JP2006110627A - Method and apparatus for rolling metal sheet - Google Patents

Method and apparatus for rolling metal sheet Download PDF

Info

Publication number
JP2006110627A
JP2006110627A JP2005266226A JP2005266226A JP2006110627A JP 2006110627 A JP2006110627 A JP 2006110627A JP 2005266226 A JP2005266226 A JP 2005266226A JP 2005266226 A JP2005266226 A JP 2005266226A JP 2006110627 A JP2006110627 A JP 2006110627A
Authority
JP
Japan
Prior art keywords
rolling
difference
rolling direction
work
plate thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005266226A
Other languages
Japanese (ja)
Other versions
JP4267609B2 (en
Inventor
Atsushi Ishii
篤 石井
Shigeru Ogawa
茂 小川
Yasuhiro Higashida
康宏 東田
Takashi Hisatsune
貴史 久恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005266226A priority Critical patent/JP4267609B2/en
Publication of JP2006110627A publication Critical patent/JP2006110627A/en
Application granted granted Critical
Publication of JP4267609B2 publication Critical patent/JP4267609B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for rolling a metal sheet which does not have a camber. <P>SOLUTION: In a metal sheet rolling method, a rolling mill having at least a work roll and a back-up roll is used for rolling the metal sheet. The metal sheet rolling method comprises the steps of: measuring the force in the rolling direction working on roll chocks of the work roll on both operation side and drive side; calculating the difference of the forces in the rolling direction; controlling asymmetrical elements of roll gap of the rolling mill so that the difference of the forces in the rolling direction comes to match the control target value; measuring further the sheet thickness at the inlet and/or the outlet side on the work side and the drive side of the workpiece to be rolled; and learning the control target value for the difference of the forces in the rolling direction, based on the difference of the forces in the rolling direction or the change in the wedge ratio of the sheet thickness. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属板材の圧延方法および圧延装置に関し、特に、キャンバーのない、あるいは極めてキャンバーの軽微な金属板材を安定して製造することのできる、金属板材の圧延方法および圧延装置に関する。   The present invention relates to a rolling method and a rolling apparatus for a metal plate, and more particularly, to a rolling method and a rolling apparatus for a metal plate that can stably produce a light metal plate having no camber or extremely camber.

金属板材の圧延工程において、圧延板材をキャンバーすなわち左右曲がりのない状態で圧延することは、圧延材の平面形状不良や寸法精度不良を回避するだけでなく、蛇行や尻絞りといった通板トラブルを回避するためにも重要である。尚、本発明では、表記を簡単にするために、圧延方向を正面とした場合の左右である圧延機の作業側および駆動側のことを左右と称することにする。
このような問題に対し、特許文献1では、圧延機の入側および出側において圧延材の幅方向位置を測定する装置を配備し、この測定値から圧延材のキャンバーを演算し、これを修正するように圧延機入側に配備したエッジャーロールの位置を調整するキャンバー制御技術が開示されている。
In the rolling process for metal sheets, rolling the rolled sheet without cambers, that is, without bending left and right, not only avoids poor planar shape and poor dimensional accuracy of the rolled material, but also avoids troubles such as meandering and squeezing. It is also important to do. In the present invention, in order to simplify the notation, the working side and the driving side of the rolling mill, which are the left and right when the rolling direction is the front, are referred to as left and right.
For such a problem, in Patent Document 1, a device for measuring the width direction position of the rolled material is provided on the entry side and the exit side of the rolling mill, and the camber of the rolled material is calculated from the measured value, and this is corrected. Thus, a camber control technique for adjusting the position of an edger roll disposed on the entrance side of the rolling mill is disclosed.

また、特許文献2には、圧延機入側および出側に配備されたエッジャーロールの荷重の左右差に基づいて、該圧延機のロール開度の左右差すなわち圧下レベリングを制御するキャンバー制御技術が開示されている。
また、特許文献3には、圧延荷重の左右差の実測値を分析して、ロール開度の左右差すなわち圧下レベリングを制御するか、またはサイドガイドの位置を制御するキャンバー制御技術が開示されている。
また、特許文献4には、入側のエッジャーロールとサイドガイド、そして出側サイドガイドで圧延材を拘束してキャンバー制御する方法が開示されている。
特開平4−305304号公報 特開平7−214131号公報 特開2001−105013号公報 特開平8−323411号公報
Further, Patent Document 2 discloses a camber control technique for controlling the left-right difference of the roll opening degree of the rolling mill, that is, the reduction leveling, based on the left-right difference between the loads of the edger rolls arranged on the entry side and the exit side of the rolling mill. Is disclosed.
Patent Document 3 discloses a camber control technique for analyzing an actually measured value of a left-right difference in rolling load and controlling a left-right difference in roll opening, that is, a leveling reduction, or a position of a side guide. Yes.
Further, Patent Document 4 discloses a method of controlling a camber by restraining a rolled material with an entrance edger roll, a side guide, and an exit side guide.
JP-A-4-305304 JP-A-7-214131 JP 2001-105013 A Japanese Patent Laid-Open No. 8-323411

しかしながら、上記の特許文献1に記載された、圧延材の幅方向位置測定によるキャンバー制御技術に関する発明では、既に発生したキャンバーを修正することが基本となっており、キャンバーの発生を未然に防止することは実質的に不可能である。
特許文献2記載の、圧延機入出側のエッジャーロール荷重左右差に基づくキャンバー制御技術に関する発明では、入側の圧延材に既にキャンバーが存在する場合、これが入側のエッジャーロール荷重差の外乱になって高い制御精度を得ることが困難になる。また、出側のエッジャーロールは圧延材先端がエッジャーロールに衝突することを避けるため圧延材先端通板時は退避しておく必要があり、圧延材先端からキャンバー制御を実施することも困難である。
However, in the invention relating to the camber control technique based on the measurement of the position in the width direction of the rolled material described in Patent Document 1 described above, it is fundamental to correct the camber that has already occurred, thus preventing the occurrence of camber. It is virtually impossible.
In the invention related to the camber control technology based on the left-right difference between the edger roll load on the entry / exit side of the rolling mill described in Patent Document 2, if the camber already exists in the rolled material on the entry side, this is a disturbance of the edger roll load difference on the entry side. Thus, it becomes difficult to obtain high control accuracy. Also, the exit edger roll needs to be retracted when the rolling material tip passes through to prevent the rolling material tip from colliding with the edger roll, and it is difficult to control the camber from the rolling material tip. It is.

また、特許文献3に記載の、圧延荷重左右差によるキャンバー制御に関する発明では、圧延材の入側板厚が板幅方向に不均一であったり、圧延材の温度分布が板幅方向に不均一な場合は、圧延荷重の左右差からキャンバーを推定する方法は極めて精度が悪くなり実用的ではない。
特許文献4に記載の、入側エッジャーロール、入側サイドガイドおよび出側サイドガイドによるキャンバー制御に関する発明では、出側サイドガイドが出側圧延材を完全に拘束することができれば出側キャンバーを零とすることが可能となるが、圧延操業を円滑に実施するには出側サイドガイドを圧延材板幅より広げておく必要があり、この余裕代の分だけ圧延材にキャンバーを生じることになる。
上記したような従来技術の問題は、結局、種々の原因によって発生するキャンバーを高精度かつ時間遅れなく測定、制御する方法がないことに起因していると言える。
Further, in the invention relating to the camber control by the rolling load left / right difference described in Patent Document 3, the thickness of the entrance side of the rolled material is not uniform in the sheet width direction, or the temperature distribution of the rolled material is not uniform in the sheet width direction. In this case, the method of estimating the camber from the difference between the rolling loads is extremely impractical and impractical.
In the invention relating to the camber control by the entry side edger roll, the entry side guide and the exit side guide described in Patent Document 4, if the exit side guide can completely restrain the exit side rolled material, the exit side camber is removed. Although it is possible to make it zero, it is necessary to make the exit side guide wider than the width of the rolled material plate in order to smoothly carry out the rolling operation, and camber is generated in the rolled material by this margin. Become.
It can be said that the problems of the prior art as described above are due to the fact that there is no method for measuring and controlling the camber generated due to various causes with high accuracy and without time delay.

上記技術の問題点を解決できる可能性のある技術として、作業ロールの作業側と駆動側のロールチョックに作用する圧延方向の力を測定して、作業側の圧延方向力と駆動側の圧延方向力との差異すなわち圧延方向力左右差を演算し、この圧延方向力左右差を小さくする方向に、当該圧延機のロール開度の左右非対称成分すなわち圧下レベリングを操作することで、キャンバーの発生を未然に防止する圧延方法が考えられる。   As a technology that can possibly solve the problems of the above-described technology, the rolling direction force on the working side and the rolling direction force on the driving side are measured by measuring the rolling direction force acting on the work side and driving side roll chock of the work roll. The difference between the rolling direction force and the left-right difference in the rolling direction is calculated, and in the direction to reduce the rolling direction force left-right difference, the left-right asymmetric component of the roll opening of the rolling mill, that is, the reduction leveling, is A rolling method for preventing the above is conceivable.

しかしながら、上記方法では、ロールの摩耗等が起因でロール径の左右差あるいは摩擦係数の左右差等が生じた場合、これによって圧延方向力左右差がシフトする可能性があるため、圧延方向力左右差を小さくする方向に圧下レベリングを操作してもキャンバーの発生を防止することができなくなるといった懸念があった。
そこで、本発明は、以上のキャンバー制御に関する従来技術の問題点を有利に解決して、圧延本数に依存せず定常的にキャンバーのない、あるいは極めてキャンバーの軽微な金属板材を安定して製造することのできる、金属板材の圧延方法および圧延装置を提供することを目的とするものである。
However, in the above method, if a roll diameter difference or a friction coefficient difference occurs due to roll wear or the like, this may cause a shift in the rolling direction force. There is a concern that the occurrence of camber cannot be prevented even if the reduction leveling is operated in the direction of reducing the difference.
Therefore, the present invention advantageously solves the above-mentioned problems of the prior art relating to camber control, and stably manufactures a light metal plate material having no camber or extremely camber regardless of the number of rollings. An object of the present invention is to provide a rolling method and a rolling apparatus for a metal sheet.

