難になるとともに、コストアップやメンテナンス性の悪化を招くことになる。
一方、真空チャンバ内の発熱源に対して、水冷配管などを施し、発熱源を冷却する構成を採用することもできる。しかし、このような構成を採用したのでは、水冷配管などの設備が必要になり、コストアップとなる。しかも、水冷配管用のフィードスルーを用意するなど設計ロードがかかる上に、装置のスペースの確保が困難となる。
そこで、本発明は、光学手段を大気雰囲気状態に保ちながら光学手段の発熱を抑制することが可能な光学装置を提供することを目的とする。
上記目的を達成するために、本発明は、真空チャンバ内に設けられる対象を光学的に検出する光学装置であって、照明装置と、前記照明装置を包囲し当該照明装置からの光を透過させる窓を備え、当該照明装置周囲の空間と前記真空チャンバ外の空間とを連通させる包囲部材と、を備え、前記包囲部材には、真空チャンバ外の空気を前記照明装置に導入する空気導入路と前記照明装置内の空気を真空チャンバ外に排出する空気排出路が形成されていることを特徴とする。
上記構成によれば、照明装置の周囲は真空チャンバ外と連通し、真空チャンバ外の空気によって照明装置が冷却されるため、大気雰囲気下で照明装置を使用できるとともに、照明装置を真空チャンバ外の空気によって冷却することができる。
なお、本発明において「真空」とは、大気雰囲気より少ない気圧の状態をいい、空気以外のガスを含んでいる場合も含む。
また「光学装置」とは、光学的作用を利用する装置を含む広い概念であり、位置等の検出装置、光学式検査装置、露光装置、イオン注入装置、その他光の入射や射出を行いうる構造を備えたものを含む。
ここで、照明装置としては、安価な光源、例えばハロゲンランプ等を使用可能であるが、発光ダイオードであることは好ましい。光源が発光ダイオードである場合には、ランプに比べ、交換の必要性が少ないため保守が容易である。つまり、包囲部材を取り外しできないように密閉構造とすることも可能である。また発光ダイオードは、必要な期間のみ発光させればよく発熱量が少ないため、故障が少なく、省エネルギーであり、またエネルギー損失が少ないため、照射部への加熱も抑制されるという利点もある。
例えば、包囲部材は、照明装置を収容するハウジングと、一端がハウジングに取り付けられ、他端が真空チャンバの壁面に設けられた貫通孔に取り付けられた、少なくとも一部に可撓性を有する中空の連結部材と、を備えていてもよい。このような構成によれば、連結部材の可撓性によって真空チャンバが吸引による気圧の変化により変形しても照明装置の位置に影響を与えない。さらに照明装置を可動に構成できる。また包囲部材は真空チャンバ内を移動可能であるため、照明装置を大気雰囲気に保ちながら真空チャンバ内の適当な位置に移動させることが可能である。特に、連結部分の可撓性を有する部分にベローズを含むように構成すれば、ベローズの伸縮の程度が弾性変形等に比べて大きいため長手方向や曲げ方向に自在に光学手段の位置を変更可能であり、真空チャンバ内における移動範囲を広範にすることができる。
本発明は、真空チャンバ内に設けられる対象を光学的に検出する光学装置であって、撮像装置と、前記撮像装置を包囲し前記対象からの光を透過させる窓を備え、当該撮像装置周囲の空間と前記真空チャンバ外の空間とを連通させる包囲部材と、を備え、前記包囲部材には、真空チャンバ外の空気を前記撮像装置に導入する空気導入路と前記撮像装置内の空気を真空チャンバ外に排出する空気排出路が形成されていることを特徴とする。
上記構成によれば、撮像装置の周囲は真空チャンバ外と連通し、真空チャンバ外の空気によって撮像装置が冷却されるため、大気雰囲気下で使用できるため安価な撮像素子を撮像装置として使用できるとともに、撮像装置を真空チャンバ外の空気によって冷却することができる。なお、このような撮像素子としてはCCD(Charge Coupled Device)が使用可能であるが、これに限られない。また、撮像装置は真空チャンバ外壁より内側に配置可能であるため対象との距離を短くでき、光損失を最小限に抑えることができる。
ここで包囲部材は、撮像装置を収容するハウジングと、一端がハウジングに取り付けられ、他端が真空チャンバの壁面に設けられた貫通孔に取り付けられた、少なくとも一部に可撓性を有する連結部材と、を備えるようにしてもよい。このような構成によれば、連結部材の可撓性によって真空チャンバが吸引による気圧の変化により変形しても照明装置の位置に影響を与えない。また撮像装置を可動に構成できる。特に前記連結部材は、可撓性を有する部分にべローズを含むことは好ましい。このような構成によれば、連結部分の可撓性を有する部分にベローズを含むように構成すれば、ベローズの伸縮の程度が弾性変形等に比べて大きいため長手方向や曲げ方向に自在に光学手段の位置を変更可能であり、真空チャンバ内における移動範囲を広範にすることができる。