発明者らは、鋭意研究の末に、以下のような知見を得た。
一般に、圧延によってキャンバーを生ずる原因としては、ロールギャップ設定不良、圧延材の入側板厚左右差あるいは変形抵抗左右差等があげられるが、何れの原因の場合でも、最終的には、圧延によって生じる圧延方向の伸び歪に左右差を生じることで先進率および後進率が板幅方向に変化し、圧延材の出側速度および入側速度に左右差を生じキャンバーを生じることになる。このとき、例えば、圧延材先端部圧延時は、既に圧延が終了した出側の圧延材長さは短いので出側速度に左右差を生じることは比較的自由であるが、入側速度に左右差を生じるためには入側に存在する圧延材全体を水平面内で剛体回転させる必要がある。しかしながら先端部圧延時は一般に入側に長い未圧延材が残っているので、圧延材自身の重量とテーブルローラーとの摩擦によって、上記剛体回転に抗するモーメントが発生する。このモーメントは、圧延機の作業ロールに反力として伝わることになるので、作業ロールチョック部に作用する圧延方向力に左右差を生じることで最終的には支持されることになる。
The inventors have obtained the following findings after extensive research.
Generally, the cause of camber due to rolling includes poor roll gap setting, left-right difference in the thickness of the entry side of the rolled material, or left-right difference in deformation resistance, but in any case, the cause is ultimately caused by rolling. By causing a left-right difference in the elongation strain in the rolling direction, the advance rate and the reverse rate change in the sheet width direction, resulting in a left-right difference in the exit side speed and the entry side speed of the rolled material, resulting in camber. At this time, for example, at the time of rolling the front end portion of the rolled material, the length of the rolled material on the exit side, which has already been rolled, is short, so it is relatively free to produce a left-right difference in the exit side speed. In order to make a difference, it is necessary to rotate the entire rolled material existing on the entry side in a horizontal plane within a horizontal plane. However, since a long unrolled material is generally left on the entrance side during tip rolling, a moment against the rigid body rotation is generated by the friction between the weight of the rolled material itself and the table roller. Since this moment is transmitted as a reaction force to the work roll of the rolling mill, it is finally supported by causing a difference in the rolling direction acting on the work roll chock part.

上記のような先端部圧延時の主として入側圧延材から作用するモーメントは、作業ロールの作業側と駆動側のロールチョックに作用する圧延方向の力を測定して、作業側の圧延方向力と駆動側の圧延方向力との差異すなわち圧延方向力左右差を演算することで検知できる。このモーメントは、上記したようにキャンバー発生の原因となる伸び歪の左右差が生じたときにのみ発生し、しかも伸び歪差の発生とほぼ同時に該モーメントも発生するので、上記圧延方向力左右差を小さくする方向に、当該圧延機のロール開度の左右非対称成分すなわち圧下レベリングを操作することで、キャンバーの発生を未然に防止することが可能となる。   The moment acting mainly from the entry side rolling material at the time of tip rolling as described above is the measurement of the rolling direction force acting on the work side and driving side roll chock of the work roll, and the working side rolling direction force and drive. It can be detected by calculating the difference from the rolling direction force on the side, that is, the difference between the rolling direction force left and right. This moment is generated only when the left-right difference in elongation strain causing camber generation occurs as described above, and the moment also occurs almost simultaneously with the occurrence of the elongation strain difference. It is possible to prevent the occurrence of camber by manipulating the asymmetrical component of the roll opening degree of the rolling mill, that is, the rolling leveling, in the direction of decreasing the rolling angle.

上記の原理は、圧延材尾端部圧延時も同様であり、尾端部圧延時は、既に圧延が終了した出側の圧延材長さが長いので、伸び歪そして先進率の左右差を生じようとしたときに主として出側圧延材からこれに抗するモーメントが発生し、これが作業ロールに反力として伝達されるので、この場合も作業ロールチョックに作用する圧延方向力の左右差を測定・演算することで伸び歪の左右差の発生を検知することができ、該圧延方向力左右差を小さくする方向に当該圧延機のロール開度の左右非対称成分すなわち圧下レベリングを操作することで、尾端部におけるキャンバーの発生も未然に防止することが可能となる。   The above principle is the same when rolling the tail end of the rolled material. When the tail end is rolled, the length of the rolled material on the exit side, which has already been rolled, is long. When trying to do so, a moment to resist this is generated mainly from the rolled material on the exit side, and this is transmitted as a reaction force to the work roll. In this case as well, the left-right difference in the rolling direction force acting on the work roll chock is measured and calculated. It is possible to detect the occurrence of left-right difference in elongation strain by operating the asymmetrical component of the roll opening of the rolling mill, that is, the reduction leveling, in the direction to reduce the rolling direction force left-right difference. It is possible to prevent the occurrence of camber in the section.

以上のような原理に基づき、作業ロールの作業側と駆動側のロールチョックに作用する圧延方向の力を測定して、作業側の圧延方向力と駆動側の圧延方向力との差異すなわち圧延方向力左右差を演算し、この圧延方向力左右差を小さくする方向に、当該圧延機の圧下レベリングを操作する圧延方法が考えられる。
また、さらに研究を進めると、上記方法では、ロールの摩耗等が起因でロール径の左右差あるいは摩擦係数の左右差等が生じた場合、これによって圧延方向力左右差がシフトする可能性があるため、圧延方向力左右差を小さくする方向に圧下レベリングを操作してもキャンバーの発生を防止することができなくなるといった懸念があることがわかった。
Based on the principle as described above, the force in the rolling direction acting on the work side and the drive side roll chock of the work roll is measured, and the difference between the rolling direction force on the working side and the rolling direction force on the driving side, that is, the rolling direction force. A rolling method is conceivable in which the difference between left and right is calculated and the rolling leveling of the rolling mill is manipulated in a direction to reduce the rolling direction force left and right difference.
Further, when the research is further advanced, in the above method, if the roll diameter or the like causes a difference in the roll diameter or the friction coefficient, a difference in the rolling direction force may be shifted due to this. For this reason, it has been found that there is a concern that the occurrence of camber cannot be prevented even if the rolling leveling is operated in the direction of reducing the rolling direction force left-right difference.

上記したような従来技術の問題点を解決するための本発明の要旨は以下のとおりである。
(1)少なくとも作業ロールと補強ロールとを有する金属板材の圧延機を用いて行う金属板材の圧延方法において、該作業ロールの作業側と駆動側のロールチョックに作用する圧延方向の力を測定し、該圧延方向力の作業側と駆動側との差異(以下、圧延方向力の差異ともいう。)を演算し、この圧延方向力の差異が制御目標値になるように前記圧延機のロール開度の左右非対称成分を制御し、さらに被圧延材の作業側および駆動側の出側板厚を測定し、該板厚の作業側と駆動側との差異(以下、板厚ウェッジともいう。)を演算し、この差異に基づいて、前記圧延方向力の差異の制御目標値を学習することを特徴とする、金属板材の圧延方法。
(2)さらに、被圧延材の作業側と駆動側の入側板厚を測定し、被圧延材の出側板厚ウェッジの演算に代えて、被圧延材の作業側および駆動側の入側板厚および出側板厚の測定値より板厚ウェッジ比率変化を演算し、前記出側板厚ウェッジに代えて、前記板厚ウェッジ比率変化を用いることを特徴とする、前記(1)に記載の金属板材の圧延方法。
The gist of the present invention for solving the problems of the prior art as described above is as follows.
(1) In a method for rolling a metal plate material using a rolling machine for a metal plate material having at least a work roll and a reinforcing roll, the force in the rolling direction acting on the work chock and the drive side roll chock of the work roll is measured, The roll opening degree of the rolling mill is calculated so that the difference between the working side and the driving side of the rolling direction force (hereinafter also referred to as the difference in rolling direction force) is calculated and the difference in rolling direction force becomes the control target value. The left and right asymmetric components are controlled, and the exit side plate thicknesses of the work side and drive side of the material to be rolled are measured, and the difference between the plate side and the drive side (hereinafter also referred to as plate thickness wedge) is calculated. And based on this difference, the control target value of the difference of the said rolling direction force is learned, The rolling method of the metal plate material characterized by the above-mentioned.
(2) Further, the entry side plate thickness of the work side and the drive side of the material to be rolled is measured, and instead of the calculation of the exit side plate thickness wedge of the material to be rolled, the entry side plate thickness of the work side and the drive side of the material to be rolled and The plate thickness wedge ratio change is calculated from the measured value of the exit side plate thickness, and the plate thickness wedge ratio change is used in place of the exit side plate thickness wedge. Method.

(3)少なくとも作業ロールと補強ロールとを有する金属板材の圧延機を含む圧延装置において、前記作業ロールの作業側および駆動側のロールチョックに作用する圧延方向の力を測定する前記作業ロールチョックの圧延方向入側と出側の双方に備えた荷重検出装置と、該荷重検出装置による測定値に基づいて前記作業ロールチョックに作用する圧延方向力の差異を演算する演算装置と、前記圧延方向力の差異の演算値に基づいて前記圧延機のロール開度の左右非対称成分制御量を演算する演算装置と、前記ロール開度の左右非対称成分制御量の演算値に基づいて前記圧延機の前記ロール開度を制御する制御装置と、被圧延材の作業側と駆動側の出側板厚を測定する板厚測定装置と、該板厚測定装置による測定値に基づいて出側板厚ウェッジを演算する演算装置と、前記出側板厚ウェッジに基づいて該演算値に基づいて前記圧延方向力の差異の制御目標値を学習する演算装置を有することを特徴とする、金属板材の圧延装置。
(4)被圧延材の作業側と駆動側の入側板厚を測定する板厚測定装置を有し、被圧延材の作業側および駆動側の入側板厚および出側板厚の測定値に基づいて板厚ウェッジ比率変化を演算する演算装置を有し、該板厚ウェッジ比率変化の演算値に基づいて前記圧延方向力の差異の制御目標値を学習する演算装置を有することを特徴とする、前記(3)に記載の金属板材の圧延装置。
(3) The rolling direction of the work roll chock that measures the force in the rolling direction acting on the work side and drive side roll chocks of the work roll in a rolling apparatus including a rolling mill of a metal plate material having at least a work roll and a reinforcing roll. A load detecting device provided on both the entry side and the exit side, an arithmetic device for calculating a difference in rolling direction force acting on the work roll chock based on a measurement value by the load detecting device, and a difference in the rolling direction force An arithmetic device that calculates a left-right asymmetric component control amount of the roll opening degree of the rolling mill based on the calculated value, and a roll opening degree of the rolling mill based on the calculated value of the left-right asymmetric component control amount of the roll opening degree A control device for controlling, a plate thickness measuring device for measuring the outgoing side plate thickness on the work side and the drive side of the material to be rolled, and an outgoing side plate thickness wedge based on the measured value by the plate thickness measuring device An arithmetic unit for calculating, characterized in that it has an arithmetic unit for learning a control target value of the difference of said rolling direction force on the basis of the calculated value based on the delivery side thickness wedge rolling apparatus of the metal sheet.
(4) It has a plate thickness measuring device for measuring the entry side plate thickness on the work side and the drive side of the material to be rolled, and based on the measured values of the entry side plate thickness and the exit side plate thickness on the work side and drive side of the material to be rolled It has an arithmetic unit that calculates a thickness wedge ratio change, and has an arithmetic unit that learns a control target value of the difference in rolling direction force based on the calculated value of the thickness wedge ratio change, The rolling device for a metal sheet according to (3).

ここで、作業側と駆動側との板厚の差異、すなわち板厚ウェッジ、および板厚ウェッジ比率変化の定義について説明する。
作業側と駆動側との板厚の差異すなわち板厚ウェッジhdf defは、次式で表せる。

Figure 2006110627
ここで、hWS defが作業側の板厚、hDS defが駆動側の板厚である。
また、板厚ウェッジ比率変化ΔΨは、次式で表せる。
Figure 2006110627
ここで、Hdfが入側の板厚ウェッジ、hdf が出側の板厚ウェッジ、Hが入側の板厚、hが出側の板厚である。尚、入出側の板厚H、hは、作業側および駆動側の板厚の平均値として算出しても良い。
圧延方向力の差異は特に断らないかぎり、作業側と駆動側との差異とする。 Here, the difference in the plate thickness between the working side and the drive side, that is, the definition of the plate thickness wedge and the plate thickness wedge ratio change will be described.
The difference in plate thickness between the working side and the drive side, that is, the plate thickness wedge h df def can be expressed by the following equation.
Figure 2006110627
Here, h WS def is the plate thickness on the working side, and h DS def is the plate thickness on the drive side.
Further, the plate thickness wedge ratio change ΔΨ can be expressed by the following equation.
Figure 2006110627
Here, H df is the inlet side thickness wedge, h df is the outlet side thickness wedge, H is the inlet side thickness, and h is the outlet side thickness. The plate thicknesses H and h on the entry / exit side may be calculated as an average value of the plate thicknesses on the work side and the drive side.
Unless otherwise specified, the difference in rolling direction force is the difference between the working side and the driving side.

(1)に記載の本発明の金属板材の圧延方法では、上記のような問題を解消するために、作業ロールの作業側と駆動側のロールチョックに作用する圧延方向の力を測定し、該圧延方向力の作業側と駆動側との差異を演算し、この差異すなわち圧延方向力左右差に基づいて、圧下レベリング制御を実施する際に、圧延方向力左右差の制御目標値を設定し、この制御目標値になるように圧下レベリング制御を実施する。そして、この制御目標値は、通常零とするが、圧延後または圧延中の被圧延材の作業側と駆動側の出側板厚を測定し、該板厚の作業側と駆動側との差異を演算し、この差異すなわち板厚ウェッジに基づいて、該制御目標値を学習する圧延方法を提案している。
このように圧延後の板厚の差異に基づき、制御目標値を修正すなわち学習し、この学習した制御目標値を当該パス、次パスまたは次材の圧延に設定することで、ロールの摩耗等が起因で生じる圧延方向力左右差のずれを修正し、キャンバー発生の直接原因となる圧延による伸び歪の左右差の正確な検出・測定ができ、これを均一化するための圧下レベリング操作を実施することにより、実質的にキャンバー発生のない、あるいは極めてキャンバーの軽微な圧延が実現可能となる。
In the rolling method of the metal sheet material of the present invention described in (1), in order to solve the above-described problems, the force in the rolling direction acting on the work chock and the driving roll chock of the work roll is measured, and the rolling The difference between the working side and the driving side of the directional force is calculated, and when the rolling leveling control is performed based on this difference, that is, the rolling direction force left / right difference, a control target value of the rolling direction force left / right difference is set, The reduction leveling control is performed so that the control target value is reached. And this control target value is normally zero, but the working side and driving side thicknesses of the material to be rolled after rolling or during rolling are measured, and the difference between the working side and driving side of the plate thickness is measured. A rolling method is proposed that calculates and learns the control target value based on this difference, that is, the thickness wedge.
In this way, based on the difference in sheet thickness after rolling, the control target value is corrected, that is, learned, and the learned control target value is set to the pass, the next pass, or the rolling of the next material, so that the wear of the roll, etc. Corrects the deviation of the horizontal difference in rolling direction force caused by the cause, enables accurate detection and measurement of the horizontal difference in elongation strain due to rolling, which is the direct cause of camber generation, and implements a reduction leveling operation to make this uniform Accordingly, it is possible to realize substantially no camber generation or extremely light camber rolling.

(2)に記載の本発明の金属板材の圧延方法では、(1)記載の金属板材の圧延方法において、被圧延材の作業側および駆動側の入側板厚を測定し、被圧延材の出側板厚の作業側と駆動側との差異の演算に代えて、被圧延材の作業側および駆動側の入側板厚および出側板厚の測定値より板厚ウェッジ比率変化を演算し、出側板厚の作業側と駆動側との差異に代えて、この板厚ウェッジ比率変化に基づいて圧延方向力の作業側と駆動側との差異の制御目標値を学習する圧延方法を提案している。
この圧延方法では、(1)記載の方法に比べ、制御目標値の学習に圧延前後の作業側および駆動側の板厚の測定が必要となるが、入出側の板厚ウェッジの情報と入出側の板厚の情報が得られるので、当該圧延で発生する圧延方向力左右差と板厚ウェッジの板厚に対する比率の圧延前後の変化、すなわち、板厚ウェッジ比率変化との関係がわかるので、より高精度な制御目標値の学習を行うことができる。
In the rolling method of the metal sheet material of the present invention described in (2), in the rolling method of the metal sheet material described in (1), the work-side and driving-side sheet thicknesses of the material to be rolled are measured, and the material to be rolled out. Instead of calculating the difference between the working side and the driving side of the side plate thickness, the change in the thickness wedge ratio is calculated from the measured values of the inlet side thickness and the outgoing side plate thickness on the working side and driving side of the material to be rolled, and the outgoing side plate thickness Instead of the difference between the working side and the driving side, a rolling method has been proposed in which the control target value of the difference between the working side and the driving side of the rolling direction force is learned based on the change in the thickness wedge ratio.
Compared with the method described in (1), this rolling method requires measurement of the plate thickness on the working side and the drive side before and after rolling for learning the control target value. Since the information on the thickness of the sheet is obtained, the relationship between the rolling direction force left and right difference generated in the rolling and the ratio of the sheet thickness wedge to the sheet thickness before and after rolling, that is, the change in the sheet thickness wedge ratio, can be understood. A highly accurate control target value can be learned.

次に、(1)に記載の本発明の金属板材の圧延方法を実施するための圧延装置に関する本発明について説明する。
(3)に記載の本発明の金属板材の圧延装置では、以下の機能を有する。
1)作業ロールの作業側と駆動側のロールチョックの圧延方向入側と出側の双 方に荷重検出装置が備えられているので、入・出側双方の荷重測定値の方向性 を考慮して合力を演算することで、入・出側何れの方向に力が作用していても 作業側および駆動側それぞれのロールチョックに作用する圧延方向力を求める ことができる。
2)作業ロールチョックに作用する圧延方向力の作業側と駆動側の差異を演算 する演算装置を備えられているので、作業側ロールチョックに作用する圧延方 向力と駆動側ロールチョックに作用する圧延方向力の差異すなわち圧延方向力 左右差を演算することができる。
3)圧延方向力左右差を求めることによって、キャンバーの原因となる圧延方 向の伸び歪の左右差に起因して圧延材より作業ロールに作用するモーメントを 検出することができる。
4)被圧延材の作業側および駆動側の板厚測定装置が備えられているので 、被圧延材の作業側および駆動側の出側板厚板厚を測定することができ、 これらの測定値の差異を演算する演算装置を備えられているので、被圧延材の 板厚の作業側と駆動側との差異すなわち板厚ウェッジを求めることが できる。
5)圧延方向力左右差の制御目標値を学習する演算装置を備えられているので 、ロール摩耗等が起因で該作業ロールチョックに作用する圧延方向力の差異が シフトした場合においても、このシフトした量を被圧延材の板厚の作業側と駆 動側との差異すなわち板厚ウェッジに基づく学習で修正することできるの で、適切な制御目標値を演算することができる。
6)圧延方向力左右差および該制御目標値に基づいて伸び歪を左右均等化するための圧延機のロール開度の左右非対称成分制御量を演算する演算装置と、該ロール開度の左右非対称成分制御量の演算値に基づいて該圧延機のロール開度を制御する制御装置が配備されているので、圧延方向力左右差に基づくキャンバー制御が実施できる。
Next, the present invention relating to a rolling apparatus for carrying out the method for rolling a metal sheet according to the present invention described in (1) will be described.
The rolling device for a metal sheet according to the present invention described in (3) has the following functions.
1) Since load detection devices are provided on both the entry side and exit side of the rolling direction of the work chock on the work roll and the drive side of the work roll, the direction of the load measurement values on both the entry and exit sides is taken into consideration. By calculating the resultant force, it is possible to determine the rolling direction force acting on the work chock and the drive side roll chock regardless of which direction the force is acting on.
2) Since a calculation device is provided for calculating the difference between the working side and the driving side of the rolling direction force acting on the work roll chock, the rolling direction force acting on the working side roll chock and the rolling direction force acting on the driving side roll chock are provided. Difference, that is, the rolling direction force left-right difference can be calculated.
3) By determining the lateral difference in rolling direction force, the moment acting on the work roll from the rolled material due to the lateral difference in elongation strain in the rolling direction that causes camber can be detected.
4) Since the work side and drive side plate thickness measuring devices of the material to be rolled are provided, the work side and drive side exit plate thickness of the material to be rolled can be measured. Since the calculation device for calculating the difference is provided, the difference between the working side and the driving side of the thickness of the material to be rolled, that is, the thickness wedge can be obtained.
5) Since an arithmetic unit that learns the control target value of the rolling direction force left / right difference is provided, even when the difference in the rolling direction force acting on the work roll chock is shifted due to roll wear or the like, this shift occurs. Since the amount can be corrected by learning based on the difference between the working side and the driving side of the plate thickness of the material to be rolled, that is, the plate thickness wedge, an appropriate control target value can be calculated.
6) An arithmetic device for calculating a left-right asymmetric component control amount of the roll opening degree of the rolling mill for equalizing the elongation strain left and right based on the rolling direction force left-right difference and the control target value, and the left-right asymmetry of the roll opening degree Since a control device for controlling the roll opening degree of the rolling mill based on the calculated value of the component control amount is provided, camber control based on the rolling direction force left-right difference can be performed.