なお、本発明の光学装置は、例えば半導体製造等に用いられる製造装置の露光装置やイオン注入装置の一部に組み込んで利用する事が可能である。
以上説明したように、本発明によれば、照明装置や撮像装置等の光学装置の周囲は真空チャンバ外と連通しているため、大気雰囲気下で使用できる安価な光学装置を使用できるとともに、真空チャンバ外の大気を利用して光学装置を冷却することができる。
以下、本発明の実施の形態について図面を参照して説明する。
本発明の実施形態は、本発明の光学装置を例えばイオン注入装置や露光装置等の半導体製造装置における位置検出装置に適用したものである。
図1に、本実施形態に係る位置検出装置の概略図を示す。図2に、図1におけるA−A切断面における断面図を示す。図1に示すように、当該半導体製造装置は、真空チャンバ4に、照明系1A〜C、撮像系2A〜C及びセンサ系3を備えている。照明系1A〜C、撮像系2A〜C及びセンサ系3は、真空中に設けられる対象を光学的に検出するための光学装置であって、少なくともその一部を周囲の空間と真空チャンバ40外の空間とを連通させる包囲部材に囲まれている。照明系1A及び撮像系2A、照明系1B及び撮像系2B、照明系1C及び撮像系2Cはそれぞれ対になって、ステンシルマスク及びシリコンウェハのそれぞれに付与されているアライメントマークの位置検出を行うようになっている。
真空チャンバ4は、シリコンウェハの露光やイオン注入を行うためのプロセス室となっており、真空チャンバ外壁40内部に、照明系1A〜C、撮像系2A〜C、及びセンサ系3を配置するセンサ台41を備えている。センサ台41には検出対象となるステンシルマスクを臨むための開口42が設けられている。
図2に示すように、センサ台41の下方には、ステンシルマスクMを吸引し三次元方向に移動可能なマスクチャック43、及びマスクチャック43の下方においてシリコンウェハWを載置し三次元方向に移動可能なウェハステージ44を備えている。ウェハステージ44及びマスクチャック43は、それぞれ、例えば、ステップモータ等の動力手段と送り螺子や案内装置、回転テーブル等の機構手段とを備え、駆動パルスに対応する移動量だけステージを任意の方向、すなわち図面左右のX軸方向、図面奥行き方向のY軸方向、図面上下のZ軸方向に搬送したりステージの回転角を変更したりすることが可能に構成されている。
また、マスクチャック43またはウェハステージ44の少なくとも一方は、さらに別の微動機構を備えており、X軸、Y軸、Z軸方向及び各軸周りに微動可能に構成されている。このような微動機構は、例えば圧電素子、複数組のモータと送り螺子とからなる機構等によって実現される。
図1では、マスクチャック43に吸引されたステンシルマスクM上のチップ領域CAが開口42を通して見えている。このステンシルマスクM及びシリコンウェハWは露光等の処理時に当該プロセス室に搬入されるものである。図1における矢印はウェハやマスクの搬入口を示してある。
各照明系1A〜Cの光源部100(後述する)内部空間は、可撓性を有するベローズ11により真空チャンバ外壁40の外部と連通している。すなわち、ベローズ11の一端は各照明系1A〜Cの光源部100のハウジングに設けられた貫通孔を塞ぐように取り付けられ、その他端は真空チャンバ外壁40に設けられた貫通孔401を塞ぐように取り付けられ、照明系1の光源部100の内部空間が真空チャンバ外部と挿通するようになっている。ベローズ11内部には照明系1へ電力を供給するための配線12が挿通している。
各撮像系2A〜Cの撮像部210(後述する)内部空間は、可撓性を有するベローズ21により真空チャンバ外壁40の外部と連通している。すなわち、ベローズ21の一端は各撮像系2A〜Cの撮像部210ハウジングに設けられた貫通孔を塞ぐように取り付けられ、その他端は真空チャンバ外壁40に設けられた貫通孔402を塞ぐように取り付けられ、撮像系2の撮像部210内部空間が真空チャンバ外部と挿通するようになっている。
ベローズ21内部には撮像系2へ電力を供給し撮像した画像信号を取り出すための配線22が挿通している。当該実施形態では、撮像系2を可動にしたため、真空チャンバ4内における可動範囲を大きくするためべローズ21を照明系1のベローズ11に比べ長めにしてある。
センサ系3の内部空間も、可撓性を有するベローズ31により真空チャンバ4の外部と連通している。すなわち、ベローズ31の一端は機密性を有するセンサハウジング34に設けられた貫通孔を塞ぐように取り付けられ、その他端は真空チャンバ外壁40に設けられている貫通孔403を塞ぐように取り付けられ、センサハウジング34の内部空間が真空チャンバ外部と挿通するようになっている。ベローズ31内部にはセンサ系3へ電力を供給し、検出結果の電気信号を取り出すための配線32(配線321、322、323)が挿通している。