結局、以上の機能によって、(1)に記載の金属板材の圧延方法を実施することが可能となり、伸び歪の左右差の発生を未然に防ぎ、キャンバーのない、あるいは極めてキャンバーの軽微な金属板材を圧延することが可能となる。
また、(4)に記載の本発明の金属板材の圧延装置では、(3)に記載の本発明の金属板材の圧延装置において、被圧延材の作業側と駆動側の出側板厚を測定する板厚測定装置に代えて、被圧延材の作業側とおよび駆動側の入側板厚および出側板厚を測定する板厚測定装置と、被圧延材の出側板厚の板厚ウェッジを演算する演算装置に代えて、被圧延材の作業側と駆動側の入側板厚および出側板厚の測定値に基づいて板厚ウェッジ比率変化を演算する演算装置を備えているので板厚ウェッジ比率変化を求めることができ、被圧延材の板厚ウェッジの演算値に基づいて圧延方向力左右差の制御目標値を学習する演算装置に代えて、板厚ウェッジ比率変化の演算値に基づいて制御目標値を学習する演算装置が備えられているので、圧延方向力左右差の制御目標値を板厚ウェッジ比率変化に基づく学習で修正することできる。したがって、以上の機能によって、(2)に記載の金属板材の圧延方法を実施することが可能となり、より高精度な制御目標値の学習の実施、さらにより高精度なキャンバー制御の実施が可能となる。
以上のように、本発明の圧延方法および圧延装置を用いることによって、圧延本数に依存せず定常的にキャンバーのない、あるいは極めてキャンバーの軽微な金属板材を安定して製造することが可能となり、金属板材の圧延工程の生産性および歩留の大幅な向上が実現できる。
Eventually, the above function makes it possible to carry out the method for rolling a metal plate described in (1), preventing the occurrence of left-right difference in elongation strain, and having no camber or a very light camber with a camber. Can be rolled.
Moreover, in the rolling apparatus for the metal sheet material of the present invention described in (4), in the rolling apparatus for the metal sheet material of the present invention described in (3), the work-side and driving-side exit plate thicknesses of the material to be rolled are measured. In place of the plate thickness measuring device, a plate thickness measuring device for measuring the inlet side thickness and the outlet side plate thickness on the work side and drive side of the material to be rolled, and an operation for calculating the plate thickness wedge of the outlet side plate thickness of the material to be rolled Instead of the device, it is equipped with an arithmetic unit that calculates the thickness wedge ratio change based on the measured values of the entry side plate thickness and the exit side plate thickness on the work side and drive side of the material to be rolled. In place of the arithmetic device that learns the control target value of the rolling direction force left / right difference based on the calculated value of the thickness wedge of the material to be rolled, the control target value is set based on the calculated value of the thickness wedge ratio change. Because it is equipped with an arithmetic device to learn, rolling direction force left and right The control target value can be modified in learning based on thickness wedge ratio change of. Therefore, the metal plate material rolling method described in (2) can be performed by the above functions, and more accurate control target value can be learned, and more accurate camber control can be performed. Become.
As described above, by using the rolling method and rolling apparatus of the present invention, it becomes possible to stably produce a metal plate material having no camber or extremely light camber without depending on the number of rollings, The productivity and yield of the metal sheet rolling process can be greatly improved.

次に、図面を参照して、本発明の実施の形態をさらに具体的に説明する。
図1には、(1)に記載の本発明の圧延方法を実現する圧延装置または(3)に記載の本発明の圧延装置の好ましい実施の形態を示す。尚、図1は基本的に作業側の装置構成のみを図示しているが、駆動側にも同様の装置が存在する。圧延機の上作業ロール1に作用する圧延方向力は基本的には上作業ロールチョック5によって支持されるが、上作業ロールチョックには上作業ロールチョック出側荷重検出装置9と上作業ロール入側荷重検出装置10が配備されており、上作業ロールチョックを圧延方向に固定しているプロジェクトブロック(図示せず)等の部材と上作業ロールチョックの間に作用する力を測定することができる。これらの荷重検出装置は通常は圧縮力を測定する構造とするのが装置構成を簡単にするため好ましい。上作業ロール圧延方向力演算装置14では、上作業ロール出側荷重検出装置9と上作業ロール入側荷重検出装置10による測定結果の差異を計算することによって、上作業ロールチョック5に作用する圧延方向力を算出する。さらに下作業ロール2に作用する圧延方向力についても、下作業ロールチョック6の出側および入側に配備された下作業ロール出側荷重検出装置11および下作業ロール入側荷重検出装置12の測定値に基づき下作業ロール圧延方向力演算装置15によって、下作業ロールチョック6に作用する圧延方向力を演算する。次に下作業ロール圧延方向合力演算装置16において、上作業ロール圧延方向力演算装置14の演算結果と下作業ロール圧延方向力演算装置15の演算結果の和をとることによって、上下作業ロールに作用する圧延方向合力を算出する。上記のような手続きは作業側のみならず駆動側も全く同じ装置構成で演算を実施し、その結果が駆動側の作業ロール圧延方向合力17として得られる。そして作業側−駆動側圧延方向力差演算装置18によって作業側の演算結果と駆動側の演算結果との差異が計算され、これによって作業ロールチョックに作用する圧延方向力の作業側と駆動側の差異すなわち圧延方向力左右差が計算されることになる。
Next, embodiments of the present invention will be described more specifically with reference to the drawings.
FIG. 1 shows a preferred embodiment of a rolling apparatus for realizing the rolling method of the present invention described in (1) or the rolling apparatus of the present invention described in (3). FIG. 1 basically shows only the apparatus configuration on the work side, but there is a similar apparatus on the drive side. The rolling direction force acting on the upper work roll 1 of the rolling mill is basically supported by the upper work roll chock 5, but the upper work roll chock includes an upper work roll chock outlet load detection device 9 and an upper work roll inlet load detection. The apparatus 10 is provided, and the force acting between a member such as a project block (not shown) that fixes the upper work roll chock in the rolling direction and the upper work roll chock can be measured. These load detection devices are usually preferably configured to measure compressive force in order to simplify the device configuration. In the upper work roll rolling direction force calculation device 14, the difference between the measurement results obtained by the upper work roll exit side load detection device 9 and the upper work roll entry side load detection device 10 is calculated, thereby rolling direction acting on the upper work roll chock 5. Calculate the force. Further, the rolling direction force acting on the lower work roll 2 is also measured by the lower work roll outlet load detecting device 11 and the lower work roll inlet load detecting device 12 provided on the outlet side and the inlet side of the lower work roll chock 6. Based on the above, the lower work roll rolling direction force calculation device 15 calculates the rolling direction force acting on the lower work roll chock 6. Next, in the lower work roll rolling direction resultant force calculation device 16, the sum of the calculation result of the upper work roll rolling direction force calculation device 14 and the calculation result of the lower work roll rolling direction force calculation device 15 acts on the upper and lower work rolls. The resultant rolling direction force is calculated. The above procedure is performed not only on the work side but also on the drive side with the same apparatus configuration, and the result is obtained as a work roll rolling direction resultant force 17 on the drive side. Then, the difference between the calculation result on the work side and the calculation result on the drive side is calculated by the work side-drive side rolling direction force difference calculation device 18, and thereby the difference between the work side and the drive side in the rolling direction force acting on the work roll chock. That is, the rolling direction force left-right difference is calculated.

次に、制御目標値演算装置24においては、圧延方向力左右差の制御目標値が演算されるが、この演算方法について説明する。 通常、圧延方向力左右差の制御目標値は零であり、圧延方向力左右差がこの制御目標値になるように圧延機のロール開度の左右非対称成分を制御することで、キャンバー発生を防止することができる。しかしながら、ロールの摩耗等が起因でロール径の左右差あるいは摩擦係数の左右差等が生じた場合、これによって圧延方向力左右差がシフトする可能性があり、この場合、制御目標値は零でなく、適切な値に変更する必要がある。
一般に、板厚ウェッジ比率変化ΔΨとキャンバー曲率変化Δκは、一対一に対応する量であり、例えば、昭和55年度塑性加工春季講演大会(1980) に発表されている論文pp。61〜64「ホットストリップ圧延における蛇行制御方法の研究(第1報)」(中島、菊間、松本、梶尾、木村、田川著)に記載されているように次式で表せる。

Figure 2006110627
ここで、λは延伸、bは板幅、αは圧延材の入出側の拘束条件によって決まる定数である。 Next, in the control target value calculation device 24, the control target value of the rolling direction force left-right difference is calculated. This calculation method will be described. Normally, the control target value of the rolling direction force left-right difference is zero, and camber generation is prevented by controlling the left-right asymmetric component of the roll opening of the rolling mill so that the rolling direction force left-right difference becomes this control target value. can do. However, if there is a left / right difference in roll diameter or a left / right difference in friction coefficient due to roll wear or the like, this may cause a shift in the rolling direction force left / right difference. In this case, the control target value is zero. It is necessary to change to an appropriate value.
In general, the plate thickness wedge ratio change ΔΨ and the camber curvature change Δκ are in a one-to-one correspondence, for example, a paper pp published in the Showa 55 Plastic Working Spring Conference (1980). 61-64 "Study on meandering control method in hot strip rolling (1st report)" (by Nakajima, Kikuma, Matsumoto, Kashio, Kimura, Tagawa) can be expressed by the following equation.
Figure 2006110627
Here, λ is a stretching, b is a sheet width, and α is a constant determined by a constraint condition on the entry / exit side of the rolled material.

以上のように、板厚ウェッジ比率変化は、キャンバー曲率変化Δκと一対一に対応する量であるので、入側の材料の板厚ウェッジおよびキャンバーの影響が無視できる場合、当該圧延時に発生するキャンバーを制御することは、板厚ウェッジを制御することとほぼ等価であると考えて良い。つまり、キャンバー計を有していない設備でも、板厚の作業側と駆動側の差異、すなわち板厚ウェッジが測定できれば、キャンバーを測定したのと等価であるので、圧延方向力左右差の制御目標値の学習をすることができる。   As described above, the plate thickness wedge ratio change is an amount corresponding to the camber curvature change Δκ on a one-to-one basis. Therefore, when the influence of the plate thickness wedge and the camber on the entry side material can be ignored, the camber generated during the rolling It can be considered that controlling is substantially equivalent to controlling the thickness wedge. In other words, even if the equipment does not have a camber meter, if the difference between the working side and the driving side of the plate thickness, that is, the plate thickness wedge, can be measured, it is equivalent to measuring the camber. The value can be learned.

図4は、圧延方向力左右差と板厚ウェッジの関係を示した図である。
図4に示すように圧延方向力左右差と板厚ウェッジの関係直線Aは、ロールの摩耗等が起因で関係直線Bのようにシフトした場合、板厚ウェッジすなわちキャンバー曲率を零にするためには、制御目標値A'(最初は0)を制御目標値B'に変更する必要がある。また、このような圧延方向力左右差と板厚ウェッジの関係直線のシフトおよび制御目標値の変更は、圧延中または圧延後の板厚ウェッジを測定することで容易に判断することができる。
FIG. 4 is a diagram showing the relationship between the rolling direction force left-right difference and the plate thickness wedge.
As shown in FIG. 4, when the relationship straight line A between the rolling direction force left / right difference and the thickness wedge is shifted as the relationship straight line B due to roll wear or the like, the thickness wedge, that is, the camber curvature is made zero. Needs to change the control target value A ′ (initially 0) to the control target value B ′. Further, the shift of the relationship line between the rolling direction force left / right difference and the plate thickness wedge and the change of the control target value can be easily determined by measuring the plate thickness wedge during or after rolling.

したがって、図4に示すように制御目標値A'になるように制御を実施した結果、板厚ウェッジが零ではなく、板厚ウェッジの実績値Cであったとするならば、圧延方向力左右差と板厚ウェッジの関係は、直線Bのようにシフトしていると考えられるので、当該パス、次パスまたは次材の圧延で制御目標値をB'に変更すれば良い。また、このロール摩耗起因の圧延方向力左右差のずれは、圧延本数が増加するに従って変化していく可能性があるので、制御目標値も常に学習し変更していく必要がある。尚、図中のδA、δBは、圧延方向力左右差と板厚ウェッジの関係直線A、Bの傾きであり、圧延機の寸法、圧延条件および圧延材の変形抵抗等によって決まる定数である。ロール摩耗起因等でこれらの傾きが変化するような場合は、予備実験等によって予め同定しておく必要がある。ただし、圧延条件および圧延材質によって変化することはあるものの条件を揃えば、一次近似的にδA、δB はほぼ等しくδA=δB(=δ)としても良い。しかし、圧延条件によって経時的に変化することがあるので、定期的にδA、δBの値を測定しても良い。 Therefore, as a result of performing the control so as to become the control target value A ′ as shown in FIG. 4, if the sheet thickness wedge is not zero but is the actual value C of the sheet thickness wedge, the rolling direction force left-right difference And the plate thickness wedge are considered to be shifted like a straight line B, and the control target value may be changed to B ′ by rolling the pass, the next pass, or the next material. Further, since the deviation in the rolling direction force difference due to roll wear may change as the number of rolling rolls increases, it is necessary to always learn and change the control target value. In the figure, δ A and δ B are inclinations of the relational lines A and B between the rolling direction force left-right difference and the sheet thickness wedge, and are constants determined by the dimensions of the rolling mill, rolling conditions, deformation resistance of the rolled material, and the like. is there. When these inclinations change due to roll wear or the like, it is necessary to identify them in advance by a preliminary experiment or the like. However, δ A and δ B may be approximately equal to δ A = δ B (= δ) in a first order approximation if the conditions may be changed depending on rolling conditions and rolling material. However, since it may change over time depending on rolling conditions, the values of δ A and δ B may be measured periodically.

そこで本発明では、次のような方法によって、圧延方向力左右差の制御目標値の学習を行う。図1に示すように、圧延機の後面には板厚測定装置23が備えられていて、圧延中または圧延後の被圧延材の作業側および駆動側の出側板厚が測定され、これらの測定値に基づいて該板厚の作業側と駆動側の差異すなわち板厚ウェッジを作業側−駆動側板厚差演算装置25によって演算し、この板厚ウェッジは、制御目標値演算装置24に送られる。この時、出側板厚を作業側および駆動側で測定された板厚の平均値を求め、板厚ウェッジを板厚で割った板厚ウェッジ比率の値で、制御目標値演算装置24に送っても良い。制御目標値演算装置24では、該板厚の作業側と駆動側の差異すなわち板厚ウェッジまたは板厚ウェッジ比率に基づき、当該パス、次パスまたは次材の圧延での制御目標値が演算される。この制御目標値は、圧延本数が増加するに従って学習し変更していく必要があるので、例えば、下記式(4)を用いてパス毎または圧延材本数毎に学習すれば良い。

Figure 2006110627
ただし、C(n)はnパス目または圧延材n本目の制御目標値、 Cr (n)はnパス目または圧延材n本目の板厚ウェッジの実績値に基づき修正された制御目標値、γは学習ゲイン(0〜1.0)である。 Therefore, in the present invention, the control target value of the rolling direction force left-right difference is learned by the following method. As shown in FIG. 1, a plate thickness measuring device 23 is provided on the rear surface of the rolling mill, and the working side and driving side outgoing plate thicknesses of the material to be rolled during or after rolling are measured, and these measurements are made. Based on the value, the difference between the work side and the drive side of the plate thickness, that is, the plate thickness wedge is calculated by the work side-drive side plate thickness difference calculating device 25, and this plate thickness wedge is sent to the control target value calculating device 24. At this time, the average value of the plate thickness measured on the working side and the drive side is obtained as the delivery side plate thickness, and the value of the plate thickness wedge ratio obtained by dividing the plate thickness wedge by the plate thickness is sent to the control target value calculation device 24. Also good. In the control target value calculation device 24, the control target value in the rolling of the pass, the next pass or the next material is calculated based on the difference between the work thickness and the drive side of the plate thickness, that is, the plate thickness wedge or the plate thickness wedge ratio. . Since this control target value needs to be learned and changed as the number of rolled sheets increases, for example, the control target value may be learned for each pass or number of rolled materials using the following equation (4).
Figure 2006110627
However, C (n) is the control target value for the nth pass or the nth rolled material, and Cr (n) is the control target value corrected based on the actual value of the thickness wedge of the nth pass or the nth rolled material, γ is a learning gain (0 to 1.0).

以上のように演算した該制御目標値と該圧延方向力の作業側と駆動側の差異の演算結果に基づいて、圧下レベリング制御量演算装置19において、キャンバーを防止するための圧延機のロール開度の左右非対称成分制御量を演算する。尚、圧延初回の板厚ウェッジが実測されていない段階では、制御目標値は、例えばキスロール締め込み時に発生している圧延方向力左右差の値または零を設定すれば良い。また、ここでは前記圧延方向力の左右差および式(4)より求めた制御目標値に対して、例えば、比例(P)ゲイン、積分(I)ゲイン、微分(D)ゲインを考慮したPID演算によってロール開度の左右非対称成分制御量を演算する。そしてこの制御量演算結果に基づいて、圧下レベリング制御装置20によって圧延機のロール開度の左右非対称成分を制御することでキャンバー発生のない、あるいは極めてキャンバーの軽微な圧延が実現できる。尚、当該パスにおいて、制御目標値を変更する場合は、作業側と駆動側の板厚の差異すなわち板厚ウェッジが実測された段階で圧延中にダイナミックに制御目標値を変更すれば良い。   On the basis of the control target value calculated as described above and the calculation result of the difference between the working side and the driving side of the rolling direction force, the rolling-down leveling control amount calculation device 19 opens the roll of the rolling mill for preventing camber. A right / left asymmetric component control amount is calculated. In the stage where the thickness wedge at the first rolling is not actually measured, for example, the control target value may be set to the value of the left-right difference in rolling direction force generated when tightening the kiss roll or zero. In addition, here, for example, a PID calculation in consideration of a proportional (P) gain, an integral (I) gain, and a differential (D) gain with respect to the left-right difference of the rolling direction force and the control target value obtained from the equation (4). Is used to calculate the left-right asymmetric component control amount of the roll opening. Based on the control amount calculation result, the rolling leveling control device 20 controls the left-right asymmetric component of the roll opening degree of the rolling mill, so that camber generation or extremely light camber rolling can be realized. In the pass, when the control target value is changed, the control target value may be dynamically changed during rolling at the stage where the difference in plate thickness between the working side and the drive side, that is, the plate thickness wedge is actually measured.