なお、ベローズ11、21、及び31としては、真空チャンバ等の配管用として通常用いられる蛇腹状の金属ベローズを用いているが、真空中での使用が可能であって、必要とされる可撓性等に対する要求を満たすものであれば、他の可撓体構造を備えていてもよい。
ここで本発明の特徴である冷却系について説明する。図3は本発明の冷却系を中心に説明するための図で、後で説明する照明系、撮像系、センサ系等に関する部分については簡略化して示している。各べローズ11、21、31と照明系1、撮像系2、センサ系3、真空チャンバ外壁40との接合部には、例えば、図3に示すように、Oリング501、502が付され、真空チャンバ4内部に空気が漏えいしないよう、気密性を保つようになっている。
また、各ベロース11、21、31内には、図3に示すように、真空チャンバ4外の空気(正圧のエア)を発熱源としての照明系(照明装置)1A、1B、1Cと撮像系(撮像装置)2A、2B、2Cおよびセンサ系3に導入する空気導入路としてのチューブ50が空冷系の一要素としてそれぞれ挿入されているとともに、例えば可撓性のあるチューブ又はパイプ50の周囲には、照明系(照明装置)1A、1B、1Cと撮像系(撮像装置)2A、2B、2Cおよびセンサ系3内の空気を真空チャンバ4外に排出する空気排出路としての空間部52が形成されている。
チューブ50は、配線12、22、32とともにベローズ11、21、31内に挿入されており、その一端側が真空チャンバ外壁40の貫通孔401、402、403から真空チャンバ外壁40の外側に突出され、他端側が照明系(照明装置)1A、1B、1Cを構成するそれぞれの光源部100と撮像系(撮像装置)2A、2B、2Cを構成するそれぞれの撮像部210およびセンサ系3内に挿入されている。真空チャンバ4外の空気(正圧のエア)がチューブ50を介して照明系(照明装置)1A、1B、1Cと撮像系(撮像装置)2A、2B、2Cおよびセンサ系3内にそれぞれ導入されると、導入された空気によって照明系(照明装置)1A、1B、1Cと撮像系(撮像装置)2A、2B、2Cおよびセンサ系3内が冷却されるとともに、内部の空気が各ベローズ11、21、31内の空間部52を介して貫通孔401、402、403から真空チャンバ4外に排出される。図示しない空気の供給系は、クリーンルームで通常使用されているものでよく、これにチューブ50が接続されることにより、前記正圧のエアが供給される。
このように、照明系(照明装置)1A、1B、1Cと撮像系(撮像装置)2A、2B、2Cおよびセンサ系3内を大気の雰囲気とした状態で、真空チャンバ4外の空気を照明系(照明装置)1A、1B、1Cと撮像系(撮像装置)2A、2B、2Cおよびセンサ系3内に導入して冷却すると、真空チャンバ4外の空気を照明系(照明装置)1A、1B、1Cと撮像系(撮像装置)2A、2B、2Cおよびセンサ系3内の空気による熱伝導を利用することができ、真空チャンバ4外の空気を照明系(照明装置)1A、1B、1Cと撮像系(撮像装置)2A、2B、2Cおよびセンサ系3内を効率よく冷却することができる。
また、真空チャンバ4外の空気である正圧エアを冷却に用いているので、チューブ50を各ベローズ11、21、31内に挿入するだけでよく、設備費が上昇するのを抑制することができるとともに、冷却系を設計するにも、パイプ50の配置を考慮するだけでよく、設計ロードの負担を軽減することができる。
さらに、水冷を採用する場合に比べ、空気がリークしても、水がリークしたときよりも被害を軽減することができ、リスクを回避することができる。
一方、本実施形態では、撮像系2のみを可動に構成してるが、撮像系2と真空チャンバ40との接続にのみ可撓性を有するベローズ21を用いるのではなく、組み立ての容易さや使用時における真空チャンバ40の変形への対応を鑑み、本実施形態では照明系1やセンサ系3についても可撓性を有するベローズ11及び31を使用している。また各ベローズはアコーディオン状(ふいご状)の伸縮構造となっているため、長手方向及び曲げ方向に特に優れた可撓性を示すようになっている。
さらに、具体的な構造を説明する。図4に示すように、照明系1A〜Cは、ステージ13に光源部100と光学部110とに分離されている。一点鎖線は射出光Lを示している。なお、図4では照明系1Aを示しているが、照明系1B及び1Cについても、ベローズ11の接続箇所が異なる点を除き、照明系1Aと同様の構成になっている。
光源部100は、内部に発光ダイオード107を収納する本体101、ボルト108により本体に取り付けられた後蓋102及び前蓋103によりハウジングが形成されている。前蓋103には開口104が設けられ、開口104にはガラス製の透光窓105が配置されており、発光ダイオード107から射出された光を外部に透過するようになっている。後蓋102及び透光窓105の周囲は、Oリング106により密封され内部の気密性を保つことができるようになっている。光源部100には、図示しないベローズ11が接続されて真空チャンバ4の外部と連通しており、内部が大気圧に保たれている。
光学部110は、本体111、ボルト121により本体111に取り付けられた前蓋113を備えている。光の入射側では、スペーサ118を介して適正な光学位置にレンズ119が配置され、レンズ押さえ112により締結されている。前蓋113には開口114が設けられ、ガラス等の透光窓115が配置されており、光を射出するようになっている。本体110の内部には全反射ミラー116が配置され、レンズ119経由で入射した光を透光窓115から射出するようになっている。本体111には気抜き孔120a及びbが設けられている。これらの気抜き孔120a及びbにより光学部110内部も真空に保たれるようになっている。
なお、透光窓115は、全反射ミラー116等の汚れを防止するために有効であるが必須の構成ではなく設けなくてもよい。透光窓115を設けない場合には、当該窓を取り付けるための前蓋113、周囲の空間を真空チャンバ40内と連通するための気抜き孔120bも不要となる。
このような照明系1の構成によれば、ベローズ11内の配線12から供給された電力により発光ダイオード107が発光し、その光Lが透光窓105を経由して光学部110に入射する。光学系110において、レンズ119を透過した光Lは全反射ミラー116で反射されて透光窓115を透過し、ステンシルマスクMへと射出される。光源部100の内部空間は大気圧に保たれているため、発光ダイオード107は大気圧下でしか使用できない汎用性の高い安価な発光ダイオードを利用できる。同様に、大気圧に保たれるベローズ11内の空間も大気圧に保たれているため、配線12についても大気圧下で使用されるものを利用可能であり、特殊で高価な材料を用いた配線を使用する必要がない。
また当該照明系1の構成によれば、光源部が真空チャンバ内の真空な領域とは隔絶されているため、発光ダイオードから排出されるアウトガスによる真空チャンバ内の真空度低下のおそれはない。
さらに、発光ダイオード107はもともと発熱は小さいが皆無ではなく、光源部100のまわりを真空環境で囲まれており、何も対策を施さないと、次第に光源部100内の温度上昇があるところ、本実施の形態ではチューブ50を通して光源部100の内部に空気が導入されることにより、温度上昇を抑制できる。なお、光源部100と光学部110とを一体化して構成し、内部の空間全部を大気圧に保持してもよい。このようにすれば気抜き孔120が不要になり、レンズ119や本体111内部の接着剤、塗料から発生するアウトガスを、ベローズ11経由で外部に排出可能である。
図5に示すように、撮像系2A〜Cは、二軸ステージ23に載置された光学部200と撮像部210とに分離されている。一点鎖線は入射光Lを示している。なお、図5では撮像系2Aを示しているが、撮像系2B及び2Cについても撮像系2Aと同様の構成になっている。
撮像系2を載置するステージ23は、例えば、ステップモータ等の動力手段と送り螺子や案内装置等の機構手段とを備え、駆動パルスに対応する移動量だけステージを任意の方向、すなわち図面左右のX軸方向、図面奥行き方向のY軸方向に動かすことが可能になっている。
光学部200は、全反射ミラー206が内部に設けられた本体201により、光路を変更可能になっている。光の入射側では、スペーサ204を介して適正な光学位置にレンズ203が配置され、レンズ押さえ202により締結されている。光の射出側には、スペーサ209を介して適正な位置にレンズ208が配置され、レンズ押さえ207により締結されている。本体201には気抜き孔205が設けられ、本体201内部が真空に保たれるようになっている。なお、図5では図示が省略されているが、レンズ203と208との距離は所定の構造により変更調整が可能に構成されている。
撮像部210は、撮像素子であるCCD211を収納する本体212、ボルト218により本体212に取り付けられた前蓋213及び後蓋217を備えている。前蓋213には本体212の空洞と連通する開口が設けられ、開口には透過窓214が設けられ光学部200から入射した光をCCD211に導くようになっている。透過窓214及び後蓋217の周囲はOリング216により密封され、撮像部210内部を大気圧に保つことが可能になっている。撮像部210には、図示しないベローズ21が接続されて真空チャンバ4の外部と連通しており、内部が大気圧に保たれている。