図2には、(2)に記載の本発明の圧延方法に関する圧延装置または(4)に記載の本発明の圧延装置の好ましい実施の形態を示す。図2の実施形態では、図1の実施形態に比べて、圧延機の前面に板厚測定装置26が備えられ、作業側−駆動側板厚差演算装置25に代えて板厚ウェッジ比率変化演算装置27が備えられていて、(2)に記載の本発明の圧延方法が実施できる。
(2)に記載の本発明の圧延方法では、以下のようにして、圧延方向力左右差の制御目標値の学習を行う。図2に示す後面の板厚測定装置23、前面の板厚測定装置26より、圧延中または圧延後の被圧延材の作業側および駆動側の入側板厚および出側板厚が測定される。これらの測定値に基づいて、板厚ウェッジ比率変化を板厚ウェッジ比率変化演算装置27によって演算し、この板厚ウェッジ比率変化は、制御目標値演算装置24に送られる。この時、板厚ウェッジ比率変化の演算は、入出側それぞれの板厚を作業側および駆動側で測定された板厚の平均値を求め、板厚ウェッジを板厚で割った板厚ウェッジ比率を求め、出側板厚ウェッジ比率から入側板厚ウェッジ比率を引くことで板厚ウェッジ比率変化を演算することができる。また、板厚ウェッジ比率変化の代わりに、出側板厚ウェッジから入側板厚ウェッジを引いた板厚ウェッジ変化を用いても良い。制御目標値演算装置24では、板厚ウェッジ比率変化に基づき、当該パス、次パスまたは次材の圧延での制御目標値が演算される。この制御目標値は、圧延本数が増加するに従って学習し変更していく必要があるので、上述した(1)に記載の本発明の圧延方法と同様に、式(4)を用いてパス毎または圧延材本数毎に学習すれば良い。尚、この方法の場合、図4に示した圧延方向力左右差と板厚ウェッジとの関係は、図5に示すような圧延方向力左右差と板厚ウェッジ比率変化との関係に置き換えて、圧延方向力左右差と板厚ウェッジ比率変化との関係直線D、Eの傾きを表す定数ζD、ζEの値を、上述した(1)に記載の本発明の圧延方法と同様に、定期的に測定し学習に用いれば良い。
FIG. 2 shows a preferred embodiment of the rolling device relating to the rolling method of the present invention described in (2) or the rolling device of the present invention described in (4). In the embodiment of FIG. 2, compared with the embodiment of FIG. 1, a plate thickness measuring device 26 is provided on the front surface of the rolling mill, and a plate thickness wedge ratio change calculating device is used instead of the work side-drive side plate thickness difference calculating device 25. 27 is provided, and the rolling method of the present invention described in (2) can be carried out.
In the rolling method of the present invention described in (2), the control target value of the rolling direction force left-right difference is learned as follows. 2 is used to measure the entry side thickness and the exit side thickness of the work side and the drive side of the material to be rolled during or after rolling, from the thickness measurement device 23 on the rear surface and the thickness measurement device 26 on the front surface. Based on these measured values, the plate thickness wedge ratio change is calculated by the plate thickness wedge ratio change calculating device 27, and this plate thickness wedge ratio change is sent to the control target value calculating device 24. At this time, the calculation of the plate thickness wedge ratio is calculated by calculating the average value of the plate thickness measured on the work side and the drive side for each plate thickness on the input and output sides, and calculating the plate thickness wedge ratio obtained by dividing the plate thickness wedge by the plate thickness. The plate thickness wedge ratio change can be calculated by subtracting the entry side plate thickness wedge ratio from the exit side plate thickness wedge ratio. Further, instead of the plate thickness wedge ratio change, a plate thickness wedge change obtained by subtracting the entry side plate thickness wedge from the output side plate thickness wedge may be used. In the control target value calculation device 24, the control target value in the rolling of the pass, the next pass or the next material is calculated based on the change in the thickness wedge ratio. Since this control target value needs to be learned and changed as the number of rolling rolls increases, as in the rolling method of the present invention described in (1) above, each control or What is necessary is to learn for every rolling material number. In the case of this method, the relationship between the rolling direction force left-right difference and the plate thickness wedge shown in FIG. 4 is replaced with the relationship between the rolling direction force left-right difference and the plate thickness wedge ratio change as shown in FIG. Relationship between the rolling direction force left-right difference and the plate thickness wedge ratio change The values of the constants ζ D and ζ E representing the slopes of the straight lines D and E are determined in the same manner as in the rolling method of the present invention described in (1) above. Measured and used for learning.

以上のように、(2)に記載の本発明の圧延方法では、圧延前後の作業側と駆動側の板厚の測定することで、(1)に記載の本発明の圧延方法に比べ入側の板厚ウェッジの情報と入出側の板厚の情報が得られ、当該圧延で発生する圧延方向力左右差と板厚ウェッジ比率変化との関係がわかるので、より高精度な制御目標値の学習が実施可能となり、学習した制御目標値を当該パス、次パスまたは次材の圧延に設定することで、圧延方向力左右差のずれを修正できるので、圧延方向力の左右差に基づくより精度の高いキャンバー制御を実現することができる。
図3には、(2)に記載の本発明の圧延方法に関する圧延装置または(4)に記載の本発明の圧延装置の他の好ましい実施の形態を示す。図3の実施形態では、図2の実施形態に比べて、前面(逆転パス時は後面)の板厚測定装置、下作業ロールチョックに作用する圧延方向力の検出装置および演算装置を省略している。一般に伸び歪の左右差に起因して圧延材から作業ロールに作用するモーメントは、必ずしも上下作業ロールに均等に作用するとは限らないが、その時系列変化挙動については、上下作業ロールで傾向が逆転することはないが、圧延方向力左右差の零点がシフトする可能性がある。
As described above, in the rolling method of the present invention described in (2), by measuring the plate thicknesses on the working side and the drive side before and after rolling, the inlet side is compared with the rolling method of the present invention described in (1). Information on the thickness of the plate and information on the thickness on the entry / exit side can be obtained, and the relationship between the difference in the rolling direction force generated by the rolling and the change in the plate thickness wedge ratio can be understood. By setting the learned control target value for the relevant pass, the next pass or the rolling of the next material, it is possible to correct the deviation in the rolling direction force left-right difference. High camber control can be realized.
FIG. 3 shows another preferred embodiment of a rolling device relating to the rolling method of the present invention described in (2) or the rolling device of the present invention described in (4). In the embodiment of FIG. 3, compared with the embodiment of FIG. 2, a plate thickness measuring device on the front surface (rear surface during reverse pass), a rolling direction force detecting device acting on the lower work roll chock, and a computing device are omitted. . In general, the moment acting on the work roll from the rolled material due to the left-right difference in elongation strain does not necessarily act equally on the upper and lower work rolls, but the time series change behavior is reversed in the upper and lower work rolls. However, there is a possibility that the zero point of the difference in the rolling direction force is shifted.

このように圧延機に前後面のどちらか一方の板厚測定装置がない設備に、(2)に記載の本発明の圧延方法を適用する場合、入出側双方の板厚が測定できないので、図6に示すように正転パス時を圧延を実施しないダミーパスとし、逆転パス時に圧延を行えば、前後面のどちらか一方にしか板厚測定装置を備えていない図3に示す圧延装置においても、入出側の板厚の測定が可能となるため、(2)に記載の本発明の圧延方法を適用することができる。この場合も圧延中または圧延後の被圧延材の作業側と駆動側の板厚を測定し、板厚ウェッジ比率変化を求め、これに基づき、学習した制御目標値を当該パス、次パスまたは次材の圧延に設定することで、圧延方向力左右差のずれを修正できるので、上下どちらか一方の作業ロールに作用する圧延方向力の左右差に基づく良好なキャンバー制御を実現することができる。   Thus, when the rolling method of the present invention described in (2) is applied to equipment in which the rolling mill does not have any one of the front and rear surface thickness measuring devices, the thickness on both the input and output sides cannot be measured. When the forward pass is a dummy pass that does not perform rolling as shown in FIG. 6 and rolling is performed during the reverse pass, even in the rolling device shown in FIG. 3 that has a plate thickness measuring device on only one of the front and rear surfaces, Since it is possible to measure the plate thickness on the entry / exit side, the rolling method of the present invention described in (2) can be applied. In this case as well, the plate thickness on the working side and the drive side of the material to be rolled during or after rolling is measured, and the change in the plate thickness wedge ratio is obtained. By setting the rolling of the material, it is possible to correct the deviation in the rolling direction force left-right difference, so that it is possible to realize good camber control based on the left-right difference in the rolling direction force acting on one of the upper and lower work rolls.

また、作業ロールおよび補強ロールをペアで上下にクロスさせる圧延、いわゆるペアクロス圧延の場合、上下ワークロールのオフセットによって作業側および駆動側でそれぞれ逆方向に上下ワークロールを引き裂く力(ここでは“股裂き力”と呼ぶことにする)が作用しキャンバーの発生起因以外の圧延方向力左右差が発生する。このようなペアクロス圧延に本発明の圧延方法を適用する場合で、上下どちらか一方の圧延方向力左右差が検出できない場合は、ペアクロス圧延時の股裂き力による圧延方向力左右差を演算し、これに基づき制御目標値を設定する必要がある。尚、この股裂き力は、ペアクロス圧延時の上下作業ロールの幾何学的関係から算出可能であるので、圧延荷重、クロス角、上下の作業ロール径、板厚、幅、圧延方向力測定装置の間隔等から関係式を求め演算すれば良い。また、上下双方の圧延方向力左右差が測定できる場合は、上下の圧延方向力左右差を加算することで、ペアクロス圧延時の股裂き力の影響を上下でキャンセルできるので、前述の股裂き力の演算は必要ない。   Also, in the case of so-called pair-cross rolling, in which work rolls and reinforcing rolls are crossed up and down, a force that tears the upper and lower work rolls in the opposite directions on the work side and drive side due to the offset of the upper and lower work rolls (here, “crotch tear”) A force difference between the rolling direction forces other than the occurrence of the camber is generated. In the case where the rolling method of the present invention is applied to such pair-cross rolling, when either the upper or lower rolling direction force left-right difference cannot be detected, the rolling direction force left-right difference due to crotch tearing force during pair-cross rolling is calculated, Based on this, it is necessary to set the control target value. Since the crotch tearing force can be calculated from the geometric relationship of the upper and lower work rolls during pair cross rolling, the rolling load, the cross angle, the upper and lower work roll diameters, the plate thickness, the width, and the rolling direction force measuring device What is necessary is just to calculate and obtain a relational expression from the interval or the like. In addition, when the difference between the upper and lower rolling direction forces can be measured by adding the upper and lower rolling direction force left and right, the effect of the crotch tearing force during pair cross rolling can be canceled up and down. This operation is not necessary.

ただし、上述のペアクロス圧延の影響において、圧延方向力の測定が上下どちらか一方の場合、股裂き力の演算における誤差が原因で、また、上下双方の測定の場合、股裂き力の大きさの上下不均等が原因で、圧延方向力左右差のずれが生じる可能性も考えられるが、本発明の圧延方法では、圧延中または圧延後の被圧延材の作業側と駆動側の板厚を測定し、板厚ウェッジまたは板厚ウェッジ比率変化を求め、これに基づき、学習した制御目標値を当該パス、次パスまたは次材の圧延に設定することで、圧延方向力左右差のずれを修正できるので、ペアクロス圧延時においても圧延方向力の左右差に基づく良好なキャンバー制御を実現することができる、   However, due to the above-mentioned effect of pair cross rolling, if the measurement of the rolling direction force is either up or down, due to an error in the calculation of the crotch tearing force, Although there is a possibility that the difference in rolling direction force between the left and right is caused by unevenness in the vertical direction, the rolling method of the present invention measures the thickness of the work side and the drive side of the material to be rolled during or after rolling. The difference in rolling direction force left and right can be corrected by determining the thickness wedge or the thickness wedge ratio change and setting the learned control target value for the pass, the next pass, or the rolling of the next material based on this. Therefore, it is possible to achieve good camber control based on the left-right difference in rolling direction force even during pair cross rolling.