このような撮像系2の構成によれば、ステンシルマスクMからの光Lは光学部200に入射し、レンズ203を透過して全反射ミラー206により反射され光軸方向が変えられた後、レンズ208を透過して撮像部210に入射する。撮像部210において、光Lは透光窓214を透過してCCD211に入射する。CCD211に入射した光が電気信号に変換され、ベローズ21内を挿通する配線22を経由して真空チャンバ4外部に取り出される。
ここでステージ23を駆動することにより、チップの大きさに合わせて、ステンシルマスクMのチップ領域CA周辺に設けられた開口部からシリコンウェハW上のアライメントマークが正しく望めるように撮像系2全体を移動させることが可能である。撮像部210の内部空間は大気圧に保たれているため、大気圧でしか使用できない安価なCCDを利用できる。またCCDは真空チャンバ内の真空な領域とは隔絶されているので、CCDから排出されるアウトガスによる真空チャンバ内の真空度低下のおそれはない。同様に、大気圧に保たれるベローズ21内の空間も大気圧に保たれているため、配線22についても大気圧下で使用されるものを利用可能であり、特殊で高価な材料を用いた配線を使用する必要がない。
さらに、CCD211に通電することにより、わずかではあるが発熱があり、撮像部210のまわりを真空環境で囲まれており、何も対策を施さないと、やはり次第に撮像部210内の温度上昇があるところ、本実施の形態では、チューブ50を通して撮像部210内部に空気が導入されることにより、温度上昇を抑制できる。
なお、光学部200と撮像部210とを一体化して構成し、内部の空間全部を大気圧に保持してもよい。このようにすれば気抜き孔205が不要になり、レンズ203・208や本体201内部の接着剤、塗料から発生するアウトガスを、ベローズ21経由で外部に排出可能である。
また、本実施形態では、撮像系2のみを二軸ステージ23で移動させチップ領域CAの大きさに応じて撮像系2の位置を変更可能に構成したが、照明系1を移動可能にしたり双方を移動可能にしたりするように構成することも可能である。またいずれも固定してよい場合には可動ステージは不要となる。さらに、照明系1A〜1Cの光源部及び撮像系2A〜Cの撮像部のいずれか一方のみを上述したような構成とし、他方を従来と同様の構成、すなわち真空対応の光源若しくはCCDを真空チャンバ4内に設けるか、または大気圧用の光源若しくはCCDを真空チャンバ4の外壁より外側(すなわち大気中)に配置するように構成してもよい。
図6に示すように、センサ系3は、気密性を有するセンサハウジング34内部にグローバルアライメント用センサ30A・B及びレーザ変位計33を収納している。当該センサ系3の下面のセンサ台41には開口45が設けられ、センサハウジング34が取り付けられている。センサハウジング34には、センサハウジング34内の気密性を保ちながら光を透過可能になっている透過窓36a及びbが設けられている。すなわち、レーザ変位計33用の透過窓36aは蓋35aにより、グローバルアライメント用センサ30A・B用の透過窓36bは蓋35bにより、それぞれOリングを介してセンサハウジング34に取り付けられている。透過窓36aと36bは、前述した透過窓105や214と同様に、ハウジング内部の気密性を保つようにした状態でボルトによりセンサハウジング34に取り付けられている。
図7に示すように、グローバルアライメント用センサ30(30A及び30B)は、本体301、後蓋302、及び前蓋303によりハウジングを形成しており、内部に発光ダイオード304、CCD305、ハーフミラー306、スペーサ308により適正な光学距離に保たれたレンズ307を備えている。
この構成により、ベローズ31内に敷設された配線321経由で真空チャンバ4の外部から供給された電力により発光ダイオード304が発光すると、その光Lはハーフミラー306を透過し、開口309から透過窓36bを透過しステンシルマスクMまたはシリコンウェハWの所定箇所に設けられているグローバルアライメントマーク(各々2箇所に設けられている)に射出される。それらからの反射光は再び透過窓36を経由して当該センサ30に入射し、今度はハーフミラー36によって異なる方向に反射され、レンズ307を透過し、CCD305によって撮像され電気信号に変換される。この電気信号は再び配線322によってベローズ31内を通して真空チャンバ4外部に取り出される。この電気信号に基づきステンシルマスクMとシリコンウェハWとの大まかな位置合わせが行われる。
図2に示すように、レーザ変位計33は、発光ダイオード33、レンズ332・333、ラインセンサ334を備えている。この構成により、レーザ変位計33は、反射光の有無や反射面の高さを検出可能となっており、シリコンウェハWやステンシルマスクMの有無を判定したりウェハW上面やステンシルマスク上面の高さを測定したりすることができる。この測定を露光等の当初に行うことで、シリコンウェハWやステンシルマスクMの搬入、ウェハステージ44のZ軸方向の調整を行うことができる。
なお、グローバルアライメント用センサ30A及び30Bからの配線322及びレーザ変位計33からの配線321及び323(図示せず)は、ベローズ31内を経由して真空チャンバ4の外部へ引き出されている。
ここでグローバルアライメント用センサ30やレーザ変位計33は、内部の空間がセンサハウジング34の空間と挿通しており、センサハウジング34内の空間はベローズ31経由で真空チャンバ4の外部と挿通しているため、大気圧に保たれている。このため、発光ダイオード304・331、CCD305、ラインセンサ334は、大気圧中で使用される安価なものが使用可能である。これらの部材は真空チャンバ4内の真空な領域とは隔絶されているため、アウトガスが発生したとしても真空チャンバ内の真空度低下のおそれはない。同じく、これらから真空チャンバ外へ引き出される配線についても気圧下で使用されるものを利用可能であり、特殊で高価な材料を用いた配線を使用する必要がない。さらにグローバルアライメント用センサ30やレーザ変位計33は、通電することによりわずかではあるが発熱があり、センサ系3のまわりを真空環境で囲まれており、何も対策を施さないとやはり次第に温度上昇があるところ、本実施の形態では、チューブ50を通して、センサ系3内に空気が導入されることにより、温度上昇を抑制できる。
上記構成において、シリコンウェハの搬入時には、シリコンウェハWは図示しないアームにより搬入されウェハステージ44に載置される。一方、ステンシルマスクMはマスクチャック43に吸引されプリアライメントされてシリコンウェハW上に配置される。
次いで、図2に示すように、マスクチャック43またはウェハステージ44は、搬入位置P1にまで搬入されセンサ系3の下方に配置される。レーザ変位計33からは所定の波長のレーザ光が透光窓36及び開口45を介してステンシルマスクM上またはウェハW上の所定位置に射出され、その反射光の有無に基づいて、ステンシルマスクMやウェハWの有無が判断される。ステンシルマスクMやウェハWが存在しないと判断された場合には、それらの搬入が行われる。またレーザ変位計33では反射面の高さによりウェハW上面までの距離が求められ、その測定距離に基づき適正な距離にウェハステージ44が駆動される。また、グローバルアライメント用センサ30により、マスクMのおおよその二次元位置が定められる。
すなわち、露光イオン注入等の処理時のアライメント調整に際してステンシルマスクMのチップ領域CA周囲の開口からシリコンウェハW上のアライメントマークが正しく望めるようにグローバルアライメントの観測結果に基づきウェハステージ44またはマスクチャック43が駆動され、二次元方向の大まかなアライメントが行われる。
次いで、処理位置P2まで、ステンシルマスクMはマスクチャック43とともに図示しない駆動機構により、また、ウェハWはウェハステージ44によって移動させられ、露光あるいはイオン注入等の処理が始められる。処理位置P2まで移動されたマスクMのチップ領域CAには、照明系1から光が射出され、そのチップ領域CAの周囲に設けられた複数の開口部は撮像系2によって撮影される。そしてその開口部を通して望めるウェハWの周囲に設けられたアライメントマークの位置ずれによって、ステンシルマスクMに対するウェハWの位置ズレ量が求められ、その空間位置が正しくなるようにマスクチャック43またはウェハWが微動機構により位置決めされることにより、正しい露光が可能になる。
以上、本実施形態によれば、照明系1、撮像系2、及びセンサ系3の周囲の空間は真空チャンバ4外と連通しているため、外部の大気雰囲気と同様の状態になっており、大気雰囲気下で使用せざるを得ない安価な光学手段(光源、撮像素子等)を使用できる。また、照明系1、撮像系2、及びセンサ系3を真空チャンバ4の外壁より内側に配置可能であるため、ステンシルマスクとの距離を短くでき、光損失を最小限に抑えることができる。さらに、照明系1、撮像系2、及びセンサ系3は配線12、22、32の部分も含めてベローズ11、21、31を介して真空チャンバ4外の空間と連通しているため、照明系1、撮像系2、及びセンサ系3の内部の接着剤や塗料、配線材料等から発生したアウトガスが外部に排出され、真空チャンバ4内に漏れ出ることがない。さらにまた、照明系1、撮像系2、及びセンサ系3が真空チャンバ4から独立して配置されているので、真空チャンバ外部にこれら光学装置を取り付けた場合に比べ、真空チャンバと光学装置との相対位置を制御する必要が無くなる。さらに真空チャンバが吸引による気圧の変化により変形しても光学装置の位置に影響を与えない。