図1に示した圧延機を用いて、本発明の(1)に記載の板圧延方法を適用した場合の実施例について説明する。圧延機後面の板厚測定装置23の出力から板厚ウェッジを演算し、これに基づく圧延方向力左右差の制御目標値の学習を、学習ゲインγを0.3、初期の制御目標値を零として実施した。尚、圧延方向力左右差と板厚ウェッジの関係直線の傾きを示す定数δは、圧延条件および圧延材材質毎に−20〜−200tonf/mmの範囲の値を設定した。     The example at the time of applying the plate rolling method as described in (1) of this invention using the rolling mill shown in FIG. 1 is demonstrated. A sheet thickness wedge is calculated from the output of the sheet thickness measuring device 23 on the rear surface of the rolling mill, and learning of the control target value of the rolling direction force left-right difference based on this is calculated. The learning gain γ is 0.3 and the initial control target value is zero. As implemented. The constant δ, which indicates the slope of the relationship line between the rolling direction force left-right difference and the sheet thickness wedge, was set to a value in the range of −20 to −200 ton / mm for each rolling condition and rolled material.

表1には、本実施例における代表の圧延本数に対する圧延方向力左右差の制御目標値およびキャンバーの実測値を示す。また、表1には比較例として、圧延方向力左右差の学習を行わない場合の制御目標値およびキャンバーの実測値も一緒に示す。表1に示す通り、1mあたりのキャンバー実測値は、本実施例の場合、いずれの代表圧延本数においても、0.25mm/m以下と比較的小さな値に抑えられていることがわかる。また、圧延本数が増えるに従って、圧延方向力左右差の制御目標値は、作業側と駆動側の板厚測定値に基づく学習によって変化していくことがわかる。このような制御目標値の変化は、補強ロール、作業ロールの摩耗等によるものと考えられ、本発明の板圧延方法のように制御目標値の学習を行っていない表1の比較例の方法では、これらの誤差要因を含め制御を実施してしまうため、本発明の方法に比べキャンバーは大きくなることがわかる。   Table 1 shows the control target value of the rolling direction force left-right difference and the actual measured value of the camber with respect to the representative number of rollings in this example. Table 1 also shows a control target value and a measured value of the camber when learning of the rolling direction force left / right difference is not performed as a comparative example. As shown in Table 1, it can be seen that the actual camber value per meter is suppressed to a relatively small value of 0.25 mm / m or less in any representative rolling number in this example. It can also be seen that as the number of rolling increases, the control target value of the rolling direction force left-right difference changes by learning based on the measured thickness values on the working side and the driving side. Such a change in the control target value is considered to be due to wear of the reinforcing roll and work roll, and in the comparative example method of Table 1 in which the control target value is not learned as in the plate rolling method of the present invention. Since the control including these error factors is performed, it can be seen that the camber becomes larger than the method of the present invention.

以上のように、本発明の板圧延方法のように圧延後の板厚ウェッジの実績値に基づき、制御目標値を学習し、この学習した制御目標値を次パスの圧延に設定することで、圧延方向力左右差のずれを修正し、キャンバー発生の直接原因となる圧延による伸び歪の左右差の正確な検出・測定ができ、これを均一化するための圧下レベリング操作を実施することにより、圧延本数に依存せず定常的に極めてキャンバーの軽微な圧延が実現可能となることが確認できた。

Figure 2006110627
As described above, based on the actual value of the thickness wedge after rolling as in the plate rolling method of the present invention, learning the control target value, and setting the learned control target value to the next pass rolling, By correcting the difference in rolling direction force left-right difference, it is possible to accurately detect and measure the left-right difference in elongation strain due to rolling, which is the direct cause of camber generation, and by carrying out a rolling leveling operation to make this uniform, It was confirmed that it was possible to realize extremely light rolling of the camber constantly without depending on the number of rolling.
Figure 2006110627

図2に示した圧延機を用いて、本発明の(2)に記載の板圧延方法を適用した場合の実施例について説明する。圧延機の後面の板厚測定装置23および前面の板厚測定装置26の出力から板厚ウェッジ比率変化を演算し、これに基づく圧延方向力左右差の制御目標値の学習を、学習ゲインγを0.3、初期の制御目標値を零として実施した。尚、圧延方向力左右差と板厚ウェッジ比率変化の関係直線の傾きを示す定数ζは、圧延条件および圧延材材質毎に−500〜−5000tonfの範囲の値を設定した。   The Example at the time of applying the plate rolling method as described in (2) of this invention using the rolling mill shown in FIG. 2 is demonstrated. The thickness wedge ratio change is calculated from the outputs of the sheet thickness measuring device 23 on the rear surface of the rolling mill and the plate thickness measuring device 26 on the front surface, and learning of the control target value of the rolling direction force left and right based on this is calculated. The initial control target value was set to zero at 0.3. The constant ζ indicating the slope of the relationship line between the rolling direction force left-right difference and the plate thickness wedge ratio change was set to a value in the range of −500 to −5000 tonf for each rolling condition and rolled material.

表2には、本実施例における代表の圧延本数に対する圧延方向力左右差の制御目標値およびキャンバーの実測値を示す。また、表2には比較例として、圧延方向力左右差の学習を行わない場合の制御目標値およびキャンバーの実測値も一緒に示す。表2に示す通り、1mあたりのキャンバー実測値は、いずれの代表圧延本数においても比較例より小さく、さらに0.15mm/m以下と実施例1に比べ小さな値に抑えられていることがわかる。   Table 2 shows the control target value of the rolling direction force left-right difference and the actual measured value of the camber with respect to the representative number of rollings in this example. Table 2 also shows a control target value and a measured value of the camber when learning of the rolling direction force left / right difference is not performed as a comparative example. As shown in Table 2, it can be seen that the actual measured value of camber per 1 m is smaller than that of the comparative example in all the representative rolling numbers, and is further suppressed to 0.15 mm / m or less and smaller than that of Example 1.

以上のように実施例2では、入出側双方の板厚ウェッジの情報が得られるので、圧延方向力左右差と板厚ウェッジ比率変化との正確な関係がわかり、より高精度な制御目標値の学習が実施可能となり、学習した制御目標値を当該パス、次パスまたは次材の圧延に設定することで、圧延方向力左右差のずれを修正できるので、圧延方向力の左右差に基づくより高精度なキャンバー制御を実現できることが確認された。

Figure 2006110627
As described above, in Example 2, since the information on the thickness wedges on both the input and output sides can be obtained, the exact relationship between the rolling direction force left-right difference and the thickness wedge ratio change can be understood, and a more accurate control target value can be obtained. Since learning can be performed and the learned control target value is set to the rolling of the relevant pass, the next pass or the next material, the deviation in the rolling direction force can be corrected. It was confirmed that accurate camber control can be realized.
Figure 2006110627

(1)に記載の本発明の圧延方法を実現する圧延装置または(3)に記載の本発明の圧延装置の好ましい実施の形態を模式的に示す図である。It is a figure which shows typically preferable embodiment of the rolling apparatus which implement | achieves the rolling method of this invention as described in (1), or the rolling apparatus of this invention as described in (3). (2)に記載の本発明の圧延方法を実現する圧延装置または(4)に記載の本発明の圧延装置の好ましい実施の形態を模式的に示す図である。It is a figure which shows typically preferable embodiment of the rolling apparatus which implement | achieves the rolling method of this invention as described in (2), or the rolling apparatus of this invention as described in (4). (2)に記載の本発明の圧延方法を実現する圧延装置または(4)に記載の本発明の圧延装置の好ましい実施の形態を模式的に示す図である。It is a figure which shows typically preferable embodiment of the rolling apparatus which implement | achieves the rolling method of this invention as described in (2), or the rolling apparatus of this invention as described in (4). 圧延方向力左右差と板厚ウェッジの関係を示した図である。It is the figure which showed the relationship between a rolling direction force right-and-left difference and a sheet thickness wedge. 圧延方向力左右差と板厚ウェッジ比率変化の関係を示した図である。It is the figure which showed the relationship between a rolling direction force left-right difference and a plate | board thickness wedge ratio change. 板厚測定装置が前後片側にしかない場合に(2)に記載の本発明の圧延方法を実現するための圧延スケジュールを示す図である。It is a figure which shows the rolling schedule for implement | achieving the rolling method of this invention as described in (2), when a plate | board thickness measuring apparatus is only in the front and back one side.

符号の説明Explanation of symbols

1 上作業ロール
2 下作業ロール
3 上補強ロール
4 下補強ロール
5 上作業ロールチョック(作業側)
6 下作業ロールチョック(作業側)
7 上補強ロールチョック(作業側)
8 下補強ロールチョック(作業側)
9 上作業ロール出側荷重検出装置(作業側)
10 上作業ロール入側荷重検出装置(作業側)
11 下作業ロール出側荷重検出装置(作業側)
12 下作業ロール入側荷重検出装置(作業側)
13 圧下装置
14 上作業ロール圧延方向力演算装置(作業側)
15 下作業ロール圧延方向力演算装置(作業側)
16 作業ロール圧延方向合力演算装置[加算器](作業側)
17 作業ロール圧延方向合力(駆動側)
18 作業側−駆動側圧延方向力差演算装置
19 圧下レベリング制御量演算装置
20 圧下レベリング制御装置
21 金属板材
22 圧延方向
23 板厚測定装置(後面)
24 制御目標値演算装置
25 作業側−駆動側板厚差演算装置
26 板厚測定装置(前面)
27 板厚ウェッジ比率変化演算装置
1 Upper work roll 2 Lower work roll 3 Upper reinforcement roll 4 Lower reinforcement roll 5 Upper work roll chock (working side)
6 Lower work roll chock (work side)
7 Upper reinforcement roll chock (working side)
8 Lower reinforcement roll chock (working side)
9 Upper work roll outlet load detector (work side)
10 Upper work roll entry side load detection device (work side)
11 Lower work roll exit side load detector (work side)
12 Lower work roll entry side load detector (work side)
13 Reduction device 14 Upper work roll rolling direction force calculation device (work side)
15 Lower work roll rolling direction force calculation device (work side)
16 Work roll rolling direction resultant force calculation device [adder] (work side)
17 Work roll rolling direction resultant force (drive side)
DESCRIPTION OF SYMBOLS 18 Work side-drive side rolling direction force difference calculating device 19 Rolling leveling control amount calculating device 20 Rolling leveling control device 21 Metal plate material 22 Rolling direction 23 Plate thickness measuring device (rear surface)
24 Control Target Value Calculation Device 25 Work Side-Drive Side Plate Thickness Difference Calculation Device 26 Plate Thickness Measurement Device (Front)
27 Thickness wedge ratio change calculation device