本実施形態では、光源として発光ダイオード107や301を使用しているので、ハロゲンランプ等に比べ、交換の必要性が少ないため保守が容易である。また発光ダイオードは、必要な期間のみ発光させればよく発熱量が少ないため、故障が少なく、省エネルギーであり、またエネルギー損失が少なく、被照射部に対する加熱も抑制されるという利点もある。
また本実施形態によれば、包囲部材として、照明系1、撮像系2、及びセンサ系3を収容するハウジングをベローズ11、21、31により真空チャンバ外壁40の貫通孔401〜403に取り付けたので、ベローズの可撓性によって光学装置(特に、撮像系)を可動に構成できる。
また本実施形態によれば、光学装置を外部と連通するために伸縮自在なベローズ11、21、31が設けられているので、長手方向に自在に光学手段の位置を変更可能であり、真空チャンバ内における移動範囲を広範にすることができる。
さらに、特に本実施の形態によればチューブ50を通して光源部、撮像部及びセンサ系の内部に冷却のための空気を導入したのでそれぞれの内部の温度上昇を効果的に抑制できる。
なお、本発明の連結部材に相当する構成としてベローズを用いたが、連結部の可撓性を必要としていない場合には可撓性の低いパイプで代用してもよい。また多少の可撓性を必要とする場合には、このような可撓性の低いパイプと可撓性の高いベローズとの組合せを用いてもよい。
本発明に係る光学装置を利用する位置検出装置を含む真空チャンバの平面図である。 図1におけるA−A切断面における位置検出装置の断面図である。 本実施形態に係る空冷系の断面図である。 本実施形態に係る照明系の断面図である。 本実施形態に係る撮像系の断面図である。 本実施形態に係るセンサ系の断面図である。 本実施形態に係るグローバルアライメント用センサの断面図である。
符号の説明
CA…チップ領域、M…ステンシルマスク、W…ウェハ、1、1A〜C…照明系、2、2A〜C…撮像系、3…センサ系、11、21、31…ベローズ(連結部材)、4…真空チャンバ、40…真空チャンバ外壁、401〜403…貫通孔
50…パイプ、52…空間部

Claims (7)

  1. 真空チャンバ内に設けられる対象を光学的に検出する光学装置であって、
    照明装置と、
    前記照明装置を包囲し当該照明装置からの光を透過させる窓を備え、当該照明装置周囲の空間と前記真空チャンバ外の空間とを連通させる包囲部材と、を備え、
    前記包囲部材には、真空チャンバ外の空気を前記照明装置に導入する空気導入路と前記照明装置内の空気を真空チャンバ外に排出する空気排出路が形成されていることを特徴とする光学装置。
  2. 前記照明装置は、発光ダイオードである、請求項1に記載の光学装置。
  3. 前記包囲部材は、
    前記照明装置を収容するハウジングと、
    一端が前記ハウジングに取り付けられ、他端が前記真空チャンバの壁面に設けられた貫通孔に取り付けられた、少なくとも一部に可撓性を有する中空の連結部材と、を備え、前記連結部材内に前記空気導入路と前記空気排出路が形成されてなる、請求項1または2に記載の光学装置。
  4. 前記連結部材は、可撓性を有する部分にベローズを含む、請求項3に記載の光学装置。
  5. 真空チャンバ内に設けられる対象を光学的に検出する光学装置であって、
    撮像装置と、
    前記撮像装置を包囲し前記対象からの光を透過させる窓を備え、当該撮像装置周囲の空間と前記真空チャンバ外の空間とを連通させる包囲部材と、を備え、
    前記包囲部材には、真空チャンバ外の空気を前記撮像装置に導入する空気導入路と前記撮像装置内の空気を真空チャンバ外に排出する空気排出路が形成されていることを特徴とする光学装置。
  6. 前記包囲部材は、
    前記撮像装置を収容するハウジングと、
    一端が前記ハウジングに取り付けられ、他端が前記真空チャンバの壁面に設けられた貫通孔に取り付けられた、少なくとも一部に可撓性を有する連結部材と、を備え、前記連結部材内に前記空気導入路と前記空気排出路が形成されてなる、請求項5に記載の光学装置。
  7. 前記連結部材は、可撓性を有する部分にベローズを含む、請求項6に記載の光学装置。

JP2004299720A 2004-10-14 2004-10-14 光学装置 Pending JP2006114648A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004299720A JP2006114648A (ja) 2004-10-14 2004-10-14 光学装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004299720A JP2006114648A (ja) 2004-10-14 2004-10-14 光学装置

Publications (1)

Publication Number Publication Date
JP2006114648A true JP2006114648A (ja) 2006-04-27

Family

ID=36382921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004299720A Pending JP2006114648A (ja) 2004-10-14 2004-10-14 光学装置

Country Status (1)

Country Link
JP (1) JP2006114648A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020174266A1 (en) * 2019-02-28 2020-09-03 Lyncee Tec Sa Imaging system for imaging in a controlled environment
JP2021021713A (ja) * 2019-07-30 2021-02-18 倉敷紡績株式会社 サーモカメラ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020174266A1 (en) * 2019-02-28 2020-09-03 Lyncee Tec Sa Imaging system for imaging in a controlled environment
JP2021021713A (ja) * 2019-07-30 2021-02-18 倉敷紡績株式会社 サーモカメラ

Similar Documents

Publication Publication Date Title
US8698111B2 (en) Extreme ultraviolet light generation system
US8173934B2 (en) Dry cleaning apparatus and method
US8334654B2 (en) Discharge lamp, connecting cable, light source apparatus, and exposure apparatus
KR100910948B1 (ko) 형상측정기
EP1089001B1 (en) Static pressure gas bearing, stage device using it, and optical device using it
JP2008186694A (ja) 照明装置
JP2006114648A (ja) 光学装置
US20210013074A1 (en) Method of inspecting a semiconductor processing chamber using a vision sensor, and method for manufaturing a semiconductor device using the same
JP2009246361A (ja) リソグラフィ装置及び真空チャンバ
JP2007322362A (ja) レーザヘッド、レーザヘッドを収容するヘッドチャンバ、及びレーザ測長システムを適用した半導体製造装置又は半導体検査装置
JP2004311843A (ja) 光学装置
KR101105410B1 (ko) 임프린트 장치
JP2012177799A (ja) 露光装置用光照射装置
TWI482729B (zh) A substrate transport device for use in a substrate processing system
CN102722020B (zh) 一种等离子体诊断用显微镜调焦装置及其应用
CN107658239B (zh) 衬底处理设备及衬底处理方法
JP5171482B2 (ja) 露光装置およびデバイス製造方法
JP4314648B2 (ja) ステージ装置およびそれを備えた光学装置
TWI644179B (zh) 具有感測器組件之帶電粒子微影系統
JP6732235B2 (ja) 集光鏡方式加熱炉
US9165738B2 (en) Discharge lamp, connecting cable, light source apparatus, and exposure apparatus
JP2009071055A (ja) 露光装置および電子機器
JP2014175527A (ja) 基板位置検出システムおよびこれを備えた半導体製造装置
JP5402664B2 (ja) 洗浄方法、露光装置、及びデバイスの製造方法
KR101602538B1 (ko) 프로브 스테이션