Claims (4)

少なくとも作業ロールと補強ロールとを有する金属板材の圧延機を用いて行う金属板材の圧延方法において、該作業ロールの作業側と駆動側のロールチョックに作用する圧延方向の力を測定し、該圧延方向力の作業側と駆動側との差異(以下、圧延方向力の差異ともいう。)を演算し、この圧延方向力の差異が制御目標値になるように前記圧延機のロール開度の左右非対称成分を制御し、さらに被圧延材の作業側および駆動側の出側板厚を測定し、該出側板厚の作業側と駆動側との差異(以下、板厚ウェッジともいう。)を演算し、この差異に基づいて、前記圧延方向力の差異の制御目標値を学習することを特徴とする、金属板材の圧延方法。   In the method of rolling a metal sheet using a rolling machine for a metal sheet having at least a work roll and a reinforcing roll, the force in the rolling direction acting on the work chock and the drive side roll chock of the work roll is measured, and the rolling direction The difference between the force working side and the driving side (hereinafter also referred to as the difference in rolling direction force) is calculated, and the roll opening degree of the rolling mill is asymmetrical so that the difference in rolling direction force becomes the control target value. The ingredients are controlled, and the work-side and drive-side exit thicknesses of the material to be rolled are measured, and the difference between the work-side and drive sides of the exit-side board thickness (hereinafter also referred to as a plate thickness wedge) is calculated. Based on this difference, the control target value of the difference in the rolling direction force is learned. さらに、被圧延材の作業側と駆動側の入側板厚を測定し、前記出側板厚ウェッジの演算に代えて、被圧延材の作業側および駆動側の入側板厚および出側板厚の測定値より板厚ウェッジ比率変化を演算し、前記出側板厚ウェッジに代えて、前記板厚ウェッジ比率変化を用いることを特徴とする、請求項1に記載の金属板材の圧延方法。   Furthermore, the entry side plate thickness of the work side and the drive side of the material to be rolled is measured, and instead of the calculation of the exit side plate thickness wedge, the measured values of the entry side plate thickness and the exit side plate thickness on the work side and drive side of the material to be rolled The method for rolling a metal sheet according to claim 1, wherein a change in the plate thickness wedge ratio is calculated, and the change in the plate thickness wedge ratio is used in place of the outlet plate thickness wedge. 少なくとも作業ロールと補強ロールとを有する金属板材の圧延機を含む圧延装置において、前記作業ロールの作業側および駆動側のロールチョックに作用する圧延方向の力を測定する前記作業ロールチョックの圧延方向入側と出側の双方に備えた荷重検出装置と、該荷重検出装置による測定値に基づいて前記作業ロールチョックに作用する圧延方向力の差異を演算する演算装置と、前記圧延方向力の差異の演算値に基づいて前記圧延機のロール開度の左右非対称成分制御量を演算する演算装置と、前記ロール開度の左右非対称成分制御量の演算値に基づいて前記圧延機の前記ロール開度を制御する制御装置と、被圧延材の作業側と駆動側の出側板厚を測定する板厚測定装置と、該板厚測定装置による測定値に基づいて出側板厚ウェッジを演算する演算装置と、前記出側板厚ウェッジに基づいて前記圧延方向力の差異の制御目標値を学習する演算装置を有することを特徴とする、金属板材の圧延装置。   In a rolling apparatus including a rolling mill of a metal plate material having at least a work roll and a reinforcing roll, a rolling direction entry side of the work roll chock that measures a force in a rolling direction acting on a work chock and a drive side roll chock of the work roll; A load detection device provided on both the output side, a calculation device that calculates a difference in rolling direction force acting on the work roll chock based on a measurement value by the load detection device, and a calculation value of the difference in rolling direction force And a control device for calculating the roll opening degree of the rolling mill based on the calculated value of the left and right asymmetric component control amount of the roll opening. Equipment, plate thickness measuring device that measures the exit side thickness of the work side and drive side of the material to be rolled, and calculating the exit side thickness wedge based on the measured value by the plate thickness measurement device That an arithmetic unit, characterized in that it has an arithmetic unit for learning a control target value of the difference of said rolling direction force based on the delivery side thickness wedge rolling apparatus of the metal sheet. 被圧延材の作業側と駆動側の入側板厚を測定する板厚測定装置を有し、被圧延材の作業側および駆動側の入側板厚および出側板厚の測定値に基づいて板厚ウェッジ比率変化を演算する演算装置を有し、前記板厚ウェッジ比率変化の演算値に基づいて前記圧延方向力の差異の制御目標値を学習する演算装置を有することを特徴とする、請求項3に記載の金属板材の圧延装置。
Thickness wedge measuring device that measures the work-side and drive-side entry side thicknesses of the material to be rolled, and based on the measured values of the work-side and drive-side entry and exit side thicknesses of the material to be rolled It has a calculating device which calculates a ratio change, and has a calculating device which learns a control target value of a difference of the rolling direction force based on a calculated value of the sheet thickness wedge ratio change. The rolling apparatus of the metal plate material of description.
JP2005266226A 2004-09-17 2005-09-14 Rolling method and rolling apparatus for metal sheet Active JP4267609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005266226A JP4267609B2 (en) 2004-09-17 2005-09-14 Rolling method and rolling apparatus for metal sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004270599 2004-09-17
JP2005266226A JP4267609B2 (en) 2004-09-17 2005-09-14 Rolling method and rolling apparatus for metal sheet

Publications (2)

Publication Number Publication Date
JP2006110627A true JP2006110627A (en) 2006-04-27
JP4267609B2 JP4267609B2 (en) 2009-05-27

Family

ID=36379570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005266226A Active JP4267609B2 (en) 2004-09-17 2005-09-14 Rolling method and rolling apparatus for metal sheet

Country Status (1)

Country Link
JP (1) JP4267609B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161934A (en) * 2006-12-05 2008-07-17 Nippon Steel Corp Rolling method and rolling apparatus for rolling metallic sheet
JP2009208151A (en) * 2008-02-06 2009-09-17 Nippon Steel Corp Rolling method of metal plate material and rolling apparatus therefor
EP2792427A4 (en) * 2012-06-26 2015-09-09 Nippon Steel & Sumitomo Metal Corp Sheet metal rolling device
CN112243394A (en) * 2018-05-29 2021-01-19 日本制铁株式会社 Rolling mill and setting method of rolling mill
CN113056337A (en) * 2019-01-25 2021-06-29 普锐特冶金技术日本有限公司 Rolling equipment and rolling method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161934A (en) * 2006-12-05 2008-07-17 Nippon Steel Corp Rolling method and rolling apparatus for rolling metallic sheet
JP2009208151A (en) * 2008-02-06 2009-09-17 Nippon Steel Corp Rolling method of metal plate material and rolling apparatus therefor
EP2792427A4 (en) * 2012-06-26 2015-09-09 Nippon Steel & Sumitomo Metal Corp Sheet metal rolling device
US9770747B2 (en) 2012-06-26 2017-09-26 Nippon Steel & Sumitomo Metal Corporation Rolling apparatus for flat-rolled metal materials
CN112243394A (en) * 2018-05-29 2021-01-19 日本制铁株式会社 Rolling mill and setting method of rolling mill
EP3804870A4 (en) * 2018-05-29 2022-02-09 Nippon Steel Corporation Rolling mill and method for setting rolling mill
US11872613B2 (en) 2018-05-29 2024-01-16 Nippon Steel Corporation Rolling mill, and method for setting rolling mill
CN113056337A (en) * 2019-01-25 2021-06-29 普锐特冶金技术日本有限公司 Rolling equipment and rolling method
CN113056337B (en) * 2019-01-25 2023-11-28 普锐特冶金技术日本有限公司 Rolling equipment and rolling method

Also Published As

Publication number Publication date
JP4267609B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
JP4214150B2 (en) Rolling method and rolling apparatus for metal sheet
JP4267609B2 (en) Rolling method and rolling apparatus for metal sheet
JP5239728B2 (en) Rolling method and rolling apparatus for metal sheet
JP4903676B2 (en) Rolling method and rolling apparatus for metal sheet
JP2007190579A (en) Method and equipment for rolling metallic sheet
JP4268582B2 (en) Plate thickness control method and plate thickness / shape non-interference control method
JP4306273B2 (en) Strip meander control device and meander control method for tandem rolling mill
JP4214069B2 (en) Rolling method and rolling apparatus for metal sheet
JP2006082118A (en) Method and apparatus for rolling metallic sheet
JP4288888B2 (en) Strip meander control device and meander control method for tandem rolling mill
JP2006116569A (en) Method and apparatus for rolling metal plate
JP2003245708A (en) Method for controlling meandering of material to be rolled
JP2002210512A (en) Method for setting screw-down location in sheet rolling
JP2000094023A (en) Method and device for controlling leveling in hot finishing mill
JP4256827B2 (en) Rolling method and rolling apparatus for metal sheet
JP2550267B2 (en) Camber control method in plate rolling
JPS5916528B2 (en) Meandering correction device for rolling mill
JP2020040096A (en) Rolling machine and setting method of rolling machine
JP7347688B2 (en) Meandering control device for continuous rolling mill
WO2024042936A1 (en) Cold-rolling method and cold-rolling equipment
JPH04305304A (en) Method for controlling camber in hot rolling mill
JP2019107675A (en) Control device and control method for rolling mill
JP2001269708A (en) Method and device for controlling leveling in hot- rolling mill
JP4256832B2 (en) Rolling method and rolling apparatus for metal sheet
JP2510049B2 (en) Rolling mill edge drop control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

R151 Written notification of patent or utility model registration

Ref document number: 4267609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350